
APPLICATION NOTE

R01AN1473EJ0100 Rev. 1.00 Page 1 of 20
Mar. 8, 2013

Abstract
This document describes using the serial interface (UART) in the R32C/100 Series to rewrite the flash
memory.
The sample code uses EW1 mode of the CPU rewrite mode to rewrite the flash memory.
In the R32C/118 Group, UART0 to UART8 can be used in asynchronous serial interface mode. The sample
code uses UART2. When using a channel other than UART2, refer to the User’s Manual: Hardware and
rewrite registers associated with UART0 to UART8.

Products
R32C/116 Group
R32C/117 Group
R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

R01AN1473EJ0100
Rev. 1.00

Mar. 8, 2013

R32C/100 Series
Rewriting the Flash Memory Using the Serial Interface (UART)

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 2 of 20
Mar. 8, 2013

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 4

3. Reference Application Note ... 4

4. Hardware ... 5

4.1 Pins Used ... 5

5. Software ... 5

5.1 Operation Overview .. 5

5.1.1 Operation Example .. 6

5.2 Constants .. 7

5.3 Receive Data Storage Structure ... 7

5.4 Variables ... 8

5.5 Functions .. 8

5.6 Function Specifications ... 9

5.7 Flowcharts .. 13

5.7.1 Main Processing .. 13

5.7.2 Control Command Reception .. 14

5.7.3 Receive Program Command Data ... 14

5.7.4 Receive Data From the Master Device .. 15

5.7.5 Send a Result to the Master Device .. 16

5.7.6 UART2 Initialization ... 16

5.7.7 Initialize Timer for Receive Processing Timeout .. 17

5.7.8 Erase Command Processing ... 17

5.7.9 Program Command Processing .. 18

5.7.10 Processing to Enter EW1 Mode .. 19

5.7.11 Processing to Exit EW1 Mode ... 19

6. Sample Code ... 20

7. Reference Documents ... 20

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 3 of 20
Mar. 8, 2013

1. Specifications
In this document, the serial interface (UART2) is in asynchronous serial interface mode. The MCU receives
control commands and write data from the master device. Depending on the control command received, the
flash memory is either erased or written.
Control commands transmitted by the master device are either erase commands or program commands.
The program command includes up to 256 bytes of data to write to the flash memory.
In the sample code, after erase or write processing is performed on the flash memory, a processing result is
transmitted to the master device.

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows a Connection Example.

Figure 1.1 Connection Example

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
Flash memory Executes programming or block erasing
Serial interface (UART2) Communicates with the master device
Timer A0 Timer for receive processing timeout detection

RXD
TXD

Master device

VCC
TXD2
RXD2

 VSS

Serial
interface
(UART2)

R32C/118 Group

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 4 of 20
Mar. 8, 2013

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions
below.

3. Reference Application Note
An application note associated with this application note is listed below. Refer to this application note for
additional information.

• R32C/100 Series Rewriting ROM Area Using EW1 Mode of CPU Rewrite Mode (REJ05B1394)

Table 2.1 Operation Confirmation Conditions

Item Contents

MCU used R5F64189DFD (R32C/118 Group)

Operating frequencies

• XIN clock: 16 MHz
• PLL clock: 100 MHz
• Base clock: 50 MHz
• CPU clock: 50 MHz
• Peripheral bus clock: 25 MHz
• Peripheral clock: 25 MHz

Operating voltage 5V
Integrated development
environment

Renesas Electronics
High-performance Embedded Workshop Version 4.09

C compiler

Renesas Electronics
R32C/100 Series C Compiler V.1.02 Release 01
Compile options
-D__STACKSIZE__=0X300
-D__ISTACKSIZE__=0X300
-DVECTOR_ADR=0x0FFFFFBDC
-c -finfo -dir “$(CONFIGDIR)”
Default setting is used in the integrated development environment.

Operating mode Single-chip mode

Sample code version 1.00

Board used Renesas Starter Kit for R32C/118 (device part no.: R0K564189S000BE)

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 5 of 20
Mar. 8, 2013

4. Hardware

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

5. Software

5.1 Operation Overview
In the sample code, after the MCU starts up, it waits to receive a 3-byte control command from the master
device.
If the command received is the erase command, block 7 in the flash memory is block erased.
If the command received is the program command, the MCU waits to receive the size, data, and SUM
value from the master device. If the sum of the received data matches the received SUM value, the
received data is written to block 7 in the flash memory.
If the control command processing is successful, 6Fh (‘o’) is transmitted to the master device. If the
control command processing ends in error, 65h (‘e’) is transmitted to the master device.
The sample code does not include recovery processing when an error occurs. Add recovery processing
to the user program when necessary. In particular, when an overrun error occurs, subsequent reception is
not possible.
Table 5.1 lists the Control Commands, and Table 5.2 lists the Conditions for Configuring Communication.

Note:
1. The result is transferred from the sample code to the master device. If the program or erase

processing is successful, 6Fh (‘o’) is returned; if the program or erase processing ends in error, 65h
(‘e’) is returned.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function

P7_0/TXD2 Output Responds to the master device

P7_1/RXD2 Input Receives control commands and write data from the master device

Table 5.1 Control Commands

Control
Command

Name
Explanation

First to
Third Bytes

Fourth to Fifth Bytes From Sixth Byte

Program
command

Flash memory
is programmed

“prg” Size (2 bytes)
Data (256

bytes max.)
SUM value
(2 bytes) Result (1)

Erase
command

Flash memory
is erased

“ers” Result (1)

Table 5.2 Conditions for Configuring Communication

Item Setting

Bit rate 38400 bps

Character length 8 bits

Parity No parity

Stop bit length 1 stop bit

Transmit/receive clock Internal clock

CTS Disabled

Bit order LSB first

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 6 of 20
Mar. 8, 2013

5.1.1 Operation Example
Figure 5.1 shows an Example of Operation.

Figure 5.1 Example of Operation

Sample code operation is as follows:
(1) After a power-on reset, the sample code waits to receive a 3-byte control command from the master

device.
(2) If the command received is the erase command (“ers”), block 7 in the flash memory is block erased.
(3) If the erase command processing is successful, 6Fh (‘o’) is transmitted to the master device. If an

error occurs, 65h (‘e’) is transmitted. After the processing result is transmitted to the master device,
return to step (1).

(4) If the command received is the program command (“prg”), the MCU receives the write data size
(2-byte data).

(5) The MCU receives one packet of data (up to 256 bytes).
(6) The MCU receives the SUM value (2-byte data).
(7) The SUM value of the write data received is calculated and compared to the received SUM value.
(8) Data received is written to block 7 in the flash memory.
(9) If the program command processing is successful, 6Fh (‘o’) is transmitted to the master device. If an

error occurs, 65h (‘e’) is transmitted. After the processing result is transmitted to the master device,
return to step (1).

In the sample code, after the first byte of data is received, if the next data is not received within 5 ms, a
timeout error occurs. If a timeout error occurs, 65h (‘e’) is transmitted to the master device and the sample
code returns to step (1).

Sample code

(1) Power-on reset

Master device

Block erase processing

Transmit result of
erase command processing

Transmit erase command "ers"

Receive result of
erase command processing

Transmit program command "prg"

Transmit write data size (2 bytes)

Receive write data size (2 bytes)

Transmit write data (256 bytes max.)

Receive write data (256 bytes max.)

Transmit SUM value (2 bytes)

Receive SUM value (2 bytes)

Compare SUM values

Program processing

Transmit result of
program command processing

Receive result of
program command processing

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 7 of 20
Mar. 8, 2013

5.2 Constants
Table 5.3 lists the Constants Used in the Sample Code.

5.3 Receive Data Storage Structure
Figure 5.2 shows the Receive Data Storage Structure.

Figure 5.2 Receive Data Storage Structure

Table 5.3 Constants Used in the Sample Code

Constant Name Setting Value Contents

ADR_BLOCK_7 ((uint16_t *)0xFFFA0000) Address for block 7 in the flash memory

ADR_CMD_1ST ((uint16_t *)0xFFFFF800) Write address for the first command

CMD_BLOCK_ERASE_1ST ((uint16_t)0x0020)
Software command:
Block erase (first command)

CMD_BLOCK_ERASE_2ND ((uint16_t)0x00D0)
Software command:
Block erase (second command)

CMD_PROGRAM ((uint16_t)0x0043)
Software command:
Program

CMD_CLEAR_STATUS ((uint16_t)0x0050)
Software command:
Clear the status register

PROGRAM (0x00707267)
Control command:
Program command (‘p’’r’’g’)

ERASE (0x00657273)
Control command:
Erase command (‘e’’r’’s’)

CMD_SIZE (3) Receive data size (control command) [bytes]

LENGTH_SIZE (2) Receive data size (size) [bytes]

RECORD_SIZE (256) Receive data size (data) [bytes]

RECORD_SIZE_WORD (RECORD_SIZE/2) Receive data size (data) [words]

CHECKSUM_SIZE (2) Receive data size (SUM value) [bytes]

PROGRAM_SIZE_UNIT (4) Write size [words]

OK (0) Completed successfully

NG (-1) Error

/* **** Receive data storage structure **** */
typedef struct
{
 uint_32 command; /* Control command */
 uint_16 size; /* Size */
 uint_16 program_data[RECORD_SIZE_WORD]; /* Data */
 uint_16 check_sum; /* SUM value */
} rx_data_t;

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 8 of 20
Mar. 8, 2013

5.4 Variables
Table 5.4 lists the Global Variables.

5.5 Functions
Table 5.5 lists the Functions.

Table 5.4 Global Variables

Type Variable Name Contents Function Used

rx_data_t receive_data Receive data storage structure variable
receive_command,
receive_program_data,
program

uint16_t ebc0_tmp EBC0 register save variable
FLASH_ew1_start,
FLASH_ew1_end

Table 5.5 Functions

Function Name Outline

main Main processing

receive_command Control command reception

receive_program_data Receive program command data

receive_message Receive data from the master device

send_message Send a result to the master device

UART2_init UART2 initialization

TIMER_A0_init Initialize timer for receive processing timeout

erase Erase command processing

program Program command processing

FLASH_ew1_start Processing to enter EW1 mode

FLASH_ew1_end Processing to exit EW1 mode

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 9 of 20
Mar. 8, 2013

5.6 Function Specifications
The following tables list the sample code function specifications.

main

Outline Main processing

Header None

Declaration void main(void)

Description

Disable maskable interrupts, initialize the system clock, initialize timer A0, initialize
UART2, and enter the main loop. The following processing occurs in the main loop:
(1) Wait for data from UART2.
(2) Receive the control command.
(3) Perform processing for each control command.

When processing the erase command: Perform the erase command processing and
erase block 7.
When processing the program command: Receive the size, data, and SUM values,
perform the program command processing, and write data to block 7.

(4) Transmit the result to the master device.

The sample code does not perform recovery processing from a block erase error,
program error, or UART2 error. Add recovery processing to the user program as needed.

Argument None

Returned value None

receive_command

Outline Control command reception

Header None

Declaration static void receive_command(void)

Description
Receive 3 bytes of data from the master device through the MCU’s RXD2 pin, and set the
received data as the control command of the receive data storage structure variable.

Argument None

Returned value None

receive_program_data

Outline Receive program command data

Header None

Declaration static int8_t receive_program_data(void)

Description

Write FFh to clear data of the receive data storage structure variable, receive data from
the master device through the MCU’s RXD2 pin, and set the data to the size, data, and
SUM value for the receive data storage structure variable. Then, calculate the SUM value
of the received data. If the calculated SUM value is equal to the received SUM value,
return “completed successfully (OK)”. If the size is less than 1 byte or more than 256
bytes, or if the calculated SUM value is not equal to the received SUM value, then return
“error (NG)”.

Argument None

Returned value
Processing result:
OK = Completed successfully
NG = Error

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 10 of 20
Mar. 8, 2013

receive_message

Outline Receive data from the master device

Header None

Declaration static int8_t receive_message(uint8_t *prx_data, uint16_t size)

Description

After setting the receive data storage area to 0, receive the specified amount of bytes
using UART2.
(1) Start the timer for the receive processing timeout.
(2) Wait for UART2 to complete data reception or wait for a timer A0 interrupt request.
(3) Confirm that either the data has been received or that a timer A0 interrupt request was
 generated, and then perform the following processes:
 Data has been received through UART2 - If the error flag in the UART receive register
 is set, an error is assumed to have occurred, and UART2 reception processing is
 interrupted. If the error flag is not set, receive data is saved to the receive data storage
 area specified by the argument.
 Timer A0 interrupt request was generated - A receive timeout error is assumed to have
 occurred, and UART2 receive processing is interrupted.
(4) Repeat steps (1) to (3) until data of the receive data size specified by the argument
 has been received.

When all data has been received, “completed successfully (OK)” is returned; when an
error occurs during reception, “error (NG)” is returned.

Argument
uint8_t *prx_data: Pointer for the receive data storage area
uint16_t size: Size of the data received

Returned value
Processing result:
OK = Completed successfully
NG = Error

send_message

Outline Send a result to the master device

Header None

Declaration static void send_message(char *message)

Description
Wait for the U2TB register to become empty, and then write transmit data to the U2TB
register.

Argument char *message: Pointer for the transmit message

Returned value None

UART2_init

Outline UART2 initialization

Header None

Declaration static void UART2_init(void)

Description Set registers associated with UART2 to asynchronous serial interface mode.

Argument None

Returned value None

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 11 of 20
Mar. 8, 2013

TIMER_A0_init

Outline Initialize timer for receive processing timeout

Header None

Declaration static void TIMER_A0_init(void)

Description Set timer A0 to timer mode.

Argument None

Returned value None

erase

Outline Erase command processing

Header None

Declaration static int8_t erase(void)

Description

Erase block 7 in the flash memory.
(1) Enter EW1 mode.
(2) Issue the flash memory block erase command (0020h,00D0h) and erase block 7.
(3) Perform the status check. If a command sequence error or erase error occurs, issue
 the clear status register command (0050h) and set the return value to “error (NG)”.
 When no errors occur, set the return value to “completed successfully (OK)”.
(4) Exit EW1 mode.

Argument None

Returned value
Processing result:
OK = Completed successfully
NG = Error

program

Outline Program command processing

Header None

Declaration static int8_t program(void)

Description

Write data of the receive data storage structure variable to block 7 in the flash memory.
(1) Enter EW1 mode.
(2) Set the loop counter to 0. Set the start address of the flash memory write destination
 to the start address of block 7.
(3) Issue the flash memory program command (0043h) and write the receive data storage
 structure variable 8-byte (4 word) data to the flash memory write destination address.
(4) Perform a status check. If a command sequence error or program error occurs, issue
 the clear status register command (0050h) and the flash memory write processing is
 interrupted.
(5) Increment the loop counter by 4 words.
(6) Repeat steps (3) to (5) until all data has been written.
(7) When all data has been written, set the return value to “completed successfully (OK)”.
 If an error occurs during the write procedure, set the return value to “error (NG)”.
(8) Exit EW1 mode.

Argument None

Returned value
Processing result:
OK = Completed successfully
NG = Error

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 12 of 20
Mar. 8, 2013

FLASH_ew1_start

Outline Processing to enter EW1 mode

Header None

Declaration static void FLASH_ew1_start(void)

Description
Disable maskable interrupts and save the external bus control register value. Then set
the flash memory rewrite bus control register, and enter EW1 mode of the CPU rewrite
mode.

Argument None

Returned value None

FLASH_ew1_end

Outline Processing to exit EW1 mode

Header None

Declaration static void FLASH_ew1_end(void)

Description
Enter the EW0 mode of the CPU rewrite mode, disable the CPU rewrite mode, and then
set the external bus control register value back to the original setting value.

Argument None

Returned value None

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 13 of 20
Mar. 8, 2013

5.7 Flowcharts

5.7.1 Main Processing
Figure 5.3 shows the Main Processing.

Figure 5.3 Main Processing

main

Disable maskable interrupts I flag  0

PLL clock setting
SetPLLClock()

Initialize timer for receive
processing timeout
TIMER_A0_init()

UART2 initialization
UART2_init()

Wait to receive
control command start data

Receive control command
receive_command()

Control command

Erase command
processing

erase()

Receive program
command data

receive_program_data()

Processing
result is "completed

successfully"?

Program command
processing
program()

Set "error" to
processing result

Processing
result is "completed

successfully"?

'o' transmitted to
master device

send_message()

'e' transmitted to
master device

send_message()

ERASE

PROGRAM

No

Yes

Yes

No

Note: The sample code does not include recovery processing when a block erase error, program
error, or UART2 error occurs. Add error processing to the user program as needed.

Clock frequencies are set while in PLL mode

default

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 14 of 20
Mar. 8, 2013

5.7.2 Control Command Reception
Figure 5.4 shows the Control Command Reception.

Figure 5.4 Control Command Reception

5.7.3 Receive Program Command Data
Figure 5.5 shows Receive Program Command Data.

Figure 5.5 Receive Program Command Data

receive_command

Control command reception
receive_message()

Automatic variable
uint8_t rx_data[3]: Buffer for receive data

Set the control command

return

Receive data storage area: rx_data
Receive data size: CMD_SIZE

receive_program_data

Set the received data as the size

Automatic variable
uint8_t rx_data: Buffer for receive data

No

Yes

Set FFh to clear the data for the
receive data storage structure variable

Size received
receive_message()

Receive data storage area: rx_data
Receive data size: LENGTH_SIZE

Data received and set
receive_message()

Receive data storage area: receive_data.program_data
Receive data size: receive_data.size

Is the size at least
1 byte and less than or equal to

the RECORD_SIZE?

SUM value received
receive_message()

Receive data storage area: rx_data
Receive data size: CHECKSUM_SIZE

Set received data as the SUM value

Use the data of the receive data
storage structure variable to calculate

the SUM value

Do the SUM
values match?

No

Yes
Set "completed successfully" as the

return value Set "error" as the return value Set "error" as the return value

return (return value)

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 15 of 20
Mar. 8, 2013

5.7.4 Receive Data From the Master Device
Figure 5.6 shows how to Receive Data From the Master Device.

Figure 5.6 Receive Data From the Master Device

receive_message

UART2 reception completed?

Initialize loop counter

Arguments
uint8_t *prx_data: Pointer for the receive data storage area
uint16_t size: Size of received data
Automatic variable
uint16_t i: Loop counter

i  0

Start timer for
receive processing timeout

TA0IC register
IR bit  0: Timer A0 interrupt not requested

TA0 register  15625 - 1: 5 ms
TABSR register

TA0S bit  1: Start timer A0 counter

Wait for UART2 receive complete or
timer A0 interrupt request

Stop timer for
receive processing timeout

TABSR register
TA0S bit  0: Stop timer A0 counter

No

Read the UART2 receive buffer

Did a receive error occur?
No

Clear the timer A0 interrupt request

Yes

Is the receive result
"completed successfully"?

Increment the loop counter

return (receive result)

Set the receive data storage area to 0

Set "error" to the receive result

TA0IC register
IR bit  0

Set receive data to the
receive data storage area

(prx_data[i]  Receive data)

Set "completed successfully"
to the receive result

Set "error" to the receive result

Yes

Yes

No

i  i + 1

Is the loop counter
equal to or greater than the

receive data size?

Yes

No

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 16 of 20
Mar. 8, 2013

5.7.5 Send a Result to the Master Device
Figure 5.7 shows how to Send a Result to the Master Device.

Figure 5.7 Send a Result to the Master Device

5.7.6 UART2 Initialization
Figure 5.8 shows UART2 Initialization.

Figure 5.8 UART2 Initialization

send_message

Is the transmit message
a NULL character?

Wait until the UART2 transmit buffer
register is empty

Set a transmit message to the
UART2 transmit buffer

Increment the transmit message
pointer

No

Yes

return

UART2_init

Disable transmit and receive interrupts S2TIC register  00h
Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)

S2RIC register  00h
Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)

return

Disable transmission and reception U2C1 register  00h
TE bit = 0: Transmission disabled
RE bit = 0: Reception disabled

Set the UART2 transmit/receive
mode register

U2MR register  05h
Bits SMD2 to SMD0 = 101b: UART mode, 8-bit character length
CKDIR bit = 0: Internal clock
STPS bit = 0: 1 stop bit
PRYE bit = 0: Parity disabled
IOPOL bit = 0: Non inverted

Set UART2 transmit/receive
control register 0

U2C0 register  10h
Bits CLK1 and CLK0 = 00b: U2BRG register count source is f1
CRD bit = 1: CTS function disabled
CKPOL bit = 0: Output transmit data on the falling edge of the transmit/receive

clock and input receive data on the rising edge
UFORM bit = 0: LSB first

Set the UART2 bit rate register U2BRG register  40: 38400 bps

Set the I/O pins PD7 register
PD7_1 bit  0: Input port

P7_0S register  03h
Bits PSEL2 to PSEL0 = 011b: UART2 output (TXD2 output)

PD7 register
PD7_0 bit  1: Output port

Enable transmission and reception U2C1 register  05h
TE bit = 1: Transmission enabled
RE bit = 1: Reception enabled

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 17 of 20
Mar. 8, 2013

5.7.7 Initialize Timer for Receive Processing Timeout
Figure 5.9 shows Initialize Timer for Receive Processing Timeout.

Figure 5.9 Initialize Timer for Receive Processing Timeout

5.7.8 Erase Command Processing
Figure 5.10 shows the Erase Command Processing.

Figure 5.10 Erase Command Processing

TIMER_A0_init

Set timer A0 to timer mode TA0IC register  00h
IR bit = 0: No interrupt requested

TABSR register
TA0S bit  0: Stop timer A0 counter

TA0MR register  40h
Bits TCK1 and TCK0 = 01b: Timer A1 count source is f8
Bits MR2 and MR1 = 00b: No gate function
Bits TMOD1 and TMOD0 = 00b: Timer mode

return

erase

Processing to enter EW1 mode
FLASH_ew1_start()

Did a
command sequence error or

program error occur?

Write first command "0020h"
to address FFFFF800h *ADR_CMD_1ST  0020h

Wait until the FCA bit in the
FMR0 register becomes 0

Write second command "00D0h" to
the start address of block 7 *ADR_BLOCK_7  00D0h

Wait until the RDY bit in the
FMSR0 register becomes 1

No

Execute clear status register command

Yes

Set "completed successfully"
to the return value Set "error" to the return value

Processing to exit EW1 mode
FLASH_ew1_end()

return (return value)

*ADR_CMD_1st  0050h

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 18 of 20
Mar. 8, 2013

5.7.9 Program Command Processing
Figure 5.11 shows the Program Command Processing.

Figure 5.11 Program Command Processing

program

Processing to enter EW1 mode
FLASH_ew1_start()

Did a
command sequence error or

program error occur?

Initialize loop counter

Automatic variable
uintt8_t i: Loop counter

i  0

Write command "0043h"
to address FFFFF800h *ADR_CMD_1ST  0043h

Write first data to
write destination address ADR_BLOCK_7[i]  receive_data.program.data[i]

Write second data to write destination
address + 2 ADR_BLOCK_7[i+1]  receive_data.program.data[i+1]

Write third data to write destination
address + 4 ADR_BLOCK_7[i+2]  receive_data.program.data[i+2]

Wait until the FCA bit in the
FMR0 register becomes 0

Write fourth data to write destination
address + 6 ADR_BLOCK_7[i+3]  receive_data.program.data[i+3]

Wait until the RDY bit in the
FMSR0 register becomes 1

No

Increment the loop counter by 4 words

Has all data been written?
No

Execute clear status register command

Yes

Has all data been written?

Yes

Set "completed successfully"
to the return value Set "error" to the return value

Processing to exit EW1 mode
FLASH_ew1_end()

Yes

No

return (return value)

i  i + PROGRAM_SIZE_UNIT *ADR_CMD_1ST  0050h

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 19 of 20
Mar. 8, 2013

5.7.10 Processing to Enter EW1 Mode
Figure 5.12 shows the Processing to Enter EW1 Mode.

Figure 5.12 Processing to Enter EW1 Mode

5.7.11 Processing to Exit EW1 Mode
Figure 5.13 shows the Processing to Exit EW1 Mode.

Figure 5.13 Processing to Exit EW1 Mode

FLASH_ew1_start

Set EW1 mode FPR0 register  01h: Write enabled
FMR0 register  01h

EWM bit  1: EW1 mode
LBM bit = 0: Lock bit is read via data bus

FPR0 register  00h: Write disabled

Set timing to rewrite flash memory PRR register  AAh: Write enabled
FEBC0 register  5885h

Bits FWR3 to FWR0 = 0101b: RD pulse width wr = 3
FWR4 bit = 0: No pulse width extension
Bits MPY1 and MPY0 = 10b: RD pulse width extension mpy = 3
Bits FSUW1 and FSUW0 = 00b
Bits FWW1 and FWW0 = 10b

Save external bus timing ebc0_tmp  EBC0 register value

Disable maskable interrupts I flag  0

return

FMCR register  81h
FEW bit = 1: CPU rewrite mode

PRR register  00h: Write disabled

Enter CPU rewrite mode

FLASH_ew1_end

Set EW0 mode FPR0 register  01h: Write enabled
FMR0 register

EWM bit  0: EW0 mode
FPR0 register  00h: Write disabled

Reenter normal operating mode PRR register  AAh: Write enabled
FMCR register  01h

FEW bit = 0: Normal operating mode

Set the external bus timing again EBC0 register  ebc0_tmp
PRR register  00h: Write disabled

Enable maskable interrupts (1) I flag  1

return

Note:
1. When using an interrupt in normal operating mode, enable maskable interrupts at this point.

R32C/100 Series Rewriting the Flash Memory Using the Serial Interface (UART)

R01AN1473EJ0100 Rev. 1.00 Page 20 of 20
Mar. 8, 2013

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
R32C/116 Group User’s Manual: Hardware Rev.1.20
R32C/117 Group User’s Manual: Hardware Rev.1.20
R32C/118 Group User’s Manual: Hardware Rev.1.20
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
R32C/100 Series C Compiler Package V.1.02
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

A - 1

Revision History
R32C/100 Series

Rewriting the Flash Memory Using the Serial Interface (UART)

Rev. Date
Description

Page Summary

1.00 Mar. 8, 2013 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	Abstract
	Products
	Contents
	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Note
	4. Hardware
	4.1 Pins Used

	5. Software
	5.1 Operation Overview
	5.1.1 Operation Example

	5.2 Constants
	5.3 Receive Data Storage Structure
	5.4 Variables
	5.5 Functions
	5.6 Function Specifications
	5.7 Flowcharts
	5.7.1 Main Processing
	5.7.2 Control Command Reception
	5.7.3 Receive Program Command Data
	5.7.4 Receive Data From the Master Device
	5.7.5 Send a Result to the Master Device
	5.7.6 UART2 Initialization
	5.7.7 Initialize Timer for Receive Processing Timeout
	5.7.8 Erase Command Processing
	5.7.9 Program Command Processing
	5.7.10 Processing to Enter EW1 Mode
	5.7.11 Processing to Exit EW1 Mode

	6. Sample Code
	7. Reference Documents
	Website and Support

