To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS APPLICATION NOTE
H8/300H Tiny Series

Monitoring Software

Introduction

The personal computer and H8/3664 are connected using an RS-232C driver, and memory dumps and memory (RAM)
editing are performed via a terminal window (Hyperterminal) on the personal computer.

Target Device

HS8/3664

Contents
(S o 1= Tor) or=1 o] o SRR 2
2. Description Of FUNCLONSuuiiiiiiiii et e e e e et e e e e e e st e e e e e e e easnraaeeaaeeas 3
3. PrinCiples Of OPEration........ ... ittt e e e e e e e e e e e e e e e e e e e nnaeeeeeaeeas 8
4. DesCription Of SOMWAIE........ccociiieeeeee e e e e e e s e e e e e eeaanreaeeeaeeas 9
5. FIOWCNAITS ... e e e 20
6. Program LiStINGooieiiiiiiiiii et 31

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 1 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software

1. Specifications

1. As shown in figure 1.1, the personal computer and H8/3664 are connected using an RS-232C driver, and memory
dumps and memory (RAM) editing are performed via a terminal window (Hyperterminal) on the personal
computer.

2. As the communication format for transmitted data, transmission and reception are performed with a data length of 8
bits, with no parity bit, one stop bit, at a bit rate of 9600 bits/s.

H8/3664 mounting board Personal computer

H8/3664 RS-232C driver

Transmitted data
TXD T1in T1out

Serial pin connector

Received data
RXD R1out R1in

- RS-232C cable |

MAX3232

Figure 1.1 Diagram of connection of H8/3664 mounting board to personal computer

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 2 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

2. Description of Functions

1.

In this sample task, the serial communication interface (SCI) is used to simultaneously transmit and receive
asynchronous serial data. Figure 2.1 shows a block diagram of simultaneous asynchronous serial data transmission
and reception. Below, this block diagram of simultaneous asynchronous serial data transmission and reception is
described.

In the asynchronous mode, serial data transmission is performed asynchronously, with synchronization in character
units.

Serial data transmission can be performed with standard asynchronous communication LSI devices, such as a
Universal Asynchronous Receiver/Transmitter (UART) and an Asynchronous Communication Interface Adapter
(ACIA).

A multiprocessor communication function is provided, enabling serial communication with multiple processors.
Any of twelve formats can be selected as the communication format.

Independent transmission and reception units are provided, so that transmission and reception can be performed
simultaneously. And because both the transmission unit and the reception unit have a double-buffer structure,
continuous transmission and continuous reception are possible.

An internal baud rate generator enables selection of an arbitrary baud rate.

The transmission/reception clock source can be selected from among the internal clock and an external clock.

There are six interrupt factors: transmission ended, transmission data empty, reception data full, overrun error,
framing error, and parity error.

The receive shift register (RSR) is a register to receive serial data. Serial data input from the RXD pin is set in the
RSR in order received from the LSB (bit 0), and converted into parallel data. When one byte of data is received, the
data is automatically transferred to the RDR. The RSR cannot be directly read or written from the CPU.

The receive data register (RDR) is an 8-bit register which stores received serial data. When reception of one byte of
data ends, the received data is transferred from RSR to RDR, and the reception operation is ended. Then, the RSR
can again receive data. The RSR and RDR have a double-buffer structure, so that continuous reception operation is
possible. The RDR is a dedicated reception register, and so cannot be written from the CPU.

The transmit shift register (TSR) is a register to transmit serial data. Transmission data from the TDR is transmitted
to the TSR, and by sending this to the TXD pin in order from the LSB (bit 0), serial data transmission is performed.
When one byte of data is transmitted, the next transmission data is automatically transferred from TDR to TSR, and
transmission is begun. However, if data is not written to TDR ("1" is set in TDRE), then data is not transferred from
TDR to TSR. Reading and writing of TSR directly from the CPU is not possible.

The transmit data register (TDR) is an 8-bit register which stores transmission data. When TSR "empty" is detected,
transmission data written to the TDR is transferred to the TSR, and serial data transmission is begun. During TSR
serial data transmission, if the next transmission data is written to the TDR, continuous transmission becomes
possible. The TDR can always be read and written by the CPU.

The serial mode register (SMR) is an 8-bit register used to set the serial data communication format and to select the
clock source for the baud rate generator. The SMR can always be read and written by the CPU.

The serial control register 3 (SCR3) is an 8-bit register which selects transmit/receive operations, asynchronous
mode clock output, interrupt request permission/prohibition, and the transmit/receive clock source. The SCR3 can
always be read and written by the CPU.

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 3 of 43

H8/300H Tiny Series
Monitoring Software

SCI3 clock
1/0 pin
(SCKy)

SCI3 transmission data

Internal clock
(¢/64, ¢/16, 6/4, 9)

Block diagram of SCI3 asynchronous serial transfer function

Settings of the operating clock of the baud rate generator
' and transmission/reception bit rate

Baud rate generator

Bit rate counter

E Bit rate register
i (BRC)

(BRR)

(SSR)

' Clock

, Serial mode register

! (SMR)

D L (b)

1 Transmission/reception control circuit © Serial control register 3
- (SCR3)

' (d)

E Serial status register

output pin O (9) . Transmit shift register (e) Transmit data register
(TXD) . (TSR) (TDR)
Pl Eataieiei ettt ettty et Reception data control =~ ------------------mmmmmmoooo o
SCI3 received data !
input pin O (h) | Receive shift register (f) Receive data register
(RXD) j (RSR) (RDR)
Interrupt requests (TEI, TXI, RXI, ERI)
Notes: (a) Together with the operating clock of the baud rate generator selected by SMR, sets the transmission/reception bit rate.
In this sample task, transmission bit rate is set to 9600 bit/s.

(b) Sets the serial data communication format and selects the clock source for the baud rate generator. Regarding the serial data
communication format of this sample task, the operating mode is set to asynchronous mode, the data length is set to 8 bits,
parity to none, stop bit length to 1 bit, and the clock source for the on-chip baud rate generator to ¢ clock.

(c) Selects transmit/receive operations, asynchronous mode clock output, and interrupt request permission/prohibition.

(d)

(e)
(f)
(9)
(h)

Regarding clock output in the asynchronous mode of this sample task, the communication mode is set to asynchronous,
and clock source is set to the on-chip baud rate generator. Regarding the interrupt request permission/prohibition, a transmit
data empty interrupt request, a receive data full interrupt request, and a receive error interrupt request are all prohibited.
Indicates the operating state of the SCI3 by a status flag (transmit data register empty, receive data register, overrun error,
framing error, parity error, or transmit end).

When TSR "empty" is detected, transmission data written to TDR is transferred to TSR.

When reception of one byte of data ends, the received data is transferred from RSR to RDR.

Transmission data.

Received data.

Figure 2.1 A Synchronous simulations transmission/reception of serial data

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 4 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

o The serial status register (SSR) is an 8-bit register which includes a status flag indicating the operating state of the
SCI3, and multiprocessor bits. The SSR can always be read and written by the CPU. However, "1" cannot be
written to TDRE, RDRF, OER, PER, or FER. Also, in order to write "0" to clear these bits, "1" must first be read.
TEND and MPBR are read-only, and cannot be written.

e The bit rate register (BRR) is an 8-bit register which, together with the operating clock of the baud rate generator
selected by CSK1 and CSKO of SMR, sets the transmission/reception bit rate. BRR can always be read and written
by the CPU.

e Table 2.1 shows an example of BRR settings in asynchronous mode. Table 2.1 shows values in active mode when
OSC is 16 MHz.

Table 2.1 Example of BRR settings in asynchronous mode

R bit rate (bit/s) 110 150 300 600 1200 |2400 |4800 [9600 (19200 (31250 |38400
n 3 2 2 1 1 0 0 0 0 0 0

N 70 207 103 207 103 207 103 51 25 15 12
Error (%) 0.03 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.00 0.16

Notes: 1. The error boundaries should be set so as to fall within 1%.
2. The BRR settings can be found with the following expression.

OSsC s
N = o x10° -1
64 x2°""' xB

[Legend]

B: Bit rate (bit/s)

N: BRR setting of the baud rate generator (0 < N < 255)

OSC: osc (MHz) = 16 MHz

n: Settings of CKS1 and CKS2 in SMR (0 < n < 3) (See table 2.2 for the relationship between n and clock.)

Table 2.2 Relationship between n and clock

SMR setting
n Clock CKS1 CKSO0
0) 0 0
1 o/4 0 1
2 /16 1 0
3 ¢/64 1 1

3. Error shown in table 2.1 is indicated by rounding off the third decimal place of the value found with the
following expression.

o x 106
Error (%)={ }—1 x 100
(N + 1) x B x 64 x 22n-1

4. The maximum bit rate (asynchronous mode) when OSC is 16 MHz is 500000 (bit/s). Note that the
settings are: n =0, and N =0.

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 5 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

Asynchronous mode is a mode in which a start bit indicating the beginning of communication and a stop bit
indicating the end of communication are added to the data to form characters for transmission and reception, and
serial communication is performed with synchronization in single character units.

Within SCI3, the transmission and reception units are independent, so that full-duplex communication is possible.
And, both the transmission and the reception units have a double-buffer structure, so that data can be written during
transmission and data can be read during reception, and continuous transmission and reception are possible.

Figure 2.2 shows the asynchronous communication data format. In asynchronous communication, the
communication line is normally held in the mark state ("high" level). The SCI3 monitors the communication line,
and regards the occurrence of a space ("low" level) as a start bit, and begins serial communication.

One character of communication data is configured to begin with a start bit ("low" level), then the
transmitted/received data (LSB first, from the lowermost bit), then a parity bit ("high" or "low" level), and finally a
stop bit ("high" level).

In asynchronous mode, synchronization is on the falling edge of the start bit at the time received. Further, data is
sampled on the eighth cycle of a clock at a frequency 16 times the interval of one bit, so that communication data is
captured at the center of each bit.

Start Parity
bit bit
(LSB) (MSB) nq
Serial . . l Stop Mark
data Transmission/reception data bit state
1 bit 7 bits or 8 bits 1 bit or | 1 bit or 2 bits
none
One unit of communication data (character or frame)

Figure 2.2 Asynchronous communication data format

The SCI3 clock (SCK3) is the SCI3 clock I/O pin.

The SCI3 receive data input (RXD) is the SCI3 received data input pin.

The SCI3 transmit data output (TXD) is the SCI3 transmission data output pin.

There are six types of SCI3 interrupt requests: transmission end, transmission data empty, received data full, and
three types of reception error (overrun error, framing error, parity error). A common vector address is assigned.
Each interrupt request is permitted or prohibited by the SCR3 TIE and RIE bits.

When bit TDRE is set to 1 in SSR, a TXI interrupt is requested. When bit TEND is set to 1 in SSR, a TEI interrupt
is requested. These two interrupts are generated during transmission.

The initial value of the TDRE of SSR is "1". Hence before transferring transmission data to TDR, if the TIE of
SCR3 is set to "1" and a transmission data empty interrupt request (TXI) is permitted, TXI is generated even if
transmission data is not prepared.

The initial value of the TEND of SSR is "1". Hence before transferring transmission data to TDR, if the TEIE of
SCR3 is set to "1" and a transmission end interrupt request (TEI) is permitted, TEI is generated even if transmission
data has not been transmitted.

By performing processing to transfer transmission data to TDR during an interrupt processing routine, the interrupts
can be utilized efficiently. Also, in order to prevent the generation of these interrupts (TXI, TEI), after transferring
transmission data to TDR, the permission bits corresponding to these interrupt requests (TIE, TEIE) are set to "1".
If the RDRF of SSR is set to "1", RXI is generated. If any of OER, PER, or FER is set to "1", ERI is generated.
These two interrupt requests occur during reception.

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 6 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

2. Table 2.3 indicates function allocations in this sample task. The functions are allocated as shown in table 2.3 to
perform asynchronous serial data transmission and reception simultaneously.

Table 2.3 Function allocation

Function Function Allocation

RSR Register to receive serial data

RDR Register to store received data

SMR Sets serial data communication format and clock source for the baud rate generator
SSR Status flag indicating SCI3 operating status

BRR Sets transmission/reception bit rate

PMR1 Sets TXD output pin

SCK3 SCI3 clock output pin

TXD SCI3 transmission data input pin

RXD SCI3 received data input pin

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 7 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

3. Principles of Operation

1. Figure 3.1 illustrates the principle of operation. As figure 3.1 indicates, simultaneous asynchronous serial data
transmission and reception are performed through both hardware and software processing.

TEND E E

Stop bit Stop bit
Start bit Parity bit | Start bit Parity bit
(&) Transmission unit l Transmission data l l Transmission data l
Serial data «q» | wo» | Do | D1 D7 |oM|™"|"0" | DO | D1 D7 o1 | ™"
| | |
! 1 frame ! 1 frame !
TDRE N

e

7 1|

Hardware processing Hardware processing

Hardware processing

Hardware processing

Set TDRE to "1". (a) Clear TDRE to "0".
(b) Transfer transmission data

written to TDR to TSR.

Software processing

Set TDRE to "1".

Set TEND to "1".

Software processing

Software processing

Write transmission Software processing None Clear TXD to "0".
data to TDR.
None
Stop bit Stop bit
Start bit Parity bit | Start bit Parity bit
(b) Reception unit 1 Received data 1 1 Received data 1
Serial data ¢ | »o" [po | D1 D7 [0 | "1 | 0" | DO | D1 D7 |01 | "0”

| | |

! 1 frame ! 1 frame !
RDRF | | 5

FER 5

Hardware processing

Hardware processing

Hardware processing

(a) Set RDRF to "1".

Clear RDRF to "0".

Detect stop bit "0" and

(b) Transfer received data from
RSR to RDR when reception

Software processing

set FER to "1".

ends successfully.

Software processing

Read data stored
in RDR.

Software processing

Clear RE in SCR to "0".

None

Figure 3.1 Principle of operation of simultaneous asynchronous serial data transmission and
reception

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 8 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

4. Description of Software

4.1 Description of modules

Table 4.1 describes the modules used in this sample task (giving arguments and return values).

Table 4.1 Modules used

Module (Function)

Name Argument Return value Function

INIT (assembly) None None Sets stack pointer (sets R7 to H'FF80)
Sets CCR (prohibits interrupt requests)
Jumps to main

main None None Main module

Init_sci None None Clears the serial status register to 0
Sets for serial communications (asynchronous mode,
data length: 8 bits, no parity, 1 stop bit, bit rate: 9600
bps)
Permits TXI, RXI, ERI interrupt processing and
transmission/reception

Dsp_lInit None None Sets data on the terminal window of the personal
computer for displaying the program version
Int_SCI3 None None Serial interrupt processing

Determines whether the serial register is in error status,
transmission status, or reception status

Int_s3err None None Clears the receive counter and serial status register
to0

Int_s3rx None None Serial reception processing

Int_s3tx None None Serial transmission processing

Ans_send None None Response data set processing

Dump_send None None Memory dump data set processing

DSP_mem None None Pre-memory edit data set processing

DSP_err None None Data set processing for error

Set_send1 work None Transmission data set processing
(transmission data)

DSP_idle None None Data set processing for line feed

Dump_start adrs (dump start None Variable set for memory dump processing
address)

Cnvt_AsctoAddress None None Address data conversion (4-byte ASCII -> 2-byte Hex)

Cnvt_AxctoHex *ptr (converted data data Converts 2-byte ASCII data to 1-byte Hex data
storage address) (1-byte Hex data)

Cnvt1_AxctoHex *ptr (converted data data Converts 1-byte ASCII data to 4-bit Hex data
storage address) (4-bit Hex data)

Cnvt1_HextoAsc data *ptr (converted data Converts 1-byte Hex data to 2-byte ASCII data
(1-byte Hex data) storage address)

Int_trap None None Trap interrupt processing

NMI None None NMI interrupt processing (no processing performed)

Int_s3te None None SCI1 TEl interrupt processing (no processing

performed)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 9 of 43

H8/300H Tiny Series
Monitoring Software

LENESANS

4.2 Component files
Table 4.2 lists the files used in this task.

Table 4.2 Files

File Name Processing

DBSCT.C Initialization of non-initialized area (HEW automatic generation)

INIT.SRC Stack pointer and CCR settings (at resetting)

KMONI.C Main program, serial interrupt processing, communication subroutine processing, and vector table
definition

ASCDEFINE.H ASCII code definition (header file)

4.3 Section definitions

Table 4.3 lists section definitions for this task.

Table 4.3 Section definition

Address Section Description

H'0000 Cv1 Reset vector address

H'0010 Cv2 Trap vector address

H'002E CVv3 SCI vector address

H'0100 P Program area
C$DSEC Initialized data area (defined by DBSCT.C)
C$BSEC Non-initialized data area (defined by DBSCT.C)
D Initialized data area
C Constant area

H'FB80 B Non-initialized data area
R Initialized data area

4.4 Global variables used

Global variables used in this sample task are described in table 4.4.

Table 4.4 Global variables used

Variable Name Type Size Application

s3rx_buf unsigned char 16 Reception data buffer

s3tx_buf unsigned char 60 Transmission data buffer

s3rx_cnt unsigned char 1 Received data bit length

s3tx_cnt unsigned char 1 Transmitted data bit length

s3tx_cnt unsigned char 1 Transmission data bit length

dummy unsigned char 1 Serial data register dummy write area

trap_flag unsigned char 1 Trap interrupt processing flag

moni_code unsigned char 1 Selects re-reception operation after data has been received
ans_code unsigned char 1 Selects operation upon generating response data

dump_ycnt unsigned char 1 Dump line count upon memory dump

*cr_adrs unsigned char 1 Address for memory dump/memory edit

*dump_adrs unsigned char 1 Address for memory dump/memory edit

CMem.data unsigned char 2 Address for memory dump/memory edit (union with *CMem.adrs)
CMem.adrs unsigned char 1 Address for memory dump/memory edit (union with *CMem.data)

REJ06B0123-0100Z/Rev.1.00

September 2003 Page 10 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

4.5 Internal registers used

Table 4.5 describes internal registers used in this sample task.

Table 4.5 Internal registers used

Register Name Function Operation Setting
SMR COM Sets communication mode to asynchronous mode Setting 0
CHR Sets data length in asynchronous mode to 8 bits Setting 0
PE In asynchronous mode, does not perform addition and checks of Setting 0
parity bit upon transmission
PM Invalid since PE in SMR =0 Setting 0
STOP Sets stop bit length in asynchronous mode to 1 bit Setting 0
MP Prohibits multiprocessor communication function Setting 0
CKS1 Set the clock source for the on-chip baud rate generator to ¢ clock Setting CKS1=0
CKSO0 CKS0 =0
BRR Sets transmission bit rate to 9600 (bit/s) together with the operation Setting H'51
clock for the baud rate generator selected by CKS1 and CKS0 in SMR
SCR3 TIE When TIE = 1, enables TXI interrupt requests Setting 0/1
RIE Permits RXI and ERI interrupt requests Setting 1
TE Permits transmit operation Setting 1
RE Permits receive operation Setting 1
MPIE Invalid since MP in SMR =0 Setting 0
TEIE Refuses TEI interrupt requests Setting 0
CKE1 Set a clock source to baud rate generator Setting CKE1=0
CKEO CKEO =0
TDR 8-bit register to store transmission data Storage —
RDR 8-bit register to store received data Storage/ —
reference
SSR TDRE 0: Transmission data is written to TDR, or 0 is written after reading 1 Setting/ 0N
1: Data is transferred from TDR to TSR reference
RDRF 0: Data in RDR is read, or 0 is written after reading 1 Setting/ 0N
1: Data is transferred from RSR to RDR after reception has ended reference
successfully
OER 0: 0 is written after reading 1 Setting/ 0N
1: Overrun error occurs during reception reference
FER 0: 0 is written after reading 1 Setting/ 0N
1: Framing error occurs during reception reference
PER 0: 0 is written after reading 1 Setting/ 0N
1: Parity error occurs during reception reference
TEND 0: Transmission data is written to TDR, or 0 is written after reading 1 ~ Setting/ 0N
1: TDRE = 1 upon transmission of lowermost bit of the transmission reference
character
MPBR Stores the multiprocessor bit in the received character. Reference —
No change when RE in SCR =0
MPBT Sets multiprocessor bit value in the transmission character Reference —
PMRA1 Sets P2,/TXD pin function as TXD pin function Setting 0x02

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 11 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software
4.6 Monitor Control

The method of H8/3664 monitor control is described below.

All input characters should be single-byte alphanumeric characters.
If an error is made in character input, [Backspace] can be used to delete the preceding character.

The initial letter "D" and alphabet characters (A to F) in addresses during memory dump control, and the initial
character "E" and alphabet characters (A to F) in addresses during memory editing, can be input as lower-case
characters.

1. Performing a memory dump
After input of "D", the leading address for the data to be dumped is input as a 4-digit hexadecimal number, and
[Enter] is pressed to cause 128 bits of dump data beginning from the specified address to be displayed.

Example: To display dump data starting from address 0OXFE80 — DFESO (Figure 4.1)

i New Connection - HyperTerminal

File Edit Wiew Call Transfer Help

HE /3664 Monitor Program Yerl.0

DFE&D

FE&0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FE40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FE&0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FEBO) FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FECO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FEDD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FEED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FEF0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Disconnecked |.ﬁ.ut|:- detect |.ﬁ.ut|:| detect |5CROLL |CF'-F'5 |NL|M |Ca|:|ture |F'rint echo v

Figure 4.1 Memory data dump (address 0xFES80)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 12 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

After the dump data is displayed, if [Enter] is pressed without input of any characters, the next 128 bits of dump

data is displayed.

Example: In the state shown in figure 4.1 (dump data up to address OXFEFF displayed), press [Enter]
—128 bits of dump data from address 0xFFOO is displayed (Figure 4.2)

;. New Connection - HyperTerminal
File Edit

Wiew Call

Transfer

Help

FE&0
FE3N
FEAN
FEBN
FECO
FEDN
FEEN
FEFQ
FFOO
FF10
FF20
FF30
FF40
FFa0
FFED
FFi0

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FE
FE
00
73

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
7C
3E
il
BE

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FD
05
FE
36

HE /3BE4 Monitor
DFESN

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
E3
14
DE
40

Program Yerl.0

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
il
i
il
00

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
0F
i
i
00

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
0o
01
FE
FE

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
B4
D8
D
B3

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
03
i
03
FE

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
Eg
0a
54
10

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
F3
FE
45
01

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
0g
DC
i
01

FF
FF
FF
FF
FF
Bé
FF
FF
FF
FF
FF
FF
B
i
FE
01

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
33
00
20
4L

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FE
FE
01
i

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
32
30
JE
44

Disconnecked

|F'.ut|:| detect

|F'.ut|:| detect

|[SCROLL

|caps

[

|Capture

|P'rinl: echo

Figure 4.2 Memory data dump (sequential dump)

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 13 of 43

’ z H8/300H Tiny Series
" E N ESAS Monitoring Software
2. Performing memory edits

After input of "E", the address for editing is input as a 4-digit hexadecimal number, and [Enter] is pressed. On input
of an address, the specified address and the current value at the specified address are displayed.

Example: To edit data at address 0OXFEOO0 — EFEOQO (Figure 4.3)

v... New Connection - HyperTerminal
File Edit Wiew Call Transfer Help
H8 /3664 Monitor Program Yerl.d
EFEDD
FEOD:FF>_
Disconnecked |.ﬁ.ut|:- detect |.ﬁ.ut|:| detect |5CROLL |CF'-F'5 |NL|M |Ca|:|ture |F'rint echo v

Figure 4.3 Memory data edit (address specification)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 14 of 43

H8/300H Tiny Series

RE N ESAS Monitoring Software

In a state in which an address has been specified and the data at the specified address is displayed, input the value to

which the data is to be changed, and press [Enter].

Example: In the state of figure 4.3, to change the data at address OXFEOO from FF to 00
— FEO00:FF>00 (Figure 4.4)

v..- MNew Connection - HyperTerminal
File Edit Wew Cal Transfer Help
H3 /3664 Monitar Prozram Yerl.0
EFEDD
FEOO:FF>0D0
FEOD:OO>_
Disconnecked Aukn dekect |Fl.utu:| detect |SCROLL |CF'.F'S |NLIM |Capture |Print echo v

Figure 4.4 Memory data edit (data change)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 15 of 43

H8/300H Tiny Series
LENESANS Monitoring Softaare
In a state in which an address and the current value are displayed, if [Enter] is pressed without input of any
characters, the data at the next address can be edited (Figure 4.5).

v..- MNew Connection - HyperTerminal

File Edit Wew Cal Transfer Help

HE /3664 Monitor Program Yerl.0
EFEDD
FEOO: 00> < [Enter] iz prezzed without input of any characters
FEO1:FF>_

[
4

Disconnecked auko dekeck |Fl.utu:| detect |SCROLL |CF'.F'S |NLIM |Capture |Print echio

Figure 4.5 Memory data edit (address feed)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 16 of 43

H8/300H Tiny Series
LENESANS Monitoring Software
In a state in which an address and the current value are displayed, if " ~ " is pressed without input of any characters,
the data at the previous address can be edited (Figure 4.6).

v..- MNew Connection - HyperTerminal

File Edit Wew Cal Transfer Help

HE /3664 Monitor Prozram Yerl.0
EFEDD
FEOO: 00> & [7] iz pressed without input of any characters
FDFF:FF>_

[
4

Disconnecked auko dekeck |Fl.utu:| detect |SCROLL |CF'.F'S |NLIM |Capture |Print echio

Figure 4.6 Memory data edit (address return)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 17 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software

To end memory editing, press " . " without input of any characters; memory editing is concluded. (Figure 4.7)

v..- MNew Connection - HyperTerminal

File Edit Wew Cal Transfer Help

HEf3664 Monitor Prozram Yerl.0
EFEON
FEOO:O0:
FOFF:FF:
FEOO:00%. < [.]is pressed without input of any characters

Disconnecked Aukn dekect |Fl.utu:| detect |SCROLL |CF'.F'S |NLIM |Capture Print echo v

Figure 4.7 Memory data edit (edit end)

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 18 of 43

H8/300H Tiny Series
Monitoring Software

LENESANS

4.7 Hierarchical diagram of modules

A hierarchical diagram of modules is shown in figure 4.8.

INIT main
Set stack main
init_SCI

Set various serial
communication settings

Dsp_init

Display version

Init_SCI3

Int_s3err

Perform serial interrupt
processing

Clear serial relations

Int_s3rx

Set_send1

Perform serial receive
processing

Set transmission data

Set_idle

Set line feed data

Convt_AsctoAddress

Cnvt_AsctoHex

Cnvt1_AsctoHex

Convert address data

ASCIl — Hex conversion ASCIl — Hex conversion

Dump_start

Set variables for dump

Cnvt_AsctoHex

Cnvt1_AsctoHex

ASCIl — Hex conversion

ASCII — Hex conversion

Int_s3tx

Ans_send

Dump_send

Cnvt_HextoAsc

Int_trap

Perform trap interrupt
processing

NMI

Perform NMI interrupt
processing

INT_s3te

Perform SCI1 TEI
interrupt processing

Perform serial transmit
processing

Set response data

Set transmit data

ASCII — Hex conversion

Dsp_mem

Cnvt_HextoAsc

Set data for editing

ASCIl — Hex conversion

Dsp_err

Set error data

Set_idle

Set line feed data

Figure 4.8 Hierarchical diagram of modules

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 19 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

5. Flowcharts

(IN|IT)

| Set stack pointer to H'FF80. |

Set | bit to "1", refuse serial interrupt
processing.

(main JUMP)

(main)

[store" "in monil_code. |
[store” "in ans_::ode. |
[et -direction dump area. |
| |
| |

]

Set P22 to TXD output pin.
|

| Init_sci |
]

Set | bit to "0", permit serial interrupt
processing.

|
| | Dsp_Init | |

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 20 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

Init_sci

Read serial status register.

Clear serial status register to 0.

Permit TXI, RXI, ERI interrupt processing
and transmission/reception.

Set to asynchronous mode.
Set data length to 8 bits.
Set parity to none.

Set stop bits to 1.

Set bit rate to 9600 bps.

Set transmit counter to 0.

Set transmit length to 12.

Read serial status register.

Clear serial status register to 0.

rts

Dsp_Init

Set transmit counter to 0.

Store character string "H8/3664 Monitor
Program Ver 1.0¥n¥r" in order,
one character at a time, in transmission

buffer (s3tx_buf).
|

Set transmission length to 33.

Write " "to TDR.

Permit TXI, RXI, ERI interrupt processing,
transmission/reception.

rts

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 21 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

Serial interrupt processing routine

(

Int_SCI3

| Read serial status register. |

Transmission data
transferred?

Yes

Error received?

|| Int_s3eer ||

Reception data Yes

transferred?

[]

rts

Int_s3err

(
|
| Read serial status register. |

| Clear serial status register to 0. |

| Clear receive counter to 0. |

|
(

rts

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 22 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software

Write SCI3_RDR
to work.

Receive counter
>07?

Yes

No

WORk ==" "

Decrement receive

moni_code ==

counter.
Yes moni_code ="'

|| Set_send1 ||
| Dspide ||
Clear receive Clear receive

| | Dsp_idle | | counter to 0. counter to 0.
- Decrement
or_adrs. - || Set_send1 ||
| Store "I" in =
=y ans_code.
Store "E" in || Set_send1 ||
ans_code.
|

Clear receive

counter to 0. Set_send1 I

Clear receive
counter to 0.

Clear receive
counter to 0.
T

—O

Clear SSR3_RDRF
to 0.

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 23 of 43

RE N E S AS H8/300H Tiny Series

Monitoring Software

Transfer received
data in SCI3_RDR
to reception buffer.

No

. No
Receive counter

[| ospige]

| |Cnvt_AsctoAddress | |

Write CMem.adrs
to cr_adrs.
|

Write receive buffer
data to WORK.

moni_coude Yes

. No

==1?
moni_code
==E Yes

cr_adrs + =128

o e |

Receive counter
==1?

Store "D"
No in ans_code.

Is leading

character in No Yes] | | Dump_start | |
received buffer data Receive counter
"D" or "d"? Increment ==37?
cr_adrs.
i — Yes Store "R"
Is leading T oan d
character in No — ” Cnvt AsctoHEX ” Store "R" ans_code.
received buffer data Store "E — in ans_code.

Store "D" "E" or "e"? in ans_cod. |
in moni_code.

Store ed_data
at address cr_adrs.

| | Dump_start | |
| Store "E" *cr_adrs
in moni_code. == ed_data
Store "D" T _
in ans_code. Yes
Store "E"
in ans_code. Store "E"
| in ans_code.
Store "R"
in ans_code.

Clear receive
counter to 0.

Clear receive
counter to 0.

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 24 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software

(Int_s3tx)

Transmit counter <
transmission length?

Write value in transmission buffer Permit receive interrupt processing,
specified by s3tx_cnt to TDR. transmission and reception.
I |
[clear TORE 0 0. |] Ans_send (|

(s)

ans_code No

== D"

Yes ans_code
== "Ev
dump_ycnt
<8 Yes No
Yes
ans_code No
== o
Yes
Toume.sere]| [osvren] [omer 1] [oweoe 1]
| | |
Increment Store " " Store " " Store " " Store " "
dump_ycnt. in ans_code. in ans_code. in ans_code. in ans_code.

L. | |
=

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 25 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

Dsp_send)

Set address of s3tx_buf[0] in ptr |

Store ASC_CR in address obtained
by incrementing ptr.

Store dump_adrs in adrs.

Store value of adrs shifted 8 bits to the
right in adrs_h.

Store adrs ANDed with OxOOFF in adrs_|. |

Cnvt_HextoAsc | |

Add 2 to ptr. |

Cnvt_HextoAsc | |

Add 2 to ptr. |

Store " " in address obtained by
incrementing ptr.

Clear cnt to 0.

Yes

cnt< 16

No

Store ASC_CR in address obtained by
incrementing ptr.

Store ASC_LF in address obtained by
incrementing ptr.

| | Cnvt_HextoAsc

Add 2 to ptr.

Increment dump_adrs. |

Set transmit counter to 1. |

Set transmission length to 56. |

Write s3tx_buf[0] to TDR. |

Permit TXI, RXI, ERI interrupt processing
and transmission/reception.

rts)

Increment cnt.

nn

Store
incrementing ptr.

in address obtained by

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 26 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

(Dsp_mem)

|
Set address of s3tx_buf[0] in ptr.

Store ASC_CR in address obtained by
incrementing ptr.

|
Store cr_adrs in adrs.

Store value of adrs shifted 8 bits to the right
in adrs_h.

|
Store adrs ANDed with OxOOFF in adrs_|. |

| |Cnvt_HextoAsc | |

[Add 2t ptr. |

| |Cnvt_HextoAsc | |

[Add 2 toptr. |

|
Store " : " in address obtained by

incrementing ptr.

|
| |Cnvt_HextoAsc | |

[Add2toptr | |

Store " > " in address obtained by
incrementing ptr.

|
| Set transmit counter to 1. |

| Set transmission length to 9. |

|
| Write s3tx_buf[0] to TDR. |

Permit TXI, RXI, ERI interrupt processing
and transmission/reception
|

(s)

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 27 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

Dsp_err

Set s3tx_buf[0] address in ptr.

Store ASC_CR in address obtained by
incrementing ptr.

Store "I" in address obtained by
incrementing ptr.

Store "E" in address obtained by
incrementing ptr.

Store "r" in address obtained by
incrementing ptr.

Store "r" in address obtained by
incrementing ptr.

Store ASC_CR in address
obtained by incrementing ptr.

Store ASC_LF in address
obtained by incrementing ptr.

Set transmit counter to 1.

Set transmission length to 7.

Write s3tx_buf[0] to TDR.

Permit TXI, RXI, ERI interrupt
processing and transmission/reception.

rts

set_send1

Set transmit counter to 1.

Set transmission length to 7.

Write work to TDR.

Permit TXI, RXI, ERI interrupt

processing and transmission/reception.

rts

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 28 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

(Dsp_idle

Set transmit counter to 1.

Write " " to s3tx_buf[0].

Write ASC_CR to s3tx_buf[1].

Write ASC_LF to s3tx_buf[2].

Set transmission length to 3.

Write " " to TDR.

Permit TXI, RXI, ERI interrupt processing
and transmission/reception.

(rts

(Dump_start

| Write dump to dump_adrs.
|

| Clear dump_ycnt to 0.

(s

(Cnvt_AsctoAddress

| | Cnvt_AsctoHex

| | Cnvt_AsctoHex

(rts

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 29 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

(Cnvt_HextoAsc)

[write data, right-shifted 4 bits, to data_c. |
|

| Store data_c+30 in address of ptr. |

Yes

| Add 7 to value at address of ptr. |
[

| Increment ptr. . |

[write data ANDed with 0x0fto data_c. |
|

| Store data_c+30 at address of ptr. |

Yes

| Add 7 to value at address of ptr. |
[

(s)

(Cnvt_AsctoHex

| data=0

| | Cnvt1_AsctoHex

| data = data x10

| | Cnvt1_AsctoHex

(rts

(Cnvt1_AsctoHex)
|
| data=0 |

No

0x30 < *ptr > 0x39

0x41 < *ptr > 0x46

Add result of *ptr - 0x30 to data. |

| Add result of *ptr - 0x37 to data. |

0x61 < *ptr > 0x66

Yes

| Add result of *ptr - 0x57 to data. |

(s)

REJ06B0123-0100Z/Rev.1.00 September 2003

Page 30 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

6. Program Listing

.EXPORT _INIT
. IMPORT _main
.SECTION P, CODE
_INIT:
MOV.W #H'FF80,R7
LDC.B #B'10000000, CCR
JMP @_main
.END

/3 Kk kK Kk Kk kK KK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok Kk ok kK ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok Kk ok ok K ko ok ok ko ko

/*
/* FILE
/* DATE

/* DESCRIPTION

:kmoni.c
:Man, Jul 11, 2001

:Main Program

*/
*/
*/
*/
*/
*/
*/
*/

] Kk kK Kk kK KK kK KK ok K Kk ok ok Kk ok ok ko ok Kok ok Kk ok ok Kk ok ok Kk ok Kk ok kK ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ko ko

/* CPU TYPE :H8/3664F
/*
/* This file is generated by Renesas Project Generator (Ver.1.2).
/*
#include "machine.h"
#include "ascdefine.h"
#include "string.h"

#ifdef _ cplusplus
extern "C" {
#endif

void abort (void);
#ifdef _ cplusplus
}

#endif

struct BIT {
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

}i

#define SCI3_SMR
#define SCI3_BRR
#define SCI3_SCR
#define SCI3_TDR
#define SCI3_SSR
#define SCI3_RDR
#define ssr3

#define SSR3_RDRF
#define SSR3_TDRE

#define PMR1

b7:1; /* bit 7
b6:1; /* bit 6
b5:1; /* bit 5
b4:1; /* bit 4
b3:1; /* bit 3
b2:1; /* bit 2
bl:1; /* bit 1
b0:1; /* bit 0

(* (volatile unsigned
(* (volatile unsigned
(* (volatile unsigned
(* (volatile unsigned
(* (volatile unsigned

(* (volatile unsigned

*/
*/
*/
*/
*/
*/
*/
*/

char
char
char
char
char

char

(* (struct BIT *)0xFFAC)

ssr3.b6
ssr3.b7

*) O0XFFAS8)
*) 0xFFA9)
*) OxFFAR)
*) O0XFFAB)
*) 0XFFAC)
*) 0xFFAD)

*(volatile unsigned char *)0xFFEQO

#pragma
#pragma
#pragma

interrupt (Int_SCI3)
interrupt (Int_trap)
interrupt (NMI)

/*
/*
/*
/*
/*
/*

SCI3
SCI3
SCI3
SCI3
SCI3
SCI3

Address
Address
Address
Address
Address
Address

*/
*/
*/
*/
*/
*/

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 31 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

unsigned char s3rx_buf[16];
unsigned char s3tx buf[60];
unsigned char s3rx_cnt;
unsigned char s3tx_cnt;
unsigned char s3tx_len;
unsigned char dummy;

unsigned char trap flag;

unsigned char moni_code;
unsigned char ans_code;
unsigned char dump_ycnt;
unsigned char *cr_adrs;
unsigned char *dump_adrs;
union {

unsigned char datal2];

unsigned char *adrs;

} CMem;

Y R

/*; Function definition

*/

[3 Rk Kk kK Kk ok KK kK Kk ok K Kk ok ok Kk ok ko ok Kk ok Kk ok Kk ok ok Kk ok Kk ok ok ko ok ko ok ok ko ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K Kok ok ok Kk ko

extern void INIT (void);

void main (void);

void Init_sci (void);

void Int_SCI3(void);

void Int_s3tx (void);

void Int_s3rx (void);

void Int_s3err(void);

void Int_trap(void);

void Cnvt_HextoAsc (unsigned char data ,unsigned char *ptr);

unsigned char Cnvt_ AsctoHex (unsigned char *ptr);

unsigned char CnvtliAsctoHex(unsigned char *ptr);

void Cnvt_AsctoAddress(void);

void Ans_send(void);

void Set_sendl (unsigned char work);
void Dsp_mem(void);

void Dsp_err(void);

void Dsp_idle(void);

void Dsp_init (void);

void Dump_start (unsigned char *adrs);
void Dump_send (void);

[3 R K Kk kK Kk kK KKk K KK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok Kk ok Kk ok ok Kk ok kK ko ok ko ok ok ok ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK Kk ok ok ko ko

/*; Vector Address

T R

#pragma section V1
void (*const VEC_TBL1[]) (void) = {
/* 0x00 - O0xO0f
INIT,
INIT
}i
#pragma section v2
void (*const VEC _TBL2[]) (void) = {
Int_trap,
Int_trap,
Int_trap,
Int_trap
}i
#pragma section v3
void (*const VEC_TBL3[]) (void) = {
Int SCI3,
Int SCI3

*/
/* VECTOR SECTOIN SET */

*/
/* 00 reset */
/* VECTOR SECTOIN SET */
/* 10 trap#0 */
/* 12 trap#l */
/* 14 trap#2 */
/* 16 trap#3 */
/* VECTOR SECTOIN SET */
/* 2B SCI3_RX Interrupt */
/* 2B SCI3_RX Interrupt */

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 32 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software

#pragma section /* P */

[3 K Kk kK Kk kKK kK KK ok K Kk ok ok Kk ok kK ok ok Kok ok Kk ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ok ok ok ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok Kk ok ok ok kK ko

/*; Main Program */

R)

void main (void) {

moni_code = ;
ans_code = ' ';

dump_ycnt = 8;

PMR1 = 0x02;

Init_sci();

set_imask_ccr(0); /* Condition code setting */

Dsp_init();

while (1) |

void abort (void)

/* ,,, ,*/
/* <Function name> Init_sci */
/* <Function task> Serial setting */
/* <Argument> None */
/* <Return value> None */
/* <External variable> None */
/* <Function used> None */
2 e —————— */

unsigned long *plPtr 0;
unsigned long *plPtr_1;

unsigned char speed;

/* ,,, ,*/
/* <Communication with UNIT> */
/* SC register 7 6 5 4 3 2 1 0 */
/* Serial status (SSR) : TDRE RDRF ORER FER PER --- --- -—---— */
/* Serial mode (SMR): C/A 8/7 PE O/E STP MP CKS1 CKSO */
/* 0 0 0 0 0 0 0 0 */
/* Bit rate (BRR) : */
/* Serial control (SCR): TIE RIE TE RE MPI TEI CKEl CKEQ */
/* 1 1 1 1 0 0 0 0 */
/* ,,, ,*/

dummy = SCI3_SSR;
SCI3 SSR = 0;
SCI3 SCR = 0xf0;

SCI3_BRR = 51; /* 9600bps CLK:16MHz */
SCI3_SMR = 0x00; /* PE:0 */
s3rx_cnt = 0;

dummy = SCI3_SSR;
SCI3 SSR = 0;

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 33 of 43

’ z H8/300H Tiny Series
o E N ESAS Monitoring Software

/* ,, ,*/
/* <Function name> Int SCI3 */
/* <Function task> Serial interrupt processing */
/* <External variable> */
/* <Function used> Int_s3rx,Int_s3tx,int_s3err */
2 */
void Int SCI3(void) {

unsigned char work;

work = SCI3_SSR;
if ((work & 0x38) != 0) {
Int_s3err();

}

else {
if ((work & 0x40) != 0) {
Int_s3rx();
}
if ((work & 0x80) != 0) {
Int_s3tx();
}
}
}
K */
/* <Function name> Int s3tx */
/* <Function task> Serial transmission processing */
/* <External variable> sltx cnt,sltx len */
/* <Function used> Ans_send */
K */

void Int_s3tx(void) {

if (s3tx_cnt < s3tx_len) {
SCI3_TDR = s3tx buf[s3tx cnt++];
SSR3_TDRE = 0;
}
else {
SCI3_SCR = 0x70; /* TEIE:0 */

Ans_send();

K */
/* <Function name> Int_s3rx */
/* <Function task> Serial receive processing */
/* <External variable> s3rx buf,s3rx cnt, */
/* <Function used> Dsp_idle,Set_sendl,Cnvt_AsctoAddress,Dump_start, */
/* Cnvt_AsctoHex */
/*
/*
/%
/*
/*
/%
/*
/*
/%
/*
/* tx X CR */
/* ,, ,*/

void Int_s3rx(void) {

unsigned char work,ed data;

work = SCI3_RDR;

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 34 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

if (work == ASC _CN) {

}

else

else

s3rx_cnt = 0;

Dsp_idle();

if (work == ASC BS) {
if (s3rx_cnt > 0) {
s3rx_cnt--;

Set_sendl (work) ;

if (s3rx_cnt < 13) {

s3rx_buf[s3rx_cnt++] = work;

if (work == ASC CR) {
if (s3rx_cnt == 6) {
Dsp_idle();
Cnvt_AsctoAddress() ;

cr_adrs = (unsigned char *)CMem.adrs;

work = s3rx_buf[0];

if (work == 'D' || work == 'd') {
moni_code = 'D';

Dump_start (cr_adrs);

ans_code = 'D';
}
else if (work == 'E' || work == 'e') {
moni_code = 'E';
ans_code = 'E';
}
s3rx_cnt = 0;
}
else {
switch (moni_code) {
case 'D':
if (s3rx_cnt == 1) {
cr_adrs+=128;
ans_code = 'D';
Dump_start (cr_adrs) ;
}
else {
ans_code = 'R';
}
break;
case 'E':

Dsp_idle();
if (s3rx_cnt == 1) {
cr_adrs++;
ans_code = 'E';
}
else if (s3rx_cnt == 3) {

ed_data = CnvtiAsctoHex(s3rx7buf);

*cr_adrs = ed_data;
if (*cr_adrs == ed_data) {
ans_code = 'E';
}
else {
ans_code = 'R';
}
}
else {
ans_code = 'R';
}
break;
default:
break;

/*=== Dump---*/
/F--= BQit ---*/
/*--- idle ---*/

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 35 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

s3rx_cnt = 0;
}
}
else if (work == '"") {
if (moni_code == 'E') {
Dsp_idle();
cr_adrs--;
ans_code = 'E';
}
else {
moni_code = ' ';
}
s3rx_cnt = 0;

}

else if (work =

s3rx_cnt = 0;
ans_code = 'I';
moni_code = ' ';
Set_sendl (work) ;
}
else if (work == ASC_LF) {
s3rx_cnt = 0;
Set_sendl (work) ;
}
else {
Set_sendl (work) ;
}
}
else {
s3rx_cnt = 0;
}
SSR3_RDRF = 0;
}
K */
/* Set send */
/* ,,,,,, j ,, ,*/
void Set_sendl (unsigned char work) {
s3tx_cnt = 1;
s3tx _len = 1;
SCI3_TDR = work;
SCI3 SCR = 0xf0;
}
K */
/* <Function name> Ans_send */
/* <Function task> Answer-back data transmission */
/* <Argument> None */
/* <Return value> None */
/* <External variable> sOtx_cnt,sOtx len,sOtx_buf */
/* <Function used> Dump_ send,Dsp mem,Dsp mcng,Dsp err,Dsp idle */
P T - - T - .

switch (ans_code) {

case 'D':

if (dump_ycnt < 8) {

Dump_send () ;

dump_ycnt++;

}

else {

ans_code = ' ';

/*=-= Dump ---%*/

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 36 of 43

LENESAS

H8/300H Tiny Series
Monitoring Software

break;

case 'E':
Dsp_mem() ;
ans_code = ' ';
break;

case 'R':
Dsp_err();
ans_code = ' ';
break;

case 'I':
Dsp_idle();
ans_code = ' ';
break;

default:

break;

/* <Function name>

/* <Function task>

/* <Argument>

/* <Return value>

/* <External variable>

/* <Function used>

Dsp_mem

Memory

None

None
sO0tx_cnt,s0tx_len,sOtx_buf

Cnvt_HextoAsc

void Dsp_mem(void) {
unsigned char *ptr,adrs_h,adrs_1;

unsigned short adrs;

ptr = &s3tx_buf[0];
*ptr++ = ASC CR;

adrs = (unsigned short)cr_adrs;
adrs_h = (unsigned char) (adrs >> 8);
adrs_1 = (unsigned char) (adrs & 0x00ff);

Cnvt_HextoAsc(adrs_h,ptr);
ptr+=2;
Cnvt_HextoAsc(adrs_l,ptr);
ptr+=2;

Fptr++ = ':';

Cnvt_HextoAsc (*cr_adrs,ptr);
ptr+=2;

*ptr++ = '>';

s3tx_cnt = 1;

s3tx_len = 9;

SCI3_TDR = s3tx buf[0];
SCI3 SCR = 0xf0;

/*--- Edit ---*/

/*--- Err ---x/

/*-== Idle --=*/

Y

*/
*/
*/
*/
*/
*/

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 37 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

/*
/*
/*
/*
/*
/*

<Function name>
<Function task>
<Argument>

<Return value>

<Function used>

void Dsp_idle(void

s3tx_cnt =
s3tx_buf[0]
s3tx_buf[l]
s3tx_buf[2]
s3tx_len =
SCI3 TDR =
SCI3 SCR =

<Function name>
<Function task>
<Argument>

<Return value>

<Function used>

,,, ,*/
Dsp_idle */
Error display */
None */
None */
<External variable> sOtx_cnt,sOtx_len,sOtx buf */
None */
__ */
{
1;
="'"';
= ASC_CR;
= ASC_LF;
3;
v
0xf0;
,,, ,*/
Dsp_init */
Initial window display */
None */
None */
<External variable> sOtx_cnt,sOtx_len,sOtx buf */
None */

/*
/*
/*
/*
/*
/*

Dsp_init (void

s3tx_cnt = 0;

strcpy ((char *)s3tx _buf,"H8/3664 Monitor Program Verl.O\n\r");

s3tx_len = 33;
SCI3_TDR = ' ';
SCI3 SCR = 0xf0;

<Function name>
<Function task>
<Argument>

<Return value>

<Function used>

void Dsp_err(void

unsigned char *ptr;

__ */
Dsp_err */

Error display */

None */

None */

<External variable> sOtx_cnt,sOtx_len,sOtx buf */
None */
,,, ,*/

ptr = &s3tx _buf[0];

*ptr++ = ASC_CR;

*ptr++ = "1
*ptr++ = 'E';
*ptr++ = 'r';
*ptr++ = 'r';

*ptr++ = ASC_CR;

*ptr++ = ASC_LF;

s3rx_cnt = 0;
s3tx_cnt = 1;
s3tx_len = 7;

SCI3_TDR = s3tx buf[0];

SCI3_SCR = 0xf0;

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 38 of 43

LENESANS

H8/300H Tiny Series
Monitoring Software

/* ,,, ,*/
/* <Function name> Dump_start */
/* <Function task> Memory dump start */
/* <Argument> None */
/* <Return value> None */
/* <External variable> sOtx_cnt,sOtx len,sOtx_buf */
/* <Function used> None */
2 e —————— */
void Dump_start(unsigned char *adrs) {

dump_adrs = adrs;

dump_ycnt = 0;
}
/* ,,, ,*/
/* <Function name> Dump_send */
/* <Function task> Memory dump data transmission */
/* <Argument> None */
/* <Return value> None */
/* <External variable> s3tx_cnt,s3x_len,s3tx buf */
/* <Function used> Cnvt_HextoAsc */
JH e : __ */
2 e —————— */
/* 1 2 3 4 5 */
/* 12345678901234567890123456789012345678901234567890123 */
/* 0000 00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF */
/* ,,, ,*/
void Dump_send(void) {

unsigned char *ptr,adrs_h,adrs_1,cnt;

unsigned short adrs;

ptr = &s3tx_buf[0];
*ptr++ = ASC CR;

adrs = (unsigned short)dump_adrs;
adrs_h = (unsigned char) (adrs >> 8);
adrs_1 = (unsigned char) (adrs & O0x00ff);

Cnvt_HextoAsc(adrs_h,ptr);
ptr+=2;
Cnvt_HextoAsc(adrs_l,ptr);
ptr+=2;
*ptr++ = ' ',
cnt = 07
while (cnt <16) {
Cnvt_HextoAsc (*dump_adrs,ptr);
ptr+=2;
dump_adrs++;
cnt++;
*ptr++ = ' '
}
*ptr++ = ASC_CR;
*ptr++ = ASC LF;

s3tx_cnt = 1;

s3tx_len = 56;

SCI3_TDR = s3tx buf[0];
SCI3 SCR = 0xf0;

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 39 of 43

LENESAS

H8/300H Tiny Series
Monitoring Software

/* ,, ,*/
/* <Function name> Cnvt_HextoAsc (0x30, 0x39,0x41, 0x46) */
/* <Function task> hexdata (1lbyte) >ASCIIdata (2byte) Processing for converting */
/* <Argument> hexdata, (unsigned char *)ascii_data */
/* <Return value> None */
/* <External variable> None */
/* <Function used> None */
K */
void Cnvt_HextoAsc (unsigned char data ,unsigned char *ptr) ({
unsigned char data_c;

data_c = data >> 4;

*ptr = data_c + 0x30;

if (data_c > 9)

*ptr += 7;

ptr++;

data_c = data & 0xO0f;

*ptr = data_c + 0x30;

if (data_c > 9)

*ptr += 7;

}
K */
/* <Function name> Int_s3err */
/* <Function task> Serial 0 receive error processing */
/* <External variable> s3rx_cnt */
/* <Function used> None */
/* ,, ,*/
void Int_s3err(void) {

dummy = SCI3_SSR;

SCI3 SSR = 0;

s3rx_cnt = 0;
}
K */
/* <Function name> Int_trap */
/* <Function task> Trap interrupt processing */
/* <External variable> trap flag */
/* <Function used> None */
/* ,, ,*/
void Int_trap(void) {

while (trap flag == 0)

trap_flag = 0;
}
K */
/* <Function name> Cnvt_AsctoHex */
/* <Function task> 2byte ascii code => lbyte (7-4bit,3-0bit) */
/* <Argument> Pointer of ASCII code character string */
/* <Return value> lbyte (Hex) */
/* <External variable> None */
/* <Function used> Cnvtl AsctoHex */
/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,, t ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,*/

unsigned char CnvtiAsctoHex(unsigned char *ptr) {

unsigned char data

= 0;

data = Cnvtl AsctoHex (ptr++);

data *= 0x10;

data += Cnvtl AsctoHex (ptr);

return(data) ;

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 40 of 43

LENESAS

H8/300H Tiny Series
Monitoring Software

/*
/*
/*
/*
/*
/*
/*
/*
/*

re

/*
/*
/*
/*
/*
/*

,, ,*/
<Function name> Cnvtl_ AsctoHex */
<Function task> lbyte ascii code => lbyte (bit3-0) */
<Argument> Pointer of ASCII code character string */
<Return value> 1byte (bit3-0) */
<External variable> None */
<Function used> None */

__ */
ascii o - 9 A B C D E F */
hex 30 - 39 41 42 43 44 45 46 */

__ */

unsigned char CnvtliAsctoHex(unsigned char *ptr) {

unsigned char data = 0;

if ((0x30 <= *ptr) && (*ptr <= 0x39)) {
data += *ptr - 0x30;

}

else if ((0x41l <= *ptr) && (*ptr <= 0x46)) {
data += *ptr - 0x37;

}

else if ((0x6l <= *ptr) && (*ptr <= 0x66)) {
data += *ptr - 0x57;

}

turn(data) ;

__ */
<Function name> Cnvt_AsctoAddress (0x300J0x39,0x41110x46) */
<Function task> ASCIIdata (4byte)->Processing for converting the reference address (2bytes) */
<Argument> None */
<Return value> None */
<External variable> CMemAddress,s3rx_buf */
<Function used> Cnvt AsctoHex */

,,,,,,,,,,,,,,,,,,,,,,,,,,, t,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,*/

id Cnvt_AsctoAddress(void

/* Return address conversion (for every two bytes) */
/* buf[1][2] (3] [4] */
/* - - - - X X X X */
CMem.data[0] = Cnvt_AsctoHex (&s3rx_buf[l]);
CMem.data[1l] = Cnvt_AsctoHex (&s3rx_buf([3]);

,, ,*/
<Function name> NMI */
<Function task> NMI interrupt */
<Argument> None */
<Return value> None */
<External variable> None */
<Function used> None */

__ */

id NMI (void) {

__ */
<Function name> Int_s3te */
<Function task> SCIITEI interrupt */
<Argument> None */
<Return value> None */
<External variable> None */
<Function used> None */

,, ,*/

vo

id Int_s3te(void)

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 41 of 43

LENESAS

H8/300H Tiny Series
Monitoring Software

Revision Record

Description

Rev. Date Page

Summary

1.00 Sep.29.03 —

First edition issued

REJ06B0123-0100Z/Rev.1.00

September 2003

Page 42 of 43

RE N ESAS H8/300H Tiny Series

Monitoring Software

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

REJ06B0123-0100Z/Rev.1.00 September 2003 Page 43 of 43

	Cover
	1. Specifications
	2. Description of Functions
	3. Principles of Operation
	4. Description of Software
	5. Flowcharts
	6. Program Listing

