

APPLICATION NOTE

R8C/25 Group Timer RD in Reset Synchronous PWM Mode

R01AN1281EJ0110 Rev. 1.10 June 1, 2012

1. Abstract

This document describes how to set up and use timer RD in reset synchronous PWM mode in the R8C/25 Group.

2. Introduction

The application example described in this document is applied to the following MCU and parameter(s):

• MCU: R8C/25 Group

This program can be used with other R8C/Tiny Series which have the same special function registers (SFRs) as the R8C/25 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.

Note on oscillation stabilization wait time

In chapter 4.2.1, select the high-speed on-chip oscillator after starting the high-speed on-chip oscillator and waiting until oscillation stabilizes.

3. Applications

3.1 Timer RD

Timer RD has two 16-bit timers (channels 0 and 1). Each channel has four I/O pins. The operation clock of timer RD is f1 or fOCO40M. Table 3.1 lists the Timer RD Operation Clocks.

Table 3.1 Timer RD Operation Clocks

Conditions	Operation Clock of Timer RD
The count source is f1, f2, f4, f8, f32, or TRDCLK input (bits TCK2 to TCK0 in registers TRDCR0 and TRDCR1 are set to a value from 000b to 101b).	f1
The count source is fOCO40M (bits TCK2 to TCK0 in registers TRDCR0 and TRDCR1 are set to 110b).	fOCO40M

Figure 3.1 shows a Block Diagram of Timer RD. Timer RD has five modes:

• Timer mode

- Input capture function	Transfer the counter value to a register with an external signal as the
	trigger
- Output compare function	Detect register value matches with a counter
	(Pin output can be changed at detection)

The following four modes use the output compare function:

• PWM mode	Output pulse of any width continuously
Reset synchronous PWM mode	Output three-phase waveforms (six) without sawtooth wave modulation
	and dead time
 Complementary PWM mode 	Output three-phase waveforms (six) with triangular wave modulation and
	dead time
• PWM3 mode	Output PWM waveforms (two) with a fixed period

In the input capture function, output compare function, and PWM mode, channels 0 and 1 have the equivalent functions, and functions or modes can be selected individually for each pin. Also, a combination of these functions and modes can be used in one channel.

In reset synchronous PWM mode, complementary PWM mode, and PWM3 mode, a waveform is output with a combination of counters and registers in channels 0 and 1.

Tables 3.2 to 3.10 list the Pin Functions of timer RD.

Register	TRDOER1	TRDFCR			TRDIORA0		Function
Bit	EA0	PWM3	STCLK	CMD1, CMD0	IOA3	IOA2_IOA0	Function
	0	0	0	00b	Х	XXXb	PWM3 mode waveform output
	0	1	0	00b	1	001b, 01Xb	Timer mode waveform output (output compare function)
Setting value		1 0 00b		х	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾	
, and a	Х	1	1	XXb	х	000b	External clock input (TRDCLK) ⁽¹⁾
			Othe	than above		I/O port	

Table 3.2 Pin Functions TRDIOA0/TRDCLK(P2_0)

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_0 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function) and external clock input (TRDCLK).

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORA0	Function
Bit	EB0	PWM3	CMD1, CMD0	PWMB0	IOB2_IOB0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
	0	0	00b	Х	XXXb	PWM3 mode waveform output
Setting value	0	1	00b	1	XXXb	PWM mode waveform output
Value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than ab	ove	I/O port	

Table 3.3 Pin Functions TRDIOB0(P2_1)

X: can be 0 or 1, no change in outcome NOTE:

1. Set the PD2_1 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORC0	Function
Bit	EC0	PWM3	CMD1, CMD0	PWMC0	IOC2_IOC0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_2 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORC0	Function
Bit	ED0	PWM3	CMD1, CMD0	PWMD0	IOD2_IOD0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

Pin Functions TRDIOD0(P2_3) Table 3.5

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_3 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.6	Pin Fun	Pin Functions TRDIOA1(P2_4)									
Register	TRDOER1	TRDFCR		TRDIORA1	Function						
Bit	EA1	PWM3	CMD1, CMD0	IOA2_IOA0	Function						
	0	Х	1Xb	XXXb	Complementary PWM mode waveform output						
	0	Х	01b	XXXb	Reset synchronous PWM mode waveform output						
Setting value	0	1	00b	001b, 01Xb	Timer mode waveform output (output compare function)						
Value	Х	1	00b	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾						
		Oth	er than above		I/O port						

D:-- E. - - 4: -

X: can be 0 or 1, no change in outcome NOTE:

1. Set the PD2_4 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.7 Pin Functions TRDIOB1(P2_5)

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORA1	Function
Bit	EB1	PWM3	CMD1, CMD0	PWMB1	IOB2_IOB0	Fulction
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_5 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORC1	Function
Bit	EC1	PWM3	CMD1, CMD0	PWMC1	IOC2_IOC0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

Table 3.8Pin Functions TRDIOC1(P2_6)

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_6 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.9 Pin Functions TRDIOD1(P2_7)

Register	TRDOER1	TF	RDFCR	TRDPMR	TRDIORC1	Function
Bit	ED1	PWM3	CMD1, CMD0	PWMD1	IOD2_IOD0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_7 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.10 Pin Functions INT0(P4_5)

Register	TRDOER2	INTEN		PD4	Function
Bit	PTO	INT0PL	NTOPL INTOEN PD4_5		Fulction
Setting	1	0	1	0	Pulse output forced cutoff signal input
value	Other than above				I/O port or INTO interrupt input

X: can be 0 or 1, no change in outcome

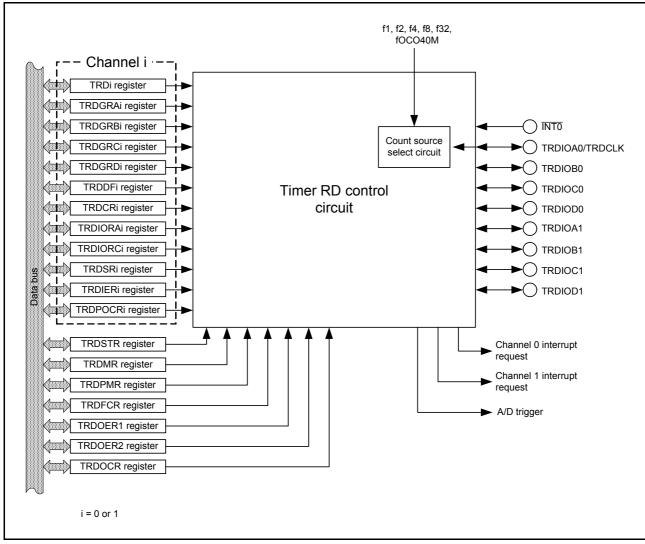
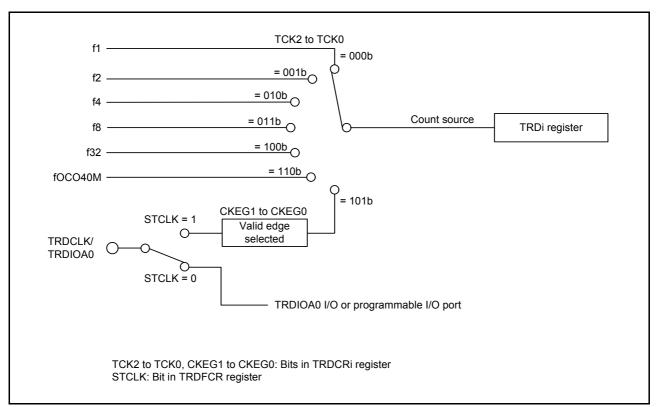


Figure 3.1 Block Diagram of Timer RD

3.2 Count Sources

The count source selection method is the same in all modes. However, in PWM3 mode, the external clock cannot be selected.


Table 3.11	Count Source Selection
------------	-------------------------------

Count Source	Selection
f1, f2, f4, f8, f32	The count source is selected by bits TCK2 to TCK0 in the TRDCRi register.
fOCO40M ⁽¹⁾	The FRA00 bit in the FRA0 register is set to 1 (high-speed on-chip oscillator frequency). Bits TCK2 to TCK0 in the TRDCRi register are set to 110b (fOCO40M).
External signal input to TRDCLK pin	The STCLK bit in the TRDFCR register is set to 1 (external clock input enabled). Bits TCK2 to TCK0 in the TRDCRi register are set to 101b (count source: external clock). The valid edge is selected by bits CKEG1 to CKEG0 in the TRDCRi register. The PD2_0 bit in the PD2 register is set to 0 (input mode).

i = 0 or 1

NOTE:

1. The count source fOCO40M can be used with VCC = 3.0 to 5.5 V.

Figure 3.2 Block Diagram of Count Source

Set the pulse width of the external clock which inputs to the TRDCLK pin to 3 cycles or above of the operation clock of timer RD (refer to **Table 3.1 Timer RD Operation Clocks**). When selecting fOCO40M for the count source, set the FRA00 bit in the FRA0 register to 1 (high-speed on-chip oscillator on) before setting bits TCK2 to TCK0 in the TRDCRi register (i = 0 or 1) to 110b (fOCO40M).

R8C/25 Group

3.3 Buffer Operation

The TRDGRCi (i = 0 or 1) register can be used as the buffer register of the TRDGRAi register, and the TRDGRDi register can be used as the buffer register of the TRDGRBi register by means of bits BFCi and BFDi in the TRDMR register.

• TRDGRAi buffer register: TRDGRCi register

• TRDGRBi buffer register: TRDGRDi register

Buffer operation depends on the mode. Table 3.12 lists the Buffer Operation in Each Mode.

	Table 3.12	Buffer Operation in Each Mode
--	------------	-------------------------------

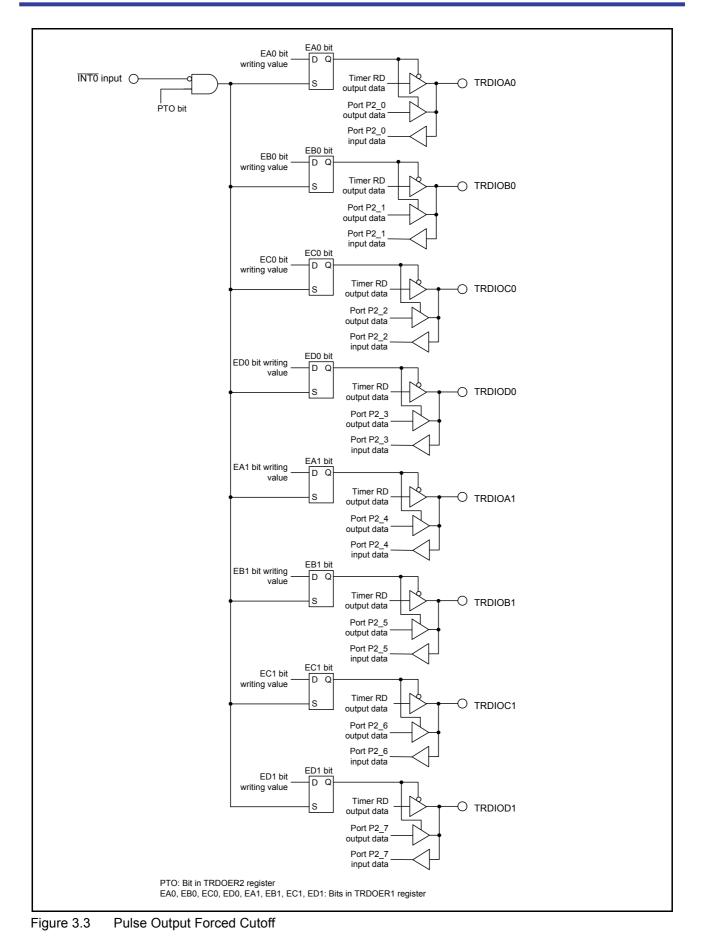
Function and Mode	Transfer Timing	Transfer Register
Input capture function	Input capture signal input	Transfer content in TRDGRAi
		(TRDGRBi) register to buffer register
Output compare function	Compare match with TRDi register	Transfer content in buffer register to
PWM mode	and TRDGRAi (TRDGRBi) register	TRDGRAi (TRDGRBi) register
Reset synchronous PWM	Compare match withTRD0 register	Transfer content in buffer register to
mode	and TRDGRA0 register	TRDGRAi (TRDGRBi) register
Complementary PWM mode	 Compare match with TRD0 register and TRDGRA0 register TRD1 register underflow 	Transfer content in buffer register to registers TRDGRB0, TRDGRA1, and TRDGRB1
PWM3 mode	Compare match with TRD0 register and TRDGRA0 register	Transfer content in buffer register to registers TRDGRA0, TRDGRB0, TRDGRA1, and TRDGRB1

i = 0 or 1

When using the TRDGRCi or TRDGRDi register as a buffer register for the output compare function, PWM mode, reset synchronous PWM mode, complementary PWM mode, and PWM3 mode, bits IMFC and IMFD in the TRDSRi register are set to 1 by a compare match with the TRDi register.

3.4 Pulse Output Forced Cutoff

In the output compare function, PWM mode, reset synchronous PWM mode, complementary PWM mode, and PWM3 mode, the TRDIOji (i = 0 or 1, j = either A, B, C, or D) output pin can be forcibly set to a programmable I/O port by the $\overline{INT0}$ pin input, and pulse output can be cut off.


The pins used for output in these functions or modes can function as the output pin of timer RD when the applicable bit in the TRDOER1 register is set to 0 (enable timer RD output). When the PTO bit in the TRDOER2 register is set to 1 (INTO of pulse output forced cutoff signal input enabled), all bits in the TRDOER1 register are set to 1 (disable timer RD output, the TRDIOji output pin is used as the programmable I/O port) after "L" is applied to the INTO pin. The TRDIOji output pin is set to the programmable I/O port after "L" is applied to the INTO pin and waiting for 1 to 2 cycles of the timer RD operation clock (refer to **Table 3.1 Timer RD Operation Clocks**).

Set as below when using this function:

- Set the pin status (high impedance, "L" or "H" output) to pulse output forced cutoff by registers P2 and PD2.
- Set the INT0EN bit in the INTEN register to 1 (enable INT0 input) and the INT0PL bit to 0 (one edge).
- Set the PD4 5 bit in the PD4 register to 0 (input mode).
- Set the INTO digital filter by bits INTOF1 to INTOF0 in the INTF register.
- Set the PTO bit in the TRDOER2 register to 1 (enable pulse output forced cutoff signal input INTO).

According to the selection of the POL bit in the INT0IC register and change of the INT0 pin input, the IR bit in the INT0IC register is set to 1 (interrupt request). Refer to the **R8C/25 Group Hardware Manual** for details of interrupts.

3.5 Reset Synchronous PWM Mode

In this mode, three normal-phases and three counter-phases of the PWM waveform are output with the same period (three-phase, sawtooth wave modulation, and no dead time).

Figure 3.4 shows a Block Diagram of Reset Synchronous PWM Mode, and Table 3.13 lists the Reset Synchronous PWM Mode Specifications. Figures 3.5 to 3.11 show the Registers Associated with Reset Synchronous PWM Mode, and Figure 3.13 shows an Operating Example of Reset Synchronous PWM Mode. Refer to R8C/25 Group Hardware Manual for an operating example of PWM Mode with duty 0% and duty 100%.

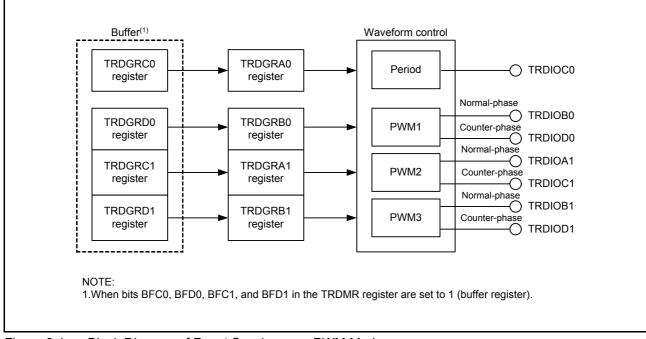
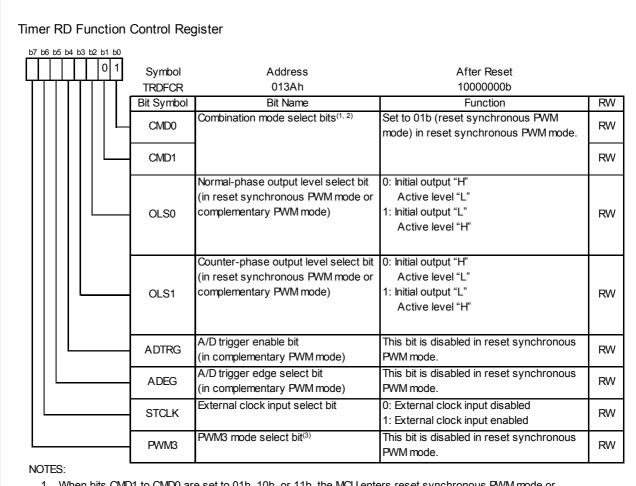


Figure 3.4 Block Diagram of Reset Synchronous PWM Mode

Item	Specification			
Count sources	f1, f2, f4, f8, f32, fOCO40M			
	External signal input to the TRDCLK pin (valid edge selected by a			
	program)			
Count operations	The TRD0 register is incremented (the TRD1 register is not used).			
PWM waveform	PWM period : 1/fk × (m+1)			
	Active level width of normal-phase : 1/fk × (m-n)			
	Active level width of counter-phase: 1/fk × (n+1)			
	fk: Frequency of count source			
	m: Value set in the TRDGRA0 register			
	 n: Value set in the TRDGRB0 register (PWM output 1), Value set in the TRDGRA1 register (PWM output 2), 			
	Value set in the TRDGRB1 register (PWM output 2), Value set in the TRDGRB1 register (PWM output 3)			
	►			
	Normal-phase			
	Counter-phase			
	n+1 (When "L" is selected as the active level)			
Count start condition	1 (count starts) is written to the TSTART0 bit in the TRDSTR register.			
Count stop conditions	• 0 (count stops) is written to the TSTART0 bit in the TRDSTR register			
	when the CSEL0 bit in the TRDSTR register is set to 1.			
	• The PWM output pin holds output level before the count stops			
	• When the CSEL0 bit in the TRDSTR register is set to 0, the count stops at the same time as the TRD0 register is set to 0000h at the compare			
	match in the TRDGRA0 register.			
	• The PWM output pin holds level after output change at compare match.			
Interrupt request generation	Compare match (the content of the TRD0 register matches the content			
timing	of registers TRDGRj0, TRDGRA1, and TRDGRB1).			
	The TRD0 register overflows			
TRDIOA0 pin function	Programmable I/O port or TRDCLK (external clock) input			
TRDIOB0 pin function	PWM output 1 normal-phase output			
TRDIOD0 pin function	PWM output 1 counter-phase output			
TRDIOA1 pin function	PWM output 2 normal-phase output			
TRDIOC1 pin function	PWM output 2 counter-phase output			
TRDIOB1 pin function TRDIOD1 pin function	PWM output 3 normal-phase output PWM output 3 counter-phase output			
TRDIOC0 pin function	Output inverted every PWM period			
·				
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO interrupt input			
Read from timer	The count value can be read by reading the TRD0 register.			
Write to timer	The value can be written to the TRD0 register.			
Select functions	The active level of normal-phase and counter-phase and initial output			
	level selected individually.			
	Buffer operation (refer to 3.3 Buffer Operation)			
	Pulse output forced cutoff signal input (refer to 3.4 Pulse Output			
	Forced Cutoff)			


Table 3.13	Reset Synchronous PWM Mode Specifications
------------	---

j = either A, B, C, or D

b7 b6 b5	b4 b3 b2 b1 b0				
	X	Symbol	Address	After Reset	
TTT		TRDSTR	0137h	11111100b	
		Bit Symbol	Bit Name	Function	RW
		TSTART0	TRD0 count start flag ⁽⁴⁾	0: Count stops ⁽²⁾ 1: Count starts	RW
		TSTART1	TRD1 count start flag ⁽⁵⁾	0: Count stops ⁽³⁾ 1: Count starts	RV
		CSEL0	TRD0 count operation select bit	 0: Count stops at compare match w ith the TRDGRA0 register after the count is cleared 1: Count continues at compare match w ith the TRDGRA0 register after the count is cleared 	RW
		CSEL1	TRD1 count operation select bit	 0: Count stops at compare match with the TRDGRA1 register after the count is cleared 1: Count continues at compare match with the TRDGRA1 register after the count is cleared 	RV
			Nothing is assigned. If necessary	/ set to 0	
R 2. V 3. V 4. V	Set the TRDST Register of N When the CSE When the CSE	otes on Tim L0 bit is set to L1 bit is set to	er RD. 1, w rite 0 to the TSTART0 bit. 1, w rite 0 to the TSTART1 bit.	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count	
1. S R 2. V 3. V 4. V 5. V s 5. V	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops).	R register usi iotes on Tim L0 bit is set to L1 bit is set to L0 bit is set to L1 bit is set to	ng the MOV instruction (do not us er RD. 9 1, w rite 0 to the TSTART0 bit. 9 1, w rite 0 to the TSTART1 bit. 9 0 and the compare match signal	e the bit handling instruction). Refer to 3.7.1 TRD	t
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE When the CSE stops). When the CSE	R register usi iotes on Tim L0 bit is set to L1 bit is set to L0 bit is set to L1 bit is set to	ng the MOV instruction (do not us er RD. 9 1, w rite 0 to the TSTART0 bit. 9 1, w rite 0 to the TSTART1 bit. 9 0 and the compare match signal	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count	t
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi otes on Tim L0 bit is set to L1 bit is set to L0 bit is set to L1 bit is set to gister Symbol	ng the MOV instruction (do not us er RD. 9 1, w rite 0 to the TSTART0 bit. 9 1, w rite 0 to the TSTART1 bit. 9 0 and the compare match signal	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count	t
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi iotes on Tim L0 bit is set to L1 bit is set to L0 bit is set to L1 bit is set to L1 bit is set to gister Symbol TRDMR	ng the MOV instruction (do not us er RD. 1, w rite 0 to the TSTART0 bit. 1, w rite 0 to the TSTART1 bit. 0 and the compare match signal 0 and the compare match signal Address	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count (TRDIOA1) is generated, this bit is set to 0 (count After Reset	t
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi otes on Tim L0 bit is set to L1 bit is set to L0 bit is set to L1 bit is set to gister Symbol	ng the MOV instruction (do not us er RD. 1, w rite 0 to the TSTART0 bit. 1, w rite 0 to the TSTART1 bit. 0 and the compare match signal 0 and the compare match signal Address 0138h	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count (TRDIOA1) is generated, this bit is set to 0 (count After Reset 00001110b	t
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi otes on Tim L0 bit is set to L1 bit is set to L0 bit is set to L1 bit is set to L1 bit is set to Symbol TRDMR Bit Symbol	ng the MOV instruction (do not us er RD. 1, w rite 0 to the TSTART0 bit. 0 and the compare match signal 0 and the compare match signal 0 and the compare match signal Address 0138h Bit Name	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count (TRDIOA1) is generated, this bit is set to 0 (registers TRD and TRD1 (count) (count)	t RW
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi iotes on Tim L0 bit is set to L1 bit is set to L1 bit is set to L1 bit is set to L1 bit is set to gister Symbol TRDMR Bit Symbol SYNC	ng the MOV instruction (do not us er RD. 1, w rite 0 to the TSTART0 bit. 1, w rite 0 to the TSTART1 bit. 0 and the compare match signal 0 and the compare match signal 0 and the compare match signal Address 0138h Bit Name Timer RD synchronous bit Nothing is assigned. If necessar	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count (TRDIOA1) is generated, this bit is set to 0 (registers TRD and TRD1 operate independently) in reset synchronous PWM mode. /, set to 0.	r RW
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi otes on Tim L0 bit is set to L1 bit is set to L1 bit is set to L1 bit is set to L1 bit is set to gister Symbol TRDMR Bit Symbol SYNC (b3 - b1)	Address 0138h Dimer RD. 0 and the compare match signal 0 and the compare match signal 0 and the compare match signal 0 and the compare match signal 10 and the compare match signal 10 and the compare match signal 11 Bit Name 11 Dimer RD synchronous bit 12 Nothing is assigned. If necessar 13 When read, the content is 1. 13 TRDGRC0 register function select	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count (TRDIOA1) is generated, this bit is set to 0 (count (the set to 0 (registers TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1 operate independently) in reset synchronous (to 0 (count)) is generated (to 0 (register TRD and TRD1)) is generated (to 0 (register TRD and TRD1)) is generated (to 0 (register TRD and TRD1)) is generated	t RW
1. S R 2. V 3. V 4. V 5. V 5. V S	Set the TRDST Register of N When the CSE When the CSE stops). When the CSE stops). D Mode Reg	R register usi otes on Tim L0 bit is set to L1 bit is set to L1 bit is set to L1 bit is set to L1 bit is set to gister Symbol TRDMR Bit Symbol SYNC (b3 - b1) BFC0	ng the MOV instruction (do not us er RD. 1, w rite 0 to the TSTART0 bit. 1, w rite 0 to the TSTART1 bit. 0 and the compare match signal 0 and the compare match signal 0 and the compare match signal 0 and the compare match signal Bit Name Timer RD synchronous bit Nothing is assigned. If necessary When read, the content is 1. TRDGRC0 register function select bit	e the bit handling instruction). Refer to 3.7.1 TRD (TRDIOA0) is generated, this bit is set to 0 (count (TRDIOA1) is generated, this bit is set to 0 (register TRDIOA0 TRDI (TRDIOA1) is generated, this bit is set to 0. (count (TRDIOA1) is generated, this bit is set to 0. (count (TRDIOA1) is generated, this bit is set to 0 (register TRDIOA0 TRDI (count) is generated, this bit is set to 0. (count) is generated at this bit i	t RW RW

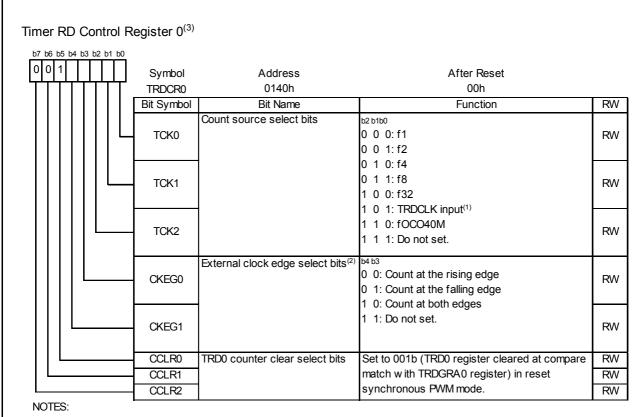
Figure 3.5 Registers TRDSTR and TRDMR in Reset Synchronous PWM Mode

RENESAS

1. When bits CMD1 to CMD0 are set to 01b, 10b, or 11b, the MCU enters reset synchronous PWM mode or complementary PWM mode regardless of the setting of the TRDPMR register.

2. Set bits CMD1 to CMD0 w hen both the TSTART0 and TSTART1 bits are set to 0 (count stops).

3. When bits CMD1 to CMD0 are set to 00b (timer mode, PWM mode, or PWM3 mode), the PWM3 bit setting is enabled.


Figure 3.6 TRDFCR Register in Reset Synchronous PWM Mode

	b2 b1 b0	Symbol	Address	After Reset	
TTT		TRDOER1	013Bh	FFh	
		Bit Symbol	Bit Name	Function	RW
		EA0	TRDIOA0 output disable bit	Set this bit to 1 (the TRDIOA0 pin is used as a programmable I/O port) in reset synchronous PWM mode.	RW
		EB0	TRDIOB0 output disable bit	0: Enable output 1: Disable output (The TRDIOB0 pin is used as a programmable I/O port.)	RW
		EC0	TRDIOC0 output disable bit	0: Enable output1: Disable output (The TRDIOC0 pin is used as a programmable I/O port.)	RW
		ED0	TRDIOD0 output disable bit	0: Enable output1: Disable output (The TRDIOD0 pin is used as a programmable I/O port.)	RW
		EA1	TRDIOA1 output disable bit	0: Enable output 1: Disable output (The TRDIOA1 pin is used as a programmable I/O port.)	RW
		EB1	TRDIOB1 output disable bit	0: Enable output1: Disable output (The TRDIOB1 pin is used as a programmable I/O port.)	RW
		EC1	TRDIOC1 output disable bit	0: Enable output1: Disable output (The TRDIOC1 pin is used as a programmable I/O port.)	RW
		ED1	TRDIOD1 output disable bit	0: Enable output1: Disable output (The TRDIOD1 pin is used as a programmable I/O port.)	RW
		aster Enab Symbol TRDOER2 Bit Symbol	le Register 2 Address 013Ch Bit Name	After Reset 01111111b Function	RW
		—	Nothing is assigned. If necessary	, set to 0.	_
		(b6 - b0)	When read, the content is 1.		
		PTO		: Pulse output forced cutoff input disabled : Pulse output forced cutoff input enabled (All bits in the TRDOER1 register are set to 1 (disable output) w hen "L" is applied to the INTO pin.)	RW

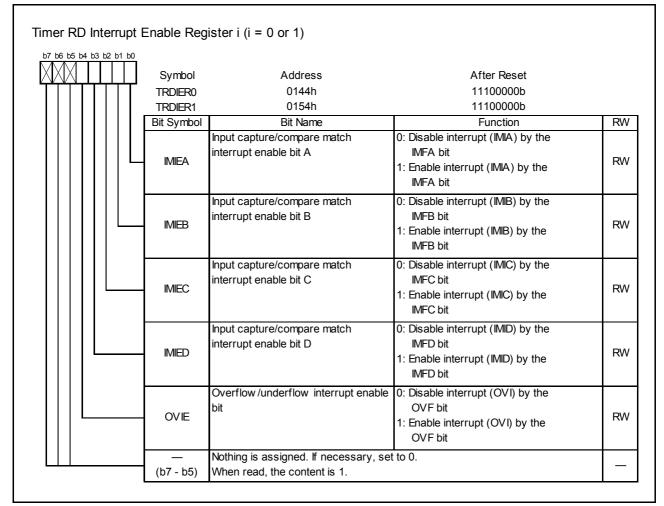
1. This setting is enabled when the STCLK bit in the TRDFCR register is set to 1 (external clock input enabled).

2. Bits CKEG1 to CKEG0 are enabled when bits TCK2 to TCK0 are set to 101b (TRDCLK input) and the STCLK bit in the TRDFCR register is set to 1 (external clock input enabled).

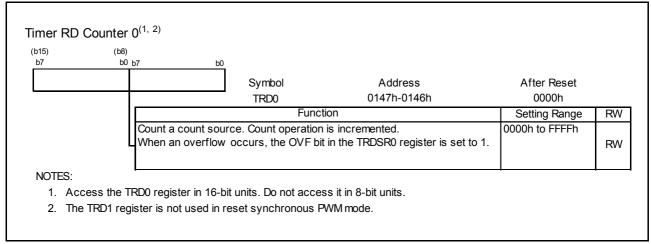
3. The TRDCR1 register is not used in reset synchronous PWM mode.

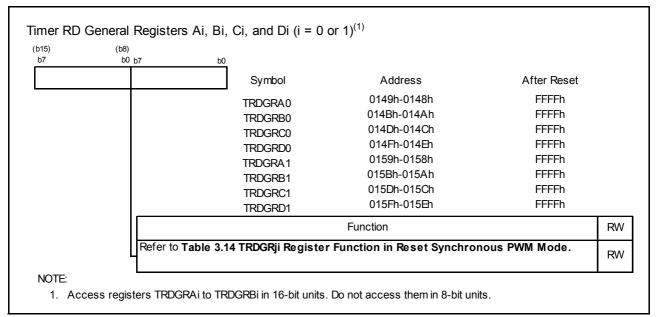
Figure 3.8 TRDCR0 Register in Reset Synchronous PWM Mode

b7 b6 b5 b4 b3 b2 b1 b0	I			
	Symbol	Address	After Reset	
	TRDSR0	0143h	1110000b	
	TRDSR1	0153h	1100000b	
	Bit Symbol	Bit Name	Function	RW
	- IMFA	Input capture/compare match flag A	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRAi register.	RW
	IMFB	Input capture/compare match flag B	[Source for setting this bit to 0"] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRBi register.	RW
	- IMFC	Input capture/compare match flag C	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRCi register ⁽³⁾ .	RW
	- IMFD	Input capture/compare match flag D	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRDi register ⁽³⁾ .	RW
	OVF	Overflow flag	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the TRDi register overflow s.	RW
	UDF	Underflow flag ⁽¹⁾	This bit is disabled in reset synchronous PWM mode.	RW


NOTES:

1. Nothing is assigned to b5 in the TRDSR0 register. When writing to b5, write 0. When reading, the content is 1.


- 2. The writing results are as follows:
 - This bit is set to 0 w hen the read result is 1 and 0 is written to the same bit.
 - This bit remains unchanged even if the read result is 0 and 0 is written to the same bit (this bit remains
 - 1 even if it is set to 1 from 0 after reading, and writing 0).
 - This bit remains unchanged if 1 is written to it.
- 3. Including when the BFji bit in the TRDMR register is set to 1 (TRDGRji is used as the buffer register).



The following registers are disabled in the reset synchronous PWM mode: TRDPMR, TRDDF0, TRDDF1, TRDIORA0, TRDIORC0, TRDPOCR0, TRDIORA1, TRDIORC1, and TRDPOCR1.

Register	Setting	Register Function	PWM Output Pin
TRDGRA0	_	General register. Set the PWM period.	(Output inverted every PWM period and TRDIOC0 pin)
TRDGRB0	_	General register. Set the changing point of PWM1 output.	TRDIOB0 TRDIOD0
TRDGRC0	BFC0 = 0	(These registers are not used in reset	-
TRDGRD0	BFD0 = 0	synchronous PWM mode.)	
TRDGRA1	-	General register. Set the changing point of	TRDIOA1
		PWM2 output.	TRDIOC1
TRDGRB1	-	General register. Set the changing point of	TRDIOB1
		PWM3 output.	TRDIOD1
TRDGRC1	BFC1 = 0	(These points are not used in reset	-
TRDGRD1	BFD1 = 0	synchronous PWM mode.)	
TRDGRC0	BFC0 = 1	Buffer register. Set the next PWM period.	(Output inversed every PWM
		(Refer to 3.3 Buffer Operation.)	period and TRDIOC0 pin)
TRDGRD0	BFD0 = 1	Buffer register. Set the changing point of	TRDIOB0
		the next PWM1 output.	TRDIOD0
		(Refer to 3.3 Buffer Operation.)	
TRDGRC1	BFC1 = 1	Buffer register. Set the changing point of	TRDIOA1
		the next PWM2 output.	TRDIOC1
		(Refer to 3.3 Buffer Operation.)	
TRDGRD1	BFD1 = 1	Buffer register. Set the changing point of	TRDIOB1
		the next PWM3 output.	TRDIOD1
		(Refer to 3.3 Buffer Operation.)	

 Table 3.14
 TRDGRji Register Functions in Reset Synchronous PWM Mode

BFC0, BFD0, BFC1, BFD1: Bits in TRDMR register

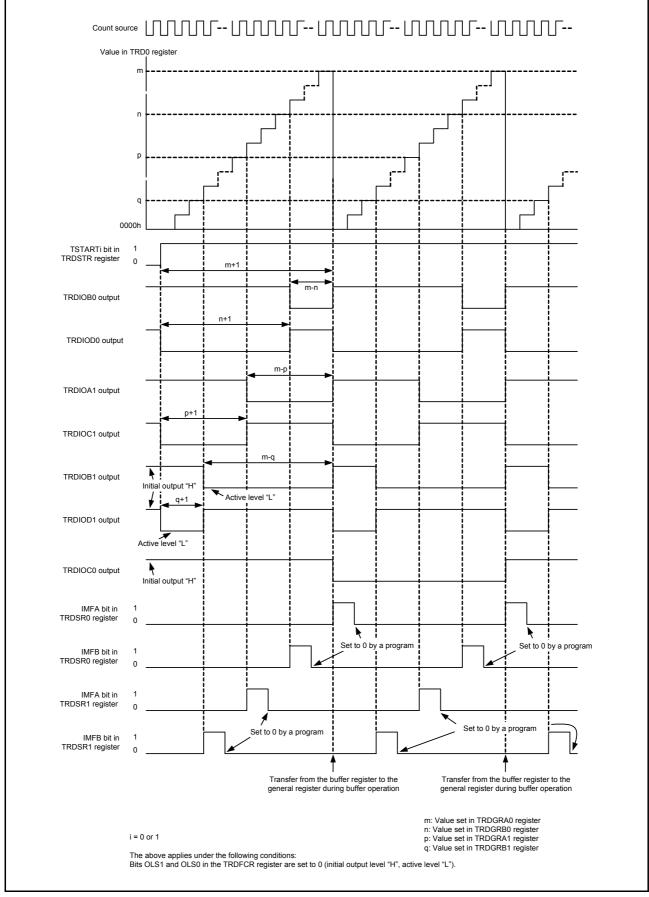


Figure 3.13 Operating Example of Reset Synchronous PWM Mode

RENESAS

3.6 Timer RD Interrupt

Timer RD generates the timer RD interrupt request based on six sources for each channel. The timer RD interrupt has one TRDiIC register (bits IR, and ILVL0 to ILVL2), and one vector for each channel.

Table 3.15 lists the Registers Associated with Timer RD Interrupt, and Figure 3.14 shows a Block Diagram of Timer RD Interrupt.

Table 3.15	Registers Associated with Timer RD Interrup	ot
------------	---	----

	Timer RD	Timer RD	Timer RD
	Status Register	Interrupt Enable Register	Interrupt Control Register
Channel 0	TRDSR0	TRDIER0	TRD0IC
Channel 1	TRDSR1	TRDIER1	TRD1IC

Figure 3.14 Block Diagram of Timer RD Interrupt

As with other maskable interrupts, the timer RD interrupt is controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, since the interrupt source (timer RD interrupt) is generated by a combination of multiple interrupt request sources, the following differences from other maskable interrupts apply:

- When bits in the TRDSRi register corresponding to bits set to 1 in the TRDIERi register are set to 1 (enable interrupt), the IR bit in the TRDIIC register is set to 1 (interrupt requested).
- When either bits in the TRDSRi register or bits in the TRDIERi register corresponding to bits in the TRDSRi register, or both of them, are set to 0, the IR bit is set to 0 (interrupt not requested). Therefore, even though the interrupt is not acknowledged after the IR bit is set to 1, the interrupt request will not be maintained.
- When the conditions of other request sources are met, the IR bit remains 1.
- When multiple bits in the TRDIERi register are set to 1, which request source causes an interrupt is determined by the TRDSRi register.
- Since each bit in the TRDSRi register is not automatically set to 0 even if the interrupt is acknowledged, set each bit to 0 in the interrupt routine.

For information on how to set these bits to 0, refer to **Registers TRDSR0 to TRDSR1 in Reset Synchronous PWM Mode (Figure 3.9)**.

Refer to **Registers TRDSR0 to TRDSR1 in Reset Synchronous PWM Mode (Figure 3.9)** for the TRDSRi register. Refer to **Registers TRDIER0 to TRDIER1 in Reset Synchronous PWM Mode (Figure 3.10)** for the TRDIERi register.

Refer to the R8C/25 Group Hardware Manual for information on the TRDiIC register and the interrupt vectors.

3.7 Notes on Timer RD

3.7.1 TRDSTR Register

- Set the TRDSTR register using the MOV instruction.
- When the CSEL0 is set to 0 (the count stops after the count is cleared at compare match of registers TRD0 and TRDGRA0), the count does not stop and the TSTART0 bit remains unchanged even if 0 (count stops) is written to the TSTART0 bit.
- Therefore, set the TSTART0 bit to 0 to change other bits without changing the TSTART0 bit when the CSEL0 bit is set to 0.
- To stop counting by a program, set the TSTARTi bit after setting the CSEL0 bit to 1. Although the CSEL0 bit is set to 1 and the TSTART0 bit is set to 0 at the same time (with 1 instruction), the count cannot be stopped.
- Table 3.16 lists the TRDIOji (j = A, B, C, or D) Pin Output Level when Count Stops.

Table 3.16 TRDIOji (j = A, B, C, or D) Pin Output Level when Count Stops

Count Stop	TRDIOji Pin Output when Count Stops
When the CSEL0 bit is set to 1, set the TSTART0 bit to 0 and the count stops.	Hold the output level immediately before the count stops.
When the CSEL0 bit is set to 0, the count stops after the count is cleared at compare match of registers TRD0 and TRDGRA0.	Hold the output level after output changes by compare match.

3.7.2 TRD0 Register

• When writing the value to the TRD0 register by a program while the TSTART0 bit in the TRDSTR register is set to 1 (count starts), avoid overlapping with the timing for setting the TRD0 register to 0000h, and then write. If the timing for setting the TRD0 register to 0000h overlaps with the timing for writing the value to the TRD0 register, the value is not written and the TRD0 register is set to 0000h.

These precautions are applicable when selecting the following by bits CCLR2 to CCLR0 in the TRDCR0 register:

- 001b (Clear by the TRD0 register at compare match with the TRDGRA0 register.)
- 010b (Clear by the TRD0 register at compare match with the TRDGRB0 register.)
- 011b (Synchronous clear)
- 101b (Clear by the TRD0 register at compare match with the TRDGRC0 register.)
- 110b (Clear by the TRD0 register at compare match with the TRDGRD0 register.)
- When writing the value to the TRD0 register and continuously reading the same register, the value before writing may be read. In this case, execute the JMP.B instruction between the writing and reading.
 Program example MOV.W #XXXXh, TRD0 ;Writing

imple	MOV.W	#XXXXh, TRD0	;Writing
-	JMP.B	L1	;JMP.B
L1:	MOV.W	TRD0,DATA	;Reading

3.7.3 TRDSRi Register (i = 0 or 1)

When writing the value to the TRDSRi register and continuously reading the same register, the value beforewriting may be read. In this case, execute the JMP.B instruction between writing and reading.Program exampleMOV.B#XXh, TRDSR0;Writing

	MOV.B	#XXh, TRDSR0	;Writing
	JMP.B	L1	;JMP.B
L1:	MOV.B	TRDSR0,DATA	;Reading

3.7.4 Count Source Switch

• Switch the count source after the count stops.

Change procedure

- (1) Set the TSTART0 bit in the TRDSTR register to 0 (count stops).
- (2) Change bits TCK2 to TCK0 in the TRDCR0 register.
- When changing the count source from fOCO40M to another source and stopping fOCO40M, wait two or more cycles of f1 after setting the clock switch, and then stop fOCO40M.

Change procedure

- (1) Set the TSTART0 bit in the TRDSTR register to 0 (count stops).
- (2) Change bits TCK2 to TCK0 in the TRDCR0 register.
- (3) Wait two or more cycles of fl.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator stops).

3.7.5 Reset Synchronous PWM Mode

- When reset synchronous PWM mode is used for motor control, make sure OLS0 = OLS1.
- Set to reset synchronous PWM mode using the following procedure:

Change procedure:

- (1) Set the TSTART0 bit in the TRDSTR register to 0 (count stops).
- (2) Set bits CMD1 to CMD0 in the TRDFCR register to 00b (timer mode, PWM mode, and PWM3 mode).
- (3) Set bits CMD1 to CMD0 to 01b (reset synchronous PWM mode).
- (4) Set the other registers associated with timer RD again.

3.7.6 Count Source fOCO40M

• The count source fOCO40M can be used with supply voltage VCC = 3.0 to 5.5 V. For other supply voltage, do no set bits TCK2 to TCK0 in registers TRDCR0 and TRDCR to 110b (select fOCO40M as the count source).

4. Program Overview

This program can be used on timer RD to output three normal-phases and three counter-phases of a total of six PWM waveforms with the same period at the PWM period (200 μ s). The output signals are as follows:

TRDIOB0 pin: PWM1 normal-phase outpu inactive level ("H") active level ("L")	t 50 μ s = 40 MHz × (TRDGRB0 + 1) = 25 ns × 2000 150 μ s = 40 MHz × ((TRDGRA0 + 1) - (TRDGRB0 + 1)) = 25 ns × (8000 - 2000) = 25 ns × 6000	
TRDIOD0 pin: PWM1 counter-phase outp	ut	
inactive level ("H")	$150 \ \mu s = 40 \ MHz \times ((TRDGRA0 + 1) - (TRDGRB0 + 1)) = 25 \ ns \times (8000 - 2000) = 25 \ ns \times 6000$	
active level ("L")	50 μ s = 40 MHz × (TRDGRB0 + 1) = 25 ns × 2000	
TRDIOA1 pin: PWM2 normal-phase outpu	t	
inactive level ("H")	$100 \ \mu s = 40 \ MHz \times (TRDGRA1 + 1) = 25 \ ns \times 4000$	
active level ("L")	$100 \ \mu s = 40 \ MHz \times ((TRDGRA0 + 1) - (TRDGRA1 + 1))$	
	$= 25 \text{ ns} \times (8000 - 4000) = 25 \text{ ns} \times 4000$	
TRDIOC1 pin: PWM2 counter-phase output	t	
inactive level ("H")	$100 \ \mu s = 40 \ MHz \times ((TRDGRA0 + 1) - (TRDGRA1 + 1))$	
	$= 25 \text{ ns} \times (8000 - 4000) = 25 \text{ ns} \times 4000$	
active level ("L")	$100 \ \mu s = 40 \ MHz \times (TRDGRA1 + 1) = 25 \ ns \times 4000$	
TRDIOB1 pin: PWM3 normal-phase outpu	t	
inactive level ("H")	$150 \ \mu s = 40 \ MHz \times (TRDGRB1 + 1) = 25 \ ns \times 6000$	
active level ("L")	$50 \ \mu s = 40 \ MHz \times ((TRDGRA0 + 1) - (TRDGRB1 + 1))$	
	$= 25 \text{ ns} \times (8000 - 6000) = 25 \text{ ns} \times 2000$	
TRDIOD1 pin: PWM3 counter-phase output	ıt	
inactive level ("H")	$50 \ \mu s = 40 \ MHz \times ((TRDGRA0 + 1) - (TRDGRB1 + 1))$	
	$= 25 \text{ ns} \times (8000 - 6000) = 25 \text{ ns} \times 2000$	
active level ("L")	150 μ s = 40 MHz × (TRDGRB1 + 1) = 25 ns × 6000	
Set TRDGRA0 to the PWM period (200 µs).	
200 μ s = 40 MHz × (TRDGRA0 + 1) = 25 ns × 8000		

The setting conditions of this program are as follows:

- Select the high-speed on-chip oscillator (fOCOM40M) as the count source.
- Clear timer RD counter0 (TRD0) at compare match with TRDGRA0.
- For the TRDGRA1, TRDRB0, TRDGRB1, TRDGRC1, TRDGRD0, and TRDGRD1 pins, set the output levels to active ("L") and the initial output levels to inactive ("H")
- Output an active level signal ("L") from the TRDIOB0 output pin at compare match between TRD0 and TRDGRB0.
- Output an active level signal ("L") from the TRDIOA1 output pin at compare match between TRD0 and TRDGRA1.
- Output an active level signal ("L") from the TRDIOB1 output pin at compare match between TRD0 and TRDGRB1.
- Output an inactive level signal ("H") from the TRDIOB0, TRDIOA1, and TRDIOB1 output pins at compare match between TRD0 and TRDGRA0.
- Do not use the pulse output forced cutoff input function.

Figure 4.1 shows the Pin Used.

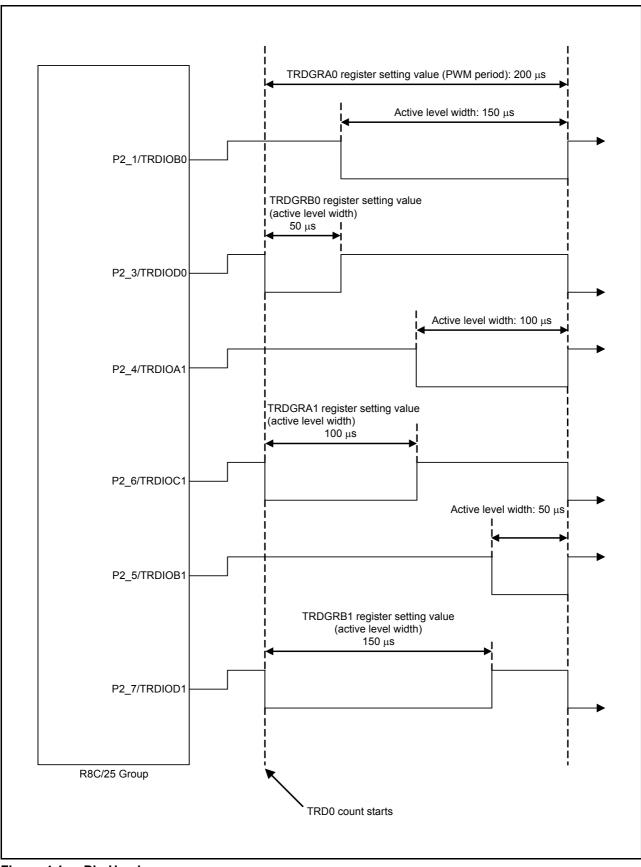
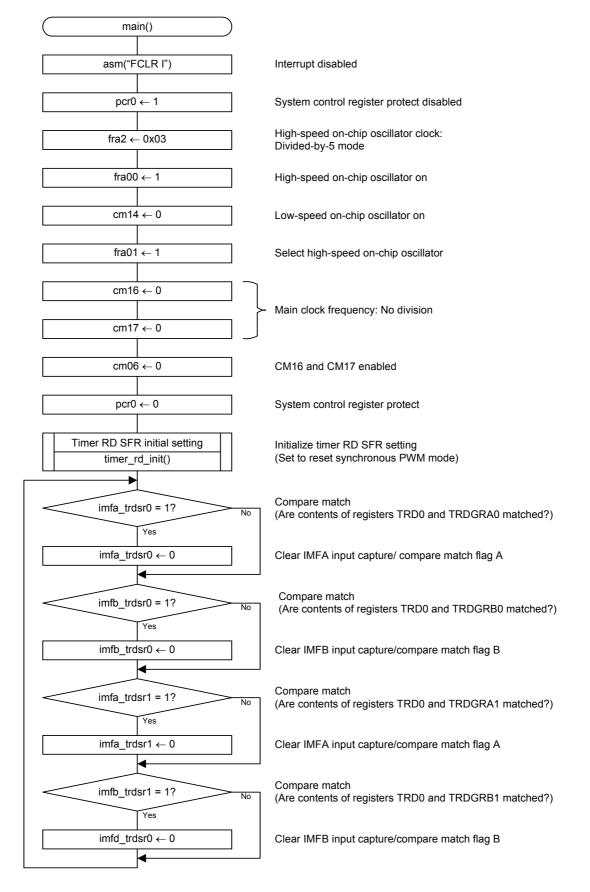


Figure 4.1 Pin Used

4.1 Function Table

Table 4.1


Declaration	void timer_rd_in	void timer_rd_init(void)		
Overview	SFR initial settin	SFR initial setting associated with timer RD		
Argument	Argument name		Meaning	
	None			
Variable used (global)	Variable name	Variable name		
	None	None		
Return value	Туре	Value	Meaning	
	None			
Function	Initialize the SFF	Initialize the SFR registers associated with timer RD		

Timer RD in Reset Synchronous PWM Mode

4.2 Flow chart

4.2.1 Main Function

4.2.2 Timer RD SER Initial Setting

(timer_rd_init()	
trdstr ← 0x0C	TRD0 count stops
trd0ic ← 0x00	TRD0 interrupt disabled
cdmd_trdfcr ← 0 cmd1_trdfcr ← 0	Initially set to 00b for reset synchronous PWM mode (Refer to 3.7.5 Reset Synchronous PWM mode)
$cmd0_trdfcr \leftarrow 1$ $cmd1_trdfcr \leftarrow 0$	Set to 01b in reset synchronous PWM mode
sync_trdmr ← 0	Set to 0 in reset synchronous PWM mode
ols0_trdfcr ← 0	Normal-phase output level: Initial output "H" and active level "L"
ols1_trdfcr ← 0	Counter-phase output level: Initial output "H" and active level "L"
stclk_trdfcr ← 0	External clock disabled
ea0_trdoer1 ← 1	Set to 1 in reset synchronous PWM mode
	TRDIOB0 pin: Output enabled
ed0_trdoer1 ← 0	TRDIOD0 pin: Output enabled
ea1_trdoer1 ← 0	TRDIOA1pin: Output enabled
	TRDIOB1 pin: Output enabled
ec1_trdoer1 ← 0	TRDIOC1 pin: Output enabled
	TRDIOD1 pin: Output enabled
pto_trdoer2 ← 0	Pulse output forced cutoff input disabled

A	
tck0_trdcr0 ← 0	
tck1_trdcr0 ← 1	Count source: Select fOCO40M
tck2_trdcr0 ← 1	
cclr0_trdcr0 ← 1	
ccir1_trdcr0 ← 0	Set to 001b in reset synchronous PWM mode
cclr2_trdcr0 ← 0	
trd0 ← 0	Initialize TRD0 register count value to 0
trdgra0 ← 8000 – 1	PWM period: Set to 200 μs (25 ns \times 8000 = 200 $\mu s)$
trdgrb0 ← 2000 - 1	PWM1 output change point: Set to 50 μs (25 ns \times 2000 = 50 μs)
trdgra1 ← 4000 - 1	PWM2 output change point: Set to 100 μs (25 ns \times 4000 = 100 μs)
trdgrb1 ← 6000 - 1	PWM3 output change point: Set to 150 μs (25 ns \times 6000 = 150 μs)
trdier0 ← 0x00	Interrupt disabled
trdstr ← 0x0D	TRD0 count starts
return	

5. Sample Programming Code

A sample program can be downloaded from the Renesas Electronics website.

6. Reference Documents

User's Manual: Hardware R8C/25 Group Hardware Manual The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries http://www.renesas.com/contact/

Rev.	Date	Description	
		Page	Summary
1.00	Dec 01, 2006	-	First Edition issued
1.10	June 1, 2012	1	Note on oscillation stabilization wait time added
		Ι	Previous document number: REJ05B0844

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics shall not be in any way liable for any application for which the product is not intended by Nenesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-989-5441, Fax: +1-905-988-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +49-215-85100, Fax: +44-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrase 10, 40472 Dusseldorf, Germany

 Tel: +92-21-65030, Fax: +44-1628-585-900

 Renesas Electronics China) Co., Ltd.

 The Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +92-21-565, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 1204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +86-2-857-71818, Fax: +86-21-887-7858 / -7898

 Renesas Electronics Hong Kong Limited

 Unit 1201-151, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +85-2-886-9318, Fax: +852 2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd.

 137. No. 363, Fu Shing Month Road, Taipei, Taiwan

 138., No. 353, Fu Shing Month Road, Taipei, Taiwan

 <t