Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300H Tiny Series

Multiplication of Single-Precision Floating-Point Numbers (FMUL)

Introduction

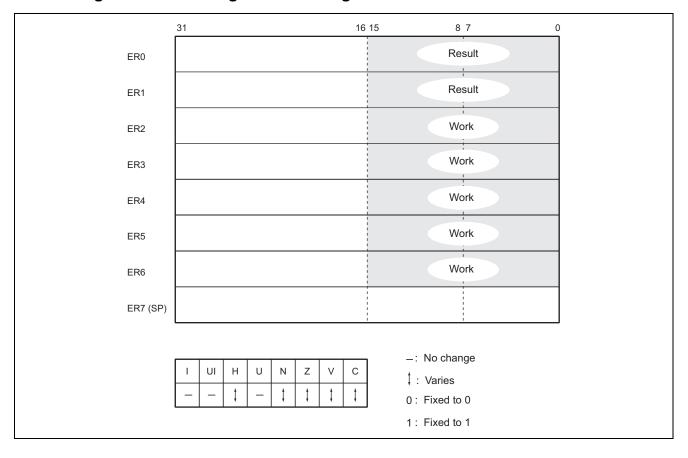
Multiplies single-precision floating-point numbers set in general registers and stores the result in general registers.

Target Device

H8/300H Tiny Series

Contents

1.	Function	2
2.	Arguments	2
3.	Changes to Internal Registers and Flags	2
4.	Programming Specifications	3
5.	Notes	3
6.	Descriptions	4
7.	Flowchart	7
8.	Program Listing	15
-Re	ference Description of Single-Precision Floating-Point Formats	20


1. Function

- 1. Multiplies single-precision floating-point numbers set in general registers and stores the result in general registers.
- 2. The arguments are all in the single-precision floating-point data format.

2. Arguments

Description		Storage Location	Data Length (Bytes)		
Input	Multiplicand	R0, R1	4		
	Multiplier	R2, R3	4		
Output	Result	R0, R1	4		

3. Changes to Internal Registers and Flags

Programming Specifications

Program memory (bytes)
348
Data memory (bytes)
0
Stack (bytes)
16
Number of cycles
1078
Re-entrant
Yes
Relocatalbe
Yes
Interrupts during execution
Yes

5. **Notes**

The number of cycles in the programming specifications is the value for execution of the example in figure 1. For details on the floating-point data format, refer to Reference: Description of Single-Precision Floating-Point Formats.

6. Descriptions

6.1 Descriptions of Functions

- 1. The arguments are as follows.
 - 1) Set the input arguments as follows.
 - R0: higher-order two bytes of the multiplicand
 - R1: lower-order two bytes of the multiplicand
 - R2: higher-order two bytes of the multiplier
 - R3: lower-order two bytes of the multiplier
 - 2) The FMUL subroutine sets the following output arguments.
 - R0: higher-order two bytes of the multiplication result
 - R1: lower-order two bytes of the multiplication result
- 2. The following figure illustrates the execution of the FMUL subroutine. When the input arguments are set as shown below, the subroutine places the result of multiplication in R0 and R1.

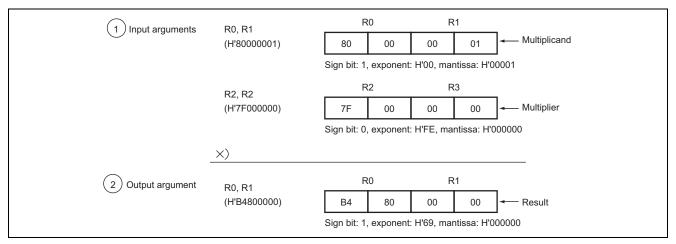


Figure 1 Example of FMUL Execution

6.2 Usage Notes

1. The maximum and minimum values handled by the FMUL subroutine are given below.

Maximum positive value: H'7F80000 Minimum positive value: H'00000001 Maximum negative value: H'80000001 Minimum negative value: H'FF800000

- 2. Positive single-precision floating-point numbers from H'7F800001 to H'7FFFFFF are regarded as having the maximum value, H'7F800000. Negative single-precision floating-point numbers from H'FF800000 to H'FFFFFF are regarded as having the minimum value, H'FF800000.
- 3. The maximum value is handled as infinity (∞), that is, the result of multiplying other numbers by the maximum value is the maximum value. For example, in multiplication by 100, $\infty \times 100 = \infty$ and $\infty \times (-100) = -\infty$ (see table 1).

Table 1 Examples of Results when Maximum Values are Specified as Arguments

Multiplicand	Multiplier	Result	
> H'7F800000 (+∞)	Positive value	H'7F800000 (+∞)	
	Negative value	H'FF800000 (-∞)	
< H'FF800000 (-∞)	Positive value	H'FF800000 (-∞)	
	Negative value	H'7F800000 (+∞)	
Positive value	> H'7F800000 (+∞)	H'7F800000 (+∞)	
	< H'FF800000 (-∞)	H'FF800000 (-∞)	
Negative value	> H'7F800000 (+∞)	H'FF800000 (-∞)	
	< H'FF800000 (-∞)	H'7F800000 (+∞)	

- 4. H'80000000 is handled as H'00000000 (zero).
- 5. The multiplicand and multiplier stored in the general registers are lost through execution of FMUL. When you will still require the input arguments, save them elsewhere in memory beforehand.

6.3 Description of Data Memory

No data memory is used by the FMUL subroutine.

6.4 Example of Usage

After setting the multiplicand and multiplier in the general registers, call the FADD subroutine.

WORK1	. RES. W 2	Reservation of the data memory area for setting of the multiplicand by the user program.
WORK2	. RES. W 2	Reservation of the data memory area for setting of the multiplier by the user program.
WORK3	. RES. W 2	Reservation of the data memory area where the product of multiplication will be stored by the user program.
	MOV. W @WORK1, RO	Sets the multiplicand specified by the user program as an input argument.
	MOV. W @WORK1+2, R1	
	MOV. W @WORK2, R2	Sets the multiplier specified by the user program as an input argument.
	MOV. W @WORK2+2, R3	
[JSR @FMUL	Subroutine call of FMUL
	MOV. W RO, @WORK3	Transfers the product set as the output argument to the data memory area of the user program.
	MOV. W RO, @WORK3+2	

6.5 Principles of Operation

Multiplication of the single-precision floating-point numbers is according to the following sequence.

- 1. The multiplicand and multiplier are checked for zero values.
 - If one or both holds a zero, H'00000000 is output.
- 2. The multiplicand and multiplier are checked for infinite $(+\infty \text{ or } -\infty)$ values.
 - If one or both of them is infinite $(+\infty \text{ or } -\infty)$, the result is as given in table 6.1.
- 3. The exponents of the multiplicand and multiplier are matched.

Let R1 be the multiplicand (sign bit = S1, exponent = α 1, mantissa = β 1) and R2 the multiplier (sign bit = S2, exponent = α 2, mantissa = β 2); R1 and R2 are then expressed as follows.

R1 =
$$(-1)^{S1} \times 2^{\alpha 1 - 127} \times \beta 1$$

R2 = $(-1)^{S2} \times 2^{\alpha 2 - 127} \times \beta 2$

Multiplication is as follows.

R1 × R2 = (-1)
$$^{S1+S2}$$
 × $2^{\alpha^{1+\alpha^{2}-127-127}}$ × β 1 × β 2

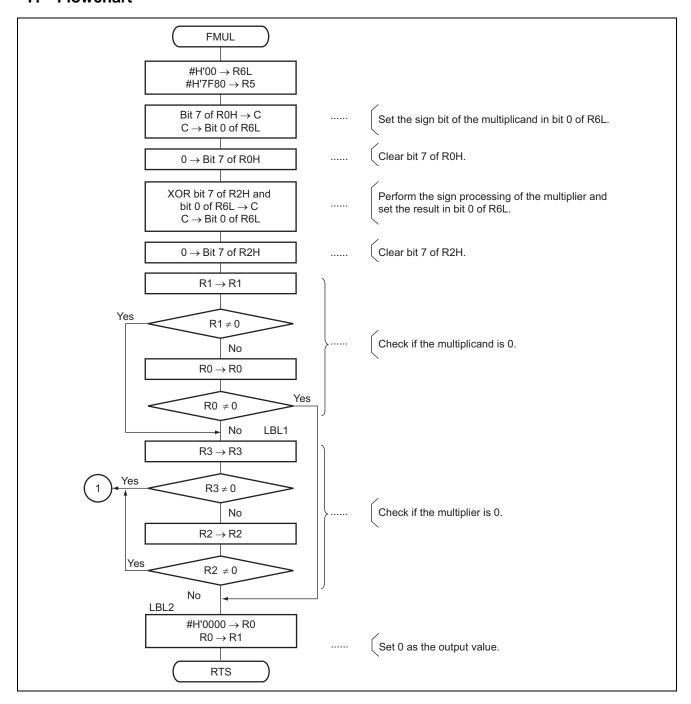
In the floating-point data format, H'7F (D'127) is added to the actual exponent, so the equation will be as follows.

$$R1 \times R2 = (-1)^{S1+S2} \times 2^{\alpha 1+\alpha 2-127} \times \beta 1 \times \beta 2$$

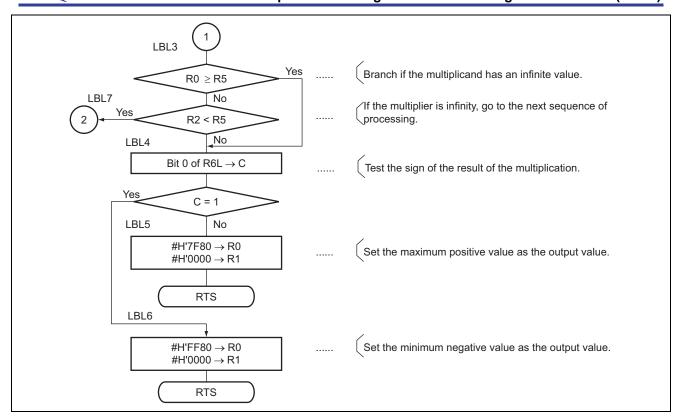
Multiplication according to this equation is carried out in the following sequence.

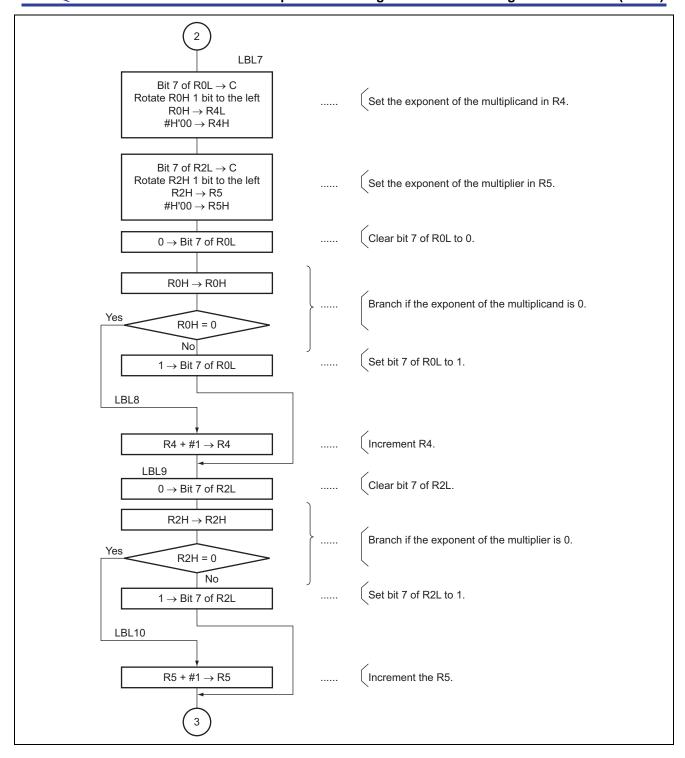
1) The exponents are added to each other.

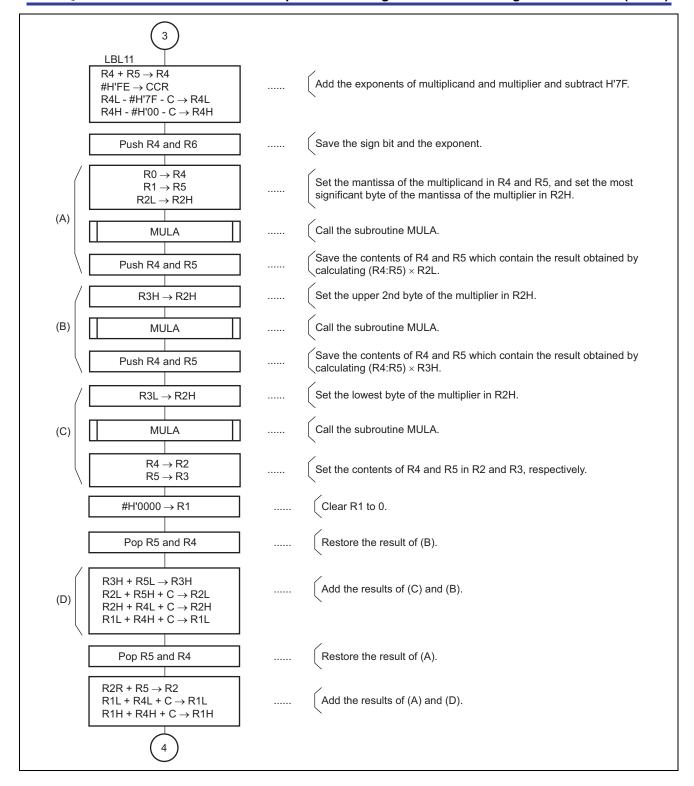
H'7F (D'127) is added to the actual exponent of a number in the floating-point data format; H'7F (D'127) is thus subtracted from both α 1 and α 2, and H'7F (D'127) is added to the exponent of the result. The result may thus be expressed as follows.

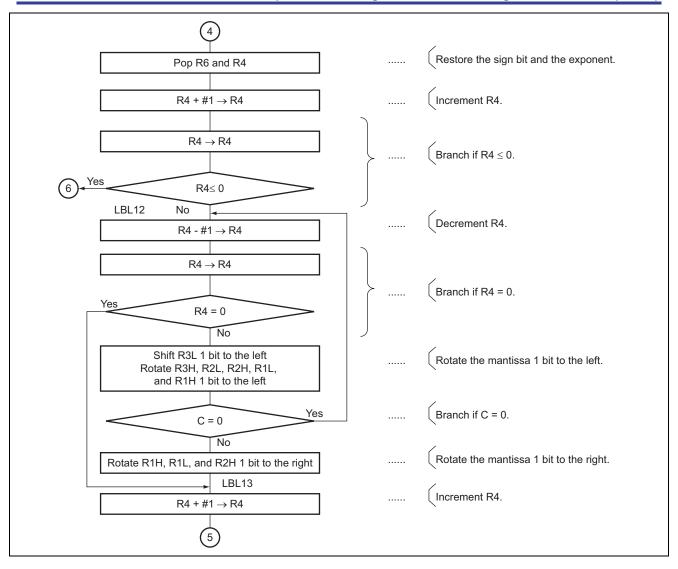

$$(\alpha 1-H'7F) + (\alpha 2-H'7F) + H'7F = \alpha 1 + \alpha 2 -H'7F$$

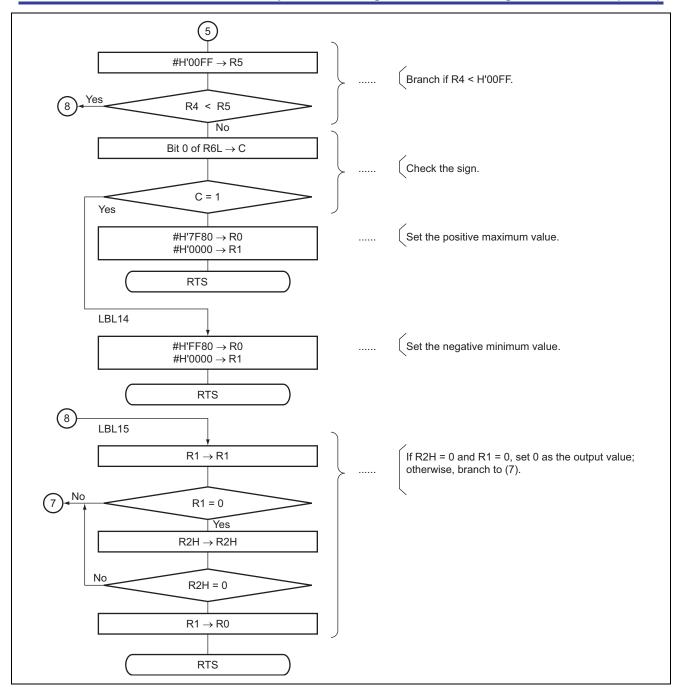
One is added to the exponent of a number in denormalized format before the calculation.

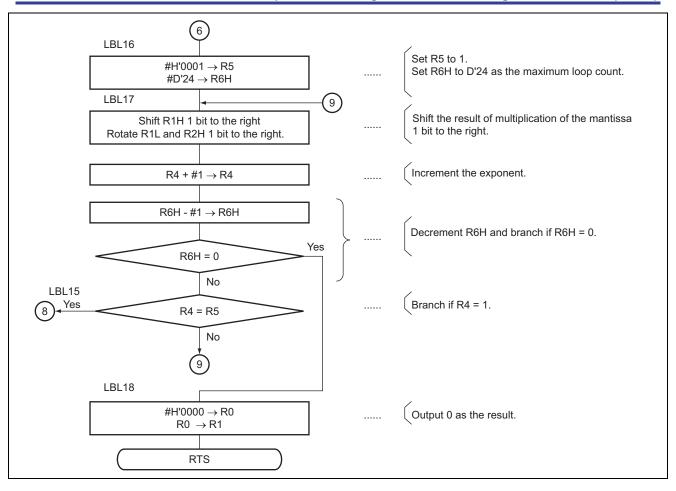

- 2) The mantissas are multiplied by each other.
 - The implicit MSB is included in the multiplication.
 - For a number in the denormalized format, the implicit MSB of the mantissa is taken to be zero.
- 3) The result of multiplication is corrected to produce a number in the floating-point data format.

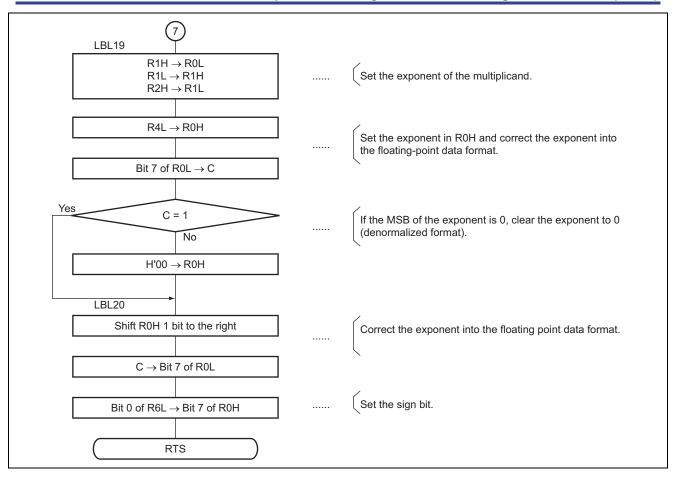

7. Flowchart

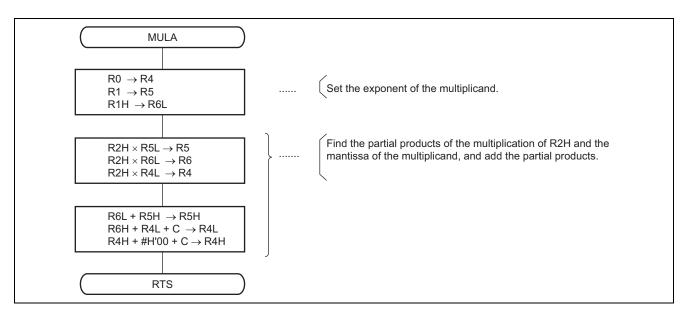












8. Program Listing

1		1	· ·	*****	******	***********
2		2	; *	NAME .	DI ONETHO	DOTNER MILITEDIT CARTON (PMILI) *
3 4		3	; * ; *	NAME :	FLOATING	POINT MULTIPLICATION (FMUL) *
5		5	;****	*****	******	************
6		6	; *			*
7		7	; *	ENTRY:	R0 (H	IGHER WORD OF MULTIPLICAND) *
8		8	; *	BIVITTI		OWER WORD OF MULTIPLICAND) *
9		9	; *		•	CIGHER WORD OF MULTIPLIER) *
10		10	; *			OWER WORD OF MULTIPLIER) *
11		11	;*			*
12		12	;*	RETURNS:	R0 (H	IGHER WORD OF RESULT) *
13		13	;*			OWER WORD OF RESULT) *
14		14	;*			*
15		15	;****	*****	******	**********
16		16	;			
17		17		.CPU	300HN	
18	0000	18		.SECTION	FMUL_cod	e,CODE,ALIGN=2
19		19		.EXPORT	FMUL	
20		20	;			
21	0000000	21	FMUL	.EQU	\$	Entry point
22	0000 FE00	22		MOV.B	#H'00,R6	L ;Clear R6L
23	0002 79057F80	23		MOV.W	#H'7F80,	R5 ;Set H'7F80
24		24	;			
25	0006 7770	25		BLD	#7,R0H	;Set sign bit of multiplicand
26	0008 670E	26		BST	#0,R6L	; to bit 0 of R6L
27	000A 7270	27		BCLR	#7,R0H	;Bit clear bit 7 of ROH
28		28	;			
29	000C 7772	29		BLD	#7,R2H	;
30	000E 750E	30		BXOR	#0,R6L	;Set sign bit of result
31	0010 670E	31		BST	#0,R6L	; to bit 0 of R6L
32	0012 7272	32		BCLR	#7,R2H	Bit clear bit 7 of R2H;
33		33	;			
34	0014 0D11	34		MOV.W	R1,R1	;
35	0016 4604	35		BNE	LBL1	
36	0018 0D00	36		MOV.W	R0,R0	
37	001A 4708	37		BEQ	LBL2	;Branch if R1=R=0
38	001C	38	LBL1	MOTT	D2 -2	
39	001C 0D33	39		W.VOM	R3,R3	;
40	001E 460C	40		BNE	LBL3	;Branch if not R3 = 0
41 42	0020 0D22 0022 4608	41 42		MOV.W BNE	R2,R2 LBL3	;Branch if not R2 = 0
43	0024	43	LBL2	DIVE	прпо	/Branch if not R2 = 0
44	0024 79000000	44	пвпг	MOV.W	##!0000	RO ;Set 0 as result
45	0024 75000000 0028 0D01	45		MOV.W	R0,R1	NO 75CC 0 db 1C5d1C
46	0028 0D01 002A 5470	46		RTS	10,111	
47	002A 3470	47	LBL3			
48	002C 1D05	48		CMP.W	R0,R5	
49	002E 4304	49		BLS	LBL4	;Branch if R0>=R5
50	0030 1D25	50		CMP.W	R2,R5	
51	0032 4218	51		BHI	LBL7	;Branch if R2>=R5
52		52	;			

Multiplication of Single-Precision Floating-Point Numbers (FMUL)

53	0034	53	LBL4			
54	0034 770E	54		BLD	#0,R6L	;Load sign bit
55	0036 450A	55		BCS	LBL6	;Branch if C=1
56	0038	56	LBL5			
57	0038 79007F80	57		MOV.W	#H'7F80,R0	;Set #H'7F800000 as result
58	003C 79010000	58		MOV.W	#H'0000,R1	
59	0040 5470	59		RTS		
60		60	;			
61	0042	61	LBL6			
62	0042 7900FF80	62		MOV.W	#H'FF80,R0	;Set #H'FF800000 as result
63	0046 79010000	63		MOV.W	#H'0000,R1	
64	004A 5470	64		RTS		
65		65	;			
66	004C	66	LBL7			
67	004C 7778	67		BLD	#7,R0L	
68	004E 1200	68		ROTXL	R0H	
69	0050 0C0C	69		MOV.B	ROH,R4L	;Set exponent of multiplicand in R4
70	0052 F400	70		MOV.B	#H'00,R4H	
71	0054 5555	71	;		WE	
72	0054 777A	72		BLD	#7,R2L	
73	0056 1202	73		ROTXL	R2H	took amanant of multiplian in DE
74 75	0058 0C2D 005A F500	74		MOV.B	R2H,R5L	;Set exponent of multiplier in R5
75 76	005A F500	75 76	;	MOV.B	#H'00,R5H	
77	005C 7278	76	,	BCLR	#7,R0L	;Clear bit 7 of ROL
78	005E 0C00	78		MOV.B	ROH,ROH	relear bit / or kon
79	0060 4704	79		BEQ	LBL8	;Branch if multiplier is denormalized
80	0062 7078	80		BSET	#7,R0L	;Set implicit MSB
81	0064 4004	81		BRA	LBL9	;Branch always
82	0066	82	LBL8	Didi	2027	/Braileir arways
83	0066 79140001	83	DDDO	ADD.W	#1,R4	
84	006A	84	LBL9			
85	006A 727A	85		BCLR	#7,R2L	;Clear bit 7 of R2L
86	006C 0C22	86		MOV.B	R2H,R2H	
87	006E 4704	87		BEQ	LBL10	;Branch if multiplier is denormalized
88	0070 707A	88		BSET	#7,R2L	;Set implicit MSB
89	0072 4004	89		BRA	LBL11	Branch always
90	0074	90	LBL10			
91	0074 79150001	91		ADD.W	#1,R5	
92		92	;			
93	0078	93	LBL11			
94	0078 0954	94		ADD.W	R5,R4	addition exponents
95	007A 06FE	95		ANDC	#H'FE,CCR	;Clear C flag of CCR
96	007C BC7F	96		SUBX.B	#H'7F,R4L	;R4L - #H'7F - C -> R4L
97	007E B400	97		SUBX.B	#H'00,R4H	
98		98	;			
99	0080 6DF4	99		PUSH	R4	;Push R4
100	0082 6DF6	100		PUSH	R6	;Push R6
101		101	;			
102	0084 0D04	102		MOV.W	R0,R4	
103	0086 0D15	103		MOV.W	R1,R5	
104		104	;			
105	0088 0CA2	105		MOV.B	R2L,R2H	
106	008A 5E000000	106		JSR	@MULA	;R2L * (R0L:R1) -> (R4:R5)

Multiplication of Single-Precision Floating-Point Numbers (FMUL)

107	008E 6DF4	107		PUSH	R4	;Push R4
108	0090 6DF5	108		PUSH	R5	;Push R5
109		109				
110	0092 0C32	110		MOV.B	R3H,R2H	;
111	0094 5E000000	111		JSR	@MULA	;R3L * (R0L:R1) -> (R4:R5)
112	0098 6DF4	112		PUSH	R4	Push R4
113	009A 6DF5	113		PUSH	R5	Push R5
114			;			
115	009C 0CB2	115		MOV.B	R3L,R2H	
116	009E 5E000000	116		JSR	@MULA	;Push R4
117	00A2 0D42	117		MOV.W	R4,R2	;Push R5
118	00A4 0D53	118		MOV.W	R5,R3	
119			;			
120	00A6 79010000	120		MOV.W	#H'0000,R1	
121	00AA 6D75	121		POP	R5	;Pop R5
122	00AC 6D74	122		POP	R4	;Pop R4
123			;			
124	00AE 08D3	124		ADD.B	R5L,R3H	
125	00B0 0E5A	125		ADDX.B	R5H,R2L	
126	00B2 0EC2	126		ADDX.B	R4L,R2H	
127	00B4 0E49	127		ADDX.B	R4H,R1L	;R1L + R4H + C -> R1L
128			;			
129	00B6 6D75	129		POP	R5	;Pop R5
130	00B8 6D74	130		POP	R4	;Pop R4
131	00BA 0952	131		ADD.W	R5,R2	;R2 + R5 -> R2L
132	00BC 0EC9	132		ADDX.B	R4L,R1L	
133	00BE 0E41	133		ADDX.B	R4H,R1H	;R1H + R4H + C -> R1H
134			;			
135	00C0 6D76	135		POP	R6	;Pop R6
136	00C2 6D74	136		POP	R4	;Pop R4
137	00C4 79140001	137		ADD.W	#1,R4	
138	00C8 0D44	138		MOV.W	R4,R4	
139			;			
140	00CA 474E	140		BEQ	LBL16	;Branch if R4=0
141	00CC 4B4C	141		BMI	LBL16	;Branch if R4<0
142	00CE	142	LBL12			
143	00CE 79340001	143		SUB.W	#1,R4	
144	00D2 0D44	144		MOV.W	R4,R4	
145	00D4 4714	145		BEQ	LBL13	;Branch if R4=0
146	00D6 100B	146		SHLL	R3L	;Shift mantissa 1 bit left
147	00D8 1203	147		ROTXL	R3H	
148	00DA 120A	148		ROTXL	R2L	
149	00DC 1202	149		ROTXL	R2H	
150	00DE 1209	150		ROTXL	R1L	
151	00E0 1201	151		ROTXL	R1H	
152	00E2 44EA	152		BCC	LBL12	;Branch if C=0
153	00E4 1301	153		ROTXR	R1H	;Rotate mantissa 1 bit right
154	00E6 1309	154		ROTXR	R1L	
155	00E8 1302	155		ROTXR	R2H	
156	OOEA	156	LBL13			
157	00EA 79140001	157		ADD.W	#1,R4	
158		158	;			
159	00EE 790500FF	159		MOV.W	#H'00FF,R5	
160	00F2 1D45	160		CMP.W	R4,R5	

H8/300H Tiny Series Multiplication of Single-Precision Floating-Point Numbers (FMUL)

161	00F4 4418	161		BCC	LBL15	Branch if R5>R4
162	00F6 770E	162		BLD	#0,R6L	;Load sign bit
163	00F8 450A	163		BCS	LBL14	;Branch if C=1
164	00FA 79007F80	164		MOV.W	#H'7F80,R0	;Set H'7F800000 to result
165	00FE 79010000	165		MOV.W	#H'0000,R1	
166	0102 5470	166		RTS		
167		167	;			
168	0104	168	LBL14			
169	0104 7900FF80	169		MOV.W	#H'FF80,R0	;Set H'FF800000 to product
170	0108 79010000	170		MOV.W	#H'0000,R1	
171	010C 5470	171		RTS		
172	010E	172	LBL15			
173	010E 0D11	173		MOV.W	R1,R1	
174	0110 462A	174		BNE	LBL19	;Branch if not R1=0
175	0112 0C22	175		MOV.B	R2H,R2H	
176	0114 4626	176		BNE	LBL19	;Branch if not R2H=0
177	0116 0D10	177		MOV.W	R1,R0	
178	0118 5470	178		RTS		
179		179	;			
180	011A	180	LBL16			
181	011A 79050001	181		MOV.W	#H'0001,R5	;Set #H'0001 to R5
182	011E F618	182		MOV.B	#D'24,R6H	;Set bit counter
183	0120	183	LBL17			
184	0120 1101	184		SHLR	R1H	;Shift mantissa 1 bit right
185	0122 1309	185		ROTXR	R1L	
186	0124 1302	186		ROTXR	R2H	
187	0126 79140001	187		ADD.W	#1,R4	;Increment exponent
188	012A 1A06	188		DEC.B	R6H	;Decrement bit counter
189	012C 4706	189		BEQ	LBL18	;Branch if Z=1
190	012E 1D54	190		CMP.W	R5,R4	
191	0130 47DC	191		BEQ	LBL15	;Branch if R5=R4
192	0132 40EC	192		BRA	LBL17	Branch always
193	0134	193	LBL18			
194	0134 79000000	194		MOV.W	#H'0000,R0	Clear result
195	0138 0D01	195		MOV.W	R0,R1	
196	013A 5470	196		RTS		
197		197	;			
198	013C	198	LBL19			
199	013C 0C18	199		MOV.B	R1H,R0L	
200	013E 0C91	200		MOV.B	R1L,R1H	
201	0140 OC29	201		MOV.B	R2H,R1L	
202		202	;			
203	0142 OCC0	203		MOV.B	R4L,R0H	
204	0144 7778	204		BLD	#7,R0L	
205	0146 4502	205		BCS	LBL20	;Branch if C=1
206	0148 F000	206		MOV.B	#H'00,R0H	
207	014A	207	LBL20			Correct into floating-point format
208	014A 1100	208		SHLR	R0H	
209	014C 6778	209		BST	#7,R0L	
210	014E 770E	210		BLD	#0,R6L	
211	0150 6770	211		BST	#7,R0H	
212	0152 5470	212		RTS		
213		213	;			
214		214	;			

Multiplication of Single-Precision Floating-Point Numbers (FMUL)

215		2	215	;			
216	0154	2	216	MULA			;R2H * (R0L:R1) -> (R4:R5)
217	0154 0D04	2	217		MOV.W	R0,R4	;R0 -> R4
218	0156 0D15	2	218		MOV.W	R1,R5	;R1 -> R5
219	0158 OC1E	2	219		MOV.B	R1H,R6L	;R1H -> R6L
220		2	220	;			
221	015A 5025	2	221		MULXU	R2H,R5	;R2H * R5L -> R5
222	015C 5026	2	222		MULXU	R2H,R6	;R2H * R6L -> R6
223	015E 5024	2	223		MULXU	R2H,R4	;R2H * R4L -> R4
224		2	224	;			
225	0160 08E5	2	25		ADD.B	R6L,R5H	;R5H + R6L -> R5H
226	0162 0E6C	2	26		ADDX.B	R6H,R4L	;R4L + R6H + C -> R4L
227	0164 9400	2	27		ADDX.B	#H'00,R4H	;R4H + #H'00 + C -> R4H
228	0166 5470	2	228		RTS		
229		2	229	;			
230		2	30		.END		
****	TOTAL ERRORS	0					

^{*****}TOTAL WARNINGS

<Reference> Description of Single-Precision Floating-Point Formats

Single-Precision Floating-Point Formats:

1. Internal Representation of Single-Precision Floating Point Numbers

One of the following formats is used depending on the value of the single-precision floating-point data in this application note (a real number is indicated as R).

1) Internal Representation When R=0

31	30	29	 2	1	0
0	0	0	 0	0	0

All the 32 bits are 0.

2) Normalized Format

31 30	23	22 0
S	α	β

 α is an index number with an 8-bit-long field. β is a mantissa with a 23-bit-long field. Here, the R value can be represented by the expression below (when $1 \le \alpha \le 254$).

$$R = 2^{S} \times 2^{\alpha - 126} \times (1 + 2^{-1} \times \beta_{22} + 2^{-2} \times 21 + \dots + 2^{-23} \times \beta_{0})$$

where, βi is the value of the i-th bit of β ($0 \le i \le 22$), and S is the sign bit.

3) Denormalized Format

31	30							23	22	0
S	0	0	0	0	0	0	0	0	β	П

 β is a mantissa with a 23-bit-long field. This format is used to represent a real number that is too small to be represented by the normalized format.

Here, the R value can be represented by the expression below.

$$R = 2^{S} \times 2^{-126} \times (2^{-1} \times \beta_{22} + 2^{-2} \times 21 + \dots + 2^{-23} \times \beta_{0})$$

4) Infinity

 β is a mantissa with a 23-bit-long field. Note that if all the bits in the index part are 1, the R value is handled as follows, in this application note.

When S = 0: Plus infinity

 $R = +\infty$

When S = 1: Minus infinity

 $R = -\infty$

2. Internal Representation Examples

$$S = B'0$$
 (binary)
 $\alpha = B'10000011$ (binary)
 $\beta = B'1011100.....0$ (binary)

Under the above conditions, the corresponding R value is represented as follows.

$$R = 2^{0} \times 2^{131 - 126} \times (1 + 2^{-1} + 2^{-3} + 2^{-4} + 2^{-5})$$

= 16 + 8 + 2 + 1 + 0.5 = 27.5

1) Maximum and Minimum Values

Here, the maximum and minimum values are absolute values. The maximum value is indicated as R_{MAX} and the minimum value is indicated as R_{MIN} . Up to the following values can be represented.

$$\begin{aligned} \mathsf{R}_{\mathsf{MAX}} &= 2^{254 - 127} \times (1 + 2^{-1} + 2^{-2} + 2^{-3} + \dots + 2^{-23}) \\ &\approx 3.27 \times 10^{38} \\ \mathsf{R}_{\mathsf{MIN}} &= 2^{-126} \times 2^{-23} = 2^{-140} \approx 1.40 \times 10^{-45} \end{aligned}$$

Revision Record

	Date	Page	Summary
		9-	Summary
2.00	Feb.28.06	_	Format has been changed from Hitachi version to Renesas version.
3.00	Jun.12.06	6	Error correction

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.