To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}$, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.Renesns

H8/300H Tiny Series

Multiplication of Single-Precision Floating-Point Numbers (FMUL)

Introduction

Multiplies single-precision floating-point numbers set in general registers and stores the result in general registers.
Target Device
H8/300H Tiny Series
Contents

1. Function 2
2. Arguments 2
3. Changes to Internal Registers and Flags 2
4. Programming Specifications 3
5. Notes 3
6. Descriptions 4
7. Flowchart 7
8. Program Listing 15
<Reference> Description of Single-Precision Floating-Point Formats 20

1. Function

1. Multiplies single-precision floating-point numbers set in general registers and stores the result in general registers.
2. The arguments are all in the single-precision floating-point data format.

2. Arguments

Description		Storage Location	Data Length (Bytes)
Input	Multiplicand	R0, R1	4
	Multiplier	R2, R3	4
Output	Result	R0, R1	4

3. Changes to Internal Registers and Flags

4. Programming Specifications

5. Notes

The number of cycles in the programming specifications is the value for execution of the example in figure 1 . For details on the floating-point data format, refer to Reference: Description of Single-Precision Floating-Point Formats.

6. Descriptions

6.1 Descriptions of Functions

1. The arguments are as follows.
1) Set the input arguments as follows.

R0: higher-order two bytes of the multiplicand
R1: lower-order two bytes of the multiplicand
R2: higher-order two bytes of the multiplier
R3: lower-order two bytes of the multiplier
2) The FMUL subroutine sets the following output arguments.

R0: higher-order two bytes of the multiplication result
R 1 : lower-order two bytes of the multiplication result
2. The following figure illustrates the execution of the FMUL subroutine. When the input arguments are set as shown below, the subroutine places the result of multiplication in R0 and R1.

Figure 1 Example of FMUL Execution

6.2 Usage Notes

1. The maximum and minimum values handled by the FMUL subroutine are given below.

Maximum positive value: $\mathrm{H}^{\prime} 7 \mathrm{~F} 80000$
Minimum positive value: $\mathrm{H}^{\prime} 00000001$
Maximum negative value: $\mathrm{H}^{\prime} 80000001$
Minimum negative value: H'FF800000
2. Positive single-precision floating-point numbers from H'7F800001 to H'7FFFFFFF are regarded as having the maximum value, H'7F800000. Negative single-precision floating-point numbers from H'FF800000 to H'FFFFFFF are regarded as having the minimum value, H'FF800000.
3. The maximum value is handled as infinity (∞), that is, the result of multiplying other numbers by the maximum value is the maximum value. For example, in multiplication by $100, \infty \times 100=\infty$ and $\infty \times(-100)=-\infty$ (see table $1)$.

Table 1 Examples of Results when Maximum Values are Specified as Arguments

Multiplicand	Multiplier	Result
> H'7F800000 (+m)	Positive value	H'7F800000 (+)
	Negative value	H'FF800000 (-)
< H'FF800000 (-m)	Positive value	H'FF800000 (-)
	Negative value	H'7F800000 (+)
Positive value	> H'7F800000 (+)	H'7F800000 (+)
	< H'FF800000 (-m)	H'FF800000 (-)
Negative value	> H'7F800000 (+)	H'FF800000 (-)
	< H'FF800000 (-)	H'7F800000 (+m)

4. $\mathrm{H}^{\prime} 80000000$ is handled as $\mathrm{H}^{\prime} 00000000$ (zero).
5. The multiplicand and multiplier stored in the general registers are lost through execution of FMUL. When you will still require the input arguments, save them elsewhere in memory beforehand.

6.3 Description of Data Memory

No data memory is used by the FMUL subroutine.

6.4 Example of Usage

After setting the multiplicand and multiplier in the general registers, call the FADD subroutine.

```
WORK1 . RES. W 2 ......... Reservation of the data memory area for setting of the multiplicand by the user program.
WORK2 . RES. W 2 ......... Reservation of the data memory area for setting of the multiplier by the user program.
WORK3 . RES. W 2 ......... Reservation of the data memory area where the product of multiplication will be stored by the user
program.
    MOV.W @WORK1, R0 ........ Sets the multiplicand specified by the user program as an input argument.
    MOV. W @WORK1+2, R1
MOV.W @WORK2, R2 ......... Sets the multiplier specified by the user program as an input argument.
MOV. W @WORK2+2, R3
\begin{tabular}{|ll|l}
\hline & JSR & @FMUL \\
\hline
\end{tabular}
MOV. W RO, @WORK3
Transfers the product set as the output argument to the data memory area of the user program.
```


6.5 Principles of Operation

Multiplication of the single-precision floating-point numbers is according to the following sequence.

1. The multiplicand and multiplier are checked for zero values.

If one or both holds a zero, $\mathrm{H}^{\prime} 00000000$ is output.
2. The multiplicand and multiplier are checked for infinite ($+\infty$ or $-\infty$) values.

If one or both of them is infinite $(+\infty$ or $-\infty)$, the result is as given in table 6.1.
3. The exponents of the multiplicand and multiplier are matched.

Let R1 be the multiplicand (sign bit $=\mathrm{S} 1$, exponent $=\alpha 1$, mantissa $=\beta 1$) and R 2 the multiplier $($ sign bit $=\mathrm{S} 2$,
exponent $=\alpha 2$, mantissa $=\beta 2$); R1 and R2 are then expressed as follows.
$\mathrm{R} 1=(-1)^{\mathrm{S} 1} \times 2^{\alpha 1-127} \times \beta 1$
$\mathrm{R} 2=(-1)^{\mathrm{S} 2} \times 2^{\alpha 2-127} \times \beta 2$
Multiplication is as follows.

$$
R 1 \times R 2=(-1)^{S 1+S 2} \times 2^{\alpha 1+\alpha 2-127-127} \times \beta 1 \times \beta 2
$$

In the floating-point data format, $\mathrm{H}^{\prime} 7 \mathrm{~F}\left(\mathrm{D}^{\prime} 127\right)$ is added to the actual exponent, so the equation will be as follows.

$$
R 1 \times R 2=(-1)^{S 1+S 2} \times 2^{\alpha 1+\alpha 2-127} \times \beta 1 \times \beta 2
$$

Multiplication according to this equation is carried out in the following sequence.

1) The exponents are added to each other.
$H^{\prime} 7 \mathrm{~F}$ ($\mathrm{D}^{\prime} 127$) is added to the actual exponent of a number in the floating-point data format; $\mathrm{H}^{\prime} 7 \mathrm{~F}$ ($\mathrm{D}^{\prime} 127$) is thus subtracted from both $\alpha 1$ and $\alpha 2$, and $\mathrm{H}^{\prime} 7 \mathrm{~F}\left(\mathrm{D}^{\prime} 127\right)$ is added to the exponent of the result. The result may thus be expressed as follows.
$\left(\alpha 1-H^{\prime} 7 F\right)+\left(\alpha 2-H^{\prime} 7 F\right)+H^{\prime} 7 F=\alpha 1+\alpha 2-H^{\prime} 7 F$
One is added to the exponent of a number in denormalized format before the calculation.
2) The mantissas are multiplied by each other.

The implicit MSB is included in the multiplication.
For a number in the denormalized format, the implicit MSB of the mantissa is taken to be zero.
3) The result of multiplication is corrected to produce a number in the floating-point data format.

7. Flowchart

8. Program Listing

53	0034	53	LBL4			
54	0034 770E	54		BLD	\#0,R6L	; Load sign bit
55	0036 450A	55		BCS	LBL6	; Branch if $\mathrm{C}=1$
56	0038	56	LBL5			
57	003879007 F 80	57		MOV.W	\#H'7F80,R0	; Set \#H'7F800000 as result
58	003C 79010000	58		MOV.W	\#H'0000,R1	
59	00405470	59		RTS		
60		60	;			
61	0042	61	LBL6			
62	0042 7900FF80	62		MOV.W	\#H'FF80, R0	; Set \#H'FF800000 as result
63	004679010000	63		MOV.W	\#H'0000,R1	
64	004A 5470	64		RTS		
65		65	;			
66	004C	66	LBL7			
67	004C 7778	67		BLD	\#7,R0L	
68	004E 1200	68		ROTXL	R0H	
69	0050 0C0C	69		MOV.B	R0H, R4L	; Set exponent of multiplicand in R4
70	0052 F400	70		MOV.B	\#H'00,R4H	
71		71	;			
72	0054 777A	72		BLD	\#7, R2L	
73	00561202	73		ROTXL	R2H	
74	0058 0C2D	74		MOV.B	R2H, R5L	; Set exponent of multiplier in R5
75	005A F500	75		MOV.B	\#H'00,R5H	
76		76	;			
77	005C 7278	77		BCLR	\#7,R0L	; Clear bit 7 of ROL
78	005E 0C00	78		MOV.B	ROH, R0H	
79	00604704	79		BEQ	LBL8	; Branch if multiplier is denormalized
80	00627078	80		BSET	\#7,R0L	; Set implicit MSB
81	00644004	81		BRA	LBL9	; Branch always
82	0066	82	LBL8			
83	006679140001	83		ADD.W	\#1, R4	
84	006A	84	LBL9			
85	006A 727A	85		BCLR	\#7,R2L	; Clear bit 7 of R2L
86	006C 0C22	86		MOV.B	R2H, R2H	
87	006E 4704	87		BEQ	LBL10	; Branch if multiplier is denormalized
88	0070 707A	88		BSET	\#7, R2L	; Set implicit MSB
89	00724004	89		BRA	LBL11	; Branch always
90	0074	90	LBL10			
91	007479150001	91		ADD.W	\#1, R5	
92		92	;			
93	0078	93	LBL11			
94	00780954	94		ADD.W	R5, R4	; addition exponents
95	007A 06FE	95		ANDC	\#H'FE, CCR	; Clear C flag of CCR
96	007C BC7F	96		SUBX.B	\#H'7F, R4L	;R4L - \#H'7F - C -> R4L
97	007E B400	97		SUBX.B	\#H'00,R4H	
98		98	;			
99	0080 6DF4	99		PUSH	R4	; Push R4
100	0082 6DF6	100		PUSH	R6	; Push R6
101		101	;			
102	0084 OD04	102		MOV.W	R0, R4	
103	0086 0D15	103		MOV.W	R1, R5	
104		104	;			
105	0088 0CA2	105		MOV.B	R2L, R2H	
106	008A 5E000000	106		JSR	@MULA	;R2L * (R0L:R1) -> (R4:R5)

107	008E	6DF4	107		PUSH	R4	; Push R4
108	0090	6DF5	108		PUSH	R5	;Push R5
109			109				
110	0092	0C32	110		MOV.B	R3H, R2H	;
111	0094	5E000000	111		JSR	@MULA	;R3L * (R0L:R1) -> (R4:R5)
112	0098	6DF4	112		PUSH	R4	; Push R4
113	009A	6DF5	113		PUSH	R5	;Push R5
114			114	;			
115	009C	0CB2	115		MOV.B	R3L, R2H	;R3L * (R0L:R1) -> (R4:R5)
116	009E	5E000000	116		JSR	@MULA	; Push R4
117	00A2	0D42	117		MOV.W	R4, R2	;Push R5
118	OOA4	OD53	118		Mov.w	R5, R3	
119			119	;			
120	00A6	79010000	120		MOV.W	\#H'0000,R1	; Clear R1
121	00AA	6D75	121		POP	R5	; Pop R5
122	OOAC	6D74	122		POP	R4	; Pop R4
123			123	;			
124	OOAE	08D3	124		ADD. ${ }^{\text {B }}$	R5L, R3H	; R3H + R5L + C -> R3H
125	OOBO	OE5A	125		ADDX.B	R5H, R2L	; R2L + R5H + C -> R2L
126	00B2	OEC2	126		ADDX.B	R4L, R2H	; R2H + R4L + C - R2H
127	00B4	0E49	127		ADDX.B	R4H, R1L	;R1L + R4H + C - R1L
128			128	;			
129	00B6	6D75	129		POP	R5	; Pop R5
130	00B8	6D74	130		POP	R4	; Pop R4
131	00BA	0952	131		ADD.W	R5, R2	;R2 + R5 -> R2L
132	00BC	OEC9	132		ADDX.B	R4L, R1L	; R1L + R4L + C -> R1L
133	OOBE	0E41	133		ADDX.B	R4H, R1H	; R1H + R4H + C -> R1H
134			134	;			
135	00C0	6D76	135		POP	R6	; Pop R6
136	00C2	6D74	136		POP	R4	; Pop R4
137	00C4	79140001	137		ADD. W	\#1, R4	
138	00C8	0D44	138		MOV.W	R4, R4	
139			139	;			
140	00CA	474 E	140		BEQ	LBL16	; Branch if R4=0
141	00CC	4B4C	141		BMI	LBL16	; Branch if R4<0
142	OOCE		142	LBL12			
143	OOCE	79340001	143		SUB.W	\#1, R4	
144	00D2	0D44	144		MOV.W	R4, R4	
145	OOD4	4714	145		BEQ	LBL13	; Branch if R4=0
146	00D6	100B	146		SHLL	R3L	; Shift mantissa 1 bit left
147	00D8	1203	147		ROTXL	R3H	
148	00DA	120A	148		ROTXL	R2L	
149	OODC	1202	149		ROTXL	R2H	
150	OODE	1209	150		ROTXL	R1L	
151	OOEO	1201	151		ROTXL	R1H	
152	00E2	44EA	152		BCC	LBL12	; Branch if $\mathrm{C}=0$
153	00E4	1301	153		ROTXR	R1H	; Rotate mantissa 1 bit right
154	00E6	1309	154		ROTXR	R1L	
155	00E8	1302	155		ROTXR	R2H	
156	OOEA		156	LBL13			
157	OOEA	79140001	157		ADD. W	\#1, R4	
158			158	;			
159	OOEE	790500 FF	159		MOV.W	\#H'00FF, R5	
160	00F2	1D45	160		CMP.W	R4, R5	

161	00F4	4418	161		BCC	LBL15	; Branch if R5>R4
162	00F6	770 E	162		BLD	\#0,R6L	; Load sign bit
163	00F8	450A	163		BCS	LBL14	; Branch if $\mathrm{C}=1$
164	00FA	79007F80	164		MOV.W	\#H'7F80,R0	; Set H'7F800000 to result
165	OOFE	79010000	165		MOV.W	\#H'0000,R1	
166	0102	5470	166		RTS		
167			167	;			
168	0104		168	LBL14			
169	0104	7900FF80	169		MOV. w	\#H'FF80,R0	; Set H'FF800000 to product
170	0108	79010000	170		MOV.w	\#H'0000,R1	
171	010C	5470	171		RTS		
172	010E		172	LBL15			
173	010E	0D11	173		MOV.W	R1, R1	
174	0110	462A	174		BNE	LBL19	; Branch if not R1=0
175	0112	0C22	175		MOV.B	R2H, R2H	
176	0114	4626	176		BNE	LBL19	; Branch if not $\mathrm{R} 2 \mathrm{H}=0$
177	0116	0D10	177		MOV.W	R1, R0	
178	0118	5470	178		RTS		
179			179	;			
180	011A		180	LBL16			
181	011A	79050001	181		MOV.W	\#H'0001,R5	; Set \#H'0001 to R5
182	011E	F618	182		MOV.B	\#D'24,R6H	; Set bit counter
183	0120		183	LBL17			
184	0120	1101	184		SHLR	R1H	; Shift mantissa 1 bit right
185	0122	1309	185		ROTXR	R1L	
186	0124	1302	186		ROTXR	R2H	
187	0126	79140001	187		ADD.W	\#1, R4	; Increment exponent
188	012A	1A06	188		DEC.B	R6H	; Decrement bit counter
189	012C	4706	189		BEQ	LBL18	; Branch if $\mathrm{z}=1$
190	012E	1D54	190		CMP. W	R5, R4	
191	0130	47DC	191		BEQ	LBL15	; Branch if R5=R4
192	0132	40EC	192		BRA	LBL17	; Branch always
193	0134		193	LBL18			
194	0134	79000000	194		MOV.W	\#H'0000,R0	; Clear result
195	0138	0D01	195		MOV.W	R0, R1	
196	013A	5470	196		RTS		
197			197	;			
198	013C		198	LBL19			
199	013C	0C18	199		MOV.B	R1H, R0L	
200	013E	0C91	200		MOV.B	R1L, R1H	
201	0140	0C29	201		MOV.B	R2H, R1L	
202			202	;			
203	0142	0CC0	203		MOV.B	R4L, R0H	
204	0144	7778	204		BLD	\#7,R0L	
205	0146	4502	205		BCS	LBL20	; Branch if $\mathrm{C}=1$
206	0148	F000	206		MOV.B	\# ${ }^{\prime}$ O0, R0H	
207	014A		207	LBL20			; Correct into floating-point format
208	014A	1100	208		SHLR	ROH	
209	014C	6778	209		BST	\#7,R0L	
210	014E	770E	210		BLD	\#0,R6L	
211	0150	6770	211		BST	\#7,R0H	
212	0152	5470	212		RTS		
213			213	;			
214			214	;-----			

<Reference> Description of Single-Precision Floating-Point Formats

Single-Precision Floating-Point Formats:

1. Internal Representation of Single-Precision Floating Point Numbers

One of the following formats is used depending on the value of the single-precision floating-point data in this application note (a real number is indicated as R).

1) Internal Representation When $R=0$
313029
210
O10|0|

All the 32 bits are 0 .
2) Normalized Format

α is an index number with an 8 -bit-long field. β is a mantissa with a 23-bit-long field. Here, the R value can be represented by the expression below (when $1 \leq \alpha \leq 254$).

$$
R=2^{\mathrm{S}} \times 2^{\alpha-126} \times\left(1+2^{-1} \times \beta_{22}+2^{-2} \times 21+\ldots \ldots+2^{-23} \times \beta_{0}\right)
$$

where, $\beta \mathrm{i}$ is the value of the i -th bit of $\beta(0 \leq \mathrm{i} \leq 22)$, and S is the sign bit.
3) Denormalized Format

β is a mantissa with a 23 -bit-long field. This format is used to represent a real number that is too small to be represented by the normalized format.
Here, the R value can be represented by the expression below.

$$
R=2^{S} \times 2^{-126} \times\left(2^{-1} \times \beta_{22}+2^{-2} \times 21+\ldots \ldots+2^{-23} \times \beta_{0}\right)
$$

4) Infinity

β is a mantissa with a 23-bit-long field. Note that if all the bits in the index part are 1 , the R value is handled as follows, in this application note.
When $S=0$: Plus infinity
$\mathrm{R}=+\infty$
When $S=1$: Minus infinity
$R=-\infty$
2. Internal Representation Examples

$$
\begin{array}{lr}
S=B^{\prime} 0 & \text { (binary) } \\
\alpha=B^{\prime} 10000011 & \text { (binary) } \\
\beta=B^{\prime} 1011100 \ldots \ldots 0 \text { (binary) }
\end{array}
$$

Under the above conditions, the corresponding R value is represented as follows.

$$
\begin{aligned}
R & =2^{0} \times 2^{131-126} \times\left(1+2^{-1}+2^{-3}+2^{-4}+2^{-5}\right) \\
& =16+8+2+1+0.5=27.5
\end{aligned}
$$

1) Maximum and Minimum Values

Here, the maximum and minimum values are absolute values. The maximum value is indicated as $\mathrm{R}_{\mathrm{MAX}}$ and the minimum value is indicated as $\mathrm{R}_{\text {MIN }}$. Up to the following values can be represented.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{MAX}} & =2^{254-127} \times\left(1+2^{-1}+2^{-2}+2^{-3}+\ldots \ldots+2^{-23}\right) \\
\quad & \approx 3.27 \times 10^{38} \\
\mathrm{R}_{\mathrm{MIN}} & =2^{-126} \times 2^{-23}=2^{-140} \approx 1.40 \times 10^{-45}
\end{aligned}
$$

Multiplication of Single-Precision Floating-Point Numbers (FMUL)

Revision Record

		Description	
Rev.	Date	Page	Summary
2.00	Feb.28.06	-	Format has been changed from Hitachi version to Renesas version.
3.00	Jun.12.06	6	Error correction

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
