

RX65N/RX651 Group RX210 Group R01AN4841EJ0100 Rev.1.00 Sep 21, 2018

Introduction

This application note is intended as a reference for confirming the points of difference between the overview of functions, the I/O registers, the pin functions of the RX651 Group and RX210 Group, and notes on migration.

Unless specifically otherwise noted, the information in this application note applies to the 144-/145-pin package version of the RX651 Group and the 144-/145-pin package (chip version B) version of the RX210 Group. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the user's manuals of the products in question.

Target Devices

- RX651 Group (products with code flash memory capacity of 1 MB or less)
- RX210 Group

Note: Products with code flash memory capacity exceeding 1.5 MB are not included in the comparison.

Contents

1. C	omparison of Functions of RX651 Group and RX210 Group4
2. C	omparative Overview of Functions6
2.1	CPU
2.2	Operating Modes
2.3	Option-Setting Memory8
2.4	Voltage Detection Circuit9
2.5	Clock Generation Circuit
2.6	Clock Frequency Accuracy Measurement Circuit
2.7	Low Power Consumption
2.8	Register Write Protection Function24
2.9	Exception Handling25
2.10	Interrupt Controller
2.11	Buses
2.12	DMA Controller
2.13	Data Transfer Controller
2.14	Event Link Controller
2.15	I/O Ports
2.16	Multi-Function Pin Controller44
2.17	16-Bit Timer Pulse Unit45
2.18	8-Bit Timer
2.19	Realtime Clock
	Watchdog Timer
2.21	Independent Watchdog Timer53
2.22	Serial Communications Interface
2.23	I ² C-bus Interface
2.24	Serial Peripheral Interface
2.25	CRC Calculator
2.26	12-Bit A/D Converter
2.27	D/A Converter
2.28	Temperature Sensor
2.29	Data Operation Circuit
2.30	RAM
2.31	Flash Memory (Code Flash)88
3. C	omparison of Pin Functions92
3.1	144pin Package92
3.2	145pin Package98
3.3	100pin Package (QFP)
3.4	100pin Package (TFLGA)108

4. Note	s on Migration1	12
4.1 No	tes on Pin Design1	12
4.1.1	Operating Modes1	12
4.1.2	VCL Pin (External Capacitor)1	12
4.1.3	VBATT Pin1	12
4.1.4	Main Clock Oscillator1	12
4.2 No	tes on Function Settings1	13
4.2.1	Notes on Using Power-On Reset and PLL Circuit Together1	13
4.2.2	Data for Programming Reserved Areas and Reserved Bits in the Option-Setting Memory1	13
4.2.3	Point for Caution when Shifting from Low-Speed Operating Mode to Software Standby Mode1	13
4.2.4	Interrupt Requests in Software Standby Mode1	13
4.2.5	Setting Value of the Port Direction Register (PDR) for each Packages1	13
4.2.6	Initialization Procedure When the Realtime Clock is Not to be Used1	13
4.2.7	Note on Transmit Enable Bit (TE Bit)1	14
4.2.8	Note on Stopping Reception When Using the RTS Function in Asynchronous Mode1	14
4.2.9	S12AD A/D Conversion Restarting Timing and Termination Timing1	15
4.2.10	S12AD 12Pin Setting When Using the 12-bit A/D Converter1	15
4.2.11	S12AD Caution When Using an External Bus1	15
4.2.12	Note on Usage When Measure against Interference between D/A and A/D Conversion is Enabled1	15
4.2.13	D/A Note on Event Link Operation1	15
4.2.14	Initial Setting Procedure when the Output Buffer Amplifier is Used1	15
4.2.15	Supplementary Explanation on RAM Self-Test1	16
4.2.16	Setting Number of Flash Memory Access Wait States1	16
4.2.17	Transferring Firmware to the FCU RAM1	16
4.2.18	Command of Flash Memory Usage1	16
4.2.19	Note of ID Code Protection1	17
5. Refe	rence Documents1	18

1. Comparison of Functions of RX651 Group and RX210 Group

A comparison of the functions of the RX651 Group and RX210 Group is provided below. For details of the functions, see section 2, Comparative Overview of Functions and section 5, Reference Documents.

Table 1.1 is a Comparison of Functions of RX651 and RX210.

Table 1.1 Comparison of Functions of RX651 and RX210

Function	RX210	RX651
CPU	\bigtriangleup	
Operating modes	\bigtriangleup	
Reset	0	
Option Setting Memory	\bigtriangleup	
Voltage Detection Cirecuit (LVDA)	\bigtriangleup	
Clock Generation Circuit	\bigtriangleup	
Clock Acuracy Measurement Circuit (CAC)	\bigtriangleup	
Low Power Consumption	\bigtriangleup	
Battery Backup Function	×	0
Register Write ProtectionFunction	\bigtriangleup	
Exception Handling	\bigtriangleup	
Interrupt Controller (ICUa): RX210, (ICUB): RX651	\triangle	
Buses	\bigtriangleup	
Memory Protection unit (MPU)	×	0
DMA Cotroller (DMACA): RX210, (DMACAa): RX651	\triangle	
EXDMA Controller (EXDMACa)	×	0
DataTransfer Controller (DTCa): RX210, (DTCb): RX651	\triangle	
Event Link Controller (ELC)	\bigtriangleup	
I/O Ports	\triangle	
Multi Fuchtion Pin Controller (MPC)	\bigtriangleup	
Multi-Function Timer Pulse Unit 2 (MTU2a)	0	Х
Multi-Function Timer Pulse Unit 3 (MTU3a)	×	0
Port Output Enable 2 (POE2a)	0	X
Port Output Enable 3 (POE3a)	×	0
16-Bit Timer Pulse Unit (TPUa)	\triangle	
Programmable Pulse Generator (PPG)	×	0
8-Bit Timer (TMR)	\bigtriangleup	
Compare Match Timer (CMT)	0	
Compare Match Timer W (CMTW)	×	0
Real Time Cock (RTCb): RX210, (RTCd): RX651	\bigtriangleup	
Watchdog Timer (WDTA)	\triangle	
Indepentent Watchdog Timer (IWDTa)	\bigtriangleup	
USB2.0 FSHost/Function Module (USBb)	×	0
Serial Communication Interface (SCIc, SCId): RX210	\bigtriangleup	
Serial Communication Interface (SCIg, SCIi, SCIh): RX651		
I ² C-bus Iterface (RIIC): RX210, (RIICa): RX651	\bigtriangleup	
CAN Module (CAN)	×	0
Serial Peripheral Interface (RSPI): RX210, (RSPIc): RX651	\triangle	
Quad Serial Peripheral Interface (QSPI)	×	0
CRC Caluculator (CRC): RX210, (CRCA): RX651	\bigtriangleup	
SD Host Interface (SDHI)	×	0
SD Slave Interface (SDSI)	×	0
Multi Media Card Interface (MMCIF)	×	0

Function	RX210	RX651
Parallel Data Capture Unit (PDC)	×	0
Boundary Scan	×	0
AESa	×	0
RNGa	×	0
<u>12-bit A/D Converter (S12ADb): RX210, (S12ADFa): RX651</u>	\triangle	
D/A Converter (DA): RX210, 12-bit D/A Converter (R12DA): RX651	\bigtriangleup	
Temperature Sensor (TMPSa): RX210, (TMPS): RX651	\bigtriangleup	
Comparator A (CMPA)	0	X
Comparator B (CMPB)	0	X
Data Operation Circuit (DOC)	\triangle	
RAM	\bigtriangleup	
Standby RAM	×	0
Flash Memory (Code Flash)	\bigtriangleup	
Flash Memory (E2 Data Flash)	0	х

Note: O: Function implemented, \times : Function not implemented, \triangle : Differences exist between implementation of function on RX210 and RX651.

2. Comparative Overview of Functions

2.1 CPU

Table 2.1 shows a Comparative Listing of CPU Specifications, and Table 2.2 shows a Comparative Listing of CPU Registers.

ltem	RX210	RX651
Item CPU	RX210• Maximum operating frequency: 50 MHz• 32-bit RX CPU• Minimum instruction execution time: One instruction per state (cycle of the system clock)• Address space: 4-Gbyte linear• Register set of the CPU 	 Maximum operating frequency: 120 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per state (cycle of the system clock) Address space: 4-Gbyte linear Register set of the CPU
		 Memory protection unit (MPU)
FPU		 Single precision (32-bit) floating point Data types and floating-point exceptions in conformance with the IEEE754 standard

Table 2.1 Comparative Listing of CPU Specifications

Table 2.2 Con	nparative Listing	of CPU Registers
---------------	-------------------	------------------

Register	Bit	RX210	RX651
FPSW		—	Floating-point Status Word
EXTB		<u> </u>	Exception Table Register
ACC		ACC: 64-bits (DSP, multiply and multiply-and-accumulate)	ACC0: 72-bits (DSP, multiply and multiply-and-accumulate) ACC1: 72-bits (DSP)

2.2 Operating Modes

Table 2.3 shows a Comparative Listing of Operating Modes Specifications, and Table 2.4 shows a Comparative Listing of Operating Modes Registers.

Table 2.3	Comparative	Listing of O	perating Modes	Specifications
-----------	-------------	--------------	----------------	----------------

Item	RX210	RX651
Operating modes specified by	Single-chip mode	Single-chip mode
mode setting pins	Boot mode	Boot mode (SCI interface)
		Boot mode (USB interface)
	User boot mode	<u> </u>
		Boot mode (FINE interface)
Operating modes specified by	Single-chip mode	Single-chip mode
register settings	User boot mode	—
	On-chip ROM disabled extended mode	On-chip ROM disabled extended mode
	On-chip ROM enabled extended mode	On-chip ROM enabled extended mode

Table 2.4 Comparative Listing of Operating Modes Registers

Register	Bit	RX210	RX651
MDSR		Mode Status Register	—
SYSCR1	SBYRAME	—	Standby RAM Enable (b7)
		The Value after reset is different.	

RX65N/RX651 Group RX210 Group

2.3 Option-Setting Memory

Table 2.5 shows a Comparative Listing of Option-Setting Memory Registers.

Register	Bit	RX210	RX651
SPCC			Serial Programmer Command
			Control Register
OSIS	—		OCD/Serial Programmer ID Setting
			Register
OFS0	IWDTCKS[3:0]	IWDT Clock Frequency Division	IWDT-Dedicated Clock Frequency
		Ratio Select	Division Ratio Select
	IWDTRSTIRQS	IWDT Reset Interrupt Request	IWDT Reset Interrupt Request
		Select	Select
		0: Non-maskable interrupt request	0: Non-maskable interrupt request
		is enabled	or plain interrupt request is
			enabled
		1: Reset is enabled	1: Reset is enabled
	WDTRSTIRQS	WDT Reset Interrupt Request	WDT Reset Interrupt Request
		Select	Select
		0: Non-maskable interrupt request	0: Non-maskable interrupt request
		is enabled	or plain interrupt request is
			enabled
		1: Reset is enabled	1: Reset is enabled
OFS1	VDSEL[1:0]	Voltage Detection 0 Level Select	Voltage Detection 0 Level Select
		b1 b0	b1 b0
		0 0: 3.80 V is selected	0 0: Reserved
		0 1: 2.80 V is selected	0 1: Selects 2.94V
		1 0: 1.90 V is selected	1 0: Selects 2.87V
		1 1: 1.72 V is selected	1 1: Selects 2.80V
MDEB	—	Endian Select Register B	—
MDES	—	Endian Select Register S	—
MDE	—		Endian Select Register
TMEF	—		TM Enable Flag Register
TMINF	—		TM Identification Data Register
FAW			Flash Access Window Setting
			Register
ROMCODE			ROM Code Protection Register
UB Code A		UB Code A	
UB Code B	_	UB Code B	

Table 2.5 Comparative Listing of Option-Setting Memory Registers

2.4 Voltage Detection Circuit

Table 2.6 shows a Comparative Listing of Voltage Detection Circuit Specifications, and Table 2.7 shows a Comparative Listing of Voltage Detection Circuit Registers.

		RX210 (LVDAa)			RX651 (LVDA)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1	Vdet2
	Detected event	Voltage drops past Vdet0	Voltage rises or drops past Vdet1	Voltage rises or drops past Vdet2 Input voltages to VCC and the CMPA2 pin can be switched using the LVCMPCR.EX VCCINP2 bit	Voltage drops past Vdet0	Voltage rises or drops past Vdet1	Voltage rises or drops past Vdet2
	Detection voltage	Voltage selectable from four levels using OFS1	Voltage selectable from 16 levels using LVDLVLR.LVD 1LVL[3:0] bits	Varies according to whether VCC or the CMPA2 pin is selected. Voltage selectable from 16 levels using LVDLVLR.LVD 2LVL[3:0] bits	Selectable from among three different levels by using OFS1.VDSEL [1:0] bits	Selectable from among three different levels by using LVDLVLR.LVD 1LVL[3:0] bits	Selectable from among three different levels by using LVDLVLR.LVE 2LVL[3:0] bits
	Monitor flag		LVD1SR.LVD1 MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1 DET flag: Vdet1 passage detection	LVD2SR.LVD2 MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD2 DET flag: Vdet2 passage detection		LVD1SR.LVD1 MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1 DET flag: Vdet1 passage detection	LVD2SR.LVD2 MON flag: Monitors whether voltage is higher or lowe than Vdet2 LVD2SR.LVD2 DET flag: Vdet2 passage detection
Process upon voltage detection	Reset	Voltage monitoring 0 reset Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC CPU restart timing selectable: after specified time with VCC > Vdet2 or Vdet2 > VCC	Voltage monitoring 0 reset Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC CPU restart timing selectable: after specified time with VCC > Vdet2 or Vdet2 > VCC

Table 2.6 Comparative Listing of Voltage Detection Circuit Specifications

RX65N/RX651 Group RX210 Group

Points of Difference Between RX651 Group and RX210 Group

		RX210 (LVDAa)			RX651 (LVDA)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
Process upon voltage	Interrupt	_	Voltage monitoring 1 interrupt	Voltage monitoring 2 interrupt	_	Voltage monitoring 1 interrupt	Voltage monitoring 2 interrupt
detection			Non-maskable or maskable interrupt selectable	Non-maskable or maskable interrupt selectable	-	Non-maskable interrupt or maskable interrupt selectable	Non-maskable interrupt or maskable interrupt selectable
			Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either	Interrupt request issued when Vdet2 > VCC and VCC > Vdet2 or either	-	Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either	Interrupt request issued when Vdet2 > VCC and VCC > Vdet2 or either
Digital filter	Enable/ disable switching	Digital filter function not available	Available	Available	Digital filter function not available	Available	Available
	Sampling time	—	1/n LOCO frequency x 2 (n: 1, 2, 4, 8)	1/n LOCO frequency x 2 (n: 1, 2, 4, 8)	_	1/n LOCO frequency x 2 (n: 2, 4, 8, 16)	1/n LOCO frequency x 2 (n: 2, 4, 8, 16)
Event link fu	nction	_	Available Vdet1 passage detection event output	Available Vdet2 passage detection event output		Available Output of event signals on detection of Vdet1 crossings	Available Output of event signals on detection of Vdet2 crossings

Table 2.7	Comparative Listing of Voltage Detection Circuit Registers	
-----------	--	--

		• •	
Register	Bit	RX210 (LVDA)	RX651 (LVDA)
LVD1CR1	_	Voltage Monitoring 1 Circuit/Comparator A1 Control Register 1	Voltage Monitoring 1 Circuit Control Register 1
	LVD1IDTSEL[1:0]	Voltage Monitoring 1/Comparator A1 Interrupt/ELC Event Generation Condition Select	Voltage Monitoring 1 Interrupt Generation Condition Select
	LVD1IRQSEL	Voltage Monitoring 1/Comparator A1 Interrupt Type Select	Voltage Monitoring 1 Interrupt Type Select
LVD1SR	_	Voltage Monitoring 1 Circuit/Comparator A1 Status Register	Voltage Monitoring 1 Circuit Status Register
	LVD1DET	Voltage Monitoring 1/Comparator A1 Voltage Change Detection Flag	Voltage Monitoring 1 Voltage Change Detection Flag
	LVD1MON	Voltage Monitoring 1/Comparator A1 Signal Monitor Flag	Voltage Monitoring 1 Signal Monitor Flag
LVD2CR1	_	Voltage Monitoring 2 Circuit/Comparator A2 Control Register 1	Voltage Monitoring 2 Circuit Control Register 1
	LVD2IDTSEL[1:0]	Voltage Monitoring 2/Comparator A2 Interrupt/ELC Event Generation Condition Select	Voltage Monitoring 2 Interrupt Generation Condition Select
	LVD2IRQSEL	Voltage Monitoring 2/Comparator A2 Interrupt Type Select	Voltage Monitoring 2 Interrupt Type Select

Register	Bit	RX210 (LVDA)	RX651 (LVDA)
LVD2SR		Voltage Monitoring 2 Circuit/Comparator A2 Status	Voltage Monitoring 2 Circuit Status Register
		Register	
	LVD2DET	Voltage Monitoring 2/Comparator A2 Voltage Change Detection	Voltage Monitoring 2 Voltage Change Detection Flag
		Flag	Change Delection hag
	LVD2MON	Voltage Monitoring 2/Comparator	Voltage Monitoring 2 Signal
LVCMPCR		A2 Signal Monitor Flag Voltage Monitoring	Monitor Flag
LVCINIPUR		Circuit/Comparator A Control	Voltage Monitoring Circuit Control Register
		Register	Register
	EXVREFINP1	Comparator A1 Reference	_
		Voltage External Input Select (b0)	
	EXVCCINP1	Comparator A1 Comparison	
		Voltage	
		External Input Select (b1)	
	EXVREFINP2	Comparator A2 Reference	
		Voltage	
		External Input Select (b2)	
	EXVCCINP2	Comparator A2 Comparison	
		Voltage	
	LVD1E	External Input Select (b3) Voltage Detection 1/Comparator	Voltage Detection 1 Enable*1
	LVDIE	A1 Enable	Vollage Delection 1 Enable
		0: Voltage detection	0: Voltage detection 1 circuit
		1/comparator A1 circuit	disabled
		disabled	1: Voltage detection 1 circuit
		1: Voltage detection 1/comparator A1 circuit	enabled
		enabled	
	LVD2E	Voltage Detection 2/Comparator	Voltage Detection 2 Enable*2
		A2 Enable	
		0: Voltage detection 2/comparator A2 circuit	0: Voltage detection 2 circuit
		disabled	disabled 1: Voltage detection 2 circuit
		1: Voltage detection	1: Voltage detection 2 circuit enabled
		2/comparator A2 circuit	Chabled
		enabled	

Register	Bit	RX210 (LVDA)	RX651 (LVDA)
LVDLVLR	LVD1LVL[3:0]	Voltage Detection 1 Level Select	Voltage Detection 1 Level Select
		(Standard voltage during drop in	(Standard voltage during drop in
		voltage)	voltage)
		b3 b0	b3 b0
		0 0 0 0: 4.15 V	
		0 0 0 1: 4.00 V	
		0 0 1 0: 3.85 V	
		0 0 1 1: 3.70 V	
		0 1 0 0: 3.55 V	
		0 1 0 1: 3.40 V	
		0 1 1 0: 3.25 V	
		0 1 1 1: 3.10 V	
		1 0 0 0: 2.95 V	
		1 0 0 1: 2.80 V	1 0 0 1: 2.99 V (Vdet1_1)
		1 0 1 0: 2.65 V	1 0 1 0: 2.92 V (Vdet1_2)
		1 0 1 1: 2.50 V	1 0 1 1: 2.85 V (Vdet1_3)
		1 1 0 0: 2.35 V	
		1 1 0 1: 2.20 V	
		1 1 1 0: 2.05 V	
		1 1 1 1: 1.90 V	O atting a sthere there also us and
			Settings other than above are prohibited.
		The Value after reset is different.	
	LVD2LVL[3:0]	Voltage Detection 2 Level Select	Voltage Detection 2 Level Select
		(Standard voltage during drop in	(Standard voltage during drop in
		voltage)	voltage)
		(When LVCMPCR.EXVCCINP2	
		= 0 (VCC select))	
		b7 b4	b7 b4
		0 0 0 0: 4.15 V	
		0 0 0 1: 4.00 V	
		0 0 1 0: 3.85 V	
		0 0 1 1: 3.70 V	
		0 1 0 0: 3.55 V	
		0 1 0 1: 3.40 V	
		0 1 1 0: 3.25 V	
		0 1 1 1: 3.10 V	
		1 0 0 0: 2.95 V	
		1 0 0 1: 2.80 V	1 0 0 1: 2.99 V (Vdet1_1)
		1 0 1 0: 2.65 V	1 0 1 0: 2.92 V (Vdet1_2)
		1 0 1 1: 2.50 V	1 0 1 1: 2.85 V (Vdet1_3)
		1 1 0 0: 2.35 V	
		1 1 0 1: 2.20 V	
		1 1 1 0: 2.05 V	
		1 1 1 1: 1.90 V	
		(When LVCMPCR.EXVCCINP2	
		= 1 (CMPA2 pin select))	
		b7 b4	
		0 0 0 1: 1.33 V	
		Settings other than above are	Settings other than above are
		prohibited.	prohibited.
		The Value after reset is different.	

Register	Bit	RX210 (LVDA)	RX651 (LVDA)
LVD1CR0	_	Voltage Monitoring 1 Circuit/Comparator A1 Control Register 0	Voltage Monitoring 1 Circuit Control Register 0
	LVD1RIE	Register 0	Voltage Manitoring 1
	LVDIKIE	Voltage Monitoring 1/Comparator A1 Interrupt/Reset Enable	Voltage Monitoring 1 Interrupt/Reset Enable
	LVD1DFDIS	Voltage Monitoring 1/Comparator	Voltage Monitoring 1 Digital
		A1 Digital Filter Disable Mode Select	Filter Disable Mode Select
	LVD1CMPE	Voltage Monitoring 1 Circuit/ <mark>Comparator A1</mark> Comparison Result Output Enable	Voltage Monitoring 1 Circuit Comparison Result Output Enable
	LVD1FSAMP [1:0]	Sampling Clock Select b5 b4	Sampling Clock Select b5 b4
		0 0: LOCO divided by 1	0 0: 1/2 LOCO frequency
		0 1: LOCO divided by 2	0 1: 1/4 LOCO frequency
		1 0: LOCO divided by 4	1 0: 1/8 LOCO frequency
		1 1: LOCO divided by 8	1 1: 1/16 LOCO frequency
	LVD1RI	Voltage Monitoring 1 Circuit/ <mark>Comparator A1</mark> Mode Select	Voltage Monitoring 1 Circuit Mode Select
	LVD1RN	Voltage Monitoring 1/Comparator A1 Reset Negation Select	Voltage Monitoring 1 Reset Negate Select
_VD2CR0	_	Voltage Monitoring 2 Circuit/Comparator A2 Control Register 0	Voltage Monitoring 2 Circuit Control Register 0
	LVD2RIE	Voltage Monitoring 2/Comparator A2 Interrupt/Reset Enable	Voltage Monitoring 2 Interrupt/Reset Enable
	LVD2DFDIS	Voltage Monitoring 2/Comparator A2 Digital Filter Disable Mode Select	Voltage Monitoring 2 Digital Filter Disable Mode Select
	LVD2CMPE	Voltage Monitoring 2 Circuit/Comparator A2 Comparison Result Output Enable	Voltage Monitoring 2 Circuit Comparison Result Output Enable
	LVD2FSAMP [1:0]	Sampling Clock Select b5 b4	Sampling Clock Select b5 b4
		0 0: LOCO divided by 1 0 1: LOCO divided by 2	0 0: 1/2 LOCO frequency 0 1: 1/4 LOCO frequency
		1 0: LOCO divided by 4	1 0: 1/8 LOCO frequency
		1 1: LOCO divided by 8	1 1: 1/16 LOCO frequency
	LVD2RI	Voltage Monitoring 2 Circuit/Comparator A2 Mode Select	Voltage Monitoring 2 Circuit Mode Select
	LVD2RN	Voltage Monitoring 2/Comparator A2 Reset Negation Select	Voltage Monitoring 2 Reset Negate Select

Note 2. The voltage of VCC = AVCC0 = AVCC1 when LVD2 is enabled must be set to at least 80 mV above the maximum value of the voltage detection 2 level selected by the LVDLVLR.LVD2LVL[3:0] bits.

RENESAS

RX65N/RX651 Group RX210 Group

2.5 Clock Generation Circuit

Table 2.8 shows a Comparative Listing of Clock Generation Circuit Specifications, and Table 2.9 shows a Comparative Listing of Clock Generation Circuit Registers.

ltem	RX210	RX651		
Item Uses	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM and RAM. Generates the peripheral module clocks (PCLKB and PCLKD) to be supplied to peripheral modules. The peripheral module clock used as the operating clock is PCLKD for S12AD and PCLKB for other modules. Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the external bus clock (BCLK) to be supplied to the external 	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, code flash memory and RAM. Generates the peripheral module clock (PCLKA) to be supplied to the ETHERC EDMAC, RSPI, SCIi, MTU3, and AES. Generates the peripheral module clock (PCLKB) to be supplied to peripheral modules. Generates the peripheral module clock: (for analog conversion) (PCLKC: unit 0) PCLKD: unit 1) to be supplied to S12AD. Generates the flash-IF clock (FCLK) to be supplied to the flash interface. Generates the external bus clock (BCLK) to be supplied to the external bus. 		
	 Generates the CAC clock (CACCLK) to be supplied to the CAC 	 Generates the SDRAM clock (SDCLK) to be supplied to the SDRAM. Generates the USB clock (UCLK) to be supplied to the USBb. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CAN clock (CANMCLK) to be supplied to the CAN. 		
	Generates the RTC-dedicated sub clock (RTCSCLK) to be supplied to the RTC.	Generates the RTC sub-clock (RTCSCLK) to be supplied to the RTC.		
	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT. 	 Generates the RTC main clock (RTCMCLK) to be supplied to the RTC. Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT Generates the JTAG clock (JTAGTCK) to be supplied to the JTAG. 		

Table 2.8 Comparative Listing of Clock Generation Circuit Specifications

ltem	RX210	RX651
Operating	ICLK: 50MHz (max)	ICLK: 120MHz (max)
frequency		 PCLKA: 120MHz (max)
	 PCLKB: 32MHz (max) 	 PCLKB: 60MHz (max)
		PCLKC: 60MHz (max)
	 PCLKD: 50MHz (max) 	 PCLKD: 60MHz (max)
	FCLK: 4 MHz to 32 MHz (for	• FCLK: 4 MHz to 60 MHz (for
	programming and erasing the ROM and	programming and erasing the code flash
	E2 DataFlash) 32 MHz (max) (for reading from the E2	memory)
	DataFlash)	
	BCLK: 25MHz (max)	BCLK: 120MHz (max)
	BCLK pin output: 12.5 MHz (max)	 BCLK pin output: 60 MHz (max)
		 SDCLK pin output: 60 MHz (max)
		 UCLK: 48MHz (max)
	CACCLK: Same as frequency of each	 CACCLK: Same as the clock from
	oscillator	respective oscillators
		CANMCLK: 24MHz (max)
	• RTCSCLK: 32.768kHz	RTCSCLK: 32.768kHz
		RTCMCLK: 8MHz to 16MHz
	WDTCLK: 125kHz	IWDTCLK: 120kHz
		• JTAGTCK: 10MHz (max)
Main clock	Resonator frequency: 1 MHz to 20 MHz	Resonator frequency: 8 MHz to 24 MHz
oscillator	External clock input frequency: 20 MHz	External clock input frequency: 24 MHz
	(max)Connectable resonator or additional	(max)
	 Connectable resonator or additional circuit: ceramic resonator, crystal 	 Connectable resonator or additional circuit: ceramic resonator, crystal
	resonator	resonator
	Connection pin: EXTAL, XTAL	Connection pin: EXTAL, XTAL
	Oscillation stop detection function:	Oscillation stop detection function:
	When an oscillation stop is detected	When an oscillation stop is detected
	with the main clock, the system clock	with the main clock, the system clock
	source is switched o LOCO and MTU	source is switched to LOCO, and MTU3
	output can be forcedly driven to the	output can be forcedly driven to the
Sub-clock	high-impedance	high-impedance.
oscillator	 Resonator frequency: 32.768 kHz Connectable resonator or additional 	 Resonator frequency: 32.768 kHz Connectable resonator or additional
contator	 Connectable resonator or additional circuit: crystal resonator 	connectable resonator of additional circuit: crystal resonator
	Connection pin: XCIN, XCOUT	Connection pin: XCIN, XCOUT
PLL circuit	Input clock source: Main clock	Input clock source: Main clock, HOCO
	 Input pulse frequency division ratio: 	 Input pulse frequency division ratio:
	Selectable from 1, 2, and 4	Selectable from 1, 2, and 3
	Input frequency: 4 MHz to 12.5 MHz	Input frequency: 8 MHz to 24 MHz
	Frequency multiplication ratio:	Frequency multiplication ratio:
	Selectable from 8, 10, 12, 16, 20, 24,	Selectable from 10 to 30
	and 25	Output clock frequency of the PLL
	 VCO oscillation frequency: 50 MHz to 100 MHz 	frequency synthesizer: 120 MHz to 240 MHz
High-speed	Oscillation frequency: 32 MHz/36.864	• Selectable from 16 MHz, 18 MHz, and
on-chip	MHz/40 MHz/50 MHz	20 MHz
oscillator	 HOCO power supply control 	HOCO power supply control
(HOCO)		

ltem	RX210	RX651
Low-speed on- chip oscillator (LOCO)	Oscillation frequency: 125 kHz	Oscillation frequency: 240 kHz
IWDT- dedicated on- chip oscillator	Oscillation frequency: 125 kHz	Oscillation frequency: 120 kHz
JTAG external clock input (TCK)		Input clock frequency: 10 MHz (max)
Control of output on the BCLK pin	 BCLK clock output or high-level output is selectable BCLK or BCLK/2 is selectable 	 BCLK clock output or high output is selectable BCLK or BCLK/2 is selectable
Control of output on the SDCLK pin		SDCLK clock output or high output is selectable
Event linking (output)	_	Detection of stopping of the main clock oscillator
Event linking (input)	_	Switching of the clock source to the low- speed on-chip oscillator

Table 2.9	Comparative	Listing o	f Clock	Generation	Circuit Registers
-----------	-------------	-----------	---------	------------	--------------------------

Register	Bit	RX210	RX651
SCKCR	PCKC[3:0]		Peripheral Module Clock C
			(PCLKC) Select (b7-b4)
	PCKA[3:0]		Peripheral Module Clock A
			(PCLKA) Select (b15-b12)
	PSTOP0		SDCLK Pin Output Control
ROMWT	_		ROM Wait Cycle Setting Register
SCKCR2	_		System Clock Control Register 2
VRCR		Voltage Regulator Control	
		Register	
PLLCR	PLIDIV[1:0]	PLL Input Frequency	PLL Input Frequency
		Division Ratio Select	Division Ratio Select
		b1 b0	b1 b0
		0 0: ×1	0 0: ×1
		0 1: ×1/2	0 1: ×1/2
		1 0: ×1/4	1 0: ×1/3
		1 1: Setting prohibited	1 1: Setting prohibited
	PLLSRCSEL		PLL Clock Source Select (b4)

Register	Bit	RX210	RX651
PLLCR	STC[4:0]	Frequency Multiplication	Frequency Multiplication
	STC[5:0]	Factor Select (b12-b8)	Factor Select (b13-b8)
		b12 b8	b13 b8
		0 0 1 1 1: ×8	0 1 0 0 1 1: ×10.0
		0 1 0 0 1: ×10	0 1 0 1 0 0: ×10.5
		0 1 0 1 1: ×12	0 1 0 1 0 1: ×11.0
		0 1 1 1 1: ×16	0 1 0 1 1 0: ×11.5
		1 0 0 1 1: ×20	0 1 0 1 1 1: ×12.0
		1 0 1 1 1: ×24	0 1 1 0 0 0: ×12.5
		1 1 0 0 0: ×25	:
			1 1 1 0 0 1: ×29.0
			1 1 1 0 1 0: ×29.5
			1 1 1 0 1 1: ×30.0
		Settings other than above	Settings other than above are
		are prohibited.	prohibited
		The Value after reset is diffe	erent.
HOCOCR2	HCFRQ[1:0]	HOCO Frequency Setting	HOCO Frequency Setting
		b1 b0	b1 b0
		0 0: 32 MHz	0 0: <mark>16 MHz</mark>
		0 1: 36.864 MHz	0 1: <mark>18 MHz</mark>
		1 0: 40 MHz	1 0: 20 MHz
		1 1: 50 MHz	Settings other than above are
			prohibited.
OSCOVFSR			Oscillation Stabilization Flag Register
MOSCWTCR*1	MSTS[4:0]	Main Clock Oscillator Wait	Main Clock Oscillator Wait
		Time Select (b4-b0)	Time Select (b7-b0)
		The Value after reset is diffe	
SOSCWTCR*1	SSTS[4:0]	Sub-Clock Oscillator Wait	Sub-Clock Oscillator Wait
	0010[1.0]	Time Select (b4-b0)	Time Select (b7-b0)
		The Value after reset is diffe	
MOFCR	MOFXIN	The value alter reset is diffe	Main Clock Oscillator Forced
		_	Oscillation (b0)
	MODRV[2:0]	Main Clock Oscillator Drive	
		Capability Switch (b3-b1)	_
	MODRV2[1:0]	Main Clock Oscillator Drive	Main Clock Oscillator Driving
		Capability Switch 2	Ability 2 Switching
		Capability Switch 2	Ability 2 Switching
		b5 b4	b5 b4
		0 1: 1 MHz to 8 MHz	0 0: 20.1 to 24 MHz
		1 0: 8.1 MHz to 15.9 MHz	0 1: 16.1 to 20 MHz
		1 1: 16 MHz to 20 MHz	1 0: 8.1 to 16 MHz
		Settings other than the	1 1: 8 MHz
		above are prohibited.	
		The Value after reset is diffe	prent
PLLPCR		PLL Power Control	ส ธาน.

Note 1. In the User's Manual: Hardware of the RX210 Group, MOSCWTCR and SOSCWTCR are described in section 11, Low Power Consumption.

2.6 Clock Frequency Accuracy Measurement Circuit

Table 2.10 shows a Comparative Listing of Clock Frequency Accuracy Measurement Circuit Specifications, and Table 2.11 shows a Comparative Listing of Clock Frequency Accuracy Measurement Circuit Registers.

Item	RX210 (CAC)	RX651 (CAC)
Clock frequency measurement	 The frequency of the following clocks can be measured. Clock output from main clock oscillator (main clock) Clock output from sub-clock oscillator (sub-clock) Clock output from high-speed on-chip oscillator (HOCO clock) Clock output from low-speed on-chip oscillator (LOCO clock) Clock output from IWDT-dedicated on-chip oscillator (IWDTCLK clock) 	 The frequency of the following clocks can be measured. Main clock Sub-clock HOCO clock LOCO clock IWDTCLK clock Peripheral module clock B (PCLKB)
Measurement reference clocks	 External clock input to the CACREF pin Main clock Sub-clock HOCO clock LOCO clock IWDTCLK clock 	 External clock input to the CACREF pin Main clock Sub-clock HOCO clock LOCO clock IWDTCLK clock Peripheral module clock B (PCLKB)
Selectable function	Digital filter function	Digital filter function
Interrupt sources	Measurement end interruptFrequency error interruptOverflow interrupt	Measurement end interruptFrequency error interruptOverflow interrupt
Power consumption reduction function	Module stop state can be set.	Module stop state can be set

Table 2.10 Comparative Listing of Clock Frequency Accuracy Measurement Circuit Specifications

Register	Bit	RX210	RX651
CACR1	FMCS[2:0]	Frequency Measurement Clock Select	Measurement Target Clock Select
		b3 b1	b3 b1
		0 0 0: Output clock of main clock	0 0 0: Main clock
		oscillator	0 0 1: Sub-clock
		0 0 1: Output clock of sub-clock	0 1 0: HOCO clock
		oscillator	0 1 1: LOCO clock
		0 1 0: Output clock of high-speed	1 0 0: IWDTCLK clock
		on-chip oscillator	1 0 1: Peripheral module clock B
		0 1 1: Output clock of low-speed	(PCLKB)
		on-chip oscillator	Settings other than above are
		1 0 0: Output clock of IWDT- dedicated on-chip oscillator	prohibited.
		Settings other than above are	
		prohibited.	
CACR2	RSCS[2:0]	Reference Signal Generation	Measurement Reference Clock
		Clock Select	Select
		b3 b1	b3 b1
		0 0 0: Output clock of main clock	0 0 0: Main clock
		oscillator	0 0 1: Sub-clock
		0 0 1: Output clock of sub-clock	0 1 0: HOCO clock
		oscillator	0 1 1: LOCO clock
		0 1 0: Output clock of high-speed	1 0 0: IWDTCLK clock
		on-chip oscillator	1 0 1: Peripheral module clock B
		0 1 1: Output clock of low-speed on-chip oscillator	(PCLKB)
		1 0 0: Output clock of IWDT-	Settings other than above are prohibited.
		dedicated on-chip oscillator	pronibited.
	RCDS [1:0]	Reference Signal Generation	Measurement Reference Clock
		Clock Frequency Division Ratio	Frequency Division Ration Select
		Select	

Table 2.11 Comparative Listing of Clock Frequency Accuracy Measurement Circuit Registers

2.7 Low Power Consumption

Table 2.12 shows a Comparative Listing of Low Power Consumption Specifications, and Table 2.13 shows a Comparative Listing of Low Power Consumption Registers.

ltem	RX210	RX651
Reducing power consumption by switching clock signals	The frequency division ratio is settable independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), external bus clock (BCLK), and Flash IF clock (FCLK).	The frequency division ratio is settable independently for the system clock (ICLK), peripheral module clock (PCLKA, PCLKB, PCLKC, PCLKD), external bus clock (BCLK), and flash interface clock (FCLK).
BCLK output control function SDCLK output	BCLK output or high-level output can be selected.	BCLK output or high-level output can be selected. SDCLK output or high-level output can
control function Module-stop	Functions can be stopped independently	be selected. Functions can be stopped independently
function Function for transition to low power consumption mode	for each peripheral module. Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	for each peripheral module. Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power consumption modes	 Sleep mode All-module clock stop mode Software standby mode Deep software standby mode 	 Sleep mode All-module clock stop mode Software standby mode Deep software standby mode
Function for lower operating power consumption	 Power consumption can be reduced in normal operation, sleep mode, and all-module clock stop mode by selecting an appropriate operating power consumption control mode according to the operating frequency and operating voltage. Seven operating power control modes High-speed operating mode Middle-speed operating mode 1A Middle-speed operating mode 1B 	 Power consumption can be reduced in normal operation, sleep mode, and all-module clock stop mode by selecting an appropriate operating power consumption control mode according to the operating frequency and operating voltage range. Three operating power control modes — High-speed operating mode
	 Middle-speed operating mode 2A Middle-speed operating mode 2B Low-speed operating mode 1 Low-speed operating mode 2 	 Low-speed operating mode 1 Low-speed operating mode 2 There is no difference in power consumption when the same conditions (frequency and voltage) are set in low-

Table 2.12 Comparative Listing of Low Power Consumption Specifications

Register	Bit	RX210	RX651
MSTPCRA	MSTPA0		Compare Match Timer W
			(Unit 1) Module Stop (b0)
	MSTPA1	_	Compare Match Timer W
			(Unit 0) Module Stop (b1)
	MSTPA9	Multifunction Timer Pulse	Multifunction Timer Pulse
		Unit 3 Module Stop	Unit 3 Module Stop
		Target module: MTU (MTU0 to MTU5)	Target module: MTU3
	MSTPA10		Programmable Pulse Generator (Unit 1) Module Stop (b10)
	MSTPA11		Programmable Pulse Generator (Unit 0) Module Stop (b11)
	MSTPA13	16-Bit Timer Pulse Unit	16-Bit Timer Pulse Unit <mark>0</mark>
		Module Stop	(Unit 0) Module Stop
	MSTPA16		12-bit A/D Converter
			(Unit 1) Module Stop (b16)
	MSTPA17	12-Bit A/D Converter	12-bit A/D Converter
		Module Stop	(<mark>Unit 0</mark>) Module Stop
		Target module: S12AD	Target module: S12AD unit 0
	MSTPA19	D/A Converter Module Stop	12-bit D/A Converter
			Module Stop
		Target module: D/A	Target module: 12-bit D/A
	MSTPA29	Module Stop A29	EXDMA Controller Module
			Stop
			Target module: EXDMAC
MSTPCRB	MSTPB0		CAN Module 0 Module
			Stop* (b0)
	MSTPB1	<u> </u>	CAN Module 1 Module
			Stop* (b1)
	MSTPB4	Serial Communication Interface SCId Module Stop	Serial Communication Interface SCIh Module Stop
		Target module: SCId (SCI12)	Target module: SCIh (SCI12)
	MSTPB6	DOC Module Stop	Data Operation Circuit Module Stop
	MSTPB9	ELC Module Stop	Event Link Controller Module Stop
	MSTPB10	Comparator B Module Stop (b10)	
	MSTPB15		Ethernet Controller and
			Ethernet Controller DMA
			Controller (Channel 0)
			Modules Stop (b15)
	MSTPB16		Serial Peripheral
			Interface 1 Module Stop b16)
	MSTPB19		Universal Serial Bus 2.0
			FS Interface Module
			Stop* (b19)
	MSTPB22		Parallel Data Capture
			Unit Module Stop (b22)

Table 2.13 Comparative Listing of Low Power Consumption Registers

Register	Bit	RX210	RX651
MSTPCRC	MSTPC1	RAM1 Module Stop (b1)	
	MSTPC7		Standby RAM Module
			Stop (b7)
	MSTPC17		I ² C Bus Interface 2
			Module Stop (b17)
	MSTPC22		Serial Peripheral
			Interface 2 Module Stop (b22)
	MSTPC23		Quad Serial Peripheral
			Interface Module Stop (b23)
MSTPCRD			Module Stop Control Register D
OPCCR	OPCM[2:0]	Operating Power Control	Operating Power Control
		Mode Select	Mode Select
		b2 b0	b2 b0
		0 0 0: High-speed operating mode	0 0 0: High-speed operating mode
		0 1 0: Middle-speed operating mode 1A	
		0 1 1: Middle-speed operating mode 1B	
		1 0 0: Middle-speed operating mode 2A	
		1 0 1: Middle-speed operating mode 2B	
		1 1 0: Low-speed operating mode 1	1 1 0: Low-speed operating mode 1
		1 1 1: Low-speed operating mode 2	1 1 1: Low-speed operating mode 2
		Settings other than above are prohibited.	Settings other than above are prohibited.
		The Value after reset is different.	·
MOSCWTCR*1	MSTS[4:0]	Main Clock Oscillator Wait	Main Clock Oscillator Wait
	MSTS[7:0]	Time Select (b4-b0)	Time Select (b <mark>7</mark> -b0)
		The Value after reset is different.	× /
SOSCWTCR*1	SSTS[4:0]	Sub-Clock Oscillator Wait	Sub-Clock Oscillator Wait
	SSTS[7:0]	Time Select (b4-b0)	Time Select (b7-b0)
		The Value after reset is different.	
PLLWTCR		PLL Wait Control Register	
		HOCO Wait Control Register 2	

Register	Bit	RX210	RX651
DPSBYCR	DEEPCUT1 DEEPCUT	Deep Cut (b1)	Deep Cut (b1- <mark>b0</mark>)
	[1:0]		b1 b0
		0: LVD and POR can be	0 0: Power is supplied to the
		operated at deep software	standby RAM and USB
		standby mode.	resume detecting unit in
			deep software standby mode
			0 1: Power is not supplied to the standby RAM and USB
			resume detecting unit in deep software standby mode
			1 0: Setting prohibited
		1: IVD doop not operate at doop	- ·
		1: LVD does not operate at deep	1 1: Power is not supplied to the
		software standby mode and POR operates in the low	standby RAM and USB
		•	resume detecting unit in deep software standby
		power consumption operation	mode. In addition, LVD is
		mode at deep software standby mode.	stopped and the low power
		standby mode.	consumption function in a
			power-on reset circuit is
			enabled.
DPSIER1			Deep Standby Interrupt Enable
			Register 1
DPSIER2	DRIICDIE	SDA-DS Deep Standby Cancel	SDA2-DS Deep Standby Release
		Signal Enable	Signal Enable
	DRIICCIE	SCL-DS Deep Standby Cancel	SCL2-DS Deep Standby Release
		Signal Enable	Signal Enable
	DUSBIE		USB Suspend/Resume Deep
			Standby Release Signal Enable
DPSIER3			Deep Standby Interrupt Enable
			Register 3
DPSIFR1		—	Deep Standby Interrupt Flag
			Register 1
DPSIFR2	DRIICDIF	SDA-DS Deep Standby	SDA2-DS Deep Standby Release
		Cancel Flag	Flag
	DRIICCIF	SCL-DS Deep Standby	SCL2-DS Deep Standby Release
		Cancel Flag	Flag
	DUSBIF		USB Suspend/Resume Deep
			Standby Release Flag
DPSIFR3			Deep Standby Interrupt Flag
			Register 3
DPSIEGR1			Deep Standby Interrupt Edge
			Register 1
DPSIEGR2	DRIICDEG	SDA-DS Edge Select	SDA2-DS Edge Select
	DRIICCEG	SCL-DS Edge Select	SCL2-DS Edge Select
DPSIEGR3			Deep Standby Interrupt Edge
-			Register 3
FHSSBYCR	_	Flash HOCO Software Standby	
		Control Register	

Note 1. In the User's Manual: Hardware of the RX651 Group, MOSCWTCR and SOSCWTCR are described in section 9, Clock Generation Circuit

2.8 Register Write Protection Function

Table 2.14 shows a Comparative Listing of Register Write Protection Function Specifications, and Table 2.15 shows a Comparative Listing of Register Write Protection Function Registers.

ltem	RX210	RX651
PRC0 bit	 Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, BCKCR, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, HOCOCR2 	 Registers related to the clock generation circuit: SCKCR, SCKCR2, SCKCR3, PLLCR PLLCR2, BCKCR, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, HOCOCR2, OSTDCR, OSTDSR
PRC1 bit	 Registers related to the operating modes: SYSCR0, SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, MOSCWTCR*1, SOSCWTCR*1, PLLWTCR, DPSBYCR, DPSIER0, DPSIER2, DPSIER2, DPSIEGR0, DPSIEGR2, FHSSBYCR, HOCOWTCR2 Registers related to clock generation circuit: MOFCR, HOCOPCR, PLLPCR Software reset register: SWRR 	 Registers related to the operating modes: SYSCR0, SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, DPSBYCR, DPSIER0, DPSIER1, DPSIER2, DPSIFR1, DPSIFR2, DPSIFR3, DPSIEGR0, DPSIEGR1, DPSIEGR2. DPSIEGR2. DPSIEGR3 Registers related to clock generation circuit: MOSCWTCR*1, SOSCWTCR*1, MOFCR, HOCOPCR Software reset register: SWRR
PRC2 bit	Register related to the VRCR	-
PRC3 bit	 Registers related to the LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR 	 Registers related to the LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

Table 2.14 Comparative Listing of Register Write Protection Function Specifications

Note 1. In the User's Manual: Hardware of RX651 Group, MOSCWTCR and SOSCWTCR are described in section 9.Clock Generation Circuit.

Table 2.15	Comparative Listing of Register Write Protection Function Registers

Register	Bit	RX210	RX651	
PRCR	PRC2	Protect Bit 2 2 (b2)	—	

2.9 Exception Handling

Table 2.16 shows a Comparative Listing of Vector, and Table 2.17 shows a Comparative Listing of Return from Exception Handling Routine.

Table 2.16 Comparative Listing of Vector

Exception (Event)		RX210	RX651	
Undefined instruction exception		Fixed vector table	Exception vector table (EXTB)	
Privileged instruction exception		Fixed vector table	Exception vector table (EXTB)	
Access exception			Exception vector table (EXTB)	
Floating-po	int exception	—	Exception vector table (EXTB)	
Reset		Fixed vector table	Exception vector table (EXTB)	
Non-maska	able interrupt	Fixed vector table	Exception vector table (EXTB)	
Interrupt	Fast interrupt	FINTV	FINTV	
	Other than above	Relocatable vector table (INTB)	Interrupt vector table (INTB)	
Unconditional trap		Relocatable vector table (INTB)	Interrupt vector table (INTB)	

Exception		RX210	RX651
Undefined	instruction exception	RTE	RTE
Privileged instruction exception		RTE	RTE
Access exception			RTE
Floating-point exception			RTE
Reset		Return is impossible	Return is impossible
Non-maska	able interrupt	Return is impossible	Prohibited
Interrupt	Fast interrupt	RTFI	RTFI
	Other than above	RTE	RTE
Unconditional trap		RTE	RTE

2.10 Interrupt Controller

Table 2.18 shows a Comparative Listing of Interrupt Controller Specifications, and Table 2.19 shows a Comparative Listing of Interrupt Controller Registers.

ltem		RX210 (ICUb)	RX651 (ICUB)
Interrupt	Peripheral function interrupts	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection Edge detection or level detection is fixed for each source of connected peripheral modules. 	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection (detection method is fixed for each interrupt source Group interrupt: Multiple interrupt sources are grouped together and treated as an interrupt source. Group BE0 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (edge detection) Group BL0/BL1/BL2 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (level detection) Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection) Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection) Software configurable interrupt B: Any of the interrupt sources for peripheral modules that use PCLKB as the operating clock can be assigned to interrupt vector numbers 128 to 207. Software configurable interrupt A: Any of the interrupt sources for peripheral modules that use PCLKA as the operating clock can be assigned to interrupt vector numbers 208 to 255.

ltem		RX210 (ICUb)	RX651 (ICUB)
Interrupt	External pin interrupts	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Low level/falling edge/rising edge/rising edge/rising edge/rising edge/rising edge/rising and falling edges One of these detection methods can be set for each source. Digital filter function: Supported 	 Interrupt by the input signal to the IRQi pin (i = 0 to 15) Number of sources: 16 Interrupt detection method: Detection of low level, falling edge, rising edge, rising edge, rising and falling edges One of these detection methods can be set for each source. Digital filter can be used to remove noise.
	Software interrupt	Interrupt generated by writing to a register	 Interrupt request can be generated by writing to a register.
	E	One interrupt source	Two interrupt sources
	Event link Interrupt	The ELSR18I or ELSR19I interrupt is generated by an ELC event	
	Interrupt priority level	Specified by registers.	Priority level can be set with interrupt source priority register r (IPRr) (r = 000 to 255).
	Fast interrupt function	Faster interrupt processing of the CPU can be set only for a single interrupt source.	CPU interrupt response time can be reduced. This function can be used for only one interrupt source.
	DTC and DMAC control	The DTC and DMAC can be activated by interrupt sources.	Interrupt sources can be used to start the DTC and DMAC.
	EXDMAC control		 Interrupt selected by software configurable interrupt B source select register 144 or software configurable interrupt A source select register 208 can be used to start EXDMAC0. Interrupt selected by software configurable interrupt B source select register 145 or software configurable interrupt A source select register 209 can be used to start EXDMAC1.
Non- maskable interrupts	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection: Falling edge/rising edge Digital filter function: Supported 	 Interrupt by the input signal to the NMI pin Interrupt detection: Falling edge/rising edge Digital filter can be used to remove noise.
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped	This interrupt occurs when the main clock oscillator stop is detected.
	WDT underflow/ refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error	This interrupt occurs when the watchdog timer (WDT) underflows or a refresh error occurs.
	IWDT underflow/ refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error	This interrupt occurs when the independent watchdog timer (IWDT) underflows or a refresh error occurs.

ltem		RX210 (ICUb)	RX651 (ICUB)
Non- maskable interrupts	Voltage monitoring interrupt	 Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1) Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2) 	 Interrupt from voltage detection circuit 1 (LVD1) Interrupt from voltage detection circuit 2 (LVD2)
	RAM error interrupt		This interrupt occurs when a parity check error is detected in the RAM.
Return from low power consumption	Sleep mode	Return is initiated by non- maskable interrupts or any other interrupt source.	Exit sleep mode by any interrupt source.
state	All-module clock stop mode	Return is initiated by non- maskable interrupts, IRQ0 to IRQ7 interrupts, WDT interrupts, TMR interrupts, or RTC alarm/periodic interrupts.	Exit all-module clock stop mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, oscillation stop detection interrupt, USB resume, RTC alarm, RTC period, IWDT, software configurable interrupt 146 to 157).
	Software standby mode	Return is initiated by non- maskable interrupts, IRQ0 to IRQ7 interrupts, or RTC alarm/periodic interrupts.	Exit all-module clock stop mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period, IWDT).
	Deep software standby mode	_	Exit all-module clock stop mode by the NMI pin interrupt, specific external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period).

Register	Bit	RX210 (ICUb)	RX651 (ICUB)
IRn		Interrupt Request Register n	Interrupt Request Register n
		(n = interrupt vector number)	(n = 016 to 255)
IPRn		Interrupt Source Priority Register n	Interrupt Source Priority Register r
IPRr		(n = 000 to 250)	(r = 000 to 255)
SWINT2R			Software Interrupt 2 Generation Register
DTCERn		DTC Activation Enable Register n	DTC Transfer Request Enable
		(n = interrupt vector number)	Register n (n = <mark>026 to 255</mark>)
	DTCE	DTC Activation Enable	DTC Transfer Request Enable
		0: DTC Activation is disabled 1: DTC Activation is enabled	0: The corresponding interrupt source is not selected as the DTC trigger.
			 The corresponding interrupt source is selected as the DTC trigger.
DMRSRm		DMAC Activation Request Select Register m	DMAC trigger Select Register m
		(m = DMAC channel number)	(m = DMAC channel number)
	DMRS[7:0]	DMAC Activation Source Select	
		These bits specify the vector	These bits set the interrupt vector
		number for the DMAC activation	number of the interrupt source as
		request.	the DMAC trigger.
IRQCRi		IRQ Control Register i (i = 0 to 7)	IRQ Control Register i (i = 0 to 15)
IRQFLTE1		_	IRQ Pin Digital Filter Enable Register 1
IRQFLTC1		—	IRQ Pin Digital Filter Setting Register 1
NMISR	RAMST		RAM Error Interrupt Status Flag (b6
NMIER	RAMEN		RAM Error Interrupt Enable (b6)
GRPBE0			Group BE0 Interrupt Request Register
GRPBL0/1/2	—		Group BL0/BL1/BL2 Interrupt Request Register
GRPAL0/1	_	_	Group AL0/AL1 Interrupt Request Register
GENBE0		_	Group BE0 Interrupt Request Enable Register
GENBL0/1/2	—		Group BL0/BL1/BL2 Interrupt Request Enable Register
GENAL0/1	—		Group AL0/AL1 Interrupt Request Enable Register
GCRBE0			Group BE0 Interrupt Clear Register
PIBRk			Software Configurable Interrupt B Request Register k (k = 0h to Ah)
PIARk	_		Software Configurable Interrupt A Request Register k (k = 0h to 5h, Bh)
SLIBXRn			Software Configurable Interrupt B Source Select Register Xn (n = 128 to 143)

Table 2.19 Comparative Listing of Interrupt Controller Registers

Points of Difference Between RX651 Group and RX210 Group

Register	Bit	RX210 (ICUb)	RX651 (ICUB)
SLIBRn			Software Configurable Interrupt B Source Select Register n (n = 144 to 207)
SLIARn			Software Configurable Interrupt A Source Select Register n (n = 208 to 255)
SELEXDR			EXDMAC Trigger Select Register
SLIPRCR			Software Configurable Interrupt Source Select Register Write Protect Register

2.11 Buses

Table 2.20 shows a Comparative Listing of Bus Specifications, Table 2.21 shows a Comparative Listing of External Bus Specifications, and Table 2.22 shows a Comparative Listing of Bus Registers.

Bus Type		RX210	RX651
CPU bus	Instruction bus Operand bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to the CPU (for operands) 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK) Connected to the CPU (for operands)
		 Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK)
Memory bus	Memory bus 1	Connected to RAM	Connected to RAM
	Memory bus 2	Connected to ROM	Connected to code flash memory
Internal main bus	Internal main bus 1	 Connected to the CPU Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	• Connected to the DMAC, DTC	 Connected to the DMAC, DTC and SDSI
		Connected to on-chip memory (RAM, ROM)	 Connected to on-chip memory (RAM, code flash memory)
		 Operates in synchronization with the system clock (ICLK) 	 Operates in synchronization with the system clock (ICLK)
Internal peripheral bus	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) 	 Connected to peripheral modules (DTC, DMAC, EXDMAC, interrupt controller, and bus error monitoring section)
		 Operates in synchronization with the system clock (ICLK) 	 Operates in synchronization with the system clock (ICLK) (EXDMAC operates in synchronization with the BCLK
	Internal peripheral bus 2	 Connected to peripheral modules (modules other than those connected to internal peripheral bus 1) Operates in synchronization with the peripheral-module clock (PCLKB and PCLKD) 	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, 4, and 5 Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 3	_	 Connected to peripheral modules (USBb, PDC, and standby RAM) Operates in synchronization with the peripheral-module clock (PCLKB)

 Table 2.20
 Comparative Listing of Bus Specifications

Bus Type		RX210	RX651
Internal peripheral bus	Internal peripheral bus 4		 Connected to peripheral modules (MTU3, SCli, RSPI, and AES) Operates in synchronization with the peripheral-module clock (PCLKA)
	Internal peripheral bus 5		Reserved area
	Internal peripheral bus 6	Connected to ROM (P/E) and <u>E2 DataFlash</u> memory	 Connected to code flash (in P/E)
		Operates in synchronization with the Flash IF clock (FCLK)	 Operates in synchronization with the FlashIF clock (FCLK)
External bus	CS area	 Connected to the external devices 	 Connected to the external devices
		 Operates in synchronization with the external-bus clock (BCLK) 	 Operates in synchronization with the external-bus clock (BCLK)
	SDRAM area		 Connected to the SDRAM Operates in synchronization with the SDRAM clock (SDCLK)

ltem	RX210	RX651
External address space	 An external address space is divided into four CS areas (CS0 to CS3) for management. 	 An external address space is divided into eight CS areas (CS0 to CS7) and the SDRAM area (SDCS) for management.
	 Chip select signals can be output for each area. 	Chip select signals can be output for each area.
	 Bus width can be set for each area. — Separate bus: An 8 or 16-bit bus space is selectable. 	 Bus width can be set for each area. — Separate bus: An 8 or 16-bit bus space is selectable.
	 Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. An endian mode can be specified for 	 Address/data multiplexed bus: An 8 or 16-bit bus space is selectable An endian mode can be specified for
	each area.	each area.
CS area controller	 Recovery cycles can be inserted. — Read recovery: Up to 15 cycles — Write recovery: Up to 15 cycles 	 Recovery cycles can be inserted. — Read recovery: Up to 15 cycles — Write recovery: Up to 15 cycles
	 Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) 	 Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles)
	• Wait control can be used to set up the following.	• Wait control can be used to set up the following.
	 Timing of assertion and negation for chip-select signals (CS0# to CS3#) 	 Timing of assertion and negation for chip-select signals (CS0# to CS7#)
	 The timing of assertion of the read signal (RD#) and write signals (WR#, WR0#, WR1#) 	 The timing of assertion of the read signal (RD#) and write signals (WR0#/WR#, and WR1# to WR1#
	 The timing with which data output starts and ends 	 The timing with which data output starts and ends
	 Write access mode: Single write strobe mode/byte strobe mode 	 Write access mode: Single write strobe mode/byte strobe mode
	 Separate bus or address/data multiplexed bus can be set for each area. 	 Separate bus or address/data multiplexed bus can be set for each area.
SDRAM area controller	_	 Multiplexing output of row address/column address (8, 9, 10, or 11 bits)
		Self-refresh and auto-Refresh selectable
		CAS latency can be specified from one to three cycles
Write buffer	When write data from the bus master has	When write data from the bus master ha
unction	been written to the write buffer, write access by the bus master is completed.	been written to the write buffer, write access by the bus master is completed.
Frequency	 The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK)*¹. 	 The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK)*¹. The SDRAM area controller
		 The SDRAM area controller (SDRAMC) operates in synchronization with the SDRAM cloc (SDCLK).

Table 2.21 Comparative Listing of External Bus Specifications

Note 1. The BCLK and the SDCLK should be operated with the same frequency when the SDRAM is in use.

Register	Bit	RX210	RX651
CSnCR		CSn Control Register	CSn Control Register
		(n = 0 to 3)	(n = 0 to 7)
	EMODE	Endian Mode	Endian Mode
		0: Endian of area n is the same as	0: Endian of area n is the same as
		the endian of operating mode.	the endian of operating mode.
		1: Endian of area n is not the endian of operating mode. (n = 0 to 3)	1: Endian of area n is not the endian of operating mode. (n = 0 to 7)
	MPXEN		Address/Data Multiplexed I/O
	WIPAEN	Address/Data Multiplexed I/O Interface Select	Interface Select
		0: Separate bus interface is selected for area n.	0: Separate bus interface is selected for area n.
		1: Address/data multiplexed I/O interface is selected for area n.	1: Address/data multiplexed I/O interface is selected for area n.
		(n = 0 to 3)	(n = 0 to 7)
CSnREC		CSn Recovery Cycle Register (n = 0 to 3)	CSn Recovery Cycle Register (n = 0 to 7)
CSnMOD		CSn Mode Register	CSn Mode Register
		(n = 0 to 3)	(n = 0 to 7)
CSnWCR1		CSn Wait Control Register 1	CSn Wait Control Register 1
		(n = 0 to 3)	(n = 0 to 7)
CSnWCR2		CSn Wait Control Register 2 (n = 0 to 3)	CSn Wait Control Register 2 (n = 0 to 7)
SDCCR		;	SDC Control Register
SDCMOD			SDC Mode Register
SDAMOD	_		SDRAM Access Mode Register
SDSELF	—		SDRAM Self-Refresh Control Register
SDRFCR			SDRAM Refresh Control Register
SDRFEN			SDRAM Auto-Refresh Control
			Register
SDICR	—	_	SDRAM Initialization Sequence Control Register
SDIR			SDRAM Initialization Register
SDADR			SDRAM Address Register
SDTR			SDRAM Timing Register
SDMOD			SDRAM Mode Register
SDSR			SDRAM Status Register
BERSR1		Bus Master Code	Bus Master Code
		b6 b4	b6 b4
		0 0 0: CPU	0 0 0: CPU
		0 0 1: Reserved	0 0 1: Reserved
		0 1 0: Reserved	0 1 0: Reserved
		0 1 1: DTC/DMAC	0 1 1: DTC/DMAC
		1 0 0: Reserved	1 0 0: Reserved
		1 0 1: Reserved	1 0 1: Reserved
		1 1 0: Reserved	1 1 0: SDSI
		1 1 1: Reserved	1 1 1: EXDMAC

Table 2.22 Comparative Listing of Bus Registers

Register	Bit	RX210	RX651
BUSPRI	BPGB[1:0]	Internal Peripheral Bus 2 Priority	Internal Peripheral Bus 2 and 3
		Control	Priority Control
	BPHB[1:0]		Internal Peripheral Bus 4 Priority
			Control (b9-b8)

2.12 DMA Controller

Table 2.23 shows a Comparative Listing of DMA Controller Specifications, and Table 2.24 shows a Comparative Listing of DMA Controller Registers.

ltem		RX210 (DMACA)	RX651 (DMACAa)
Number of channels Transfer space		4 (DMACm (m = 0 to 3))	8 (DMACm (m = 0 to 7))
		512 Mbytes (0000 0000h to 0FFF FFFFh and F000 0000h to FFFF FFFFh excluding reserved areas)	 512 Mbytes (0000 0000h to 0FFF FFFFh and F000 0000h to FFFF FFFFh excluding reserved areas) 64 Mbytes (Maximum number of transfers in block transfer mode: 1,024 data × 65,536 blocks) Request source selectable for each channel Software trigger Interrupt requests from peripheral modules or trigger input to external interrupt input pins
Maximum transfer volume		1M data (Maximum number of transfers in block transfer mode: 1,024 data × 1,024 blocks)	
DMA request source		 Activation source selectable for each channel Software trigger Interrupt requests from peripheral modules or trigger input to external interrupt input pins 	
Channel priority		Channel 0 > Channel 1 > Channel 2 > Channel 3 (Channel 0: Highest)	Channel 0 > Channel 1 > Channel 2 > Channel 3 > Channel 7 (Channel 0: Highest)
Transfer	Single data	Bit length: 8, 16, 32 bits	Bit length: 8, 16, 32 bits
data	Block size	Number of data: 1 to 1,024	Number of data: 1 to 1,024
Transfer mode	Normal transfer mode	 One data transfer by one DMA transfer request Free running mode (setting in which total number of data transfers is not specified) settable 	 One data transfer by one DMA transfer request Free running mode (setting in which total number of data transfers is not specified) settable
	Repeat transfer mode Block transfer	 One data transfer by one DMA transfer request Program returns to the transfer start address on completion of the repeat size of data transfer specified for the transfer source or destination. Maximum settable repeat size: 1,024 	 One data transfer by one DMA transfer request Program returns to the transfer start address on completion of the repeat size of data transfer specified for the transfer source or destination. Maximum settable repeat size: 1,024 One block data transfer by one
	mode	 One block data transfer by one DMA transfer request Maximum settable block size: 1,024 data 	 One block data transfer by one DMA transfer request Maximum settable block size: 1,024 data

Table 2.23 Comparative Listing of DMA Controller Specifications

ltem		RX210 (DMACA)	RX651 (DMACAa)
Selective functions	Extended repeat area function	 Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed Area of 2 bytes to 128 Mbytes separately settable as extended repeat area for transfer source and destination 	 Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed Area of 2 bytes to 128 Mbytes separately settable as extended repeat area for transfer source and destination
Interrupt request	Transfer end interrupt	Generated on completion of transferring data volume specified by the transfer counter.	Generated on completion of transferring data volume specified by the transfer counter.
	Transfer escape end interrupt	Generated when the repeat size of data transfer is completed or the extended repeat area overflows.	Generated when the repeat size of data transfer is completed or the extended repeat area overflows.
Event link function		Event link request is generated after one data transfer (for block, after one block transfer).	An event link request is generated after each data transfer (for block transfer, after each block is transferred).
Power consumption reduction function		Module stop state can be set.	Module-stop state can be set.

Table 2.24 Comparative Listing of DMA Controller Registers

Register	Bit	RX210 (DMACA)	RX651 (DMACAa)
DMCRB		DMA Block Transfer Count Register (b9-b0)	DMA Block Transfer Count Register (<mark>b15</mark> -b0)
		001h to 3FFh (1 to 1023)	0001h to FFFFh (1 to 65535)
		000h (1024)	0000h (<mark>65536</mark>)
DMIST			DMAC74 Interrupt Status Monitor
			Register

2.13 Data Transfer Controller

Table 2.25 shows a Comparative Listing of Data Transfer Controller Specifications, and Table 2.26 shows a Comparative Listing of Data Transfer Controller Registers.

Item	RX210 (DTCa)	RX651 (DTCb)
Number of channels	Channel transfer corresponding to the interrupt source is possible (transferred by DTC activation request from the ICU).	The same number as all interrupt sources that can start the DTC transfer
Transfer mode	 Normal transfer mode A single activation leads to a single data transfer. 	 Normal transfer mode A single transfer request leads to a single data transfer.
	 Repeat transfer mode A single activation leads to a single data transfer. The transfer address is returned to the transfer start address after the number of data transfers corresponding to "repeat size". 	 Repeat transfer mode A single transfer request leads to a single data transfer. The transfer address is returned to the transfer start address after the number of data transfers corresponding to "repeat size".
	— The maximum repeat size is 256.	 The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, 1024 bytes.
	 Block transfer mode A single activation leads to the transfer of a single block. The maximum block size is 256 data. 	 Block transfer mode A single transfer request leads to the transfer of a single block. The maximum block size is 256 × 32 bits = 1024 byte
Chain transfer	 Data of multiple channels can be transferred on a single activation source (chain transfer). Either "executed when the counter is 0" or "always executed" can be selected for chain transfer. 	 Multiple types of data transfers can sequentially be executed in response to a single request. Either "performed only when the transfer counter becomes 0" or "every time" can be selected.
Sequence transfer		A series of complicated transfers can be registered as a sequence. Any sequence can be selected by the transfer data and executed.
		 Only one trigger source can be set at a time. Up to 256 sequences for a single trigger source
		 The data that is initially transferred in response to a transfer request determines a sequence
		• The whole sequence can be executed on a single request, or be suspended in the middle of the sequence and resumed on the next transfer request (division of sequence).

Table 2.25 Comparative Listing of Data Transfer Controller Specifications

ltem	RX210 (DTCa)	RX651 (DTCb)
Transfer space	 In short-address mode: 16 Mbytes (Areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh excepting reserved areas) 	 In short-address mode: 16 Mbytes (Areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh except reserved areas)
	 In full-address mode: 4 Gbytes (Area from 0000 0000h to FFFF FFFFh excepting reserved areas) 	 In full-address mode: 4 Gbytes (Area from 0000 0000h to FFFF FFFFh except reserved areas)
Data transfer units	 Length of a single data: 8, 16, or 32 bits Number of data for a single block: 1 to 256 data 	 Single data: 1 byte (8 bits), 1 word (16 bits), 1 longword (32 bits) Single block size: 1 to 256 data
CPU interrupt source	An interrupt request can be generated to the CPU on a DTC activation interrupt.	• An interrupt request can be generated to the CPU on a request source for a data transfer.
	 An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated to the CPU after data transfer of specified volume. 	 An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated to the CPU after data transfer of specified volume
Event link function	Event link request is generated after one data transfer (for block, after one block transfer).	An event link request is generated after one data transfer (for block, after one block transfer).
Read skip	Transfer data read skip can be specified.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	When "fixed" is selected for transfer source address and/or transfer destination address, writeback skip execution is provided.	Write-back of the transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable	_	Allows disabling the write-back of transfer information.
Displacement addition		The displacement value can be added to the transfer source address (for each transfer information)
Lower power consumption function	Module stop state can be specified	Module stop state can be specified

Register	Bit	RX210 (DTCa)	RX651 (DTCb)
MRA	WBDIS		Write-back Disable (b0)
MRB	SQEND		Sequence Transfer End (b0)
	INDX		Index Table Reference (b1)
MRC			DTC Mode Register C
DTCVBR		DTC Vector Base Address	DTC Vector Base Register
		Lower 12 bits:	Lower 10 bits:
		These bits are read as 0. The write value should be 0.	These bits are read as 0. The write value should be 0.
		Upper 4bits:	Upper 4bits:
		The upper 4 bits (b31 to b28) are ignored, and the address of this register is extended by the value specified by b27.	The upper 4 bits (b31 to b28) are ignored, and the address of this register is extended by the value specified by b27
		It can be set in the range of 0000 0000h to 07FF F000h and F800 0000h to FFFF F000h in 4-Kbyte units	It can be set in the range of 0000 0000h to 07FF FC00h and F800 0000h to FFFF FC00h in 1-Kbyte units.
DTCIBR			DTC Index Table Base Register
DTCOR			DTC Operation Register
DTCSQE	_	_	DTC Sequence Transfer Enable Register
DTCDISP			DTC Address Displacement Register

Table 2.26 Comparative Listing of Data Transfer Controller Registers

2.14 Event Link Controller

Table 2.27 shows a Comparative Listing of Event Link Controller Specifications, and Table 2.28 shows a Comparative Listing of Event Link Controller Registers.

ltem	RX210 (ELC)	RX651 (ELC)
Event link	 59 types of event signals can be directly connected to modules. The operation of timer modules can be selected when an event is input to the timer module. Event link operation is possible for ports B and E. — Single-port*1: An event link can be set for a specified 1-bit in a port. — Port group*1: An event link can be set for a group of specified bits within an 8-bit port. 	 82 types of event signals can be directly connected to modules. The operation of timer modules can be selected when an event is input to the timer module. Event link operation is possible for port B and port E. — Single port*1: An event link can be set for a single bit specified in a port. — Port group*1: An event link can be set for a group of single bits specified within eight I/O ports.
Low power consumption function	Module stop state can be specified	Module stop state can be specified

Table 2.27	Comparative Listing of Event Link Controller Specifications
------------	---

Table 2.28	Comparative Listing of Event Link Controller Registers
------------	--

Register	Bit	RX210 (ELC)	RX651 (ELC)
ELSRn	_	Event Link Setting Register n	Event Link Setting Register n
		(n = <mark>1 to</mark> 4, 7, 10, 12, 15, 16, 18 to 29)	(n = 0, 3, 4, 7, 10 to 13, 15, 16, 18 to 28, 33, 35 to 38, 45)
	ELS[7:0]	Event Link Select b7 b0 00000000: Event link function is disabled. 00000001 to 01101001: Set the number for the event signal to be linked. Settings other than above are prohibited.	Event Link Select 00h: Event output to the corresponding peripheral module is disabled. 01h to BDh: Set the number for the event signal to be linked. Settings other than above are prohibited
ELOPA	MTU0MD[1:0]		MTU0 Operation Select (b1-b0)
	MTU1MD[1:0]	MTU1 Operation Select (b3-b2)	
	MTU2MD[1:0]	MTU2 Operation Select (b5-b4)	—
ELOPD	TMR1MD[1:0]	—	TMR1 Operation Select (b3-b2)
	TMR3MD[1:0]		TMR3 Operation Select (b7-b6)
ELOPF			Event Link Option Setting Register F
ELOPH		—	Event Link Option Setting Register H

2.15 I/O Ports

Table 2.29 shows a Comparative Listing of I/O Ports Specifications, and Table 2.30 shows a Comparative Listing of I/O Port Registers.

	RX210		RX651	
Port	145 or 144Pins	100pins	145 or 144Pins	100pins
PORT0	P00 to P03, P05,	P03, P05, P07	P00 to P03, P05,	P05, P07
	P07		P07	
PORT1	P12 to P17	P12 to P17	P12 to P17	P12 to P17
PORT2	P20 to P27	P20 to P27	P20 to P27	P20 to P27
PORT3	P30 to P37	P30 to P37	P30 to P37	P30 to P37
PORT4	P40 to P47	P40 to P47	P40 to P47	P40 to P47
PORT5	P50 to P56	P50 to P55	P50 to P56	P50 to P55
PORT6	P60 to P67	None	P60 to P67	None
PORT7	P70 to P77	None	P70 to P77	None
PORT8	P80 to P83, P86,	None	P80 to P83, P86,	None
	P87		P87	
PORT9	P90 to P93	None	P90 to P93	None
PORTA	PA0 to PA7	PA0 to PA7	PA0 to PA7	PA0 to PA7
PORTB	PB0 to PB7	PB0 to PB7	PB0 to PB7	PB0 to PB7
PORTC	PC0 to PC7	PC0 to PC7	PC0 to PC7	PC0 to PC7
PORTD	PD0 to PD7	PD0 to PD7	PD0 to PD7	PD0 to PD7
PORTE	PE0 to PE7	PE0 to PE7	PE0 to PE7	PE0 to PE7
PORTF	PF5	None	PF5	None
PORTH	PH0 to PH3	PH0 to PH3	None	None
PORTJ	PJ1, PJ3, PJ5	PJ1, PJ3	PJ3, PJ5	PJ3
PORTK	PK2 to PK5	None	None	None
PORTL	PL0, PL1	None	None	None
Total	123	85	112	79

Table 2.29 Comparative Listing of I/O Ports Specifications

Register	Bit	RX210	RX651
PDR		Port Direction Register	Port Direction Register
		Pmn I/O Select	Pmn I/O Select
		n = 0 to 7	n = 0 to 7
		m = 0 to 9, A to F, <mark>H</mark> , J <mark>, K, L</mark>	m = 0 to 9, A to F, J
PODR		Port Output Data Register	Port Output Data Register
		Pmn Output Data Store	Pmn Output Data Store
		n = 0 to 7	n = 0 to 7
		m = 0 to 9, A to F, <mark>H</mark> , J, <mark>K</mark> , L	m = 0 to 9, A to F, J
PIDR		Port Input Data Register	Port Input Register
		Pmn	Pmn
		n = 0 to 7	n = 0 to 7
		m = 0 to 9, A to F, <mark>H</mark> , J <mark>, K, L</mark>	m = 0 to 9, A to F, J
PMR		Port Mode Register	Port Mode Register
		Pmn Pin Mode Control	Pmn Pin Mode Control
		n = 0 to 7	n = 0 to 7
		m = 9 to 0, A to F, <mark>H</mark> , J <mark>, K, L</mark>	m = 9 to 0, A to F, J
ODR0		Open Drain Control Register 0	Open Drain Control Register 0
		m = 0 to 3, 5 to 9, A to C, E, K	m = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
			C, D, E, J
	Pm1 Output	Pm1 Output Type Select	 In case of except Port E1
	Type Select	• P01, P21, P31, P51, P61, P81,	Odd-bit Even-bit
		P91, PA1, PB1, PC1	x 0: CMOS Output
		b2 0: CMOS Output	x 1: N channel Open drain
		1: N channel Open drain	(b1, b3, b5, b7: Reserved)
		b3: This bit is read as 0. The write	
		value should be 0.	
		• PE1	 In case of Port PE1
		b3 b2	b3 b2
		0 0: CMOS Output	0 0: CMOS Output
		0 1: N channel Open drain	0 1: N channel Open drain
		1 0: P channel Open drain	1 0: P channel Open drain
		1 1: Hi-Z	1 1: Setting prohibit
ODR1		Open Drain Control Register 1	Open Drain Control Register 1
		m = 1, 2, 3, 7, A to <mark>C</mark> , E, K	m = 0, 1, 2, 3, 4, 5, 6, 7, 8, A to F, J
PCR		Pull-Up Resistor Control Register	Pull-Up Resistor Control Register
		m = 0 to 9, A to F, <mark>H</mark> , J to L	m = 0 to 9, A to F, J
DSCR		Drive Capacity Control Register	Drive Capacity Control Register
		m = 0, 1, 2, <mark>3</mark> , 5, <mark>6</mark> , 7, <mark>8</mark> , 9, A to E,	m = 0, 2, 5, 9, A to E
		Н, Ј, К	
DSCR2			Drive Capacity Control Register 2

Table 2.30 Comparative Listing of I/O Port Registers

2.16 Multi-Function Pin Controller

Table 2.31 shows a Comparative Listing of Multi-Function Pin Controller Registers.

Register	Bit	RX210 (MPC)	RX651 (MPC)
PmnPFS		Refer to the user's manual for descrip registers.	ptions of the pin function control
PFCSE	CS0E	CS0 Enable of PC7	CS0 Enable
	CS1E	CS1 Enable of PC6	CS1 Enable
	CS2E	CS2 Enable of P26	CS2 Enable
	CS3E	CS3 Enable of P27	CS3 Enable
	CS4E	CS0 Enable of P24	CS <mark>4</mark> Enable
	CS5E	CS1 Enable of P25	CS <mark>5</mark> Enable
	CS6E	CS2 Enable of PC5	CS <mark>6</mark> Enable
	CS7E	CS3 Enable of PC4	CS7 Enable
PFCSS0			CS Output Pin Select Register 0
PFCSS1			CS Output Pin Select Register 1
PFBCR0	ADRHMS		A16 to A23 Output Enable (b1)
	ADRHMS2		A16 to A23 Output Enable 2 (b2)
	BCLKO		BCLK Forced Output (b3)
PFBCR1	MDSDE		SDRAM Pin Enable (b4)
	DQM1E		DQM1 Enable (b6)
	SDCLKE		SDCLK Enable (b7)

 Table 2.31
 Comparative Listing of Multi-Function Pin Controller Registers

2.17 16-Bit Timer Pulse Unit

Table 2.32 shows a Comparative Listing of 16-Bit Timer Pulse Unit Specifications, and Table 2.33 shows a Comparative Listing of Multi-Function Pin Controller Registers.

Item	RX210 (TPUa)	RX651 (TPUa)	
Pulse input/output	Maximum 16	Maximum 16	
Count clock	Seven or eight types are provided for each channel	Seven or eight types are provided for each channel	
Settable operations	 Waveform output at compare match Input capture function (noise filters can be set) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match and input capture Synchronous input/output for registers by counter synchronous operation Maximum of 15-phase PWM output by combination with synchronous operation Cascaded operation 	 Waveform output at compare match Input capture function (noise filters can be set) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match and input capture Synchronous input/output for registers by counter synchronous operation Maximum of 15-phase PWM output by combination with synchronous operation Cascaded operation 	
TPU0, TPU3	Buffer operation can be set	Buffer operation can be set	
TPU1, TPU2, TPU4, TPU5	Phase counting mode can be set	Phase counting mode can be set	
Interrupt source	26 sources	26 sources	
Buffer operation	Automatic transfer of register data	Automatic transfer of register data	
Generation of trigger	Conversion start trigger for the A/D	Programmable pulse generator (PPG) output trigger can be generated Conversion start trigger for the A/D	
Event linking (output)	converter can be generated. —	 converter can be generated. Six types of event signal can be output to the ELC. Compare match A (TPU0 to TPU3) Compare match B (TPU0 to TPU3) Compare match C (TPU0, TPU3) Compare match D (TPU0, TPU3) Overflow (TPU0 to TPU3) Underflow (TPU1, TPU2) 	
Event linking (input)		 Any of the three operations in response to event input is possible. Starting counts (TPU0 to TPU3) Restarting counts (TPU0 to TPU3) Input capture operation (TPU0 to TPU3) 	
Low power consumption function	Module stop state can be set for each unit.	Module stop state can be set	

Table 2.32	Comparative Listing of 16-Bit Timer Pulse Unit Specifications
------------	---

Table 2.33 Comparative Listing of Multi-Function Pin Controller Registers

· · · · ·	Registe	er Bit	RX210	RX651
Enable*'	TIER	TTGE	A/D Conversion Start Request Enable	A/D Conversion Start Request Enable ^{*1}

Note 1. Bit 7 in TIER of TPU5 is reserved. This bit is read as 0. The write value should be 0.

2.18 8-Bit Timer

Table 2.34 shows a Comparative Listing of 8-Bit Timer Specifications, and Table 2.35 shows a Comparative Listing of 8-Bit Timer Registers.

ltem	RX210 (TMR)	RX651 (TMR)
Count clocks	 Frequency divided clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, PCLK/8192 	 Frequency divided clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, PCLK/8192
Number of themeste	• External clock	• External clock
Number of channels	(8 bits x 2 channels) x 2 units	(8 bits x 2 channels) x 2 units
Compare match	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B) 	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B)
Counter clear	Selected by compare match A or B, or an external reset signal.	Selected by compare match A or B, or an external reset signal.
Timer output	Output pulses with a desired duty cycle or PWM output	Output pulses with a desired duty cycle or PWM output
Cascading of two channels	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits) 	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits) Compare match count mode
	 Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches). 	 Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).
Interrupt sources	Compare match A, compare match B, and overflow	Compare match A, compare match B, and overflow
Event link function (output)	Compare match A, compare match B, and overflow (TMR0, TMR2)	Compare match A, compare match B, and overflow (TMR0 to TMR3)
Event link function (input)		One of the following three operations proceeds in response to an event reception:
	(1) Count start operation (TMR0, TMR2)	(1) Counting start operation (TMR0 to TMR3)
	(2) Event counter operation (TMR0, TMR2)	(2) Event counting operation (TMR0 to TMR3)
	(3) Count restart operation (TMR0, TMR2)	(3) Counting restart operation (TMR0 to TMR3)
DTC activation	DTC can be activated by compare match A interrupts or compare match B interrupts.	DTC can be activated by compare match A interrupts or compare match E interrupts.
A/D conversion start trigger of the A/D converter		Compare match A of TMR0 or TMR2
Capable of generating baud rate clock for SCI	Generates baud rate clock for SCI.	Generation of baud rate clock for SCI

Table 2.34 Comparative Listing of 8-Bit Timer Specifications

RX65N/RX651 Group RX210 Group

Points of Difference Between RX651 Group and RX210 Group

ltem	RX210 (TMR)	RX651 (TMR)
Low power	Each unit can be placed in a module	Each unit can be placed in a module
consumption function	stop state	stop state

Table 2.35 Comparative Listing of 8-Bit Timer Registers

Register	Bit	RX210 (TMR)	RX651 (TMR)
TCSR	ADTE	—	A/D Trigger Enable (b4)

2.19 Realtime Clock

Table 2.36 shows a Comparative Listing of Realtime Clock Specifications, and Table 2.37 shows a Comparative Listing of Realtime Clock Registers.

ltem	RX210 (RTCb)	RX651 (RTCd)
Count modes	Calendar count mode	Calendar count mode/binary count mode
Count source	Sub-clock (XCIN)	Sub-clock (XCIN) or main clock (EXTAL)
Clock and calendar functions	 Calendar count mode Year, month, date, day of the week, hours, minutes, and seconds are counted and represented in BCD Selection of 12- or 24-hour mode 30-second adjustment (30 seconds or less are rounded down to 00 second, and 30 seconds or more are rounded up to one minute) 	 Calendar count mode Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute)
	— Automatic leap year adjustment	 Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display Common to both modes
	 Start/stop function Indicates the state of 1, 2, 4, 8, 16, 32, or 64-Hz in binary 	 Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz).
	 — Time error adjustment function — Output a 1-Hz clock 	 Clock error correction function Clock (1 Hz/64 Hz) output

Table 2.36 Comparative Listing of Realtime Clock Specifications

ltem	RX210 (RTCb)	RX651 (RTCd)
Interrupt	Alarm interrupt (ALM) Year, month, date, day of the week, hours, minutes, and seconds can be selected as conditions for the alarm interrupt	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected Binary count mode: Each bit of the 32-bit binary counter
	 Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, or 1/256 second can be selected as an interrupt period. 	 Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second can be selected as an interrupt period.
	• Carry interrupt (CUP) Indicates occurrence of a carry to the seconds counter or a carry to the 64- Hz counter during reading of the 64- Hz counter	 Carry interrupt (CUP) An interrupt is generated at either of the following timings: When a carry from the 64-Hz counter to the second counter is generated. When the 64-Hz counter is changed and the R64CNT register is read at the same time.
	 Recovery from software standby mode or deep software standby mode can be performed by an alarm interrupt or periodic interrupt 	 Recovery from software standby mode or deep software standby mode can be performed by an alarm interrupt or periodic interrupt
Time-capture function	Times when any of three event signals are input can be captured	• Times can be captured when the edge of the time capture event input pin is detected.
	• The month, date, hour, minute, and second are captured for each event	• For every event input, month, date, hour, minute, and second are captured or 32-bit binary counter value is captured.
Event link function	Periodic event output	Periodic event output

Table 2.37 Comparative Listing of Realtime Clock Registers

Register	Bit	RX210 (RTCb)	RX651 (RTCd)
BCNT0*1			Binary Counter 0
BCNT1*1	_		Binary Counter 1
BCNT2*1			Binary Counter 2
BCNT3*1		_	Binary Counter 3
RSECCNT	SEC1[3:0]	Ones Place of Seconds	1-Second Count
	SEC10[2:0]	Tens Place of Seconds	10-Second Count
RMINCNT	MIN1[3:0]	Ones Place of Minutes	1-Minute Count
	MIN10[2:0]	Tens Place of Minutes	10-Minute Count
RHRCNT	HR1[3:0]	Ones Place of Hours	1-Hour Count
	HR10[1:0]	Tens Place of Hours	10-Hour Count
RDAYCNT	DATE1[3:0]	Ones Place of Days	1-Day Count
	DATE10[1:0]	Tens Place of Days	10-Day Count
RMONCNT	MON1[3:0]	Ones Place of Months	1-Month Count
	MON10	Tens Place of Months	10-Month Count

RX65N/RX651 Group RX210 Group

Points of Difference Between RX651 Group and RX210 Group

Register	Bit	RX210 (RTCb)	RX651 (RTCd)
RYRCNT	YR1[3:0]	Ones Place of Years	1-Year Count
	YR10[3:0]	Tens Place of Years	10-Year Count
BCNT0AR*1	—		Binary Counter 0 Alarm Register
BCNT1AR*1			Binary Counter 1 Alarm Register
BCNT2AR*1			Binary Counter 2 Alarm Register
BCNT3AR*1			Binary Counter 3 Alarm Register
BCNT0AER*1		_	Binary Counter 0 Alarm Enable Register
BCNT1AER*1	_	_	Binary Counter 1 Alarm Enable Register
BCNT2AER*1	_	_	Binary Counter 2 Alarm Enable Register
BCNT3AER*1	_	_	Binary Counter 3 Alarm Enable Register
RCR1	RTCOS		RTCOUT Output Select (b3)
RCR2	CNTMD		Count Mode Select (b7)
RCR4			RTC Control Register 4
RFRH/L			Frequency Register H/L
RSECCPy	SEC1[3:0]	Ones Place of Seconds Captured	1-Second Capture
	SEC10[2:0]	Tens Place of Seconds Captured	10-Second Capture
RMINCPy	MIN1[3:0]	Ones Place of Minutes Captured	1-Minute Capture
	MIN10[2:0]	Tens Place of Minutes Captured	10-Minute Capture
RHRCPy	HR1[3:0]	Ones Place of Hours Captured	1-Hour Capture
	HR10[1:0]	Tens Place of Hours Captured	10-Hour Capture
RDAYCPy	DATE1[3:0]	Ones Place of Days Captured	1-Day Capture
	DATE10[1:0]	Tens Place of Days Captured	10-Day Capture
RMONCPy	MON1[3:0]	Ones Place of Months Captured	1-Month Capture
	MON10	Tens Place of Months Captured	10-Month Capture
BCNT0CPy*1		_	BCNT0 Capture Register y (y = 0 to 2)
BCNT1CPy*1		_	BCNT1 Capture Register y (y = 0 to 2)
BCNT2CPy*1			BCNT2 Capture Register y (y = 0 to 2)
BCNT3CPy*1		_	BCNT3 Capture Register y (y = 0 to 2)

Note 1. In binary count mode

2.20 Watchdog Timer

Table 2.38 shows a Comparative Listing of Watchdog Timer Specifications, and Table 2.39 shows a Comparative Listing of Watchdog Timer Registers.

ltem	RX210 (WDTA)	RX651 (WDTA)	
Count source	Peripheral clock (PCLK)	Peripheral module clock (PCLK)	
Clock division ratio	Divide by 4, 64, 128, 512, 2,048, or 8,192	Divide by 4, 64, 128, 512, 2,048, or 8,192	
Counter operation	Counting down using a 14-bit down- counter	Counting down using a 14-bit down- counter	
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started by refreshing the WDTRR register (writing 00h and then FFh) (register start mode) 	 Auto-start mode: Counting automatically starts after a reset or after an underflow or refresh error occurs Register start mode: Counting is started by refresh operation (writing to the WDTRR register) 	
Conditions for stopping the counter	 Reset generated by the RES# pin (the down-counter and registers return to their initial values) A counter underflows or a refresh error is generated Count restarts (Auto-start mode: Count restarts automatically after a reset or non- maskable interrupt request is issued. Register start mode: Count restarts after refreshing the counter) 	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated 	
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	
Watchdog timer Reset sources	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	
Interrupt sources		Non-maskable interrupt/interrupt sources	
	 A non-maskable interrupt (WUNI) is generated by an underflow of the down-counter 	Down-counter underflows	
	 Refreshing outside the refresh- permitted period (refresh error) 	 Refreshing outside the refresh- permitted period (refresh error) 	
Reading the counter value	The down-counter value can be read by the WDTSR register.	The down-counter value can be read by the WDTSR register.	

Table 2.38	Comparative Listing	g of Watchdog	Timer Specifications
------------	---------------------	---------------	-----------------------------

Table 2.39 Comparative Listing of Watchdog Timer Registers

Register	Bit	RX210 (WDTA)	RX651 (WDTA)
WDTRCR	RSTIRQS	Reset Interrupt Request Selection	Reset Interrupt Request Selection
		0: Non-maskable interrupt request output is enabled 1: Reset output is enabled	 0: Non-maskable interrupt request or interrupt request output is enabled 1: Reset output is enabled

2.21 Independent Watchdog Timer

Table 2.40 shows a Comparative Listing of Independent Watchdog Timer Specifications, and Table 2.41 shows a Comparative Listing of Independent Watchdog Timer Registers.

ltem	RX210 (IWDTA)	RX651 (IWDTa)
Count source	IWDT-dedicated clock (IWDTCLK)	IWDT-dedicated clock (IWDTCLK)
Clock divide ratio	Division by 1, 16, 32, 64, 128, or 256	Division by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down- counter	Counting down using a 14-bit down- counter
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started by refreshing the IWDTRR register (writing 00h and then FFh) (register start mode) 	 Counting automatically starts after a reset (auto-start mode) Counting is started by refreshing the IWDTRR register (writing 00h and then FFh) (register start mode)
Conditions for stopping the counter	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated Count restarts automatically in autostart mode after a reset or output for non-maskable interrupt request/ interrupt request, or by refreshing the counter in register start Mode 	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated Counting restarts (In auto-start mode, counting automatically restarts after a reset or after a nonmaskable interrupt request/ interrupt request is output. In register start mode, counting restarts after refreshing.)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)
Reset output sources	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error)
interrupt sources	 Non-maskable interrupt A non-maskable interrupt (WUNI) is generated by an underflow of the down-counter When refreshing is done outside the refresh-permitted period (refresh error) 	 Non-maskable interrupt/ interrupt sources Down-counter underflows Refreshing outside the refresh- permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the IWDTSR register.	The down-counter value can be read by the IWDTSR register.
Event link function (output)	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	 Down-counter underflow event output Refresh error event output
Output signal (internal signal)	 Reset output Interrupt request output Sleep mode count stop control output 	 Reset output Interrupt request output Sleep mode count stop control output

Table 2.40 Comparative Listing of Independent Watchdog Timer Specifications

ltem	RX210 (IWDTA)	RX651 (IWDTa)
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the time-out period of the watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all- module clock stop mode (OFS0.IWDTSLCSTP bit) 	 Selecting the clock frequency divide ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all- module clock stop mode (OFS0.IWDTSLCSTP bit)
Register start mode (controlled by the IWDT registers)	 Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the time-out period of the watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all- module clock stop mode (IWDTCSTPR.SLCSTP bit) 	 Selecting the clock frequency divide ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the

Table 2.41	Comparative Li	isting of Independent	: Watchdog Timer R	egisters
------------	-----------------------	-----------------------	--------------------	----------

Register	Bit	RX210 (IWDT)	RX651 (IWDTa)
IWDTRCR	RSTIRQS	Reset Interrupt Request Selection	Reset Interrupt Request Select
		0: Non-maskable interrupt request output is enabled. 1: Reset output is enabled.	 0: Non-maskable interrupt request or interrupt request output is enabled. 1: Reset output is enabled.

2.22 Serial Communications Interface

The RX210 Group has 13 independent serial communications interface channels (SCIc: 12 channels, SCId: 1 channel).

The RX651 Group has 13 independent serial communications interface channels (SCIg: 10 channels, SCIi: 2 channels, SCIh: 1 channel).

Table 2.42 shows a Comparative Listing of SCIc and SCIg Specifications, Table 2.43 shows a Comparative Listing of SCIc and **SCIi Specifications**, Table 2.44 shows a Comparative Listing of SCId and SCIh Specifications, Table 2.45 shows a Comparative Listing of Serial Communications Interface Channels Specifications, and Table 2.46 shows a Comparative Listing of Serial Communications Interface Registers.

Item		RX210 (SCIc)	RX651 (SClg)
Number of channels		12 channels	10 channels
Serial communications modes		 Asynchronous operation Clock synchronous operation Smart card interface Simple I²C bus Simple SPI bus 	 Asynchronous operation Clock synchronous operation Smart card interface Simple I²C bus Simple SPI bus
Transfer speed		Bit rate specifiable with on-chip baud rate generator.	Bit rate specifiable with on-chip baud rate generator.
Full-duplex communications		 Transmitter: Enables continuous transmission by double-buffering. Receiver: Enables continuous reception by double-buffering. 	 Transmitter: Enables continuous transmission by double-buffering. Receiver: Enables continuous reception by double-buffering.
Data transfer		Selectable as LSB-first or MSB- first transfer*1	Selectable as LSB-first or MSB- first transfer*1
Interrupt sources		Transmit-end, transmit-data- empty, receive-data-full, and receive error Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Transmit-end, transmit-data- empty, receive-data-full, and receive error Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)
Power consump function	otion reduction	Module stop state can be set for each channel.	Module stop state can be set for each channel.
Asynchronous mode	Data length	7 or 8 bits	7, 8, or <mark>9 bits</mark>
	Transmission stop bit	1 or 2 bits	1 or 2 bits
	Parity	Even, odd, or none	Even, odd, or none
	Receive error detection	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow control	CTSn and RTSn pins can be used in transfer control.	CTSn and RTSn pins can be used in transfer control.
	Start-bit detection	Low is detected	Low level or falling edge is selectable.
	Break detection	Break can be detected by reading RXDn pin level directly in case of a framing error	When a framing error occurs, a break can be detected by reading the RXDn pin level directly

ltem		RX210 (SCIc)	RX651 (SClg)
Asynchronous mode	Clock source	 Selectable from internal or external clock Enables transfer rate clock input from TMR (SCI5 and SCI6) 	 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used. (SCI5, SCI6)
	Double-speed mode	_	Baud rate generator double- speed mode is selectable.
	Multi-processor communications function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun errors	Overrun errors
	Hardware flow control	CTSn and RTSn pins can be used in transfer control.	CTSn and RTSn pins can be used in transfer control.
Smart card interface mode	Error processing	An error signal can be automatically transmitted on detection of a parity error during reception	An error signal can be automatically transmitted on detection of a parity error during reception
		Data can be automatically re- transmitted on receiving an error signal during transmission	Data can be automatically re- transmitted on receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Transfer format	l ² C bus format (MSB-first transfer only)	I ² C bus format (MSB-first transfer only)
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Up to 384 kbps	Fast mode is supported.
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI	Data length	8 bits	8 bits
bus	Detection of errors	Overrun errors	Overrun errors
	SS input pin function	Applying the high level to the SS# pin can cause the output pins to enter the highimpedance state.	Applying the high level to the SS# pin can cause the output pins to enter the highimpedance state.
	Clock settings	Four kinds of settings for clock phase and clock sense are selectable.	Four kinds of settings for clock phase and clock sense are selectable.
Bit rate modulation function		_	Correction of outputs from the on- chip baud rate generator can reduce errors.

Item	RX210 (SCIc)	RX651 (SClg)
Event link function	Error (receive error or error signal detection) event output	Error (receive error or error signal detection) event output
	Receive data full event output	Receive data full event output
	Transmit data empty event output	Transmit data empty event output
	Transmit end event output	Transmit end event output

Note 1. In simple I²C mode, only MSB-first is available

Item		RX210 (SCIc)	RX651 (SCIi)
Number of channels Serial communications modes		12 channels	2 channels
		 Asynchronous operation Clock synchronous operation Smart card interface Simple I2C bus Simple SPI bus 	 Asynchronous operation Clock synchronous operation Smart card interface Simple I2C bus Simple SPI bus
Transfer speed		Bit rate specifiable with on-chip baud rate generator.	Bit rate specifiable with on-chip baud rate generator.
Full-duplex com	munications	 Transmitter: Enables continuous transmission by double-buffering. Receiver: Enables continuous reception by double-buffering. 	 Transmitter: Enables continuous transmission by double-buffering. Receiver: Enables continuous reception by double-buffering
Data transfer		Selectable as LSB-first or MSB- first transfer*1	Selectable as LSB-first or MSB- first transfer*1
Interrupt sources		Transmit-end, transmit-data- empty, receive-data-full, and receive error Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Transmit end, transmit data empty, receive data full, receive error, receive data ready, and data match Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)
Power consumption reduction function		Module stop state can be set for each channel	Module stop state can be set for each channel
Asynchronous mode	Data length	7 or 8 bits	7, 8, or <mark>9 bits</mark>
	Transmission stop bit	1 or 2 bits	1 or 2 bits
	Parity	Even, odd, or none	Even, odd, or none
	Receive error detection	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow control	CTSn and RTSn pins can be used in transfer control.	CTSn and RTSn pins can be used in transfer control.
	Transmit/receive FIFO		16-stage FIFOs for transmit and receive buffers
	Data match detection	—	Compares receive data and comparison data, and generates interrupt when they are matched
	Start-bit detection	Low is detected	Low level or falling edge is selectable.
	Break detection	Break can be detected by reading RXDn pin level directly in case of a framing error	When a framing error occurs, a break can be detected by reading the RXDn pin level directly
	Clock source	 Selectable from internal or external clock Enables transfer rate clock input from TMR (SCI5 and SCI6) 	An internal or external clock can be selected.
	Double-speed mode		Baud rate generator double- speed mode is selectable.

Table 2.43 Comparative Listing of SCIc and SCIi Specifications

ltem		RX210 (SCIc)	RX651 (SCIi)
Asynchronous mode	Multi-processor communications function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun errors	Overrun errors
	Hardware flow control	CTSn and RTSn pins can be used in transfer control.	CTSn and RTSn pins can be used in transfer control.
	Transmit/receive FIFO		16-stage FIFOs for transmit and receive buffers
Smart card interface mode	Error processing	An error signal can be automatically transmitted on detection of a parity error during reception	An error signal can be automatically transmitted on detection of a parity error during reception
		Data can be automatically re- transmitted on receiving an error signal during transmission	Data can be automatically re- transmitted on receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Transfer format	I ² C bus format (MSB-first transfer only)	I ² C bus format (MSB-first transfer only)
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Up to 384 kbps	Fast mode is supported
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable
Simple SPI bus	Data length	8 bits	8 bits
	Detection of errors	Overrun errors	Overrun errors
	SS input pin function	Applying the high level to the SS# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SS# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock sense are selectable.	Four kinds of settings for clock phase and clock sense are selectable.
Bit rate modulation function			Correction of outputs from the on- chip baud rate generator can reduce errors.

Note 1. In simple I²C mode, only MSB-first is available

ltem		RX210 (SCId)	RX651 (SCIh)
Number of channels		1 channel	1 channel
Serial communications modes		 Asynchronous operation Clock synchronous operation Smart card interface Simple I2C bus Simple SPI bus 	 Asynchronous operation Clock synchronous operation Smart card interface Simple I2C bus Simple SPI bus
Transfer speed		Bit rate specifiable with on-chip baud rate generator.	Bit rate specifiable with on-chip baud rate generator.
Full-duplex com Data transfer	imunications	 Transmitter: Enables continuous transmission by double-buffering. Receiver: Enables continuous reception by double-buffering. Selectable as LSB-first or MSB- 	 Transmitter: Enables continuous transmission by double-buffering. Receiver: Enables continuous reception by double-buffering. Selectable as LSB-first or MSB-
		first transfer*1	first transfer*1
Interrupt source	:S	Transmit-end, transmit-data- empty, receive-data-full, and receive error Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Transmit-end, transmit-data- empty, receive-data-full, and receive error Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)
Power consumption reduction function		Module stop state can be set.	Module stop state can be set.
Asynchronous	Data length	7 or 8 bits	7, 8, or <mark>9 bits</mark>
mode	Transmission stop bit	1 or 2 bits	1 or 2 bits
	Parity	Even, odd, or none	Even, odd, or none
	Receive error detection	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow control	CTSn and RTSn pins can be used in transfer control.	CTSn and RTSn pins can be used in transfer control.
	Start-bit detection	Low is detected	Low level or falling edge is selectable.
	Break detection	Break can be detected by reading RXDn pin level directly in case of a framing error	Break can be detected by reading RXDn pin level directly in case of a framing error
	Clock source	 Selectable from internal or external clock Enables transfer rate clock input from TMR (SCI5 and SCI6) 	 Selectable from internal or external clock Enables transfer rate clock input from TMR (SCI5 and SCI6)
	Double-speed mode	_	Baud rate generator double-speed mode is selectable.
	Multi- processor communicatio ns function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.

Table 2.44 Comparative Listing of SCId and SCIh Specifications

Points of Difference Between RX651 Group and RX210 Group

ltem		RX210 (SCId)	RX651 (SCIh)
Clock	Data length	8 bits	8 bits
synchronous	Receive error	Overrun errors	Overrun errors
mode	detection		
	Hardware flow control	CTSn and RTSn pins can be used in transfer control.	CTSn and RTSn pins can be used in transfer control.
Smart card interface mode	Error processing	An error signal can be automatically transmitted on detection of a parity error during reception	An error signal can be automatically transmitted on detection of a parity error during reception
		Data can be automatically re- transmitted on receiving an error signal during transmission	Data can be automatically re- transmitted on receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Transfer format	I ² C bus format (MSB-first transfer only)	I ² C bus format (MSB-first transfer only)
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Up to 384 kbps	Fast mode is supported
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI	Data length	8 bits	8 bits
bus	Detection of errors	Overrun errors	Overrun errors
	SS input pin function	Applying the high level to the SS# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SS# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock sense are selectable.	Four kinds of settings for clock phase and clock sense are selectable.
Extended serial mode	Start Frame transmission	 Output of a low level as the Break Field over a specified width and generation of interrupts on completion Detection of bus collisions and the generation of interrupts on detection 	 Output of a low level as the Break Field over a specified width and generation of interrupts on completion Detection of bus collisions and the generation of interrupts on detection

ltem		RX210 (SCId)	RX651 (SCIh)
Extended serial mode	Start Frame reception	 Detection of the Break Field low width and generation of an interrupt on detection Comparison of Control Fields 0 and 1 and generation of an interrupt when the two match Two kinds of data for comparison (primary and secondary) can be set in Control Field 1. A priority interrupt bit can be set in Control Field 1. Handling of Start Frames that do not include a Break Field Handling of Start Frames that do not include a Control Field Function for measuring bit rates 	 Detection of the Break Field low width and generation of an interrupt on detection Comparison of Control Fields 0 and 1 and generation of an interrupt when the two match Two kinds of data for comparison (primary and secondary) can be set in Control Field 1. A priority interrupt bit can be set in Control Field 1. Handling of Start Frames that do not include a Break Field Handling of Start Frames that do not include a Control Field Function for measuring bit rates
Extended serial mode	I/O control function	 Selectable polarity for TXDX12 and RXDX12 signals Selection of a digital filter for RXDX12 Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Selectable timing for the sampling of data received through RXDX12 Signals received on RXDX12 can be passed though to SCIc when the extended serial mode control section is off. 	 Selectable polarity for TXDX12 and RXDX12 signals Selection of a digital filter for RXDX12 Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Selectable timing for the sampling of data received through RXDX12 Signals received on RXDX12 can be passed though to SCIc when the extended serial mode control section is off.
	Timer function	Usable as a reloading timer	Usable as a reloading timer
Bit rate modulat	tion function	—	Correction of outputs from the on- chip baud rate generator can reduce errors.

Note 1. In simple I²C mode, only MSB-first is available

Item	RX210 (SCIc, SCId)	RX651 (SCIg, SCIi, SCIh)
Asynchronous mode	SCI0 to SCI12	SCI0 to SCI12
Clock synchronous mode	SCI0 to SCI12	SCI0 to SCI12
Smart card interface mode	SCI0 to SCI12	SCI0 to SCI12
Simple I ² C mode	SCI0 to SCI12	SCI0 to SCI12
Simple SPI mode	SCI0 to SCI12	SCI0 to SCI12
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5
FIFO mode		SCI10, SCI11

Register	Bit	RX210 (SCIc, SCId)	RX651 (SCIg, SCIi, SCIh)
RDRH			Receive Data Register H
RDRL			Receive Data Register L
RDRHL			Receive Data Register HL
FRDR			Receive FIFO Data Register
TDRH			Transmit Data Register H
			5
			Transmit Data Register L
TDRHL			Transmit Data Register HL
FTDR			Transmit FIFO Data Register
SMR	CHR	Character Length	Character Length
		(Valid only in asynchronous mode)	(Valid only in asynchronous mode) Selects in combination with the
			Schects in combination with the SCMR.CHR1 bit.
			CHR1 CHR
			0 0: Transmit/receive in 9-bit data length 0 1: Transmit/receive in 9-bit data length
		0: Selects 8 bits as the data length	o
		0. Delects 0 bits as the data length	1 0: Transmit/receive in 8-bit data length (initial value)
		1: Selects 7 bits as the data length	1 1: Transmit/receive in 7-bit data length
	CM	Communications Mode	Communications Mode
		0: Asynchronous mode	0: Asynchronous mode or simple I ² C mode
		1: Clock synchronous mode	1: Clock synchronous mode or simple SP mode
SSR	RDRF		Receive Data Full Flag (b6)
	TDRE		Transmit Data Empty Flag (b7)
SSRFIFO			Serial Status Register
SCMR	CHR1		Character Length 1 (b4)
BRR		Bit Rate Register	Bit Rate Register
		Ū.	C C
		In the Asynchronous mode and the	In the Asynchronous mode and the
		Multiprocessor communication	Multiprocessor communication mode, the
		mode, the set value and the bitrate	set value and the bitrate depends on
		depends on SEMR.ABCS bit	SEMR.BGDM and SEMR.ABCS bit
		setting. For more related	setting. For more related information,
		information, refer to the user's manual.	refer to the user's manual.
		manual.	
			In case of SCI10 & SCI11, when
			SMR.CM = "1" (Clock synchronous mode or simple SPI mode), FCR.FM = "1" (FIFC
			mode) and SMR.CKS[1:0] ="00b", do not
			write the value of "00h" to BBR Register
MDDR			Modulation Duty Register
SEMR	BRME		Bit Rate Modulation
			Enable (b2)
	BGDM		Baud Rate Generator Double-Speed
	DGDIVI		Mode Select (b6)
	RXDESEL		Asynchronous Start Bit Edge Detection
	IVADESEL		Select (b7)
			FIFO Control Register
FCR			FIFU CONTOL REGISTER

Table 2.46	Comparative Listing of Serial Communications Interface Registers
------------	--

RX65N/RX651 Group RX210 Group

Points of Difference Between RX651 Group and RX210 Group

Register	Bit	RX210 (SCIc, SCId)	RX651 (SCIg, SCIi, SCIh)
LSR	_	_	Line Status Register
CDR			Comparison Data Register
DCCR			Data Comparison Control Register
SPTR		_	Serial Port Register
CR2	BCCS [1:0]	Bus Collision Detection Clock Select	Bus Collision Detection Clock Select
			When SEMR.BGDM = 0 or SEMR.BGDM = 1 and
			SMR.CKS[1:0] = a value other than 00b
		b5 b4	b5 b4
		0 0: SCI base clock	0 0: SCI base clock
		0 1: SCI base clock frequency divided by 2	0 1: SCI base clock frequency divided by 2
		1 0: SCI base clock frequency divided by 4	1 0: SCI base clock frequency divided by 4
		1 1: Setting prohibited	1 1: Setting prohibited
			When SEMR.BGDM = 1 and SMR.CKS[1:0] = 00b
			b5 b4
			0 0: SCI base clock frequency divided by 2
			0 1: SCI base clock frequency divided by
			1 0: Setting prohibited
			1 1: Setting prohibited

2.23 I²C-bus Interface

Table 2.47 shows a Comparative Listing of I²C-bus Interface Specifications, and Table 2.48 shows a Comparative Listing of I²C-bus Interface Registers.

ltem	RX210 (RIIC)	RX651 (RIICa)
Number of channels	1 channel	2 channels
Communication format	 I2C bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate 	 I2C bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate
Transfer speed	Up to 400kbps	Fast-mode Plus is supported (up to 1 Mbps)
SCL clock	For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.	For master operation, the duty cycle o the SCL clock is selectable in the range from 4% to 96%.
Issuing and detection conditions	Start, restart, and stop conditions are generated automatically. Start conditions (including restart conditions) and stop conditions are detectable.	Start, restart, and stop conditions are generated automatically. Start conditions (including restart conditions) and stop conditions are detectable.
Slave addresses	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable. 	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgement	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible. 	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Wait function	 In reception, the following periods of waiting can be obtained by holding the SCL clock at the low level: Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer 	 In reception, the following periods of waiting can be obtained by holding the SCL clock at the low level: Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer

Table 2.47 Comparative Listing of I²C-bus Interface Specifications

Item	RX210 (RIIC)	RX651 (RIICa)
SDA output delay function	Timing of the output of transmitted data, including the acknowledge bit,	Timing of the output of transmitted data, including the acknowledge bit,
	can be delayed.	can be delayed.
Arbitration	 For multi-master operation — Operation to synchronize the SCL clock in cases of conflict 	 For multi-master operation — Operation to synchronize the SCL clock in cases of conflict
	with the SCL signal from another master is possible. — When issuing the start condition would create conflict on the bus, loss of arbitration is detected by	with the SCL signal from another master is possible. — When issuing the start condition would create conflict on the bus, loss of arbitration is detected by
	testing for non-matching between the internal signal for the SDA line and the level on the SDA line.	testing for non-matching between the internal signal for the SDA line and the level on the SDA line.
	 In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection 	 In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection
	 Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a 	 Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a
	not-acknowledge bit due to the internal signal for the SDA line and the level on the SDA line not matching is detectable.	not-acknowledge bit due to the internal signal for the SDA line and the level on the SDA line not matching is detectable.
	• Loss of arbitration due to non- matching of internal and line levels for data is detectable in slave transmission.	 Loss of arbitration due to non- matching of internal and line levels for data is detectable in slave transmission.
Timeout detection function	The internal timeout function is capable of detecting long-interval stop of the SCL clock.	The internal timeout function is capable of detecting long-interval stop of the SCL clock.
Noise canceler	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.
Interrupt sources	Four sources Error in transfer or occurrence of	Four sources Error in transfer or occurrence of
	events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition	events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition
	 Receive data full (including matching with a slave address) Transmit data empty (including 	 Receive data full (including matching with a slave address) Transmit data empty (including
	 Transmit data empty (including matching with a slave address) Transmit end 	 Transmit data empty (including matching with a slave address) Transmit end
Low power consumption function	Module stop state can be set.	Module stop state can be set.

ltem	RX210 (RIIC)	RX651 (RIICa)
RIIC operating modes	Four modes Master transmit mode, master receive mode, slave transmit mode, and slave receive mode	Four modes Master transmit mode, master receive mode, slave transmit mode, and slave receive mode
Event link function	 Four sources (RIIC): Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end 	 Four sources (RIIC0): Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end

Table 2.48 Comparative Listing of I²C-bus Interface Registers

Register	Bit	RX210 (RIIC)	RX651 (RIICa)
ICMR2	TMWE	Timeout internal counter write	—
		enable bit (b3)	
ICFER	FMPE		Fast-Mode Plus Enable (b7)
TMOCNT		Timeout internal counter	

2.24 Serial Peripheral Interface

Table 2.49 shows a Comparative Listing of Serial Peripheral Interface Specifications, and Table 2.50 shows a Comparative Listing of Serial Peripheral Interface Registers.

Item	RX210 (RSPI)	RX651 (RSPIc)
Number of channels	1 channel	3 channels
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (four-wire method) or clock synchronous operation (three-wire method). Transmit-only operation is available. Capable of serial communications in master/slave mode Switching of the polarity of the serial transfer clock Switching of the phase of the serial transfer clock 	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected Switching of the polarity of RSPCK Switching of the phase of RSPCK
Data format	MSB first/LSB first selectable	MSB first/LSB first selectable
	 Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 	 Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.
	 128-bit transmit/receive buffers 	 128-bit transmit/receive buffers
	• Up to four frames can be transferred in one round of	 Up to four frames can be transferred in one round of
	transmission/reception (each frame consisting of up to 32 bits)	transmission/reception (each frame consisting of up to 32 bits)
		Byte swapping of transmit and receive data is selectable
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the maximum divisor is 4096). 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096).
	 In slave mode, the externally input clock is used as the serial clock (the maximum frequency is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK 	 In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). Width at high level: 2 cycles of PCLK; width at low level: 2 cycles of PCLK.
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 	 Double buffer configuration for the transmit/receive buffers. 128 bits for the transmit/receive buffers.
Error detection	Mode fault error detection	Mode fault error detection
	Overrun error detection	 Overrun error detection*1
	Parity error detection	 Parity error detection
		Underrun error detection

Table 2.49 Comparative Listing of Serial Peripheral Interface Specifications

ltem	RX210 (RSPI)	RX651 (RSPIc)
SSL control function	 Four SSL signals (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 signals are output. 	 Four SSL pins (SSLn0 to SSLn3) for each channel In single-master mode, SSLn0 to SSLn3 pins are output.
	 In multi-master mode: SSLA0 signal for input, and SSLA1 to SSLA3 signals for either output or unused. 	 In multi-master mode: SSLn0 pin for input, and SSLn1 to SSLn3 pins for either output or unused.
	 In slave mode: SSLA0 signal for input, and SSLA1 to SSLA3 signals for unused. 	 In slave mode: SSLn0 pin for input, and SSLn1 to SSLn3 pins for unused.
	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in DSPC(and partic))	 Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in D2D2(Contenting)
	 RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	 Controllable wait for next-access SSL output assertion (next-access delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Controllable wait for next-access SSL output assertion (next-access delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Function for changing SSL polarity	Function for changing SSL polarity
Control in master transfer	A transfer of up to eight commands can be executed sequentially in looped execution.	• A transfer of up to eight commands can be executed sequentially in looped execution.
	 For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB-first, burst, RSPCK delay, SSL negation delay, and next- access delay 	 For each command, the following can be set SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next- access delay
	A transfer can be initiated by writing to the transmit buffer.	A transfer can be initiated by writing to the transmit buffer.
	 MOSI signal value specifiable in SSL negation 	 MOSI signal value specifiable in SSL negation RSPCK auto-stop function
Interrupt sources	Maskable interrupt sources	Interrupt sources
	RSPI receive interrupt (receive buffer full)	-
	RSPI transmit interrupt (transmit buffer empty)	Transmit buffer empty interrupt
	RSPI error interrupt (mode fault,	 RSPI error interrupt (mode fault,
	overrun, parity error)	overrun, underrun, or parity error)
	RSPI idle interrupt (RSPI idle)	RSPI idle interrupt (RSPI idle)

ltem	RX210 (RSPI)	RX651 (RSPIc)
Event link function (output)	 The following five types of events can be output to the event link controller. Reception-buffer full event output Transmission-buffer empty event output 	 The following events can be output to the event link controller. (RSPI0) Receive buffer full signal Transmit buffer empty signal
	 Mode fault, overrun, or parity error event output RSPI idle event output Transmission-completed event output 	 Mode fault, overrun, underrun, or parity error signal RSPI idle signal Transmission-completed signal
Other functions	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode 	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Note 1. In master reception and when the RSPCK auto-stop function is enabled, an overrun error does not occur because the transfer clock is stopped at the timing of overrun error detection.

Table 2.50	Comparative Listing	of Serial Peripheral	Interface Registers
14510 2.00	oomparativo Eloting	, or oonan i onpriora	internation registere

Register	Bit	RX210 (RSPI)	RX651 (RSPIc)
SPSR	UDRF		Underrun Error Flag (b4)
	SPTEF		Transmit Buffer Empty Flag (b5)
	SPRF		Receive Buffer Full Flag (b7)
SPDR	—	RSPI Data Register	RSPI Data Register
		Available access size	Available access size
		 Long word access (SPDCR.SPLW = 1) 	 Long word access (SPDCR.SPLW = 1, SPBYTE = 0)
		 Word access (SPDCR.SPLW = 0) 	 Word access (SPDCR.SPLW = 0, SPBYTE = 0)
			 Byte access (SPDCR.SPBYT = 1)
SPDCR	SPBYT	_	RSPI Byte Access Specification (b6)
SPDCR2			RSPI Data Control Register 2
SPCR2	SCKASE		RSPCK Auto-Stop Function Enable (b4)

2.25 CRC Calculator

Table 2.51 shows a Comparative Listing of CRC Calculator Specifications, and Table 2.52 shows a Comparative Listing of CRC Calculator Registers.

ltem	RX210 (CRC)	RX651 (CRCA)	
Data size	8 bits	8 bits	32 bits
Data for CRC calculation	CRC code generated for any desired data in 8n-bit units (where n is a whole number)	CRC codes are generated for any desired data in 8n-bit units (where n is a whole number)	CRC codes are generated for any desired data in 32n-bit units (where n is a whole number)
CRC processor unit	Operation executed on eight bits in parallel	8-bit parallel processing	32-bit parallel processing
CRC generating polynomial	One of three generating polynomials selectable • 8-bit CRC $- X^8 + X^2 + X + 1$ • 16-bit CRC $- X^{16} + X^{15} + X^2 + 1$ $- X^{16} + X^{12} + X^5 + 1$	 One of five generating polynomials selectable: 8-bit CRC X⁸ + X² + X + 1 16-bit CRC X¹⁶ + X¹⁵ + X² + 1 X¹⁶ + X¹² + X⁵ + 1 	One of five generating polynomials selectable: • 32-bit CRC — $X^{32} + X^{26} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$ — $X^{32} + X^{28} + X^{27} + X^{26} + X^{25} + X^{23} + X^{22} + X^{20} + X^{19} + X^{18} + X^{14} + X^{13} + X^{11} + X^{10} + X^9 + X^8 + X^6 + 1$
CRC calculation switching	CRC code generation for LSB-first or MSB-first communication selectable	The order of the bits produced by CRC calculation can be switched for LSB first or MSB first communication	
Data size	Module stop state can be set.	Module stop state can be set.	

Register	Bit	RX210 (CRC)	RX651 (CRCA)
CRCCR	GPS[1:0]	CRC Generating Polynomial	CRC Generating Polynomial
	GPS[2:0]	Switching (b1-b0)	Switching (b <mark>2</mark> -b0)
		b1 b0	b2 b0
		0 0: No calculation is executed.	0 0 0: No calculation is executed.
		0 1: X ⁸ + X ² + X + 1	0 0 1: 8-bit CRC (X ⁸ + X ² + X + 1)
		1 0: X ¹⁶ + X ¹⁵ + X ² + 1	0 1 0: 16-bit CRC
		1 1: X ¹⁶ + X ¹² + X ⁵ + 1	$(X^{16} + X^{15} + X^2 + 1)$
			0 1 1: 16-bit CRC
			$(X^{16} + X^{12} + X^5 + 1)$
			1 0 0: 32-bit CRC
			$(X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + $
			$X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1)$
			1 0 1: 32-bit CRC
			$(X^{32} + X^{28} + X^{27} + X^{26} + X^{25} +$
			$X^{23} + X^{22} + X^{20} + X^{19} + X^{18} +$
			$X^{14} + X^{13} + X^{11} + X^{10} + X^9 +$
			$X^8 + X^6 + 1)$
			1 1 0: No calculation is executed.
			1 1 1: No calculation is executed.
	LMS	CRC Calculation Switching (b2)	CRC Calculation Switching (b6)
CRCDIR	—	CRC Data Input Register (8-bits)	CRC Data Input Register (32-bits)
		Available Access size	Available Access size
			Long word access
			(When 32-bit CRC is selected
		Byte access	Byte access
			(When 16-bit or 8-bit CRC is selected
CRCDOR	—	CRC Data Output Register (16-bits)	CRC Data Output Register (32-bits)
		Available Access size	Available Access size
			Long word access
			(When 32-bit CRC is selected)
		Word access	Word access
		When an 8-bit CRC is in use, the	(When 16-bit CRC is selected)
		valid CRC code is obtained in the	Byte access
		lower-order byte (b7 to b0).	(When 8-bit CRC is selected)

Table 2.52 Comparative Listing of CRC Calculator Registers

2.26 12-Bit A/D Converter

Table 2.53 shows a Comparative Listing of 12-Bit A/D Converter Specifications, and Table 2.54 shows a Comparative Listing of 12-Bit A/D Converter Registers.

ltem	RX210 (S12ADb)	RX651 (S12ADFa)
Number of units	1 unit	2 unit (S12AD, S12AD1)
Input channels	Up to 16 channels	8 channels for S12AD
		21 channels for S12AD1
		+ 1 extension
Extended analog	Temperature sensor output, internal	Temperature sensor output, internal
function	reference voltage	reference voltage
A/D conversion method	Successive approximation method	Successive approximation method
Resolution	12 bits	12 bits
Conversion time	 1.0µs per channel 	 0.48 µs per channel
		(12-bit conversion mode)
		 0.45 µs per channel
		(10-bit conversion mode)
		 0.42 µs per channel
		(8-bit conversion mode)
	(when A/D conversion clock ADCLK = 50 MHz)	(A/D conversion clock: when ADCLK operates at 60 MHz)
A/D conversion clock	Peripheral module clock PCLK and	Peripheral module clock PCLK*1 and
	A/D conversion clock ADCLK can be	A/D conversion clock ADCLK*1 can be
	set so that the frequency	set so that the frequency ratio
	division ratio should be one of the following.	should be one of the following.
	PCLK to ADCLK frequency division	PCLK to ADCLK frequency ratio
	ratio = 1:1, <mark>1:2, 1:4, 1:8</mark> , 2:1, 4:1	= 1:1, 2:1, 4:1, <mark>8:1</mark>
	ADCLK is set using the clock	ADCLK is set using the clock
	generation circuit	generation circuit

Table 2.53 Comparative Listing of 12-Bit A/D Converter Specifications

Item	RX210 (S12ADb)	RX651 (S12ADFa)
Data register	 For analog input: 16 data registers For duplication of A/D conversion data in double trigger mode: One data register 	• 29 registers for analog input (eight for S12AD and 21 for S12AD1), 1 for A/D-converted data duplication in double trigger mode per unit, and 2 for A/D-converted data duplication during extended operation in double trigger mode per unit.
	 For temperature sensor: One data register 	 One register for temperature sensor (S12AD1)
	For internal reference voltage: One data register	One register for internal reference (S12AD1)
		One register for self-diagnosis per unit
	 The A/D conversion result is stored in 12-bit A/D data registers. 	 The results of A/D conversion are stored in 12-bit A/D data registers. 8-, 10-, and 12-bit accuracy output for the results of A/D conversion
	 In addition mode, A/D conversion results are added and stored in A/D data registers as 14-bit data. Duplication of A/D conversion data 	• The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D- converted value addition mode.
	 A/D conversion data of one selected analog input channel is stored into A/D data register y when conversion is started by the first trigger and into the duplication register when started by the second trigger. Duplication is available only in double trigger mode in single scan mode or group scan mode. 	 Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.
		 Extended operation in double trigger mode (available for specific triggers): A/D-converted analog-input data on one selected channel is stored in the duplication register that is prepared for each type of trigger.

ltem	RX210 (S12ADb)	RX651 (S12ADFa)
Operating modes	 Single scan mode: A/D conversion is performed for only once on the analog inputs of up to 16 arbitrarily selected channels. A/D conversion is performed 	 Single scan mode: A/D conversion is performed only once on the analog inputs arbitrarily selected. A/D conversion is performed
	only once on the temperature sensor output. — A/D conversion is performed only once on the internal reference voltage.	 only once on the temperature sensor output (S12AD1). A/D conversion is performed only once on the internal reference voltage (S12AD1). A/D conversion is performed only once on the extended analog input (S12AD1).
	 Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 16 arbitrarily selected channels. 	 Continuous scan mode: A/D conversion is performed repeatedly on the analog input, temperature sensor output (S12AD1), and internal reference voltage (S12AD1) of the arbitrarily selected channel. A/D conversion is performed repeatedly on the extended analog input (S12AD1).

ltem	RX210 (S12ADb)	RX651 (S12ADFa)
Operating modes	 Group scan mode: Up to 16 channels of analog inputs are divided into group A and group B and A/D conversion is performed only once on all the selected channels on a group basis. The scan start conditions of group A and group B can be independently selected, thus allowing A/D conversion of group A and group B to be started independently 	 Group scan mode: Two (groups A and B) or three (groups A, B, and C) can be selected as the number of the groups to be used. Only the combination of groups A and B can be selected when the number of the groups is two. Analog inputs, temperature sensor output (S12AD1), and internal reference voltage (S12AD1) that are arbitrarily selected are divided into two groups (group A and B) or three groups (group A, B, and C), and A/D conversion of the analog input selected on a group basis is performed only once. The conditions for scanning start of groups A, B, and C (synchronous trigger) can be independently selected, thus allowing A/D conversion of each group to be started independently. Group scan mode (when group priority control selected): If a priority-group trigger is input during scanning of the low-priority group, scan of the priority group is started. The priority order is group A (highest) > group B > group C (lowest). Whether or not to restart scanning of the low-priority group after processing for the high-priority group completes, is selectable. Rescan can also be set to start either from the beginning of the selected channel on which A/D conversion is not completed.

ltem	RX210 (S12ADb)	RX651 (S12ADFa)
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by MTU, ELC, or temperature sensor 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), 8-bit timer (TMR), 16-bit timer pulse unit (TPU), or event link controller
	 Asynchronous trigger A/D conversion can be triggered from the ADTRG0# pin 	 (ELC). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# (S12AD) or ADTRG1# (S12AD1) pin (independently for two units).
Functions	 Sample-and-hold function Channel-dedicated sample-and- hold function (0.25 V ≤ analog voltage input ≤ AVCC0 - 0.25 V) 	 Channel-dedicated sample-and- hold function (three channels for S12AD only)
	Variable sampling state count	 Variable sampling state count (settable for each channel)
	 Self-diagnosis of 12-bit A/D converter 	 Self-diagnosis of 12-bit A/D converter
	A/D-converted value addition mode	 Selectable A/D-converted value addition mode or average mode
	 Analog input disconnection detection assist 	 Analog input disconnection detection assist function (discharge function/precharge function)
	 Double trigger mode (duplication of A/D conversion data) 	 Double trigger mode (duplication o A/D conversion data) 12-/10-/8-bit conversion switching
		Automatic clear function of A/D data registers
		 Extended analog input Comparison function (windows A and B)

ltem	RX210 (S12ADb)	RX651 (S12ADFa)
Interrupt sources	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt (S12ADI0) request can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt (S12ADI0) request can be generated on completion of 	 In the modes except double trigger mode and group scan mode, a scan end interrupt request (S12AD or S12ADI1) can be generated on completion of single scan. (independently for two units). In double trigger mode, a scan end interrupt request (S12ADI or 12ADI1) can be generated on
	double scan.	completion of double scan. (independently for two units).
	 In group scan mode, A/D scan end interrupt (S12ADI0) request can be generated on completion of group A scan, whereas A/D scan end interrupt specially for group B (GBADI) request can be generated on completion of group B scan. 	 In group scan mode, a scan end interrupt request (S12ADI or S12ADI1) can be generated on completion of group A scan, whereas a scan end interrupt request (GBADI or GBADI1) for group B can be generated on completion of group B scan, and a group C scan end interrupt reques (GCADI or GCADI1) can be generated on completion of group C scan.
	 In group scan mode with double trigger mode, A/D scan end interrupt (S12ADI0) request can be generated on completion of double scan of group A, whereas A/D scan end interrupt specially for group B (GBADI) request can be generated on completion of group B scan. 	 When double trigger mode is selected in group scan mode, an A/D scan end interrupt request (S12ADI or S12ADI1) can be generated on completion of double scan of group A, and the corresponding scan end interrupt request (GBADI/GCADI or GBADI1/GCADI1) can be generated on completion of group B and group C scan.
		 A compare interrupt request (S12CMPAI, S12CMPAI1, S12CMPBI, or S12CMPBI1) can be generated upon a match with the comparison condition for the digital compare function.
	 S12ADI0 or GBADI interrupt can activate DMA controller (DMAC) or data transfer controller (DTC). 	• The S12ADI/S12ADI1, GBADI/GBADI1, and GCADI/GCADI1 interrupts can activate the DMA controller (DMAC) and data transfer controller (DTC).
Event link	• An ELC event can be generated on completion of scans except for group B scan in group scan mode.	An ELC event is generated upon completion of all scans
	 A/D conversion can be started by the trigger from ELC. 	• Able to start scanning by a trigger from the ELC
Low power consumption function	Module stop state can be specified	Module stop state can be specified

Table 2.54 Comparative Listing of 12-Bit A/D Converter Registers Register Bit **RX210 (S12AD) RX651 (S12ADFa)** A/D Data Registers y (y = 0 to 20) ADDRy A/D Data Registers y (y = 0 to 15) (y = 0 to 7: S12AD.)y = 0 to 20: S12AD1) ADDBLDR AD[11:0] ADDBLDRA A/D data duplication register A ADDBLDRB A/D data duplication register B ____ ADTSDR AD[11:0] ADOCDR AD[11:0] ADRD AD[11:0] 12-bit A/D-converted value 12-bit A/D-converted value ADCER.ADRFMT = 0 (Setting for ADCER.ADRFMT = 0 (Setting for right-alignment) (b11-b0) right-alignment) (b11-b0) ADCER.ADRFMT = 1 (Setting for ADCER.ADRFMT = 1 (Setting for left-alignment) (b15-b4) left-alignment) (b15-b4) 10-bit A/D-converted value ADCER.ADRFMT = 0 (Setting for right-alignment) (b9-b0) ADCER.ADRFMT = 1 (Setting for left-alignment) (b15-b6) 8-bit A/D-converted value ADCER.ADRFMT = 0 (Setting for right-alignment) (b7-b0) ADCER.ADRFMT = 1 (Setting for left-alignment) (b15-b8) DIAGST[1:0] Self-Diagnosis Status Self-Diagnosis Status ADCSR GBADIE Group B Scan End Group B Scan End Interrupt Enable Interrupt Enable 0: Disables GBADI interrupt 0: Disables interrupt generation upon group B scan completion. generation upon group B scan completion. 1: Enables GBADI interrupt 1: Enables interrupt generation generation upon group B scan upon group B scan completion. completion. ADIE Scan End Interrupt Enable Scan End Interrupt Enable 0: Disables S12ADI0 interrupt 0: Disables interrupt generation generation upon scan upon scan completion. completion. 1: Enables interrupt generation 1: Enables S12ADI0 interrupt upon scan completion. generation upon scan completion.

Register	Bit	RX210 (S12AD)	RX651 (S12ADFa)
ADANSA	—	A/D Channel Select Register A	A/D Channel Select Register A0
ADANSA0	ANSA[15:0] ANSAn (n = 000 to	A/D Conversion Channels Select (b15-b0)	A/D Conversion Channel Select (b7-b0)
	007)	 0: AN000 to AN015 are not subjected to conversion. 1: AN000 to AN015 are subjected to scan conversion. 	 0: AN000 to AN007 are not subjected to conversion. 1: AN000 to AN007 are subjected to conversion.
ADANSA1			A/D Channel Select Register A1
ADANSB		A/D Channel Select Register B	A/D Channel Select Register B0
ADANSB0	ANSB[15:0] ANSBn (n = 000 to	A/D Conversion Channels Select (b15-b0)	A/D Conversion Channel Select (b7-b0)
	007)	 0: AN000 to AN015 are not subjected to conversion. 1: AN000 to AN015 are subjected to scan conversion. 	 0: AN000 to AN007 are not subjected to conversion. 1: AN000 to AN007 are subjected to conversion.
ADANSB1		<u> </u>	A/D Channel Select Register B1
ADANSC0			A/D Channel Select Register C0
ADANSC1	_		A/D Channel Select Register C1
ADADS		A/D-Converted Value Addition	A/D-Converted Value
ADADS0		Mode Select Register	Addition/Average Function Select Register 0
	ADS[15:0] ADSn (n = 000 to 007)	 A/D-Converted Value Addition Channel Select 0: A/D-converted value addition mode for AN000 to AN015 is not selected. 1: A/D-converted value addition mode for AN000 to AN015 is selected. 	 A/D-Converted Value Addition/ Average Channel Select 0: A/D-converted value addition/average mode for AN000 to AN007 is not selected. 1: A/D-converted value addition/average mode for AN000 to AN007 is selected.
ADADS1		_	A/D-Converted Value Addition/Average Function Select Register 1
ADADC		A/D-Converted Value Addition Count Select Register	A/D-Converted Value Addition/Average Count Select Register
	ADC[1:0] ADC[2:0]	 Addition Count Select (b1-b0) b1 b0 0 0: 1-time conversion (no addition; same as normal conversion) 0 1: 2-time conversion (addition once) 1 0: 3-time conversion (addition twice) 1 1: 4-time conversion (addition three times) 	 Addition Count Select (b2-b0) b2 b0 0 0 0: 1-time conversion (no addition; same as normal conversion) 0 0 1: 2-time conversion (addition once) 0 1 0: 3-time conversion (addition twice)*1 0 1 1: 4-time conversion (addition three times) 1 0 1: 16-time conversion (addition 15 times)*1 Settings other than above are prohibited.

Register	Bit	RX210 (S12AD)	RX651 (S12ADFa)
ADADC	AVEE	_	Average Mode Enable (b7)
ADCER	ADPRC[1:0]	_	A/D Conversion Resolution Setting (b2-b1)
	ACE	Automatic Clearing Enable	A/D Data Register Automatic Clearing Enable
ADSTRGR	TRSB[3:0] TRSB[<mark>5</mark> :0]	A/D Conversion Start Trigger Select for Group B (b3-b0)	A/D Conversion Start Trigger Select for Group B (b5-b0)
	TRSA[3:0] TRSA[<mark>5</mark> :0]	A/D Conversion Start Trigger Select (b11-b8)	A/D Conversion Start Trigger Select (b13-b8)
ADEXICR	TSSAD		Temperature Sensor Output A/D Converted Value Addition/Averaging Mode Select (b0)
	TSS TSSA	Temperature Sensor Output A/D Conversion Select	Temperature Sensor Output A/D Conversion Select
		0: A/D conversion of temperature sensor output is not performed1: A/D conversion of temperature sensor output is performed	Conversion for group A in single scan mode, sequence scan mode, and group scan mode
	OCS	Internal Reference Voltage A/D	Internal Reference Voltage A/D
	OCSA	Conversion Select	Conversion Select
	TSSB		Temperature Sensor Output A/D Conversion Select (b10)
	OCSB	_	Internal Reference Voltage A/D Conversion Select (b11)
	EXSEL[1:0]		Extended Analog Input Select (b14-b13)
	EXCEN	_	Extended Analog Output Control (b15)
ADGCEXCR		_	A/D Group C Extended Input Control Register
ADGCTRGR		_	A/D Group C Trigger Select Register
ADSSTRn		A/D Sampling State Register n (n = 0 to 7, L, T, O)	A/D Sampling State Register n (n = 0 to 15, L, T, O)
	SST[7:0]	Sampling Time Setting	Sampling Time Setting
		The set value for sampling time should be 12 or more states and 255 or less states.	
ADSHMSR		_	A/D Sample-and-Hold Operating Mode Select Register
ADGSPCR		_	A/D Group Scan Priority Control Register
ADCMPCR			A/D Comparison Function Control Register
ADCMPANSR0	—	_	A/D Comparison Function Window A Channel Select Register 0
ADCMPANSR1			A/D Comparison Function Window A Channel Select Register 1

RX65N/RX651 Group RX210 Group

Points of Difference Between RX651 Group and RX210 Group

Register	Bit	RX210 (S12AD)	RX651 (S12ADFa)
ADCMPANSER	_		A/D Comparison Function Window
			A Extended Input Select Register
ADCMPLR0			A/D Comparison Function Window
			A Comparison Condition Setting
			Register 0
ADCMPLR1			A/D Comparison Function Window
			A Comparison Condition Setting
			Register 1
ADCMPLER			A/D Comparison Function Window
			A Extended Input Comparison
			Condition Setting Register
ADCMPDR0			A/D Comparison Function Window
			A Lower Level Setting Register
ADCMPDR1	_		A/D Comparison Function Window
			A Upper Level Setting Register
ADCMPSR0			A/D Comparison Function Window
			A Channel Status Register 0
ADCMPSR1			A/D Comparison Function Window
			A Channel Status Register 1
ADCMPSER			A/D Comparison Function Window
			A Extended Input Channel Status
			Register
ADWINMON			A/D Comparison Function Window
			A/B Status Monitoring Register
ADCMPBNSR			A/D Comparison Function Window
			B Channel Select Register
ADWINLLB			A/D Comparison Function Window
			B Lower Level Setting Register
ADWINULB	_		A/D Comparison Function Window
			B Upper Level Setting Register
ADCMPBSR			A/D Comparison Function Window
			B Channel Status Register
ADSAM			A/D Conversion Time Setting
			Register
ADSAMPR			A/D Conversion Time Setting
			Protection Release Register

2.27 D/A Converter

Table 2.55 shows a Comparative Listing of D/A Converter Specifications, and Table 2.56 shows a Comparative Listing of D/A Converter Registers.

Item	RX210 (DA)	RX651 (R12DA)
Resolution	10 bits	12 bits
Output channel	2 channels	2 channels
Countermeasure against mutual interference between analog modules		Measure against interference between D/A and A/D conversion: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable input signal from the 12-bit A/D converter (unit 1). Therefore, the degradation of A/D conversion accuracy due to interference is reduced by controlling the timing in which the 12-bit D/A converter inrush current occurs, with the enable signal.
Low power consumption function	Module stop state can be set.	Module stop state can be set.
Event link function (input)	DA0 conversion can be started when an event signal is input.	DA0 conversion can be started when an event signal is input.
Output buffer amplifier control function		Buffered output (gain = 1) or unbuffered can be selected.

Table 2.55 Comparative Listing of D/A Converter Specifications

Table 2.56 Comparative Listing of D/A Converter Registers

Register	Bit	RX210 (DA)	RX651 (R12DA)
DADRm		D/A Data Register m (DADRm) (m = 0, 1)	D/A Data Register m (DADRm) (m = 0, 1)
		10-bit data can be relocated by setting the DPSEL bit in DADPR.	12-bit data can be relocated by setting the DADPR.DPSEL bit.
DAADSCR		_	D/A A/D Synchronous Start Control Register
DAADUSR		—	D/A A/D Synchronous Unit Select Register
DAAMPCR			D/A Output Amplifer Control Register
DAASWCR			D/A Output Amplifer Stabilization Wait Control Register

2.28 Temperature Sensor

Table 2.57 shows a Comparative Listing of Temperature Sensor Specification, and Table 2.58 shows a Comparative Listing of Temperature Sensor Registers.

Table 2.57 Comparative Listing of Temperature Sensor Specification
--

ltem	RX210 (TEMPSa)	RX651 (TEMPS)
Temperature sensor voltage output	Temperature sensor outputs a voltage to the 12-bit A/D converter via a programmable gain amplifier (PGA).	Temperature sensor outputs a voltage to the 12-bit A/D converter unit 1.
Low-power consumption function	Module stop state can be set.	Module stop state can be set.
Temperature Sensor Calibration Data	_	Reference data measured for each chip at factory shipment is stored.

Table 2.58 Comparative Listing of Temperature Sensor Registers

Register	Bit	RX210 (TEMPSa)	RX651 (TEMPS)
TSCR	PGAGAIN [1:0]	PGA Gain Select (b1-b0)	_
	TSOE	_	Temperature Sensor Output Enable (b4)
	PGAEN	PGA Enable (b6)	
TSCDR		_	Temperature Sensor Calibration Data Register

2.29 Data Operation Circuit

Table 2.59 shows a Comparative Listing of Temperature Sensor RegistersComparative Listing of Data Operation Circuit Specification.

ltem	RX210 (DOC)	RX651 (DOC)
Data operation function	16-bit data comparison, addition, and subtraction	16-bit data comparison, addition, and subtraction
Lower power consumption function	Module stop state can be set.	Module stop state can be set.
Interrupts	 The condition selected by the DOCR.DCSEL bit being met The result of data addition being greater than FFFFh The result of data subtraction being less than 0000h 	 The compared values either match or mismatch The result of data addition is greater than FFFFh The result of data subtraction is less than 0000h
Event link function (output)		 The compared values either match or mismatch The result of data addition is greater than FFFFh The result of data subtraction is less than 0000h

 Table 2.59
 Comparative Listing of Data Operation Circuit Specification

2.30 RAM

Table 2.60 shows a Comparative Listing of RAM Specifications, and Table 2.61 shows a Comparative Listing of RAM Registers.

Item	RX210	RX651 (Without ECC Error Correction)
RAM capacity	• 96KB	256 KB
	RAM0: 64KB, RAM1: 32KB	RAM0: 256 KB
	• 64KB	
	RAM0: 64KB	
	• 32KB	
	RAM0: 32KB	
	• 20KB	
	RAM0: 20KB	
	• 16KB	
	RAM0: 16KB	
	• 12KB	
	RAM0: 12KB	
RAM address	RAM Capacity 96KB	RAM0: 0000 0000h to 0003 FFFFh
	RAM0: 0000 0000h to 0000 FFFFh	
	RAM1: 0001 0000h to 0001 7FFFh	
	 RAM Capacity 64KB RAM0: 0000 0000h to 0000 FFFFh 	
	RAM1: None	
	RAM Capacity 32KB	
	RAM0: 0000 0000h to 0000 7FFFh	
	RAM1: None	
	 RAM Capacity 20KB 	
	RAM0: 0000 0000h to 0000 4FFFh	
	RAM1: None	
	RAM Capacity 16KB	
	RAM0: 0000 0000h to 0000 3FFFh	
	RAM1: None	
	RAM Capacity 12KB	
	RAM0: 0000 0000h to 0000 2FFFh	
	RAM1: None	
Access	Single-cycle access is possible for both	Single-cycle access is possible for both
	reading and writing.	reading and writing.*1
	 On-chip RAM can be enabled or 	 Enabling or disabling of the RAM is
	disabled	selectable.
Data retention	Not available in deep software standby	Not available in deep software standby
function	mode.	mode (Data in Standby RAM can be
		retained)
Low power	The module-stop state is independently	The module-stop state is selectable.
consumption	selectable for RAM0 and RAM1.	
function		
Error checking		Detection of 1-bit errors
function		 A non-maskable interrupt or interrupt is
		generated in response to an error.
Note 1. When a	accessing across the 8-byte boundary, the nun	

Table 2.60 Comparative Listing of RAM Specifications

Note 1. When accessing across the 8-byte boundary, the number of cycles is doubled.

Register	Bit	RX210	RX651
RAMMODE			RAM Operating Mode Control
			Register
RAMSTS			RAM Error Status Register
RAMECAD		_	RAM Error Address Capture
			Register
RAMPRCR			RAM Protection Register

Table 2.61 Comparative Listing of RAM Registers

2.31 Flash Memory (Code Flash)

Table 2.62 shows a Comparative Listing of Flash Memory (Code Flash) Specifications, and Table 2.63 shows a Comparative Listing of Flash Memory Registers.

Item	RX210	RX651
Memory space	User area: 1 Mbyte max.	User area: 1 Mbyte max.
	User boot area: 16 Kbytes	
ROM cache		 Capacity: 256 Bytes Mapping method: 8-way set associative Replace method: LRU method Line size: 16 bytes
Read cycle	A read operation takes one cycle of ICLK	When the cache is hit: One cycle When the cache is missed: One cycle if ICLK \leq 50 MHz Two cycles if 50 MHz < ICLK \leq 100 MHz Three cycles if ICLK > 100 MHz
Value after erase	FFh	FFh
Programming/erasing method	 The chip incorporates a dedicated sequencer (FCU) for programming of the ROM. Programming and erasing the ROM are handled by issuing commands to the FCU. FFFF FFFFh is read from the erased ROM in 32 bits. 	 The chip incorporates a dedicated sequencer (FCU) for programming and erasure of the flash memory. Programming and erasing the code flash memory is handled by the FACI commands specified in the FACI command issuing area (007E 0000h) Programming/erasure through transfer by a dedicated flash-memory programmer via a serial interface (serial programming) Programming/erasure of flash memory by a user program (self-programming)
Security function	Protects against illicit tampering with or reading out of data in flash memory	Protects against illicit tampering with or reading out of data in flash memory
Protection function	 Software Protection: The ROM programming/erasure is prohibited by the settings of the control registers or user area lock bit. Command-Locked State P/E The FCU detects malfunctions caused by FCU command issuance errors and prohibited 	Protects against erroneous programming of the flash memory
Trusted Memory (TM) function	access occurrences, and an FCU command is prohibited from being received.	Protects against illicit reading of blocks 8 and 9 in the code flash memory

Table 2.62 Comparative Listing of Flash Memory (Code Flash) Specifications

ltem	RX210	RX651
Background Operation (BGO)	 Execution of program code from the ROM is possible while the E2 DataFlash memory is being programmed or erased. The CPU is able to execute program code from areas other than the ROM or E2 DataFlash while the ROM is being programmed or erased. 	
Suspension and resumption	 The CPU is able to execute program code from the ROM during suspension of programming or erasure. Programming and erasure of the ROM can be restarted (resumed) after suspension. 	 The CPU is able to execute program code from the Code Flash during suspension of programming or erasure. Programming and erasure of the Code Flash can be restarted (resumed) after suspension.
Units of programming and erasure	 Units of programming for the user area or user boot area: 2, 8, or 128 bytes Units of erasure for the user area: In block units Units of erasure for the user boot area: 16 Kbytes 	 Units of programming for the user area: 128 bytes Units of erasure for the user area: Block units
Other functions		Interrupts can be accepted during self-programming (When interrupt and exception vector addresses are set other than code flash memory.)
		The startup area of the code flash memory is selectable from blocks 0 and 1.

Item	RX210	RX651
On-board programming	Reprogramming in boot mode	 Programming/erasure in boot mode (for the SCI interface)
	 The clock synchronous serial interface (SCI1) is used. 	 The asynchronous serial interface (SCI1) is used.
	 The bit rate is automatically adjusted. The user boot area is also 	 The transfer rate is adjusted automatically.
	programmable	 Programming/erasure in boot mode (for the USB interface) USBb is used Dedicated hardware is not required, so direct connection to a PC is possible.
	 Reprogramming in user boot mode The user-specific boot program can be programmed. 	
		 Programming/erasure in boot mode (for the FINE interface) — FINE is used.
	 Reprogramming using the ROM reprogramming routine in the user program 	 Programming/erasure by a routine for code flash memory programming within the user program
	 ROM is reprogrammable without resetting the system. 	 This allows code flash memory programming without resetting the system
Programming and Erasure	A PROM programmer can be used to	A flash programmer can be used to
by Dedicated Parallel Programmer	program the user area and user boot area.	program or erase the user area.
Unique ID		16-byte ID code provided for each MCU

Table 2.63 Comparative Listing of Flash Memory Registers

Register	Bit	RX210	RX651
FWEPROR		Flash Write Erase Protection Register	Flash P/E Protect Register
	FLWE[1:0]	Flash Programming/Erasure	Flash Programming and Erasure Enable
FMODR		Flash Mode Register	
FASTAT	DFLWPE	E2 DataFlash Programming/Erasure	
		Protection Violation (b0)	
	DFLRPE	E2 DataFlash Read Protection Violation (b1)	_
	DFLAE	E2 DataFlash Access Violation (b3)	
	ROMAE	ROM Access Violation (b7)	
	CFAE		Code Flash Memory Access Violation Flag (b7)

Register	Bit	RX210	RX651
FAEINT	DFLWPEIE	E2 DataFlash Programming/Erasure Protection Violation Interrupt Enable (b0)	_
	DFLRPEIE	E2 DataFlash Read Protection Violation Interrupt Enable (b1)	_
	DFLAEIE	E2 DataFlash Access Violation Interrupt Enable (b3)	_
	ROMAEIE	ROM Access Violation Interrupt Enable (b7)	_
	CFAEIE	_	Code Flash Memory Access Violation Interrupt Enable (b7)
FSADDR		_	FACI Command Start Address Register
FCURAME		FCU RAM Enable Register	
FSTATR0		Flash Status Register 0	
FSTATR1		Flash Status Register 1	
FSTATR			Flash Status Register
FENTRYR	FENTRY0	ROM P/E Mode Entry 0 (b0)	
	FENTRYC	_	Code Flash Memory P/E Mode Entry (b0)
	FENTRY1	ROM P/E Mode Entry 1 (b1)	
	FENTRYD	E2 DataFlash P/E Mode Entry (b7)	
	FEKEY[7:0] KEY[7:0]	Key Code (b15-b8)	Key Code (b15-8)
FPROTR		Flash Protection Register	
FRESETR		Flash Reset Register	
FCMDR		FCU Command Register	FACI Command Register
FSUINITR			Flash Sequencer Set-Up Initialization Register
FAWMON		—	Flash Access Window Monitor Register
FCPSR		FCU Processing Switching Register	Flash Sequencer Processing Switching Register
	ESUSPMD	Programming/Erasure Suspend Mode	Erasure Suspend Mode
		0: Suspension priority mode	0: Suspension priority mode
		1: Programming/erasure priority mode	1: Erasure priority mode
FPESTAT		Flash P/E Status Register	
FPCKAR		—	Flash Sequencer Processing Clock Notification Register
FSUACR			Start-Up Area Control Register
PCKAR		Peripheral Clock Notification Register	
ROMCE			ROM Cache Enable Register
		— ROM Cache Invalidate Reg	
ROMCIV			ROM Cache invalidate Register

3. Comparison of Pin Functions

A comparison of the pin functions, power supply, clock, system control pins is provided below.

Blue character : Items that exist only in either group.

Red character : Items that exist in both group, but they have differences.

Black character : Items that are same specification.

3.1 144pin Package

Table 3.1 shows a Comparative Listing of Pin Functions (144pin Package).

Table 3.1	Comparative	Listing of Pin	Functions	(144pin Package)
-----------	-------------	----------------	-----------	------------------

144pin LFQFP	RX210	RX651
1	AVSS0	AVSS0
2	P05/DA1	P05/IRQ13/DA1
3	VREFH	AVCC1
4	P03/DA0	P03/IRQ11/DA0
5	VREFL	AVSS1
6	P02/TMCI1/SCK6	P02/TMCI1/SCK6/IRQ10/AN120
7	P01/TMCI0/RXD6/SMISO6/SSCL6	P01/TMCI0/RXD6/SMISO6/SSCL6/IRQ9/AN1 19
8	P00/TMRI0/TXD6/SMOSI6/SSDA6	P00/TMRI0/TXD6/SMOSI6/SSDA6/IRQ8/AN1 18
9	PF5/IRQ4	PF5/IRQ4
10	NC	EMLE
11	PJ5	PJ5/POE8#/CTS2#/RTS2#/SS2#
12	VSS	VSS
13	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#/CTS0#/ RTS0#/SS0#	PJ3/EDACK1/MTIOC3C/CTS6#/RTS6#/CTS 0#/RTS0#/SS6#/SS0#
14	VCL	VCL
15	PJ1/MTIOC3A	VBATT
16	MD/FINED	MD/FINED
17	XCIN	XCIN
18	XCOUT	XCOUT
19	RES#	RES#
20	XTAL/P37	XTAL/P37
21	VSS	VSS
22	EXTAL/P36	EXTAL/P36
23	VCC	VCC
24	P35/NMI	UPSEL/P35/NMI
25	P34/MTIOC0A/TMCI3/POE2#/SCK6/SCK0/IR Q4	TRST#/P34/MTIOC0A/TMCI3/PO12/POE10# /SCK6/SCK0/IRQ4
26	P33/MTIOC0D/TMRI3/POE3#/TIOCD0/RXD6 /SMISO6/SSCL6/RXD0/SMISO0/SSCL0/IRQ 3-DS	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI3/PO 11/POE4#/POE11#/RXD6/RXD0/SMISO6/S MISO0/SSCL6/SSCL0/CRX0/PCKO/IRQ3-D S
27	P32/MTIOC0C/TMO3/TIOCC0/TXD6/SMOSI 6/SSDA6/TXD0/SMOSI0/SSDA0/IRQ2-DS/R TCOUT/RTCIC2	P32/MTIOC0C/TIOCC0/TMO3/PO10/RTCOU T/RTCIC2/POE0#/POE10#/TXD6/TXD0/SMO SI6/SMOSI0/SSDA6/SSDA0/CTX0/USB0_VB USEN/VSYNC/IRQ2-DS

144pin		
LFQFP	RX210	RX651
28	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/I RQ1-DS/RTCIC1	TMS/P31/MTIOC4D/TMCI2/PO9/RTCIC1/CT S1#/RTS1#/SS1#/SSLB0-A/IRQ1-DS
29	P30/MTIOC4B/TMRI3/POE8#/RXD1/SMISO1 /SSCL1/IRQ0-DS/RTCIC0	TDI/P30/MTIOC4B/TMRI3/P08/RTCIC0/POE 8#/RXD1/SMISO1/SSCL1/MISOB-A/IRQ0-D S
30	P27/CS3#/MTIOC2B/TMCI3/SCK1	TCK/P27/CS7#/MTIOC2B/TMCI3/PO7/SCK1/ RSPCKB-A
31	P26/ <mark>CS2#</mark> /MTIOC2A/TMO1/TXD1/SMOSI1/S SDA1/CTS3#/RTS3#/SS3#	TDO/P26/CS6#/MTIOC2A/TMO1/PO6/TXD1/ CTS3#/RTS3#/SMOSI1/SS3#/SSDA1/MOSIB -A
32	P25/ <mark>CS1#</mark> /MTIOC4C/MTCLKB/TIOCA4/RXD 3/SMISO3/SSCL3/ADTRG0#	P25/CS5#/EDACK1/MTIOC4C/MTCLKB/TIO CA4/PO5/RXD3/SMISO3/SSCL3/HSYNC/AD TRG0#
33	P24/ <mark>CS0#</mark> /MTIOC4A/MTCLKA/TMRI1/TIOCB 4/SCK3	P24/CS4#/EDREQ1/MTIOC4A/MTCLKA/TIO CB4/TMRI1/PO4/SCK3/USB0_VBUSEN/PIX CLK
34	P23/MTIOC3D/MTCLKD/TIOCD3/CTS0#/RT S0#/SS0#/TXD3/SMOSI3/SSDA3	P23/EDACK0/MTIOC3D/MTCLKD/TIOCD3/P O3/TXD3/CTS0#/RTS0#/SMOSI3/SS0#/SSD A3/PIXD7
35	P22/MTIOC3B/MTCLKC/TMO0/TIOCC3/SCK 0	P22/EDREQ0/MTIOC3B/MTCLKC/TIOCC3/T MO0/PO2/SCK0/USB0_OVRCURB/PIXD6
36	P21/MTIOC1B/TMCI0/TIOCA3/RXD0/SMISO 0/SSCL0	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI0/PO 1/RXD0/SMISO0/SSCL0/USB0_EXICEN/PIX D5/IRQ9
37	P20/MTIOC1A/TMRI0/TIOCB3/TXD0/SMOSI 0/SSDA0	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TXD0/S MOSI0/SSDA0/USB0_ID/PIXD4/IRQ8
38	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/TIO CB0/TCLKD/SCK1/MISOA/SDA-DS/TXD3/S MOSI3/SSDA3/IRQ7	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIOCB0/ TCLKD/TMO1/PO15/POE8#/SCK1/TXD3/SM OSI3/SSDA3/SDA2-DS/PIXD3/IRQ7/ADTRG 1#
39	P87/TIOCA2	P87/MTIOC4C/TIOCA2/TXD10/SMOSI10/SS DA10/PIXD2
40	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/TC LKC/TXD1/SMOSI1/SSDA1/MOSIA/SCL-DS/ RXD3/SMISO3/SSCL3/IRQ6/RTCOUT/ADTR G0#	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/T MO2/PO14/RTCOUT/TXD1/RXD3/SMOSI1/S MISO3/SSDA1/SSCL3/SCL2-DS/USB0_VBU S/USB0_VBUSEN/USB0_OVRCURB/IRQ6/A DTRG0#
41	P86/TIOCA0	P86/MTIOC4D/TIOCA0/RXD10/SMISO10/SS CL10/PIXD1
42	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/TCL KB/RXD1/SMISO1/SSCL1/SCK3/IRQ5	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB/TM CI2/PO13/RXD1/SCK3/SMISO1/SSCL1/CRX 1-DS/PIXD0/IRQ5
43	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/TCL KA/CTS1#/RTS1#/SS1#/IRQ4	P14/MTIOC3A/MTCLKA/TIOCB5/TCLKA/TM RI2/P015/CTS1#/RTS1#/SS1#/CTX1/USB0_ OVRCURA/IRQ4
44	P13/MTIOC0B/TMO3/TIOCA5/SDA/TXD2/S MOSI2/SSDA2/IRQ3	P13/MTIOC0B/TIOCA5/TMO3/PO13/TXD2/S MOSI2/SSDA2/SDA0[FM+]/IRQ3/ADTRG1#
45	P12/TMCI1/SCL/RXD2/SMISO2/SSCL2/IRQ2	P12/TMCI1/RXD2/SMISO2/SSCL2/SCL0[FM +]/IRQ2
46	PH3/TMCI0	VCC_USB
47	PH2/TMRI0/IRQ1	USB0_DM
48	PH1/TMO0/IRQ0	USB0_DP
49	PH0/CACREF	VSS_USB

144pin LFQFP	RX210	RX651
50	P56/MTIOC3C/TIOCA1	P56/EDACK1/MTIOC3C/TIOCA1
51	P55/WAIT#/MTIOC4D/TMO3	TRDATA3/P55/WAIT#/EDREQ0/MTIOC4D/T MO3/CRX1/IRQ10
52	P54/ALE/MTIOC4B/TMCI1/CTS2#/RTS2#/SS 2#	TRDATA2/P54/ALE/EDACK0/MTIOC4B/TMC I1/CTS2#/RTS2#/SS2#/CTX1
53	BCLK/P53	BCLK/P53
54	P52/RD#/RXD2/SMISO2/SSCL2	P52/RD#/RXD2/SMISO2/SSCL2/SSLB3-A
55	P51/WR1#/BC1#/WAIT#/SCK2	P51/WR1#/BC1#/WAIT#/SSLB2-A/SCK2
56	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/SSL B1-A
57	VSS	VSS
58	P83/MTIOC4C/CTS10#/RTS10#	TRCLK/P83/EDACK1/MTIOC4C/CTS10#/SS 10#/SCK10
59	VCC	VCC
60	PC7/A23/CS0#/MTIOC3A/TMO2/MTCLKB/T XD8/SMOSI8/SSDA8/MISOA/CACREF	UB/PC7/A23/CS0#/MTIOC3A/MTCLKB/TMO 2/TOC0/PO31/CACREF/TXD8/SMOSI8/SSD A8/MISOA-A/TXD10/SMOSI10/SSDA10/MM C_D7-A/IRQ14
61	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/R XD8/SMISO8/SSCL8/MOSIA	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/TI C0/PO30/RXD8/SMISO8/SSCL8/MOSIA-A/R XD10/SMISO10/SSCL10/MMC_D6-A/IRQ13
62	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T MRI2/SCK8/RSPCKA	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T MRI2/PO29/SCK8/RSPCKA-A/SCK10/MMC_ D5-A
63	P82/MTIOC4A/TXD10/SMOSI10/SSDA10	TRSYNC/P82/EDREQ1/MTIOC4A/PO28/TX D10/SMOSI10/SSDA10/MMC_D4-A
64	P81/MTIOC3D/RXD10/SMISO10/SSCL10	TRDATA1/P81/EDACK0/MTIOC3D/PO27/RX D10/SMISO10/SSCL10/MMC_D3-A/SDHI_C D-A/QIO3-A
65	P80/MTIOC3B/SCK10	TRDATA0/P80/EDREQ0/MTIOC3B/PO26/SC K10/RTS10#/MMC_D2-A/SDHI_WP-A/QIO2- A
66	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P OE0#/SCK5/CTS8#/RTS8#/SS8#/SSLA0	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P O25/POE0#/SCK5/CTS8#/RTS8#/SS8#/SSL A0-A/CTS10#/RTS10#/SS10#/MMC_D1-A/S DHI_D1-A/SDSI_D1-A/QIO1-A/QMI-A
67	PC3/A19/MTIOC4D/TCLKB/TXD5/SMOSI5/S SDA5	PC3/A19/MTIOC4D/TCLKB/PO24/TXD5/SM OSI5/SSDA5/MMC_D0-A/SDHI_D0-A/SDSI_ D0-A/QIO0-A/QMO-A
68	P77/TXD11/SMOSI11/SSDA11	TRDATA7/P77/CS7#/PO23/TXD11/SMOSI11 /SSDA11/MMC_CLK-A/SDHI_CLK-A/SDSI_C LK-A/QSPCLK-A
69	P76/RXD11/SMISO11/SSCL11	TRDATA6/P76/CS6#/PO22/RXD11/SMISO11 /SSCL11/MMC_CMD-A/SDHI_CMD-A/SDSI_ CMD-A/QSSL-A
70	PC2/A18/MTIOC4B/TCLKA/RXD5/SMISO5/S SCL5/SSLA3	PC2/A18/MTIOC4B/TCLKA/PO21/RXD5/SMI SO5/SSCL5/SSLA3-A/MMC_CD-A/SDHI_D3- A/SDSI_D3-A
71	P75/SCK11	TRSYNC1/P75/CS5#/PO20/SCK11/RTS11#/ MMC_RES#-A/SDHI_D2-A/SDSI_D2-A
72	P74/CTS11#/RTS11#/SS11#	TRDATA5/P74/A20/CS4#/PO19/CTS11#/SS 11#

144pin LFQFP	RX210	RX651
73	PC1/A17/MTIOC3A/TCLKD/SCK5/SSLA2	PC1/A17/MTIOC3A/TCLKD/PO18/SCK5/SSL A2-A/IRQ12
74	PL1	VCC
75	PC0/A16/MTIOC3C/TCLKC/CTS5#/RTS5#/S S5#/SSLA1	PC0/A16/MTIOC3C/TCLKC/PO17/CTS5#/RT S5#/SS5#/SSLA1-A/IRQ14
76	PL0	VSS
77	P73	TRDATA4/P73/CS3#/PO16
78	PB7/A15/MTIOC3B/TIOCB5/TXD9/SMOSI9/ SSDA9	PB7/A15/MTIOC3B/TIOCB5/PO31/TXD9/SM OSI9/SSDA9/TXD11/SMOSI11/SSDA11/SDS I_D1-B
79	PB6/A14/MTIOC3D/TIOCA5/RXD9/SMISO9/ SSCL9	PB6/A14/MTIOC3D/TIOCA5/PO30/RXD9/SM ISO9/SSCL9/RXD11/SMISO11/SSCL11/SDS I_D0-B
80	PB5/A13/MTIOC2A/MTIOC1B/TMRI1/POE1# /TIOCB4/SCK9	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/TMRI 1/PO29/POE4#/SCK9/SCK11/SDSI_CLK-B
81	PB4/A12/TIOCA4/CTS9#/RTS9#/SS9#	PB4/A12/TIOCA4/PO28/CTS9#/RTS9#/SS9# /CTS11#/RTS11#/SS11#/SDSI_CMD-B
82	PB3/A11/MTIOC0A/MTIOC4A/TMO0/POE3#/ TIOCD3/TCLKD/SCK4/SCK6	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/TCLK D/TMO0/PO27/POE11#/SCK4/SCK6/SDSI_D 3-B
83	PB2/A10/TIOCC3/TCLKC/CTS4#/RTS4#/SS 4#/CTS6#/RTS6#/SS6#	PB2/A10/TIOCC3/TCLKC/PO26/CTS4#/RTS 4#/CTS6#/RTS6#/SS4#/SS6#/SDSI D2-B
84	PB1/A9/MTIOC0C/MTIOC4C/TMCI0/TIOCB3 /TXD4/SMOSI4/SSDA4/TXD6/SMOSI6/SSDA 6/IRQ4-DS	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/TMCI0 /PO25/TXD4/TXD6/SMOSI4/SMOSI6/SSDA4 /SSDA6/IRQ4-DS
85	P72	P72/A19/CS2#
86	P71	P71/A18/CS1#
87	PB0/A8/MTIC5W/TIOCA3/RXD4/SMISO4/SS CL4/RXD6/SMISO6/SSCL6/RSPCKA	PB0/A8/MTIC5W/TIOCA3/PO24/RXD4/RXD6 /SMISO4/SMISO6/SSCL4/SSCL6/IRQ12
88	PA7/A7/TIOCB2/MISOA	PA7/A7/TIOCB2/PO23/MISOA-B
89	PA6/A6/MTIC5V/MTCLKB/TMCI3/POE2#/TI OCA2/CTS5#/RTS5#/SS5#/MOSIA	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI3/P O22/POE10#/CTS5#/RTS5#/SS5#/MOSIA-B
90	PA5/A5/TIOCB1/RSPCKA	PA5/A5/MTIOC6B/TIOCB1/PO21/RSPCKA-B
91	VCC	VCC
92	PA4/A4/MTIC5U/MTCLKA/TMRI0/TIOCA1/T XD5/SMOSI5/SSDA5/SSLA0/IRQ5-DS/CVRE FB1	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI0/P O20/TXD5/SMOSI5/SSDA5/SSLA0-B/IRQ5- DS
93	VSS	VSS
94	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ RXD5/SMISO5/SSCL5/IRQ6-DS/CMPB1	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ PO19/RXD5/SMISO5/SSCL5/IRQ6-DS
95	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5/SSC L5/SSLA3-B
96	PA1/A1/MTIOC0B/MTCLKC/TIOCB0/SCK5/S SLA2/CVREFA	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/TIOC B0/PO17/SCK5/SSLA2-B/IRQ11
97	PA0/A0/BC0#/MTIOC4A/TIOCA0/SSLA1/CA CREF	PA0/A0/BC0#/MTIOC4A/MTIOC6D/TIOCA0/ CACREF/PO16/SSLA1-B
98	P67	P67/CS7#/DQM1/MTIOC7C/IRQ15
99	P66	P66/CS6#/DQM0/MTIOC7D
100	P65	P65/CS5#/CKE
101	PE7/D15[A15/D15]/IRQ7/AN015	PE7/D15[A15/D15]/MTIOC6A/TOC1/MISOB- B/MMC_RES#-B/SDHI_WP-B/IRQ7/AN105

144pin LFQFP	RX210	RX651
102	PE6/D14[A14/D14]/CTS4#/RTS4#/SS4#/IRQ 6/AN014	PE6/D14[A14/D14]/MTIOC6C/TIC1/MOSIB-B /MMC_CD-B/SDHI_CD-B/IRQ6/AN104
103	PK5/TXD4/SMOSI4/SSDA4	VCC
104	P70/SCK4	SDCLK/P70
105	PK4/RXD4/SMISO4/SSCL4	VSS
106	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/IRQ 5/AN013	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/RSP CKB-B/IRQ5/AN103
107	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/AN0 12/CMPA2	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/PO2 8/SSLB0-B/AN102
108	PE3/D11[A11/D11]/MTIOC4B/POE8#/CTS12 #/RTS12#/SS12#/AN011/CMPA1	PE3/D11[A11/D11]/MTIOC4B/PO26/POE8#/ TOC3/CTS12#/RTS12#/SS12#/MMC_D7-B/A N101
109	PE2/D10[A10/D10]/MTIOC4A/RXD12/RXDX1 2/SMISO12/SSCL12/IRQ7-DS/AN010/CVRE FB0	PE2/D10[A10/D10]/MTIOC4A/PO23/TIC3/RX D12/SMISO12/SSCL12/RXDX12/SSLB3-B/M MC_D6-B/IRQ7-DS/AN100
110	PE1/D9[A9/D9]/MTIOC4C/TXD12/TXDX12/SI OX12/SMOSI12/SSDA12/AN009/CMPB0	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO18/T XD12/SMOSI12/SSDA12/TXDX12/SIOX12/S SLB2-B/MMC_D5-B/ANEX1
111	PE0/D8[A8/D8]/SCK12/AN008	PE0/D8[A8/D8]/MTIOC3D/SCK12/SSLB1-B/ MMC_D4-B/ANEX0
112	P64	P64/CS4#/WE#
113	P63	P63/CS3#/CAS#
114	P62	P62/CS2#/RAS#
115	P61/CTS9#/RTS9#/SS9#	P61/CS1#/SDCS#
116	PK3/RXD9/SMISO9/SSCL9	VSS
117	P60/SCK9	P60/CS0#
118	PK2/TXD9/SMOSI9/SSDA9	VCC
119	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3/MM C_D1-B/SDHI_D1-B/QIO1-B/QMI-B/IRQ7/AN 107
120	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE4#/S SLC2/MMC_D0-B/SDHI_D0-B/QIO0-B/QMO- B/IRQ6/AN106
121	PD5/D5[A5/D5]/MTIC5W/ <mark>POE2#</mark> /IRQ5	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/POE10#/ SSLC1/MMC_CLK-B/SDHI_CLK-B/QSPCLK- B/IRQ5/AN113
122	PD4/D4[A4/D4]/ <mark>POE3#</mark> /IRQ4	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSLC0/M MC_CMD-B/SDHI_CMD-B/QSSL-B/IRQ4/AN 112
123	PD3/D3[A3/D3]/POE8#/IRQ3	PD3/D3[A3/D3]/MTIOC8D/POE8#/TOC2/RS PCKC/MMC_D3-B/SDHI_D3-B/QIO3-B/IRQ3/ AN111
124	PD2/D2[A2/D2]/MTIOC4D/IRQ2	PD2/D2[A2/D2]/MTIOC4D/TIC2/CRX0/MISO C/MMC_D2-B/SDHI_D2-B/QIO2-B/IRQ2/AN1 10
125	PD1/D1[A1/D1]/MTIOC4B/IRQ1	PD1/D1[A1/D1]/MTIOC4B/POE0#/CTX0/MO SIC/IRQ1/AN109
126	PD0/D0[A0/D0]/IRQ0	PD0/D0[A0/D0]/POE4#/IRQ0/AN108
127	P93/CTS7#/RTS7#/SS7#	P93/A19/POE0#/CTS7#/RTS7#/SS7#/AN117
128	P92/RXD7/SMISO7/SSCL7	P92/A18/POE4#/RXD7/SMISO7/SSCL7/AN1 16
129	P91/SCK7	P91/A17/SCK7/AN115

144pin		
LFQFP	RX210	RX651
130	VSS	VSS
131	P90/TXD7/SMOSI7/SSDA7	P90/A16/TXD7/SMOSI7/SSDA7/AN114
132	VCC	VCC
133	P47/AN007	P47/IRQ15-DS/AN007
134	P46/AN006	P46/IRQ14-DS/AN006
135	P45/AN005	P45/IRQ13-DS/AN005
136	P44/AN004	P44/IRQ12-DS/AN004
137	P43/AN003	P43/IRQ11-DS/AN003
138	P42/AN002	P42/IRQ10-DS/AN002
139	P41/AN001	P41/IRQ9-DS/AN001
140	VREFL0	VREFL0
141	P40/AN000	P40/IRQ8-DS/AN000
142	VREFH0	VREFH0
143	AVCC0	AVCC0
144	P07/ADTRG0#	P07/IRQ15/ADTRG0#

3.2 145pin Package

Table 3.2 shows a Comparative Listing of Pin Functions (145pin Package).

145pin		
TFLGA	RX210	RX651
A1	AVSS0	AVSS0
A2	P07/ADTRG0#	P07/IRQ15/ADTRG0#
A3	P40/AN000	P40/IRQ8-DS/AN000
A4	P42/AN002	P42/IRQ10-DS/AN002
A5	P45/AN005	P45/IRQ13-DS/AN005
A6	P90/TXD7/SMOSI7/SSDA7	P90/A16/TXD7/SMOSI7/SSDA7/AN114
A7	P92/RXD7/SMISO7/SSCL7	P92/A18/POE4#/RXD7/SMISO7/SSCL7/AN1 16
A8	PD2/D2[A2/D2]/MTIOC4D/IRQ2	PD2/D2[A2/D2]/MTIOC4D/TIC2/CRX0/MISO C/MMC_D2-B/SDHI_D2-B/QIO2-B/IRQ2/AN1 10
A9	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE4#/S SLC2/MMC_D0-B/SDHI_D0-B/QIO0-B/QMO- B/IRQ6/AN106
A10	PK3/RXD9/SMISO9/SSCL9	VSS
A11	P62	P62/CS2#/RAS#
A12	PE1/D9[A9/D9]/MTIOC4C/TXD12/TXDX12/SI OX12/SMOSI12/SSDA12/AN009/CMPB0	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO18/T XD12/SMOSI12/SSDA12/TXDX12/SIOX12/S SLB2-B/MMC_D5-B/ANEX1
A13	PE3/D11[A11/D11]/MTIOC4B/POE8#/CTS12 #/RTS12#/SS12#/AN011/CMPA1	PE3/D11[A11/D11]/MTIOC4B/PO26/POE8#/ TOC3/CTS12#/RTS12#/SS12#/MMC_D7-B/A N101
B1	VREFH	AVCC1
B2	AVCC0	AVCC0
B3	P05/DA1	P05/IRQ13/DA1
B4	VREFL0	VREFL0
B5	P43/AN003	P43/IRQ11-DS/AN003
B6	P47/AN007	P47/IRQ15-DS/AN007
B7	P91/SCK7	P91/A17/SCK7/AN115
B8	PD0/D0[A0/D0]/IRQ0	PD0/D0[A0/D0]/POE4#/IRQ0/AN108
B9	PD4/D4[A4/D4]/ <mark>POE3#</mark> /IRQ4	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSLC0/M MC_CMD-B/SDHI_CMD-B/QSSL-B/IRQ4/AN 112
B10	PK2/TXD9/SMOSI9/SSDA9	VCC
B11	P61/CTS9#/RTS9#/SS9#	P61/CS1#/SDCS#
B12	PE2/D10[A10/D10]/MTIOC4A/RXD12/RXDX1 2/SMISO12/SSCL12/IRQ7-DS/AN010/CVRE FB0	PE2/D10[A10/D10]/MTIOC4A/PO23/TIC3/RX D12/SMISO12/SSCL12/RXDX12/SSLB3-B/M MC_D6-B/IRQ7-DS/AN100
B13	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/AN0 12/CMPA2	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/PO2 8/SSLB0-B/AN102
C1	VREFL	AVSS1
C2	P02/TMCI1/SCK6	P02/TMCI1/SCK6/IRQ10/AN120
C3	VREFH0	VREFH0
C4	P41/AN001	P41/IRQ9-DS/AN001
C5	P46/AN006	P46/IRQ14-DS/AN006
C6	VSS	VSS

145pin TFLGA	RX210	RX651
C7	PD1/D1[A1/D1]/MTIOC4B/IRQ1	PD1/D1[A1/D1]/MTIOC4B/POE0#/CTX0/MO SIC/IRQ1/AN109
C8	PD3/D3[A3/D3]/POE8#/IRQ3	PD3/D3[A3/D3]/MTIOC8D/POE8#/TOC2/RS PCKC/MMC_D3-B/SDHI_D3-B/QIO3-B/IRQ3/ AN111
C9	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3/MM C_D1-B/SDHI_D1-B/QIO1-B/QMI-B/IRQ7/AN 107
C10	P63	P63/CS3#/CAS#
C11	PE0/D8[A8/D8]/SCK12/AN008	PE0/D8[A8/D8]/MTIOC3D/SCK12/SSLB1-B/ MMC_D4-B/ANEX0
C12	P70/SCK4	P70/SDCLK
C13	PK4/RXD4/SMISO4/SSCL4	VSS
D1	P00/TMRI0/TXD6/SMOSI6/SSDA6	P00/TMRI0/TXD6/SMOSI6/SSDA6/IRQ8/AN1 18
D2	PF5/IRQ4	PF5/IRQ4
D3	P03/DA0	P03/IRQ11/DA0
D4	P01/TMCI0/RXD6/SMISO6/SSCL6	P01/TMCI0/RXD6/SMISO6/SSCL6/IRQ9/AN1 19
D5	VCC	VCC
D6	P93/CTS7#/RTS7#/SS7#	P93/A19/POE0#/CTS7#/RTS7#/SS7#/AN117
D7	PD5/D5[A5/D5]/MTIC5W/ <mark>POE2#</mark> /IRQ5	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/POE10#/ SSLC1/MMC_CLK-B/SDHI_CLK-B/QSPCLK- B/IRQ5/AN113
D8	P60/SCK9	P60/CS0#
D9	P64	P64/CS4#/WE#
D10	PE7/D15[A15/D15]/IRQ7/AN015	PE7/D15[A15/D15]/MTIOC6A/TOC1/MISOB- B/MMC_RES#-B/SDHI_WP-B/IRQ7/AN105
D11	PK5/TXD4/SMOSI4/SSDA4	VCC
D12	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/IRQ 5/AN013	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/RSP CKB-B/IRQ5/AN103
D13	PE6/D14[A14/D14]/CTS4#/RTS4#/SS4#/IRQ 6/AN014	PE6/D14[A14/D14]/MTIOC6C/TIC1/MOSIB-B /MMC_CD-B/SDHI_CD-B/IRQ6/AN104
E1	VSS	VSS
E2	VCL	VCL
E3	PJ5	PJ5/POE8#/CTS2#/RTS2#/SS2#
E4	NC	EMLE
E5	P44/AN004	P44/IRQ12-DS/AN004
E10	PA0/A0/BC0#/MTIOC4A/TIOCA0/SSLA1/CA CREF	PA0/A0/BC0#/MTIOC4A/MTIOC6D/TIOCA0/ CACREF/PO16/SSLA1-B
E11	P66	P66/CS6#/DQM0/MTIOC7D
E12	P65	P65/CS5#/CKE
E13	P67	P67/CS7#/DQM1/MTIOC7C/IRQ15
F1	XCIN	XCIN
F2	XCOUT	XCOUT
F3	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#/CTS0#/ RTS0#/SS0#	PJ3/EDACK1/MTIOC3C/CTS6#/RTS6#/CTS 0#/RTS0#/SS6#/SS0#
F4	PJ1/MTIOC3A	VBATT
F10	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ RXD5/SMISO5/SSCL5/IRQ6-DS/CMPB1	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ PO19/RXD5/SMISO5/SSCL5/IRQ6-DS
F11	VSS	VSS

145pin TFLGA	RX210	RX651
F12	PA1/A1/MTIOC0B/MTCLKC/TIOCB0/SCK5/S SLA2/CVREFA	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/TIOC B0/PO17/SCK5/SSLA2-B/IRQ11
F13	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5/SSC L5/SSLA3-B
G1	XTAL/P37	XTAL/P37
G2	RES#	RES#
G3	MD/FINED	MD/FINED
G4	NC	BSCANP
G10	PA5/A5/TIOCB1/RSPCKA	PA5/A5/MTIOC6B/TIOCB1/PO21/RSPCKA-E
G11	PA6/A6/MTIC5V/MTCLKB/TMCI3/POE2#/TI OCA2/CTS5#/RTS5#/SS5#/MOSIA	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI3/P 022/POE10#/CTS5#/RTS5#/SS5#/MOSIA-B
G12	VCC	VCC
G13	PA4/A4/MTIC5U/MTCLKA/TMRI0/TIOCA1/T XD5/SMOSI5/SSDA5/SSLA0/IRQ5-DS/CVRE FB1	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI0/P O20/TXD5/SMOSI5/SSDA5/SSLA0-B/IRQ5- DS
H1	EXTAL/P36	EXTAL/P36
H2	VCC	VCC
H3	VSS	VSS
H4	P35/NMI	UPSEL/P35/NMI
H10	P72	P72/A19/CS2#
H11	P71	P71/A18/CS1#
H12	PB0/A8/MTIC5W/TIOCA3/RXD4/SMISO4/SS CL4/RXD6/SMISO6/SSCL6/RSPCKA	PB0/A8/MTIC5W/TIOCA3/PO24/RXD4/RXD6 /SMISO4/SMISO6/SSCL4/SSCL6/IRQ12
H13	PA7/A7/TIOCB2/MISOA	PA7/A7/TIOCB2/PO23/MISOA-B
J1	P34/MTIOC0A/TMCI3/POE2#/SCK6/SCK0/IR Q4	TRST#/P34/MTIOC0A/TMCI3/PO12/POE10# /SCK6/SCK0/IRQ4
J2	P33/MTIOC0D/TMRI3/POE3#/TIOCD0/RXD6 /SMISO6/SSCL6/RXD0/SMISO0/SSCL0/IRQ 3-DS	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI3/PO 11/POE4#/POE11#/RXD6/RXD0/SMISO6/S MISO0/SSCL6/SSCL0/CRX0/PCKO/IRQ3-D S
J3	P32/MTIOC0C/TMO3/TIOCC0/TXD6/SMOSI 6/SSDA6/TXD0/SMOSI0/SSDA0/IRQ2-DS/R TCOUT/RTCIC2	P32/MTIOC0C/TIOCC0/TMO3/PO10/RTCOU T/RTCIC2/POE0#/POE10#/TXD6/TXD0/SMC SI6/SMOSI0/SSDA6/SSDA0/CTX0/USB0_VE USEN/VSYNC/IRQ2-DS
J4	P30/MTIOC4B/TMRI3/POE8#/RXD1/SMISO1 /SSCL1/IRQ0-DS/RTCIC0	TDI/P30/MTIOC4B/TMRI3/P08/RTCIC0/POE 8#/RXD1/SMISO1/SSCL1/MISOB-A/IRQ0-D S
J10	PB3/A11/MTIOC0A/MTIOC4A/TMO0/POE3#/ TIOCD3/TCLKD/SCK4/SCK6	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/TCLK D/TMO0/PO27/POE11#/SCK4/SCK6/SDSI_E 3-B
J11	PB4/A12/TIOCA4/CTS9#/RTS9#/SS9#	PB4/A12/TIOCA4/PO28/CTS9#/RTS9#/SS9# /CTS11#/RTS11#/SS11#/SDSI_CMD-B
J12	PB2/A10/TIOCC3/TCLKC/CTS4#/RTS4#/SS 4#/CTS6#/RTS6#/SS6#	PB2/A10/TIOCC3/TCLKC/PO26/CTS4#/RTS 4#/CTS6#/RTS6#/SS4#/SS6#/SDSI_D2-B
J13	PB1/A9/MTIOC0C/MTIOC4C/TMCI0/TIOCB3 /TXD4/SMOSI4/SSDA4/TXD6/SMOSI6/SSDA 6/IRQ4-DS	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/TMCI0 /PO25/TXD4/TXD6/SMOSI4/SMOSI6/SSDA4 /SSDA6/IRQ4-DS
K1	P27/CS3#/MTIOC2B/TMCI3/SCK1	TCK/P27/CS7#/MTIOC2B/TMCI3/PO7/SCK1 RSPCKB-A
K2	P26/ <mark>CS2#</mark> /MTIOC2A/TMO1/TXD1/SMOSI1/S SDA1/CTS3#/RTS3#/SS3#	TDO/P26/CS6#/MTIOC2A/TMO1/PO6/TXD1/ CTS3#/RTS3#/SMOSI1/SS3#/SSDA1/MOSIE -A

145pin TFLGA	RX210	RX651
K3	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/I RQ1-DS/RTCIC1	TMS/P31/MTIOC4D/TMCI2/PO9/RTCIC1/CT S1#/RTS1#/SS1#/SSLB0-A/IRQ1-DS
K4	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/TCL KB/RXD1/SMISO1/SSCL1/SCK3/IRQ5	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB/TM CI2/PO13/RXD1/SCK3/SMISO1/SSCL1/CRX 1-DS/PIXD0/IRQ5
K5	P54/ALE/MTIOC4B/TMCI1/CTS2#/RTS2#/SS 2#	TRDATA2/P54/ALE/EDACK0/MTIOC4B/TMC I1/CTS2#/RTS2#/SS2#/CTX1
K6	BCLK/P53	P53/BCLK
K7	P51/WR1#/BC1#/WAIT#/SCK2	P51/WR1#/BC1#/WAIT#/SCK2/SSLB2-A
K8	VCC	VCC
K9	P80/MTIOC3B/SCK10	TRDATA0/P80/EDREQ0/MTIOC3B/PO26/SC K10/RTS10#/MMC_D2-A/SDHI_WP-A/QIO2- A
K10	P76/RXD11/SMISO11/SSCL11	TRDATA6/P76/CS6#/PO22/RXD11/SMISO11 /SSCL11/MMC_CMD-A/SDHI_CMD-A/SDSI_ CMD-A/QSSL-A
K11	PB7/A15/MTIOC3B/TIOCB5/TXD9/SMOSI9/ SSDA9	PB7/A15/MTIOC3B/TIOCB5/PO31/TXD9/SM OSI9/SSDA9/TXD11/SMOSI11/SSDA11/SDS I_D1-B
K12	PB6/A14/MTIOC3D/TIOCA5/RXD9/SMISO9/ SSCL9	PB6/A14/MTIOC3D/TIOCA5/PO30/RXD9/SM ISO9/SSCL9/RXD11/SMISO11/SSCL11/SDS I_D0-B
K13	PB5/A13/MTIOC2A/MTIOC1B/TMRI1/POE1# /TIOCB4/SCK9	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/TMRI 1/PO29/POE4#/SCK9/SCK11/SDSI_CLK-B
L1	P25/ <mark>CS1#</mark> /MTIOC4C/MTCLKB/TIOCA4/RXD 3/SMISO3/SSCL3/ADTRG0#	P25/CS5#/EDACK1/MTIOC4C/MTCLKB/TIO CA4/PO5/RXD3/SMISO3/SSCL3/HSYNC/AD TRG0#
L2	P23/MTIOC3D/MTCLKD/TIOCD3/CTS0#/RT S0#/SS0#/TXD3/SMOSI3/SSDA3	P23/EDACK0/MTIOC3D/MTCLKD/TIOCD3/P O3/TXD3/CTS0#/RTS0#/SMOSI3/SS0#/SSD A3/PIXD7
L3	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/TC LKC/TXD1/SMOSI1/SSDA1/MOSIA/SCL-DS/ RXD3/SMISO3/SSCL3/IRQ6/RTCOUT/ADTR G0#	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/T MO2/PO14/RTCOUT/TXD1/RXD3/SMOSI1/S MISO3/SSDA1/SSCL3/SCL2-DS/USB0_VBU S/USB0_VBUSEN/USB0_OVRCURB/IRQ6/A DTRG0#
L4	P24/CS0#/MTIOC4A/MTCLKA/TMRI1/TIOCB 4/SCK3	P24/CS4#/EDREQ1/MTIOC4A/MTCLKA/TIO CB4/TMRI1/PO4/SCK3/USB0_VBUSEN/PIX CLK
L5	P13/MTIOC0B/TMO3/TIOCA5/SDA/TXD2/S MOSI2/SSDA2/IRQ3	P13/MTIOC0B/TIOCA5/TMO3/PO13/TXD2/S MOSI2/SSDA2/SDA0[FM+]/IRQ3/ADTRG1#
L6	P56/MTIOC3C/TIOCA1	P56/EDACK1/MTIOC3C/TIOCA1
L7	P52/RD#/RXD2/SMISO2/SSCL2	P52/RD#/RXD2/SMISO2/SSCL2/SSLB3-A
L8	P83/MTIOC4C/CTS10#/RTS10#	TRCLK/P83/EDACK1/MTIOC4C/CTS10#/SS 10#/SCK10
L9	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T MRI2/SCK8/RSPCKA	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T MRI2/PO29/SCK8/RSPCKA-A/SCK10/MMC_ D5-A
L10	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P OE0#/SCK5/CTS8#/RTS8#/SS8#/SSLA0	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P O25/POE0#/SCK5/CTS8#/RTS8#/SS8#/SSL A0-A/CTS10#/RTS10#/SS10#/MMC_D1-A/S DHI_D1-A/SDSI_D1-A/QIO1-A/QMI-A

145pin TFLGA	RX210	RX651
L11	PC2/A18/MTIOC4B/TCLKA/RXD5/SMISO5/S SCL5/SSLA3	PC2/A18/MTIOC4B/TCLKA/PO21/RXD5/SMI SO5/SSCL5/SSLA3-A/MMC_CD-A/SDHI_D3- A/SDSI_D3-A
L12	P73	TRDATA4/P73/CS3#/PO16
L13	PL0	VSS
M1	P22/MTIOC3B/MTCLKC/TMO0/TIOCC3/SCK 0	P22/EDREQ0/MTIOC3B/MTCLKC/TIOCC3/T MO0/PO2/SCK0/USB0_OVRCURB/PIXD6
M2	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/TIO CB0/TCLKD/SCK1/MISOA/SDA-DS/TXD3/S MOSI3/SSDA3/IRQ7	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIOCB0/ TCLKD/TMO1/PO15/POE8#/SCK1/TXD3/SM OSI3/SSDA3/SDA2-DS/PIXD3/IRQ7/ADTRG 1#
M3	P86/TIOCA0	P86/MTIOC4D/TIOCA0/RXD10/SMISO10/SS CL10/PIXD1
M4	P12/TMCI1/SCL/RXD2/SMISO2/SSCL2/IRQ2	P12/TMCI1/RXD2/SMISO2/SSCL2/SCL0[FM +]/IRQ2
M5	PH3/TMCI0	VCC_USB
M6	PH0/CACREF	VSS_USB
M7	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/SSL B1-A
M8	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/R XD8/SMISO8/SSCL8/MOSIA	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/T C0/PO30/RXD8/SMISO8/SSCL8/MOSIA-A/R XD10/SMISO10/SSCL10/MMC_D6-A/IRQ13
M9	P81/MTIOC3D/RXD10/SMISO10/SSCL10	TRDATA1/P81/EDACK0/MTIOC3D/PO27/RX D10/SMISO10/SSCL10/MMC_D3-A/SDHI_C D-A/QIO3-A
M10	P77/TXD11/SMOSI11/SSDA11	TRDATA7/P77/CS7#/PO23/TXD11/SMOSI11 /SSDA11/MMC_CLK-A/SDHI_CLK-A/SDSI_C LK-A/QSPCLK-A
M11	PC0/A16/MTIOC3C/TCLKC/CTS5#/RTS5#/S S5#/SSLA1	PC0/A16/MTIOC3C/TCLKC/PO17/CTS5#/RT S5#/SS5#/SSLA1-A/IRQ14
M12	PC1/A17/MTIOC3A/TCLKD/SCK5/SSLA2	PC1/A17/MTIOC3A/TCLKD/PO18/SCK5/SSL A2-A/IRQ12
M13	PL1	VCC
N1	P21/MTIOC1B/TMCI0/TIOCA3/RXD0/SMISO 0/SSCL0	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI0/PO 1/RXD0/SMISO0/SSCL0/USB0_EXICEN/PIX D5/IRQ9
N2	P20/MTIOC1A/TMRI0/TIOCB3/TXD0/SMOSI 0/SSDA0	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TXD0/S MOSI0/SSDA0/USB0_ID/PIXD4/IRQ8
N3	P87/TIOCA2	P87/MTIOC4C/TIOCA2/TXD10/SMOSI10/SS DA10/PIXD2
N4	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/TCL KA/CTS1#/RTS1#/SS1#/IRQ4	P14/MTIOC3A/MTCLKA/TIOCB5/TCLKA/TM RI2/PO15/CTS1#/RTS1#/SS1#/CTX1/USB0_ OVRCURA/IRQ4
N5	PH2/TMRI0/IRQ1	USB0_DM
N6	PH1/TMO0/IRQ0	USB0_DP
N7	P55/WAIT#/MTIOC4D/TMO3	TRDATA3/P55/WAIT#/EDREQ0/MTIOC4D/T MO3/CRX1/IRQ10
N8	VSS	VSS
N9	PC7/A23/CS0#/MTIOC3A/TMO2/MTCLKB/T XD8/SMOSI8/SSDA8/MISOA/CACREF	UB/PC7/A23/CS0#/MTIOC3A/MTCLKB/TMO 2/TOC0/PO31/CACREF/TXD8/SMOSI8/SSD A8/MISOA-A/TXD10/SMOSI10/SSDA10/MM C D7-A/IRQ14

145pin		
TFLGA	RX210	RX651
N10	P82/MTIOC4A/TXD10/SMOSI10/SSDA10	TRSYNC/P82/EDREQ1/MTIOC4A/PO28/TX D10/SMOSI10/SSDA10/MMC_D4-A
N11	PC3/A19/MTIOC4D/TCLKB/TXD5/SMOSI5/S SDA5	PC3/A19/MTIOC4D/TCLKB/PO24/TXD5/SM OSI5/SSDA5/MMC_D0-A/SDHI_D0-A/SDSI_ D0-A/QIO0-A/QMO-A
N12	P75/SCK11	TRSYNC1/P75/CS5#/PO20/SCK11/RTS11#/ MMC_RES#-A/SDHI_D2-A/SDSI_D2-A
N13	P74/CTS11#/RTS11#/SS11#	TRDATA5/P74/A20/CS4#/PO19/CTS11#/SS 11#

3.3 100pin Package (QFP)

Table 3.4 shows a Comparative Listing of Pin Functions (100pin Package (TFLGA)).

100pin	RX210 (LFQFP)	RX651 (LQFP)
1	VREFH	AVCC1
2	P03/DA0	EMLE
3	VREFL	AVSS1
4	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#	PJ3/EDACK1/MTIOC3C//CTS6#/RTS6#/CTS 0#/RTS0#/SS6#/SS0#
5	VCL	VCL
6	PJ1/MTIOC3A	VBATT
7	MD/FINED	MD/FINED
8	XCIN	XCIN
9	XCOUT	XCOUT
10	RES#	RES#
11	XTAL/P37	P37/XTAL
12	VSS	VSS
13	EXTAL/P36	P36/EXTAL
14	VCC	VCC
15	P35/NMI	P35/UPSEL/NMI
16	P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4	P34/TRST#/MTIOC0A/TMCI3/PO12/POE10# /SCK6/SCK0/IRQ4
17	P33/MTIOC0D/TMRI3/POE3#/RXD6/SMISO6 /SSCL6/IRQ3-DS	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI3/PO 11/POE4#/POE11#/RXD6/RXD0/SMISO6/S MISO0/SSCL6/SSCL0/CRX0/IRQ3-DS
18	P32/MTIOC0C/TMO3/TXD6/SMOSI6/SSDA6/ IRQ2-DS/RTCOUT/RTCIC2	P32/MTIOC0C/TIOCC0/TMO3/PO10/RTCOU T/RTCIC2/POE0#/POE10#/TXD6/TXD0/SMC SI6/SMOSI0/SSDA6/SSDA0/CTX0/USB0_VE USEN/IRQ2-DS
19	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/I RQ1-DS/RTCIC1	P31/TMS/MTIOC4D/TMCI2/PO9/RTCIC1/CT S1#/RTS1#/SS1#/SSLB0-A/IRQ1-DS
20	P30/MTIOC4B/TMRI3/POE8#/RXD1/SMISO1 /SSCL1/IRQ0-DS/RTCIC0	P30/TDI/MTIOC4B/TMRI3/P08/RTCIC0/POE 8#/RXD1/SMISO1/SSCL1/MISOB-A/IRQ0-D S
21	P27/CS3#/MTIOC2B/TMCI3/SCK1	P27/TCK/CS7#/MTIOC2B/TMCI3/PO7/SCK1 RSPCKB-A
22	P26/ <mark>CS2#</mark> /MTIOC2A/TMO1/TXD1/SMOSI1/S SDA1	P26/TDO/CS6#/MTIOC2A/TMO1/P06/TXD1/ CTS3#/RTS3#/SMOSI1/SS3#/SSDA1/MOSIE -A
23	P25/CS1#/MTIOC4C/MTCLKB/ADTRG0#	P25/CS5#/EDACK1/MTIOC4C/MTCLKB/TIO CA4/P05/RXD3/SMISO3/SSCL3/ADTRG0#
24	P24/ <mark>CS0#</mark> /MTIOC4A/MTCLKA/TMRI1	P24/CS4#/EDREQ1/MTIOC4A/MTCLKA/TIO CB4/TMRI1/PO4/SCK3/USB0_VBUSEN
25	P23/MTIOC3D/MTCLKD/CTS0#/RTS0#/SS0 #	P23/EDACK0/MTIOC3D/MTCLKD/TIOCD3/P O3/TXD3/CTS0#/RTS0#/SMOSI3/SS0#/SSD A3
26	P22/MTIOC3B/MTCLKC/TMO0/SCK0	P22/EDREQ0/MTIOC3B/MTCLKC/TIOCC3/T MO0/PO2/SCK0/USB0_OVRCURB
27	P21/MTIOC1B/TMCI0/RXD0/SMISO0/SSCL0	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI0/PO 1/RXD0/SMISO0/SSCL0/USB0_EXICEN/IRC 9

Table 3.3	Comparative Listing	of Pin Functions	(100pin Package (QFP))
-----------	---------------------	------------------	------------------------

100pin	RX210 (LFQFP)	RX651 (LQFP)
28	P20/MTIOC1A/TMRI0/TXD0/SMOSI0/SSDA0	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TXD0/S
		MOSI0/SSDA0/USB0_ID/IRQ8
29	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/SCK	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIOCB0/
	1/MISOA/ <mark>SDA-DS</mark> /IRQ7	TCLKD/TMO1/PO15/POE8#/SCK1/TXD3/SM
20		OSI3/SSDA3/SDA2-DS/IRQ7/ADTRG1#
30	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/SMO SI1/SSDA1/MOSIA/SCL-DS/IRQ6/RTCOUT/	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/T MO2/P014/RTCOUT/TXD1/RXD3/SMOSI1/S
	ADTRG0#	MISO3/SSDA1/SSCL3/SCL2-DS/USB0_VBU
	AD 11(00#	S/USB0_VBUSEN/USB0_OVRCURB/IRQ6/A
		DTRG0#
31	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/SMIS	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB/TM
	O1/SSCL1/IRQ5	CI2/PO13/RXD1/SCK3/SMISO1/SSCL1/CRX
		1-DS/IRQ5
32	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/RTS1	P14/MTIOC3A/MTCLKA/TIOCB5/TCLKA/TM
	#/SS1#/IRQ4	RI2/PO15/CTS1#/RTS1#/SS1#/CTX1/USB0_
		OVRCURA/IRQ4
33	P13/MTIOC0B/TMO3/SDA/IRQ3	P13/MTIOC0B/TIOCA5/TMO3/PO13/TXD2/S
0.4		MOSI2/SSDA2/SDA0[FM+]/IRQ3/ADTRG1#
34	P12/TMCI1/ <mark>SCL</mark> /IRQ2	P12/TMCI1/RXD2/SMISO2/SSCL2/SCL0[FM +]/IRQ2
35	PH3/TMCI0	VCC USB
36	PH2/TMRI0/IRQ1	USB0 DM
37	PH1/TMO0/IRQ0	USB0_DM
38	PH0/CACREF	VSS USB
39	P55/WAIT#/MTIOC4D/TMO3	P55/WAIT#/EDREQ0/MTIOC4D/TMO3/CRX1
39	F35/WAT#/MT10C4D/TM03	/IRQ10
40	P54/ALE/MTIOC4B/TMCI1	P54/ALE/EDACK0/MTIOC4B/TMCI1/CTS2#/
		RTS2#/SS2#/CTX1
41	BCLK/P53	P53/BCLK
42	P52/RD#	P52/RD#/RXD2/SMISO2/SSCL2/SSLB3-A
43	P51/WR1#/BC1#/WAIT#	P51/WR1#/BC1#/WAIT#/SCK2/SSLB2-A
44	P50/WR0#/WR#	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/SSL
		B1-A
45	PC7/A23/CS0#/MTIOC3A/TMO2/MTCLKB/T	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/TMO
	XD8/SMOSI8/SSDA8/MISOA/CACREF	2/TOC0/PO31/CACREF/TXD8/SMOSI8/SSD
		A8/MISOA-A/TXD10/SMOSI10/SSDA10/IRQ
46	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/R	14 PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/TI
46	XD8/SMISO8/SSCL8/MOSIA	C0/PO30/RXD8/SMISO8/SSCL8/MOSIA-A/R
		XD10/SMISO10/SSCL10/IRQ13
47	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T
	MRI2/SCK8/RSPCKA	MRI2/PO29/SCK8/RSPCKA-A/SCK10
48	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P
	OE0#/SCK5/CTS8#/RTS8#/SS8#/SSLA0	O25/POE0#/SCK5/CTS8#/RTS8#/SS8#/SSL
		A0-A/CTS10#/RTS10#/SS10#
49	PC3/A19/MTIOC4D/TXD5/SMOSI5/SSDA5	PC3/A19/MTIOC4D/TCLKB/PO24/TXD5/SM
		OSI5/SSDA5
50	PC2/A18/MTIOC4B/RXD5/SMISO5/SSCL5/S	PC2/A18/MTIOC4B/TCLKA/PO21/RXD5/SMI
	SLA3	SO5/SSCL5/SSLA3-A
51	PC1/A17/MTIOC3A/SCK5/SSLA2	PC1/A17/MTIOC3A/TCLKD/PO18/SCK5/SSL
50	DOMA ANNATIO OCCUPTOR UPTOR UPOCE VICO	
52	PC0/A16/MTIOC3C/CTS5#/RTS5#/SS5#/SS	PC0/A16/MTIOC3C/TCLKC/PO17/CTS5#/RT
	LA1	S5#/SS5#/SSLA1-A/IRQ14

100pin	RX210 (LFQFP)	RX651 (LQFP)
53	PB7/A15/MTIOC3B/TXD9/SMOSI9/SSDA9	PB7/A15/MTIOC3B/TIOCB5/PO31/TXD9/SM
		OSI9/SSDA9/TXD11/SMOSI11/SSDA11/SDS
		I_D1-B
54	PB6/A14/MTIOC3D/RXD9/SMISO9/SSCL9	PB6/A14/MTIOC3D/TIOCA5/PO30/RXD9/SM
		ISO9/SSCL9/RXD11/SMISO11/SSCL11/SDS
		I_D0-B
55	PB5/A13/MTIOC2A/MTIOC1B/TMRI1/POE1#	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/TMRI
	/SCK9	1/PO29/POE4#/SCK9/SCK11/SDSI_CLK-B
56	PB4/A12/CTS9#/RTS9#/SS9#	PB4/A12/TIOCA4/PO28/CTS9#/RTS9#/SS9#
		/CTS11#/RTS11#/SS11#/SDSI_CMD-B
57	PB3/A11/MTIOC0A/MTIOC4A/TMO0/POE3#/	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/TCLK
•	SCK6	D/TMO0/PO27/POE11#/SCK6/SDSI D3-B
58	PB2/A10/CTS6#/RTS6#/SS6#	PB2/A10/TIOCC3/TCLKC/PO26/CTS6#/RTS
00	1 02/110/01/00#/11/00#/000#	6#/SS6#/SDSI D2-B
59	PB1/A9/MTIOC0C/MTIOC4C/TMCI0/TXD6/S	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/TMCI0
59	MOSI6/SSDA6/IRQ4-DS	/PO25/TXD6/SMOSI6/SSDA6/IRQ4-DS
60	VCC	VCC
61	PB0/A8/MTIC5W/RXD6/SMISO6/SSCL6/RS	PB0/A8/MTIC5W/TIOCA3/PO24/RXD6/SMIS
	РСКА	O6/SSCL6/IRQ12
62	VSS	VSS
63	PA7/A7/MISOA	PA7/A7/TIOCB2/PO23/MISOA-B
64	PA6/A6/MTIC5V/MTCLKB/TMCI3/POE2#/CT	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI3/P
	S5#/RTS5#/SS5#/MOSIA	O22/POE10#/CTS5#/RTS5#/SS5#/MOSIA-B
65	PA5/A5/RSPCKA	PA5/A5/MTIOC6B/TIOCB1/PO21/RSPCKA-B
66	PA4/A4/MTIC5U/MTCLKA/TMRI0/TXD5/SM	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI0/P
00	OSI5/SSDA5/SSLA0/IRQ5-DS/CVREFB1	020/TXD5/SMOSI5/SSDA5/SSLA0-B/IRQ5-
	0313/33DA3/33EA0/IRQ3-D3/CVREFB1	DS
67	PA3/A3/MTIOC0D/MTCLKD/RXD5/SMISO5/	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/
07	SSCL5/IRQ6-DS/CMPB1	PO19/RXD5/SMISO5/SSCL5/IRQ6-DS
<u></u>		
68	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5/SSC
		L5/SSLA3-B
69	PA1/A1/MTIOC0B/MTCLKC/SCK5/SSLA2/C	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/TIOC
	VREFA	B0/P017/SCK5/SSLA2-B/IRQ11
70	PA0/A0/BC0#/MTIOC4A/SSLA1/CACREF	PA0/A0/BC0#/MTIOC4A/MTIOC6D/TIOCA0/
		CACREF/PO16/SSLA1-B
71	PE7/D15[A15/D15]/IRQ7/ <mark>AN015</mark>	PE7/D15[A15/D15]/MTIOC6A/TOC1/MISOB-
		B/MMC_RES#-B/SDHI_WP-B/IRQ7/AN105
72	PE6/D14[A14/D14]/IRQ6/AN014	PE6/D14[A14/D14]/MTIOC6C/TIC1/MOSIB-B
		/MMC CD-B/SDHI CD-B/IRQ6/AN104
73	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/IRQ	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/RSP
	5/AN013	CKB-B/IRQ5/AN103
74	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/AN0	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/PO2
<i>,</i> ,	12/CMPA2	8/SSLB0-B/AN102
75		
75	PE3/D11[A11/D11]/MTIOC4B/POE8#/CTS12 #/RTS12#/SS12#/AN011/CMPA1	PE3/D11[A11/D11]/MTIOC4B/PO26/POE8#/
	#/NISIZ#/SSIZ#/ANUTI/GWPAT	TOC3/CTS12#/RTS12#/SS12#/MMC_D7-B/A
70		
76	PE2/D10[A10/D10]/MTIOC4A/RXD12/RXDX1	PE2/D10[A10/D10]/MTIOC4A/PO23/TIC3/RX
	2/SMISO12/SSCL12/IRQ7-DS/AN010/CVRE	D12/SMISO12/SSCL12/RXDX12/SSLB3-B/M
	FB0	MC_D6-B/IRQ7-DS/AN100
77	PE1/D9[A9/D9]/MTIOC4C/TXD12/TXDX12/SI	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO18/T
	OX12/SMOSI12/SSDA12/AN009/CMPB0	XD12/SMOSI12/SSDA12/TXDX12/SIOX12/S
		SLB2-B/MMC_D5-B/ANEX1
70	PE0/D8[A8/D8]/SCK12/AN008	PE0/D8[A8/D8]/MTIOC3D/SCK12/SSLB1-B/
78	FEU/DOLAO/DOJ/SCK IZ/ANUUO	

RX65N/RX651 Group RX210 Group

100pin	RX210 (LFQFP)	RX651 (LQFP)
79	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3/MM
		C_D1-B/SDHI_D1-B/QIO1-B/QMI-B/IRQ7/AN 107
80	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE4#/S
00		SLC2/MMC D0-B/SDHI D0-B/QIO0-B/QMO-
		B/IRQ6/AN106
81	PD5/D5[A5/D5]/MTIC5W/POE2#/IRQ5	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/POE10#/
		SSLC1/MMC_CLK-B/SDHI_CLK-B/QSPCLK-
		B/IRQ5/AN113
82	PD4/D4[A4/D4] <mark>/POE3#</mark> /IRQ4	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSLC0/M MC CMD-B/SDHI CMD-B/QSSL-B/IRQ4/AN
		112
83	PD3/D3[A3/D3]/POE8#/IRQ3	PD3/D3[A3/D3]/MTIOC8D/POE8#/TOC2/RS
		PCKC/MMC_D3-B/SDHI_D3-B/QIO3-B/IRQ3/
		AN111
84	PD2/D2[A2/D2]/MTIOC4D/IRQ2	PD2/D2[A2/D2]/MTIOC4D/TIC2/CRX0/MISO
		C/MMC_D2-B/SDHI_D2-B/QIO2-B/IRQ2/AN1
85	PD1/D1[A1/D1]/MTIOC4B/IRQ1	10 PD1/D1[A1/D1]/MTIOC4B/POE0#/CTX0/MO
00	FD1/D1[A1/D1]/M110C4B/IRQ1	SIC/IRQ1/AN109
86	PD0/D0[A0/D0]/IRQ0	PD0/D0[A0/D0]/POE4#/IRQ0/AN108
87	P47/AN007	P47/IRQ15-DS/AN007
88	P46/AN006	P46/IRQ14-DS/AN006
89	P45/AN005	P45/IRQ13-DS/AN005
90	P44/AN004	P44/IRQ12-DS/AN004
91	P43/AN003	P43/IRQ11-DS/AN003
92	P42/AN002	P42/IRQ10-DS/AN002
93	P41/AN001	P41/IRQ9-DS/AN001
94	VREFL0	VREFL0
95	P40/AN000	P40/IRQ8-DS/AN000
96	VREFH0	VREFH0
97	AVCC0	AVCC0
98	P07/ADTRG0#	P07/IRQ15/ADTRG0#
99	AVSS0	AVSS0
100	P05/DA1	P05/IRQ13/DA1

3.4 100pin Package (TFLGA)

Table 3.4 shows a Comparative Listing of Pin Functions (100pin Package (TFLGA)).

100pin TFLGA	RX210	RX651
A1	P05/DA1	P05/IRQ13/DA1
A2	VREFH	AVCC1
A3	P07/ADTRG0#	P07/IRQ15/ADTRG0#
A4	VREFL0	VREFL0
A5	P43/AN003	P43/IRQ11-DS/AN003
A6	PD0/D0[A0/D0]/IRQ0	PD0/D0[A0/D0]/POE4#/IRQ0/AN108
A7	PD4/D4[A4/D4]/ <mark>POE3#</mark> /IRQ4	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSLC0/M MC_CMD-B/SDHI_CMD-B/QSSL-B/IRQ4/AN 112
A8	PE0/D8[A8/D8]/SCK12/AN008	PE0/D8[A8/D8]/MTIOC3D/SCK12/SSLB1-B/ MMC_D4-B/ANEX0
A9	PE1/D9[A9/D9]/MTIOC4C/TXD12/TXDX12/SI OX12/SMOSI12/SSDA12/AN009/CMPB0	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO18/T XD12/SMOSI12/SSDA12/TXDX12/SIOX12/S SLB2-B/MMC_D5-B/ANEX1
A10	PE2/D10[A10/D10]/MTIOC4A/RXD12/RXDX1 2/SMISO12/SSCL12/IRQ7-DS/AN010/CVRE FB0	PE2/D10[A10/D10]/MTIOC4A/PO23/TIC3/RX D12/SMISO12/SSCL12/RXDX12/SSLB3-B/M MC_D6-B/IRQ7-DS/AN100
A11	P03/DA0	EMLE
A12	AVSS0	AVSS0
A13	AVCC0	AVCC0
B1	P40/AN000	P40/IRQ8-DS/AN000
B2	P44/AN004	P44/IRQ12-DS/AN004
B3	PD1/D1[A1/D1]/MTIOC4B/IRQ1	PD1/D1[A1/D1]/MTIOC4B/POE0#/CTX0/MO SIC/IRQ1/AN109
B4	PD3/D3[A3/D3]/POE8#/IRQ3	PD3/D3[A3/D3]/MTIOC8D/POE8#/TOC2/RS PCKC/MMC_D3-B/SDHI_D3-B/QIO3-B/IRQ3/ AN111
B5	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE4#/S SLC2/MMC_D0-B/SDHI_D0-B/QIO0-B/QMO- B/IRQ6/AN106
B6	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3/MM C_D1-B/SDHI_D1-B/QIO1/QMI-B/IRQ7/AN10 7
B7	PE3/D11[A11/D11]/MTIOC4B/POE8#/CTS12 #/RTS12#/SS12#/AN011/CMPA1	PE3/D11[A11/D11]/MTIOC4B/PO26/POE8#/ TOC3/CTS12#/RTS12#/SS12#/MMC_D7-B/A N101
B8	VCL	VCL
B9	VREFL	AVSS1
B10	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#	PJ3/EDACK1/MTIOC3C/CTS6#/RTS6#/CTS 0#/RTS0#/SS6#/SS0#
B11	VREFH0	VREFH0
B12	P42/AN002	P42/IRQ10-DS/AN002
B13	P47/AN007	P47/IRQ15-DS/AN007
C1	PD2/D2[A2/D2]/MTIOC4D/IRQ2	PD2/D2[A2/D2]/MTIOC4D/TIC2/CRX0/MISO C/MMC_D2-B/SDHI_D2-B/QIO2-B/IRQ2/AN1 10

Table 3.4	Comparative Listing of Pin Functions (100pin Package (TFLGA))
-----------	---

100pin TFLGA	RX210	RX651	
C2	PD5/D5[A5/D5]/MTIC5W/POE2#/IRQ5	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/POE10#/	
		SSLC1/MMC_CLK-B/SDHI_CLK-B/QSPCLK- B/IRQ5/AN113	
C3	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/IRQ	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/RSP	
	5/AN013	CKB-B/IRQ5/AN103	
C4	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/AN0 12/CMPA2	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/PO2 8/SSLB0-B/AN102	
C5	XCIN	XCIN	
C6	XCOUT	XCOUT	
C7	MD/FINED	MD/FINED	
C8	PJ1/MTIOC3A	VBATT	
C9	P45/AN005	P45/IRQ13-DS/AN005	
C10	P46/AN006	P46/IRQ14-DS/AN006	
C11	PE6/D14[A14/D14]/IRQ6/AN014	PE6/D14[A14/D14]/MTIOC6C/TIC1/MOSIB-B /MMC_CD-B/SDHI_CD-B/IRQ6/AN104	
C12	PE7/D15[A15/D15]/IRQ7/AN015	PE7/D15[A15/D15]/MTIOC6A/TOC1/MISOB- B/MMC RES#-B/SDHI WP-B/IRQ7/AN105	
C13	PA1/A1/MTIOC0B/MTCLKC/SCK5/SSLA2/C	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/TIOC B0/PO17/SCK5/SSLA2-B/IRQ11	
D1	PA0/A0/BC0#/MTIOC4A/SSLA1/CACREF	PA0/A0/BC0#/MTIOC4A/MTIOC6D/TIOCA0/ CACREF/PO16/SSLA1-B	
D2	XTAL/P37	XTAL/P37	
D3	VSS	VSS	
D4	RES#	RES#	
D5	P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4	TRST#/P34/MTIOC0A/TMCI3/PO12/POE10# /SCK6/SCK0/IRQ4	
D6	P41/AN001	P41/IRQ9-DS/AN001	
D7	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5/SSC L5/SSLA3-B	
D8	PA6/A6/MTIC5V/MTCLKB/TMCI3/POE2#/CT S5#/RTS5#/SS5#/MOSIA	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI3/P O22/POE10#/CTS5#/RTS5#/SS5#/MOSIA-B	
D9	PA4/A4/MTIC5U/MTCLKA/TMRI0/TXD5/SM OSI5/SSDA5/SSLA0/IRQ5-DS/CVREFB1	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI0/P O20/TXD5/SMOSI5/SSDA5/SSLA0-B/IRQ5- DS	
D10	PA5/A5/RSPCKA	PA5/A5/MTIOC6B/TIOCB1/PO21/RSPCKA-B	
D11	PA3/A3/MTIOC0D/MTCLKD/RXD5/SMISO5/ SSCL5/IRQ6-DS/CMPB1	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ PO19/RXD5/SMISO5/SSCL5/IRQ6-DS	
D12	EXTAL/P36	EXTAL/P36	
D13	VCC	VCC	
E1	P35/NMI	UPSEL/P35/NMI	
E2	P32/MTIOC0C/TMO3/TXD6/SMOSI6/SSDA6/ IRQ2-DS/RTCOUT/RTCIC2	P32/MTIOC0C/TIOCC0/TMO3/PO10/RTCOU T/RTCIC2/POE0#/POE10#/TXD6/TXD0/SMO SI6/SMOSI0/SSDA6/SSDA0/CTX0/USB0_VB USEN/IRQ2-DS	
E3	P12/TMCI1/SCL/IRQ2	P12/TMCI1/RXD2/SMISO2/SSCL2/SCL0[FM +]/IRQ2	
E4	PB3/A11/MTIOC0A/MTIOC4A/TMO0/POE3#/ SCK6	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/TCLK D/TMO0/PO27/POE11#/SCK6/SDSI_D3-B	
E5	PB2/A10/CTS6#/RTS6#/SS6#	PB2/A10/TIOCC3/TCLKC/PO26/CTS6#/RTS 6#SS6#/SDSI D2-B	
E10	PB0/A8/MTIC5W/RXD6/SMISO6/SSCL6/RS PCKA	PB0/A8/MTIC5W/TIOCA3/PO24/RXD6/SMIS O6/SSCL6/IRQ12	

100pin TFLGA	RX210	RX651
E11	PA7/A7/MISOA	PA7/A7/TIOCB2/PO23/MISOA-B
E11 E12	VSS	VSS
E13	P33/MTIOC0D/TMRI3/POE3#/RXD6/SMISO6	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI3/PO
	/SSCL6/IRQ3-DS	11/POE4#/POE11#/RXD6/RXD0/SMISO6/S
		MISO0/SSCL6/SSCL0/CRX0/IRQ3-DS
F1	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/I RQ1-DS/RTCIC1	TMS/P31/MTIOC4D/TMCI2/PO9/RTCIC1/CT S1#/RTS1#/SS1#/SSLB0-A/IRQ1-DS
F2	P30/MTIOC4B/TMRI3/POE8#/RXD1/SMISO1	TDI/P30/MTIOC4B/TMRI3/P08/RTCIC0/POE
	/SSCL1/IRQ0-DS/RTCIC0	8#/RXD1/SMISO1/SSCL1/MISOB-A/IRQ0-D
		S
F3	P27/CS3#/MTIOC2B/TMCI3/SCK1	TCK/P27/CS7#/MTIOC2B/TMCI3/PO7/SCK1/
		RSPCKB-A
F4	BCLK/P53	P53/BCLK
F10	P52/RD#	P52/RD#/RXD2/SMISO2/SSCL2/SSLB3-A
F11	PB5/A13/MTIOC2A/MTIOC1B/TMRI1/POE1#	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/TMRI
	/SCK9	1/PO29/POE4#/SCK9/SCK11/SDSI_CLK-B
F12	PB4/A12/CTS9#/RTS9#/SS9#	PB4/A12/TIOCA4/PO28/CTS9#/RTS9#/SS9#
		/CTS11#/RTS11#/SS11#/SDSI_CMD-B
F13	PB1/A9/MTIOC0C/MTIOC4C/TMCI0/TXD6/S	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/TMCI0
	MOSI6/SSDA6/IRQ4-DS	/PO25/TXD6/SMOSI6/SSDA6/IRQ4-DS
G1	VCC	VCC
G2	P26/CS2#/MTIOC2A/TMO1/TXD1/SMOSI1/S	TDO/P26/CS6#/MTIOC2A/TMO1/PO6/TXD1/
	SDA1	CTS3#/RTS3#/SMOSI1/SS3#/SSDA1/MOSIB
		-A
G3	P25/CS1#/MTIOC4C/MTCLKB/ADTRG0#	P25/CS5#/EDACK1/MTIOC4C/MTCLKB/TIO
00		CA4/PO5/RXD3/SMISO3/SSCL3/ADTRG0#
G4	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/SMO	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/T
04	SI1/SSDA1/MOSIA/SCL-DS/IRQ6/RTCOUT/	MO2/PO14/RTCOUT/TXD1/RXD3/SMOSI1/S
	ADTRG0#	MISO3/SSDA1/SSCL3/SCL2-DS/USB0_VBU
		S/USB0_VBUSEN/USB0_OVRCURB/IRQ6/A
		DTRG0#
G10	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/SMIS	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB/TM
010	01/SSCL1/IRQ5	CI2/PO13/RXD1/SCK3/SMISO1/SSCL1/CRX
	01/00021/11/03	1-DS/IRQ5
G11	P55/WAIT#/MTIOC4D/TMO3	P55/WAIT#/EDREQ0/MTIOC4D/TMO3/CRX1
GII	P55/WAIT#/WITIOC4D/TMO5	
- 010		
G12	P54/ALE/MTIOC4B/TMCI1	P54/ALE/EDACK0/MTIOC4B/TMCI1/CTS2#/
0.40		RTS2#/SS2#/CTX1
G13	PC7/A23/CS0#/MTIOC3A/TMO2/MTCLKB/T	UB/PC7/A23/CS0#/MTIOC3A/MTCLKB/TMO
	XD8/SMOSI8/SSDA8/MISOA/CACREF	2/TOC0/PO31/CACREF/TXD8/SMOSI8/SSD
		A8/MISOA-A/TXD10/SMOSI10/SSDA10/IRQ
		14
H1	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/R	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/TI
	XD8/SMISO8/SSCL8/MOSIA	C0/PO30/RXD8/SMISO8/SSCL8/MOSIA-A/R
		XD10/SMISO10/SSCL10/IRQ13
H2	PB6/A14/MTIOC3D/RXD9/SMISO9/SSCL9	PB6/A14/MTIOC3D/TIOCA5/PO30/RXD9/SM
		ISO9/SSCL9/SMISO11/SSCL11/SDSI_D0-B
H3	PB7/A15/MTIOC3B/TXD9/SMOSI9/SSDA9	PB7/A15/MTIOC3B/TIOCB5/PO31/TXD9/SM
		OSI9/SSDA9/TXD11/SMOSI11/SSDA11/SDS
		I_D1-B
H4	P24/CS0#/MTIOC4A/MTCLKA/TMRI1	P24/CS4#/EDREQ1/MTIOC4A/MTCLKA/TIO
	•	CB4/TMRI1/PO4/SCK3/USB0 VBUSEN

100pin			
TFLGA	RX210	RX651	
H10	P21/MTIOC1B/TMCI0/RXD0/SMISO0/SSCL0	 P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI0/P0 1/RXD0/SMISO0/SSCL0/USB0_EXICEN/IR0 9 	
H11	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/SCK 1/MISOA/SDA-DS/IRQ7	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIOCB0/ TCLKD/TMO1/PO15/POE8#/SCK1/TXD3/SM OSI3/SSDA3/SDA2-DS/IRQ7/ADTRG1#	
H12	P13/MTIOC0B/TMO3/SDA/IRQ3	P13/MTIOC0B/TIOCA5/TMO3/PO13/TXD2/S MOSI2/SSDA2/SDA0[FM+]/IRQ3/ADTRG1#	
H13	PH0/CACREF	VSS_USB	
J1	PH3/TMCI0	VCC_USB	
J2	P50/WR0#/WR#	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/SSL B1-A	
J3	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P OE0#/SCK5/CTS8#/RTS8#/SS8#/SSLA0	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/P O25/POE0#/SCK5/CTS8#/RTS8#/SS8#/SSL A0-A/CTS10#/RTS10#/SS10#	
J4	PC0/A16/MTIOC3C/CTS5#/RTS5#/SS5#/SS LA1	PC0/A16/MTIOC3C/TCLKC/PO17/CTS5#/RT S5#/SS5#/SSLA1-A/IRQ14	
J10	PC1/A17/MTIOC3A/SCK5/SSLA2	PC1/A17/MTIOC3A/TCLKD/PO18/SCK5/SSL A2-A/IRQ12	
J11	P23/MTIOC3D/MTCLKD/CTS0#/RTS0#/SS0 #	P23/EDACK0/MTIOC3D/MTCLKD/TIOCD3/P O3/TXD3/CTS0#/RTS0#/SMOSI3/SS0#/SSD A3	
J12	P22/MTIOC3B/MTCLKC/TMO0/SCK0	P22/EDREQ0/MTIOC3B/MTCLKC/TIOCC3/T MO0/PO2/SCK0/USB0_OVRCURB	
J13	P20/MTIOC1A/TMRI0/TXD0/SMOSI0/SSDA0		
K1	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/RTS1 #/SS1#/IRQ4	P14/MTIOC3A/MTCLKA/TIOCB5/TCLKA/TM RI2/P015/CTS1#/RTS1#/SS1#/CTX1/USB0_ OVRCURA/IRQ4	
K2	PH2/TMRI0/IRQ1	USB0_DM	
K3	PH1/TMO0/IRQ0 USB0 DP		
K4	P51/WR1#/BC1#/WAIT# P51/WR1#/BC1#/WAIT#/SCK2/SSLB2		
K5	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T MRI2/SCK8/RSPCKA	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/T MRI2/PO29/SCK8/RSPCKA-A/SCK10	
K6	PC3/A19/MTIOC4D/TXD5/SMOSI5/SSDA5 PC3/A19/MTIOC4D/TCLKB/PO24/ OSI5/SSDA5		
K7	PC2/A18/MTIOC4B/RXD5/SMISO5/SSCL5/S SLA3	PC2/A18/MTIOC4B/TCLKA/PO21/RXD5/SMI SO5/SSCL5/SSLA3-A	
K8	P05/DA1	P05/IRQ13/DA1	
K9	VREFH	AVCC1	
K10	P07/ADTRG0#	P07/IRQ15/ADTRG0#	

RX65N/RX651 Group RX210 Group

4. Notes on Migration

There are some notes about difference between RX210 Group and RX651 Group.

Description about the Hardware, there is on the < Chapter 4.1 Notes on Pin Design >.

Description about the Software, there is on the <Chapter 4.2 Notes on Function Setting>.

4.1 Notes on Pin Design

4.1.1 Operating Modes

The Operating mode has difference between RX210 Group and RX651 Group.

On the RX651 Group, the chip starts up in boot mode (FINE interface) when the MD pin is set to the low level at the time of release from the reset state and then is then switched to the high level within 20 to 100 msec.

RX210		RX651	RX651		
MD1	PC7	Operating modes	MD	UB	Operating modes
0	0	Boot mode	0	0	Boot mode (SCI Interface)
0	1	User boot mode	0	1	Boot mode (USB Interface)
	_	_	0->1	0	Boot mode (FINE Interface)
1		Single chip mode	1		Single chip mode

Table 4.1 Comparative Listing of Operating Modes

4.1.2 VCL Pin (External Capacitor)

Connect a smoothing capacitor rated at 0.22 μ F to the VCL pin of the RX651 Group for stabilization of the internal power supply.

4.1.3 VBATT Pin

On the RX651 Group, when the voltage at the VCC pin is dropped, power can be supplied to the realtime clock (RTC) and sub-clock oscillator from the dedicated battery backup power pin (VBATT pin).

Connect the VBATT pin to the VCC pin when do not use the battery backup function or do not use Sub-clock oscillator with realtime-clock (RTC).

4.1.4 Main Clock Oscillator

When connecting an oscillator to EXTAL pin and XTAL pin of RX651 Group, frequency should be in a range of 8 MHz to 24 MHz

On the RX651 Group, EXTAL pin and XTAL pin can not be used as General I/O ports.

4.2 Notes on Function Settings

4.2.1 Notes on Using Power-On Reset and PLL Circuit Together

On the RX651 Group, when using a power-on reset and the PLL circuit together, set the LVD1CR1.LVD1IDTSEL[1:0] bits or LVD2CR1.LVD2IDTSEL[1:0] bits to 01b, and select the voltage monitoring interrupt to be generated when a drop (Vcc < Vdet) is detected.

In addition, at the beginning of the interrupt handling routine, set the SCKCR3.CKSEL[2:0] bits to a value other than 100b to select a clock source other than the PLL circuit, then set the PLLCR2.PLLEN bit to 1 to stop the PLL circuit.

4.2.2 Data for Programming Reserved Areas and Reserved Bits in the Option-Setting Memory

On the RX651 Group, when reserved areas and reserved bits in the option-setting memory are within the scope of programming, write 1 as the value for all bits of reserved areas and all reserved bits. Normal operation cannot be guaranteed if 0 is written to such bits.

4.2.3 Point for Caution when Shifting from Low-Speed Operating Mode to Software Standby Mode

On the RX651 Group, on return from software standby, the chip enters high-speed operating mode. Even if a WAIT instruction is executed in low-speed operating mode, if generation of the return interrupt precedes completion of the transition to software standby and processing for the transition is canceled, the chip does not return to the mode before execution of the WAIT instruction. If this creates a problem, set the OPCCR.OPCM[2:0] bits to 000b during processing of the return interrupt.

4.2.4 Interrupt Requests in Software Standby Mode

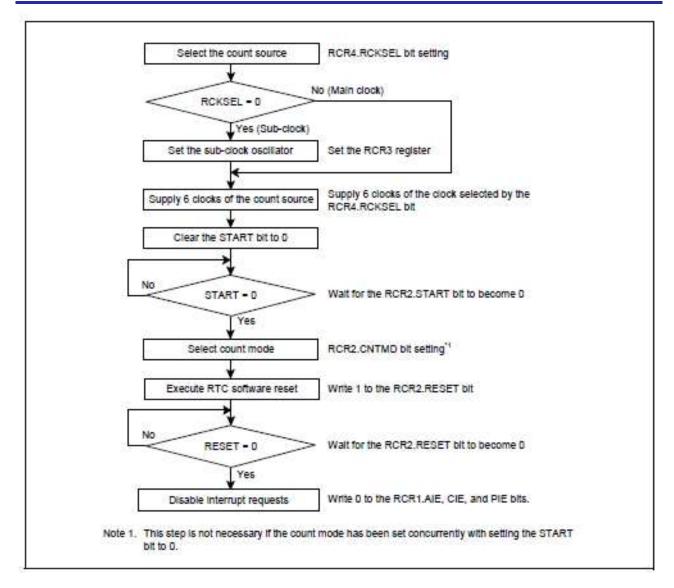
On the RX651 Group, when an interrupt request occurs in software standby mode but the interrupt source is not set as a source for exiting software standby mode, the request is held in the ICU. The request is handled after exiting by another interrupt source.

Note that the interrupt request for the external pin interrupt is not held.

4.2.5 Setting Value of the Port Direction Register (PDR) for each Packages

In the RX651 Group, the initialization of the reserved bits of the Port Direction Register (PDR), refer to the User's Manual <Chapter 22.4 Initialization of the Port Direction Register>

4.2.6 Initialization Procedure When the Realtime Clock is Not to be Used


On the RX651 Group, registers in the RTC are not initialized by a reset. Accordingly, depending on the initial state, the generation of an unintentional interrupt request or operation of the counter may lead to increased power consumption.

For products that do not require a realtime clock, initialize the registers.

Alternatively, when the sub-clock is not used as the system clock or realtime clock, the counter can be stopped by writing 0 (sub-clock oscillator is selected) to the RCR4.RCKSEL bit and stopping the sub-clock.

When making the setting to stop the sub-clock, write 0 to the RCR3.RTCEN bit and write 1 to the SOSCCR.SOSTP bit.

4.2.7 Note on Transmit Enable Bit (TE Bit)

On the RX651 Group, when setting the SCR.TE bit to 0 (serial transmission is disabled) while the pin function is "TXDn", output of the pin becomes high impedance.

Prevent the TXDn line from becoming high impedance by any of the following ways:

- (1) Connect a pull-up resistor to the TXDn line.
- (2) Change the pin function to "general-purpose I/O port, output" before setting the SCR.TE bit to 0.

Set the SCR.TE bit to 1 before changing the pin function to "TXDn".

4.2.8 Note on Stopping Reception When Using the RTS Function in Asynchronous Mode

On the RX651 Group, one clock cycle of PCLK is required for the time from setting the SCR.RE bit to 0 to stopping the RTS signal generator in asynchronous mode.

When reading the RDR (or RDRL) register after setting the SCR.RE bit to 0, confirm that the RE bit has been set to 0

before reading the RDR (or RDRL) register to prevent these two processes from being performed consecutively.

4.2.9 S12AD A/D Conversion Restarting Timing and Termination Timing

It takes a maximum of six ADCLK cycles (in case of RX210 four cycles) for the idle analog unit of the 12-bit A/D converter to be restarted by setting the ADCSR.ADST bit to 1. It takes a maximum of two ADCLK cycles for the operating analog unit of the 12-bit A/D converter to be terminated by setting the ADCSR.ADST bit to 0.

4.2.10 S12AD 12Pin Setting When Using the 12-bit A/D Converter

When using the 12-bit A/D converter unit 0, do not use the P40 to P47, P03, P05, and P07 pins as output pins. We also recommend not using the P00 to P02, P90 to P930, PD0 to PD7, and PE0 to PE7 pins as output pins. If any of the P00 to P02, P90 to P93, PD0 to PE7 pins is used for an output pin, perform A/D conversion several times, eliminate the maximum and minimum values, and obtain the average of the other results.

When using the 12-bit A/D conversion unit1, we recommend not using the P00 to P02, P90 to P93, PD0 to PD7, and PE0 to PE7 pins as output pins. If any of the P00 to P02, P90 to P93, PD0 to PD7, and PE0 to PE7 pins is used for an output pins, perform A/D conversion several times, eliminate the maximum and minimum values, and obtain the average of the other results.

4.2.11 S12AD Caution When Using an External Bus

On the RX651 Group, A/D conversion at the same time as access to an external bus may produce poor results.

In this case, use a software approach, such as performing A/D conversion several times, then obtaining the average after excluding the highest and lowest values.

4.2.12 Note on Usage When Measure against Interference between D/A and A/D Conversion is Enabled

On the RX651 Group, when the DAADSCR.DAADST bit is 1 (measure against interference between D/A and A/D conversion is enabled), do not place the 12-bit A/D converter (unit 1) in the module stop state. It may halt D/A conversion in addition to A/D conversion.

4.2.13 D/A Note on Event Link Operation

On the RX651 Group, when the event link function is used, do not use output buffer amplifier.

4.2.14 Initial Setting Procedure when the Output Buffer Amplifier is Used

On the RX651 Group, when using the output buffer amplifier, enable the amplifier output in the following procedure. An example for channel 0 is described below.

- (1) Confirm that the DACR.DAE and DACR.DAE0 bits are 0.
- (2) Write 0000h to the DACR0 register.
- (3) Set the DAA.SWCR.DAASW0 bit to 1.
- (4) Set the DAA.SWCR.DAAMP0 bit to 1.
- (5) Set the DACR.DAE or DACR.DAOE0 bit to 1. The output buffer amplifier starts the operation.
- (6) Wait for at least 3 μ s and then set the DAAWCR.DAASW0 bit to 0.
- (7) Write a value to be converted in the DADR0 register.

While the output buffer amplifier is operating, setting the DACR.DAE and DACR.DAOE bits to 0 disables the output buffer amplifier. Repeat the procedure from (1) to (7) to use the output buffer amplifier again.

4.2.15 Supplementary Explanation on RAM Self-Test

On the RX651 Group, when a value is written to RAM and then execute a read access to the same address, the value may be read from the buffer, not from the RAM.

Perform the following operation to ensure that a value will be read from RAM.

To read RAM data at an address of 4-aligned bytes (*) after writing a value to the RAM address of the same 4-aligned bytes:

Write a value to any other RAM address which is out of the 4-aligned bytes, and then execute a read access to the RAM address where you want to read.

4.2.16 Setting Number of Flash Memory Access Wait States

On the RX651 Group it is necessary to specify the number of access wait states to be used when accessing the flash memory, based on the system clock (ICLK) frequency of the microcontroller. This setting is made to the ROMWT register.

Table 4.2 shows The Number of Flash Memory Access Wait States.

Table 4.2 The Number of Flash Memory Access Wait States

ltem	ICLK ≤ 50 MHz	50 MHz < ICLK \leq 100 MHz	100 MHz <
Wait states	0 to 2	1 or 2	2

4.2.17 Transferring Firmware to the FCU RAM

On the RX210 Group, FCU commands could only be used if the FCU RAM holds the firmware for the FCU. However, this is not necessary on the RX651 Group.

d

4.2.18 Command of Flash Memory Usage

On the RX210 Group, the Flash memory can be programmed or erased by issuing FCU commands to FCU.

On the RX651 Group, the Flash memory can be programmed or erased by setting the FACI commands specified in the FACI command issuing area and by controlling the FCU.

Table 4.3 shows The Specification Comparison Between FCU Commands and FACI Commands

ltem	FCU Commands (RX210)	FACI commands (RX651)	
Command issuing area Address for programming/erasu (00E0 0000h to 00FF FFFFh)		FACI command issuing area (007E 0000h)	
Available commands	 P/E normal mode transition Status read mode transition Lock bit read mode transition Peripheral clock notification Programming Block erase P/E suspend P/E resume Status register clear Lock bit read 2 Lock bit programming Blank checking 	 Program Block erase P/E suspend P/E resume Status clear Forced stop Configuration setting 	

Table 4.3 The Specification Comparison Between FCU Commands and FACI Commands

4.2.19 Note of ID Code Protection

On the RX210 Group, when the control code is 52h and the ID code is 50h, 72h, 6Fh, 74h, 65h, 63h, 74h, FFh, ..., FFh (from the ID code 1 field), there is no determination of matching and the ID code is always considered to be non-matching. Accordingly, reading, programming, and erasure from the host are prohibited.

On the RX65N Group, when the On-Chip Debugger is connected, the ID Code is authenticated regardless of the setting of SPCC.SPE. For details of ID code authentication operation please refer to RENESAS TECHINICAL UPDATE (TN-RX*-A166A/E)

5. Reference Documents

User's Manual: Hardware

RX210 Group User's Manual: Hardware Rev.1.50 (R01UH0037EJ0150) (The latest version can be downloaded from the Renesas Electronics website.)

RX65N Group, RX651 Group User's Manual: Hardware Rev.1.00 (R01UH0590EJ0100) (The latest version can be downloaded from the Renesas Electronics website.)

RX65N Group, RX651 Group Flash Memory User's Manual: Hardware Interface Rev.1.00 (R01UH0602EJ0100) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates.

- TN-RX*-A164A/E
- TN-RX*-A165A/E
- TN-RX*-A166A/E
- TN-RX*-A173A/E
- TN-RX*-A176A/E

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Sep. 21, 2018		First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and malfunction of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

(Rev.4.0-1 November 2017)

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 1001 Murphy Ranch Road, Mipitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-800 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1628-651-802 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghi) Co., Ltd. Noom 7.09 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghi) Co., Ltd. Noom 7.09 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghei) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics (Shanghei) Co., Ltd. 137, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +86-2475-9600, Fax: +865-2845-9672 Renesas Electronics Singapore Pte. Ltd. 30 Bendemer Road, Unit 106-02 Hyttylku Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia ShinB. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +91-84-07-2905700, Fax: +60-3-7955-9510 Renesas Electronics Malaysia ShinB. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +91-84-07-2905700, Fax: +