

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ05B0783-0100/Rev.1.00 January 2006 Page 1 of 30

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

Introduction
LIN (Local Interconnect Network): Slave Volume provides examples of settings and usage of the on-chip peripheral
functions of H8/300H Tiny Series H8/36014 Group microcomputers to implement communications according to the
LIN protocol. This note is provided as a reference to help users in software and hardware design.

The operation of programs, circuits, and other items in this application note has been confirmed. However, be sure to
confirm the operation before actual usage.

Target Device
H8/300H Tiny Series H8/36014F

Contents

1. Overview of LIN Communications Systems.. 2

2. Specifications of LIN2.0 Library .. 8

3. References.. 28

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 2 of 30

1. Overview of LIN Communications Systems
This section gives an overview of LIN communications on systems that incorporate the sample LIN communications
software library (hereinafter referred to as the LIN2.0 library or the library) described in this application note.

1.1 Connection to the LIN Bus
A system connected to a network on a LIN bus via a LIN bus interface circuit (or LIN transceiver) is able to transmit
header-frames as the master node, as well as transmit and receive response frames.

1.1.1 System Configuration
Figure 1 shows an example of how a network system is configured on a LIN bus.

Slave Node n

H8/36014F

SCI3_1

FTI0D

Timer W

LIN Bus I/F Circuit LIN Bus I/F Circuit

Slave Node 2

LIN Bus I/F Circuit

Master Node

LIN Bus I/F Circuit

Slave Node 1

LIN Bus

Figure 1 System configuration

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 3 of 30

1.1.2 Resource Usage
Resources of the H8/36014F for use in this application note are listed in table 1.

Table 1 CPU resources used in slave node operation

Function

Pin Function
(Pin No.)

Usage

Description/Comment

I/O port pin P80
(36)

LIN transceiver control LIN transceiver is enabled or
disabled by the output of this I/O
pin (high and low, respectively).
The user must set the pin to be
an output at the high level after a
reset.

Transmission

TXD
(46)

Transmission of
response frames,
output of wake-up
signal
Reception of response
frames

Asynchronous mode, 8-bit data
length, no parity bit, 1-stop bit
(with start bit added), LSB first

SCI3
(Channel-1)

Reception

RXD
(45)

Detection of errors in
communications

Module’s internal error detection
function

Timer W FTI0D
(40)

Header detection
(input capture),
measurement of wake-
up signal period
(output compare)

Automatic speed adjustment
through detection of the break
period and synchronization
bytes.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 4 of 30

1.2 Overview of LIN Communications
This section gives an overview of the various frames transmitted and received in the LIN communications protocol.

1.2.1 Unconditional Frame
An unconditional frame is always transmitted and received regardless of any updated signal values.

The node that transmits a response to a header can be a master or slave node. Also, the node that receives the response
can be a master or slave node.

Sequences for unconditional frames are illustrated in figure 2.

MST(Master) SLV1(Slave1) SLV2(Slave2)

Unconditional header (MST SLV1)

Unconditional header (MST SLV2)

Unconditional header (SLV2 SLV1)

SLV1 response

SLV2 response

SLV2 response

→

→

→

Figure 2 Sequences for unconditional frames

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 5 of 30

1.2.2 Event-Triggered Frame
An event-triggered frame is transmitted from a master node and received by a slave node in order to confirm the
availability of an update to the value of a signal.

Only those slave nodes with updated signal values transmit responses to the header. The transmission of responses by
several slave nodes may lead to a collision. When a collision occurs, the master node sends requests for the
confirmation of signal values to all of the slave nodes via an unconditional frame. On the other hand, the master node is
the only node that receives the responses.

Sequences for event-triggered frames are illustrated in figure 3.

MST(Master) SLV1(Slave1) SLV2(Slave2)

Event-triggered header

Event-triggered header

Event-triggered header

Event-triggered header

SLV1 response

SLV2 response

SLV2 responseSLV1 response

A collision occurs!

An unconditional header has

arrived at SLV1 and SLV2 in

sequence, leading to the same

unconditional frame sequence

from both slaves.

Update

Update

UpdateUpdate

: No response

Figure 3 Sequences for event-triggered frames

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 6 of 30

1.2.3 Sporadic Frame
Sporadic frames are used to inform all relevant slave nodes of the updating of a signal value managed by the master
node. Only the master node sends out a response to the header.

The sequence for a sporadic frame is illustrated in figure 4.

MST(Master) SLV1(Slave1) SLV2(Slave2)

Sporadic header

Response

Update

: No header transmission

Sporadic header

Figure 4 The sequence for a sporadic frame

1.2.4 Master Request Frame
Master request frames are used to transmit node settings and node-diagnostic information from the master node to slave
nodes. Only the master node sends out a response to the header.

The sequence for a master request frame is illustrated in figure 5.

MST(Master) SLV1(Slave1) SLV2(Slave2)

Master request header

Response (command)

Command reservation

: No header transmission

Master request header

Figure 5 The sequence for a master request frame

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 7 of 30

1.2.5 Slave Response Frame
Slave response frames provide a way for the master node confirmations of validity or invalidity in response to node-
diagnostic frames and responses to node-setting frames sent from the master node to the slave node. Only slave nodes
send out responses to the header. This flow should not be implemented in clustered structures where several slave
nodes might react. Slave nodes will not transmit a response when they have nothing with which to respond.

The sequence for a slave response frame is illustrated in figure 6.

MST SLV1 SLV2

Data reservation

: No header transmission

Slave response header

Slave response header

Response (data)

Figure 6 The sequence for a slave response frame

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 8 of 30

2. Specifications of LIN2.0 Library
Including the library in a user application program allows the program to use the on-chip functions of the H8/36014F to
perform LIN communications as a slave node.

2.1 Configuration of Files for the Library
• 36014s.h (Ver.1.00)

This file contains definitions of the on-chip I/O registers for the H8/36014 Group.

• sci_drv36014.c (Ver.1.00)

This is the C source file for the driver that sets up and controls the SCI3 module to handle communications by the
H8/36014F as a LIN slave node. This file can be freely modified or converted to operate with the CPU environment
being employed by the user. Since the functions of this file are not included in the LIN2.0 library, it must be
included with the user application program at compile time for embedding in systems that employ LIN
communications.

• sci_drv36014.h (Ver.1.00)

This is the header file for the driver that sets up the SCI3 module to handle communications by the H8/36014F as a
LIN slave node and controls LIN communications. This file can be freely modified or converted to operate with the
CPU environment being employed by the user. Since the functions of this file are not included in the LIN2.0 library,
it must be included with the user application program at compile time for embedding in systems that employ LIN
communications.

• tmr_drv36014.c (Ver.1.00)

This is the C source file for the driver that sets up and controls counting by the timer W module to handle
communications by the H8/36014F as a LIN slave node. This file can be freely modified or converted to operate
with the CPU environment being employed by the user. Since the functions of this file are not included in the
LIN2.0 library, it must be included with the user application program at compile time for embedding in systems that
employ LIN communications.

• tmr_drv36014.h (Ver.1.00)

This is the header file for the driver that sets up and controls counting by the timer W module to handle
communications by the H8/36014F as a LIN slave node. This file can be freely modified or converted to operate
with the CPU environment being employed by the user. Since the functions of this file are not included in the
LIN2.0 library, it must be included with the user application program at compile time for embedding in systems that
employ LIN communications.

• Lin_Drv36014.c (Ver.1.00)

This is the C source file for the LIN driver that actually sets up and controls communications by the H8/36014F as a
LIN slave node. This file can be freely modified or converted to operate with the CPU environment being employed
by the user. Since the functions of this file are not included in the LIN2.0 library, it must be included with the user
application program at compile time for embedding in systems that employ LIN communications.

• Lin_Drv36014.h (Ver.1.00)

This is the header file for the LIN driver that actually sets up and controls communications by the H8/36014F as a
LIN slave node. This file can be freely modified or converted to operate with the CPU environment being employed
by the user. Since the functions of this file are not included in the LIN2.0 library, it must be included with the user
application program at compile time for embedding in systems that employ LIN communications.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 9 of 30

• Lin_Slave_Cnf.c (Ver.1.00)
This file contains definitions specific to slave nodes, and covers the handling of signals, frames, scheduling, and
other items within clusters. Although this file is employed in the creation of cluster environments by the user, it is
generally created by using the configurator.

• Lin_Com_Cnf.h (Ver.1.00)

This header file is used to include the slave-node definition file (Lin_Slave_Cnf.c).

• lin20.h (Ver.1.00)

This is the header file for the LIN2.0 library. This file must be included in user programs for applications that
employ LIN communications.

• lin20.lib (Ver.1.00)

This is the main body of the LIN2.0 library. This file must be linked with user programs for applications that
employ LIN communications.

2.2 ROM/RAM Capacity
(The compiler in use is version 6.00.03.000 of the C/C ++ compiler for the H8S Family and H8/300 Series.)

Amounts of ROM/RAM given in this application note are amounts used by the LIN2.0 library (lin20.lib) alone, and
otherwise will vary with other definitions.

• ROM: 8908 bytes
• RAM: 155 bytes*

*: This does not include the heap requirements. Refer to Heap Area in section 2.2.1 below.

2.2.1 Heap Area
The buffers for the LIN2.0 library are dynamically allocated from the heap during initialization. Therefore, the
development of applications that employ the library requires that a sufficiently large unused part of the heap be
available. The following items indicate the minimum requirements for the heap area. Also, the items indicate how much
memory from the heap will be required.

1. Minimum requirements for the heap (RAM) area
 FIFO buffers for transmitting a frame of raw diagnostic data: 9 bytes (when one stage is saved.)
 FIFO buffers for receiving a frame of raw diagnostic data: 9 bytes (when one stage is saved.)
The above items require no less than 18 bytes of the heap.

2. Items that consume the heap area

 FIFO buffers for transmitting frames of raw diagnostic data
 FIFO buffers for receiving frames of raw diagnostic data
The user can specify the number of stages of the FIFOs listed above by using the configurator. For both
transmission and reception, any number of stages from 1 to 65535 is specifiable.
The requirement for memory from the heap is calculated by using the following formula.

Formula for calculation: No. of stages in the FIFO for transmission (or reception) x 9 bytes

Example: when saving 30 stages of FIFO buffer for transmission and 20 stages of FIFO buffer for reception,
 (30 (stages) x 9 (bytes) + 20 (stages) x 9 (bytes) = 450 (bytes).

Note: When the required heap area is not available, an error occurs in the initialization of LIN system.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 10 of 30

2.3 API Functions
Functions of the LIN2.0 library for use by slave nodes are described in this section. The style used to describe the API
functions is shown in figure 7.

Type of library function (return value and arguments) is indicated here.

Description Describes the purpose of the library function.

Return value Normal: the value or values returned when the library function ends

 normally.

 Abnormal: the value or values returned when the library function

 ends abnormally.

Argument Describes the meaning of the arguments.

Example Describes the procedure used to call the function.

Note Supplementary descriptions or precautions

Overview of function is indicated here.

Figure 7 Style of descriptions of API functions

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 11 of 30

2.3.1 List of API Functions
Table 2 is a list of the API functions (a total of 28 functions) that slave nodes can use.

Table 2 List of API functions
Name of Function Usage
l_sys_init Initializes the LIN system
l_ifc_init Initializes the interface
l_ifc_ioctl Registers an I/O driver
l_ifc_connect Makes a connection with the LIN bus
l_ifc_disconnect Breaks a connection with the LIN bus
l_flg_tst Tests a flag
l_flg_clr Clears a flag
l_bool_rd Reads a 1-bit signal
l_u8_rd Reads a 2- to 8-bit signal
l_u16_rd Reads a 9- to 16-bit signal
l_bytes_rd Reads data out from a byte-array signal
l_bool_wr Writes a 1-bit signal
l_u8_wr Writes a 2- to 8-bit signal
l_u16_wr Writes a 9- to 16-bit signal
l_bytes_wr Writes data for a byte-array signal
l_ifc_wake_up Outputs a wake-up signal
l_ifc_tx Transmits one frame
l_ifc_rx Receives one frame
l_ifc_aux Detects Break/Synch. header
l_ifc_read_status Acquires state information
ld_put_raw Transmits a frame of raw diagnostic data
ld_get_raw Acquires a frame of raw diagnostic data
ld_raw_tx_status Acquires state information on the transmission of raw diagnostic data
ld_raw_rx_status Acquires state information on the reception of raw diagnostic data
ld_send_message Transmits a frame of processed diagnostic data
ld_receive_message Receives a frame of processed diagnostic data
ld_tx_status Acquires state information on the buffer for the transmission of raw

diagnostic data
ld_rx_status Acquires state information on the buffer for the reception of raw diagnostic

data

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 12 of 30

2.3.2 Core API

System Initialization
l_bool l_sys_init(void)
Description Initializes the LIN system
Return value Normal initialization: 0

Failure in initialization: 1
Argument None
Example l_bool ret

ret = l_sys_init();
Note Call this API function first, i.e. before calling any of the API functions described below.

This function is called only once after a reset.

Interface Initialization
void l_ifc_init(l_u8 ifc_name)
Description Initializes a LIN interface
Return value None
Argument ifc_name Name of the interface
Example ifc_init(0);
Note Call functions l_sys_init and l_ifc_ioctl before calling this function.

Until l_ifc_init is called, operation in response to calling any API function other than the
above is undefined. The name of the interface can only be set to 0. In other words, it
should not be set to any value other than 0.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 13 of 30

I/O Driver Registration
l_u16 l_ifc_ioctl(l_u8 ifc_name, l_ioctl_op op, void* hand)
Description Registers the I/O drivers used by the individual nodes
Return value When all drivers are registered: 0

When some drivers have not been registered: Number of unregistered drivers
Argument ifc_name Name of the interface

op Operation code
hand Pointer for handling of a registered driver

Example const T_Lib_Slave_Handle Slave_handle = {
 Lin_Drv_Init,
 Lin_Drv_BreakIn,
 Lin_Drv_BreakInFinish,
 Lin_Drv_BitInStart,
 Lin_Drv_BitIn,
 Lin_Drv_BitInEnd,
 Lin_Drv_SyncInFinish,
 Lin_Drv_Pid_RecvReq,
 Lin_Drv_First_SendData,
 Lin_Drv_SendData,
 Lin_Drv_First_RecvReq,
 Lin_Drv_RecvData,
 Lin_Drv_SendRecvFinish,
 Lin_Drv_LinBus_Enable,
 Lin_Drv_LinBus_Disable,
 Lin_Drv_WakeUp,
 Lin_Drv_WakeUpFinish
}; l_u16 ret;
ret = l_ifc_ioctl(0, LIN_ENTRY_SLAVE _DRV, &Slave_handle);

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
Specify either of the following two codes as the operation code.
Registration of the master-node driver: LIN_ENTRY_MASTER_DRV
Registration of the slave-node drivers: LIN_ENTRY_SLAVE_DRV
Call this API function before calling the API function l_ifc_init.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 14 of 30

LIN Bus Connection
l_bool l_ifc_connect(l_u8 ifc_name)
Description Makes a connection with the LIN bus
Return value Successful connection: 0

Failure to connect: 1
Argument ifc_name Name of the interface
Example l_bool ret;

ret = l_ifc_connect(0);
if(ret) {
 /* Lin bus connection failed. */
}

Note Perform scheduled execution for LIN communications after calling this function to
connect the device with the LIN bus.
The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.

LIN Bus Disconnection

l_bool l_ifc_disconnect(l_u8 ifc_name)
Description Breaks a connection with the LIN bus
Return value Successful disconnection: 0

Failure to disconnect: 1
Argument ifc_name Name of the interface
Example l_bool ret;

ret = l_ifc_connect(0);
if(ret) {
 /* Lin bus disconnection failed. */
}

Note When ending a session of LIN communications, disconnect the device from the LIN bus
by calling this function.
The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 15 of 30

Flag Testing
l_bool l_flg_tst(l_flag_handle flag_name)
Description Tests a flag
Return value Value of the flag: 0 or 1
Argument flag_name Name of the flag
Example l_bool ret;

ret = l_flg_tst(&Lin_Frm_FrameU1_flg);
if(ret) {
 /* Something is done. */
} else {
 /* Something else is done. */
}

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
The name of the flag is a name defined by the user.
The address defined for the flag is substituted for this.

Flag Clearing

l_bool l_flg_tst(l_flag_handle flag_name)
Description Clears a flag
Return value None
Argument flag_name Name of the flag
Example l_flg_clr(&Lin_Frm_FrameU1_flg);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.
The name of the flag is a name defined by the user.
The address defined for the flag is substituted for this.

Signal Value Reading

l_bool l_bool_rd(l_signal_handle sig_name)
Description Reads a 1-bit signal
Return value Value of the signal: 0 or 1
Argument sig_name Name of the signal
Example l_bool value;

value = l_bool_rd(&Lin_Sig_Test0);
Note The name of the flag is a name defined by the user.

The address defined for the flag is substituted for this.
Do not call this function to read a signal which is not actually a 1-bit signal.
Operation is not guaranteed when the function is called to read such data.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 16 of 30

Signal Value Reading
l_u8 l_u8_rd(l_signal_handle sig_name)
Description Reads a 2- to 8-bit signal
Return value Value of the signal: 0 to 255
Argument sig_name Name of the signal
Example l_u8 value;

value = l_u8_rd(&Lin_Sig_Test3);
Note The name of the flag is a name defined by the user.

The address defined for the flag is substituted for this.
Do not call this function to read a signal which is not actually a 2- to 8-bit signal.
Operation is not guaranteed when the function is called to read such data.

Signal Value Reading

l_u16 l_u16_rd(l_signal_handle sig_name)
Description Reads a 9- to 16-bit signal
Return value Value of the signal: 0 to 65535
Argument sig_name Name of the signal
Example l_u16 value;

value = l_u16_rd(&Lin_Sig_Test7);
Note The name of the flag is a name defined by the user.

The address defined for the flag is substituted for this.
Do not call this function to read a signal which is not actually a 9- to 16-bit signal.
Operation is not guaranteed when the function is called to read such data.

Signal Value Reading

void l_bytes_rd(l_signal_handle sig_name, l_u8 start, l_u8 count, l_u8* const data)
Description Reads data out from a byte-array signal
Return value None
Argument sig_name Name of the signal

start Location of the byte where writing is to start
count Number of bytes to be read
data Buffer for holding the signal value: 1 to 8 bytes

Example l_u8 data[8];
l_bytes_rd(&Lin_Sig_Test13, 1, 2);

Note The name of the flag is a name defined by the user.
The address defined for the flag is substituted for this.
Do not call this function to read a signal which is not actually a byte-array signal.
Operation is not guaranteed when the function is called to read such data.
Also, do not set a number of bytes that extends beyond the end of the signal.
Reading out does not proceed if an error occurs, and in this case the contents of the
buffer are undefined.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 17 of 30

Signal Value Writing
void l_bool_wr(l_signal_handle sig_name, l_bool sig)
Description Writes a 1-bit signal
Return value None
Argument sig_name Name of thesignal

sig Value of signal: 0 or 1
Example l_bytes_wr(&Lin_Sig_Test1, 1);
Note The Name of the flag is a name defined by the user.

The address defined for the flag is substituted for this.
Do not call this function to read a signal which is not actually a 1-bit signal.
Operation is not guaranteed when the function is called to read such data.

Signal Value Writing

void l_u8_wr(l_signal_handle sig_name, l_u8 sig)
Description Writes a 2- to 8-bit signal
Return value None
Argument sig_name Name of the signal

sig Value of the signal: 0 to 255
Example l_u8_wr(&Lin_Sig_Test4, 123);
Note The name of the signal is a name defined by the user.

The address defined for the signal is substituted for this.
Do not call this function to write a signal which is not actually a 2- to 8-bit signal.
Operation is not guaranteed when the function is called to write such data.

Signal Value Reading

void l_u16_wr(l_signal_handle sig_name, l_u16 sig)
Description Writes a 9- to 16-bit signal
Return value Value of the signal: 0 or 1
Argument sig_name Name of the signal

sig Value of the signal: 0 to 65535
Example l_u16_wr(&Lin_Sig_Test4, 12345);
Note The name of the flag is a name defined by the user.

The address defined for the flag is substituted for this.
Do not call this function to write a signal which is not actually a 9- to 16-bit signal.
Operation is not guaranteed when the function is called to write such data.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 18 of 30

Signal Value Writing
void l_bytes_wr(l_signal_handle sig_name, l_u8 start, l_u8 count, const l_u8* const data)
Description Writes data to a byte-array signal
Return value None
Argument sig_name Name of the signal

start Location of the byte where writing is to start
count Number of bytes to be written
data Buffer for holding the signal value: 1 to 8 bytes

Example l_u8 data[8] = { 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0 };
l_bytes_wr(&Lin_Sig_Test15, 0, 8);

Note The name of the flag is a name defined by the user.
The address defined for the flag is substituted for this.
Do not call this function to write a signal which is not actually a byte-array signal.
Operation is not guaranteed when the function is called to write such data.
Also, do not set a number of bytes that extends the defined signal size.
Writing does not proceed if an error occurs.

Wake-Up Signal

void l_ifc_wake_up(l_u8 ifc_name)
Description Outputs a wake-up signal
Return value None
Argument ifc_name Name of the interface
Example l_ifc_wake_up(0);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.
The wake-up signal is output when this API function is called.

Frame Transmission

void l_ifc_tx(l_u8 ifc_name)
Description Transmits a frame
Return value None
Argument ifc_name Name of the interface
Example vodi tx_isr(void)

{
 l_ifc_tx(0);
}

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
This API function is normally called within a handler for interrupt-driven serial
transmission.
The location of the call will depend on the configuration of the hardware.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 19 of 30

Frame Reception
void l_ifc_rx(l_u8 ifc_name)
Description Receives a frame
Return value None
Argument ifc_name Name of the interface
Example vodi rx_isr(void)

{
 l_ifc_rx(0);
}

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
This API function is normally called within a handler for interrupt-driven serial
transmission.
The location of the call will depend on the configuration of the hardware.

Header Detection

void l_ifc_aux(l_u8 ifc_name)
Description Detects a header
Return value None
Argument ifc_name Name of the interface
Example vodi timer_isr(void)

{
 l_ifc_aux(0);
}

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
This API function is normally called within a handler for input-capture or IRQ interrupt-
driven reception.
The location of the call will depend on the configuration of the hardware.

State-Information Acquisition

l_u16 l_ifc_read_status(l_u8 ifc_name)
Description Acquires a state value
Return value State value: See section 3, “References.”
Argument ifc_name Name of the interface
Example l_u16 status;

status = l_ifc_read_status(0);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 20 of 30

2.3.3 API for Frames of Raw Diagnostic Data

Reservationof the Transmission of a Frame of Raw Diagnostic Data
void ld_put_raw(l_u8 ifc_name, const l_u8* const data)
Description Reserves the transmission of a frame of raw diagnostic data from the transmission FIFO

buffer
Return value None
Argument ifc_name Name of the interface

data Buffer for the data to be transmitted
Example l_u8 data[8] = { 0x20u, 0x06u, 0xb1u, 0xffu, 0x7fu, 0x00u, 0x00u, 0x20u };

ld_put_raw(0, data);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.
The transmission does not proceed as soon as the API function is called. Instead,
transmission is in response to the next master request frame. At that time, however, a
sleep command or node-setting command for which execution has also been reserved
will take priority over this command. When the required space is not available in the
FIFO buffer, execution of the command is not reserved in response to the function call.
Since there is no return value, error checking is not automatically executed. However,
checking should be executed on the side that calls this function.

Acquisition of a Frame of Raw Diagnostic Data

void ld_get_raw(l_u8 ifc_name, l_u8* const data)
Description Acquires a frame of raw diagnostic data from the FIFO buffer
Return value None
Argument ifc_name Name of the interface

data Buffer for saving the acquired data
Example l_u8 data[8];

ld_get_raw (0, data);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.
When this API function is called, the oldest frame of data is acquired from the FIFO
buffer. Once the FIFO buffer is empty, no data is acquired even if this function is called.
Since there is no return value, error checking is not automatically executed. However,
checking should be executed on the side that calls this function.

Verification of the Transmission of a Frame of Raw Diagnostic Data

l_u8 raw_tx_status(l_u8 ifc_name)
Description Verifies the state of the transmission FIFO buffer in preparation for the transmission of a

frame of raw diagnostic data
Return value No available space in the FIFO buffer: LD_QUEUE_FULL

 FIFO buffer empty: LD_QUEUE_EMPTY
 An error in transfer has occurred: LD_TRANSFER_ERROR

Argument ifc_name Name of the interface
Example l_u8 rtn;

rtn = ld_raw_tx_status (0);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 21 of 30

Verification of the Reception of a Frame of Raw Diagnostic Data
l_u8 ld_raw_rx_status(l_u8 ifc_name)
Description Verifies the state of the reception FIFO buffer in terms of the reception of a frame of raw

diagnostic data
Return value The FIFO buffer holds data: LD_QUEUE_FULL

An error in transfer has occurred: LD_TRANSFER_ERROR
Argument ifc_name Name of the interface
Example l_u8 rtn;

rtn = ld_raw_rx_status (0);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.

Transmission of a Frame of Processed Diagnostic Data
void ld_send_message(l_u8 ifc_name, l_u16 length, l_u8 NAD, const l_u8* const data)
Description Reserves the transmission of a frame of processed diagnostic data
Return value None
Argument ifc_name Name of the interface

length Amount of data for transmission
NAD NAD value of the destination node for the transmission
data Buffer for the data to be transmitted

Example l_u8 data[5] = { 0x12, 0x34, 0x56, 0x78, 0x9A };
ld_send_message (0, 5, 0x23, data);

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
Since there is no return value, error checking is not automatically executed. However,
checking should be executed on the side that calls this function. If this function is called
again before the transmission of the current frame is complete, operation is not
guaranteed.

Reception of a Frame of Processed Diagnostic Data

void ld_receive_message(l_u8 ifc_name, l_u16* length, l_u8* NAD, l_u8* const data)
Description Reserves reception of a frame of processed diagnostic data
Return value None
Argument ifc_name Name of the interface

length Length of the buffer to hold the received data
NAD NAD value of the source node for the transmission
data Buffer for storing received data

Example l_u8 data[100], nad;
l_u16 length = 100;
ld_receive_message (0, &length, &nad, data);

Note The name of the interface can only be set to 0. In other words, it should not be set to any
value other than 0.
Set the length of the buffer to hold the received data after having saved the permissible
amount of received data at the time of reservation. Since there is no return value, error
checking is not automatically executed. However, checking should be executed on the
side that calls this function. If this function is called again before reception of the current
frame is complete, operation is not guaranteed.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 22 of 30

Verification of the State of Transmission of a Frame of Processed Diagnostic Data
l_u8 ld_tx_status(l_u8 ifc_name)
Description Verifies the state of transmission of a frame of processed diagnostic data
Return value Transmission complete: LD_COMPLETED

Transmission in progress: LD_IN_PROGRESS
An error in transmission has occurred: LD_FAILED

Argument ifc_name Name of the interface
Example l_u8 rtn;

rtn = ld_tx_status(0);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.

Verification of the State of Reception of a Frame of Processed Diagnostic Data
l_u8 ld_rx_status(l_u8 ifc_name)
Description Verifies the state of reception of a frame of processed diagnostic data
Return value Reception completed: LD_COMPLETED

Reception in progress: LD_IN_PROGRESS
Reception failed: LD_FAILED

Argument ifc_name Name of the interface
Example l_u8 rtn;

rtn = ld_rx_status(0);
Note The name of the interface can only be set to 0. In other words, it should not be set to any

value other than 0.

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 23 of 30

2.4 How to Use the API Functions of the LIN Library
Examples of the usage of the API functions of the LIN2.0 library are given below.

2.4.1 Initialization of LIN System
The LIN system must be initialized before the API functions of the LIN2.0 library are used.

In the example below, the LIN system is initialized when the microcomputer is reset.

Note that this reflects the points where the API functions for LIN are called.

extern unsigned char lin_SomeCotrol_init(void);
__entry(vect=0) void PowerON_Reset(void)
{
 set_imask_ccr(1);

 _INITSCT();
// _CALL_INIT(); // Remove the comment to use global class object.
// _INIT_IOLIB(); // Remove the comment mark to use SIM I/O.
// errno=0; // Remove the comment mark to use errno.
// srand(1); // Remove the comment mark to use rand().
// _s1ptr=NULL; // Remove the comment mark to use strtok().
 HardwareSetup(); // Remove the comment mark to use Hardware Setup.

 set_imask_ccr(0);

 /*Something to do */

 if(l_sys_init()) {
 /* LIN system initialization failed */
 sleep();
 }
 else {
 if(lin_SomeCotrol_init()) {
 /* Some Sensor initialization failed */
 sleep();
 }
 }

 /*Something to do */

 main();

// _CLOSEALL(); // Remove the comment mark to use SIM I/O.
// _CALL_END(); // Remove the comment mark to use global class
object
 sleep();
}

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 24 of 30

/* Definitions for Slave Driver Entry */
const T_Lib_Slave_Handle Slave_handle = {
 Lin_Drv_Init,
 Lin_Drv_BreakIn,
 Lin_Drv_BreakInFinish,
 Lin_Drv_BitInStart,
 Lin_Drv_BitIn,
 Lin_Drv_BitInEnd,
 Lin_Drv_SyncInFinish,
 Lin_Drv_Pid_RecvReq,
 Lin_Drv_First_SendData,
 Lin_Drv_SendData,
 Lin_Drv_First_RecvReq,
 Lin_Drv_RecvData,
 Lin_Drv_SendRecvFinish,
 Lin_Drv_LinBus_Enable,
 Lin_Drv_LinBus_Disable,
 Lin_Drv_WakeUp,
 Lin_Drv_WakeUpFinish
};

/* Cluster Initialization */
unsigned char lin_SomeCotrol_init(void)
{
 unsigned char rtn;

 rtn = 0;
 if(l_ifc_ioctl(0, LIN_ENTRY_SLAVE_DRV, &Slave_handle)) {
 /* The init of the LIN slave driver failed */
 rtn = 1u;
 }
 else {
 l_ifc_init(0); /* Interface Initialize */
 if(l_ifc_connect(0)) {
 /* Connection of the LIN interface failed */
 rtn = 1u;
 }
 else {
 /*Something to do */
 }
 }
 return rtn;
}

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 25 of 30

2.4.2 Applications
Sample codes regarding the API functions of LIN2.0 library, which are called from applications other than those for
initialization and scheduling, are described in this section. The usage of data acquired by calling the API functions
depends on the application, and so is not specified in this example. Contents (frames) transferred on the LIN bus are
data on the states of the various nodes and data acquired by peripheral devices. Therefore, how data should be
transferred and processed will depend on the configuration of the particular LIN system.

#include "36014s.h"
#include "Lin_Drv36014.h"
#include "lin20.h"
void lin_application(void);
/****************************/
/* Main Function */
/****************************/
void main(void)
{
 while(1) {
 /*Something to do */

 lin_application();

 /*Something to do */
 }
}

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 26 of 30

/************************************/
/* LIN Application Function */
/************************************/
extern l_flg Lin_Frm_FrameMst0_flg;
extern l_flg Lin_Frm_FrameU1_flg;
extern l_flg Lin_Frm_FrameU2_flg;
extern l_flg Lin_Frm_FrameU3_flg;
extern l_flg Lin_Frm_FrameEve0_flg;
extern l_flg Lin_Frm_FrameSlv0_flg;
extern l_flg Lin_Sig_Command_flg;
extern T_Signal Lin_Sig_Status_Slv0;
extern T_Signal Lin_Sig_Status_Slv1;
extern T_Signal Lin_Sig_Command;
void lin_application(void)
{
 l_u8 data[8];
 union {
 l_u16 Word;
 struct {
 l_u16 lastpid :8;
 l_u16 :4;
 l_u16 gotosleep :1;
 l_u16 overrun :1;
 l_u16 txsuccese :1;
 l_u16 errorrsp :1;
 } Bit;
 } status;

 /* Has a frame been received by the slave node? */
 if(0 != l_flg_tst(&Lin_Frm_FrameU1_flg)) {
 l_flg_clr(&Lin_Frm_FrameU1_flg);
 /* Something is done */
 }
 else if(0 != l_flg_tst(&Lin_Frm_FrameMst0_flg)) {
 l_flg_clr(&Lin_Frm_FrameMst0_flg);
 /* Something is done */
 }

 /* Has a frame been received by the slave node? */
 if(0 != l_flg_tst(&Lin_Frm_FrameU1_flg)) {
 l_flg_clr(&Lin_Frm_FrameU1_flg);
 /* Something is done */
 }
 else if(0 != l_flg_tst(&Lin_Frm_FrameMst0_flg)) {
 l_flg_clr(&Lin_Frm_FrameMst0_flg);
 /* Something is done */
 }

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 27 of 30

/* Has a frame been transmitted by the slave node? */
 if(0 != l_flg_tst(&Lin_Frm_FrameU2_flg)) {
 l_flg_clr(&Lin_Frm_FrameU2_flg);
 /* Something is done */
 }
 /* Has a frame been transmitted by the slave node? */
 else if(0 != l_flg_tst(&Lin_Frm_FrameU3_flg)) {
 l_flg_clr(&Lin_Frm_FrameU3_flg);
 /* Something is done */
 }
 else if(0 != l_flg_tst(&Lin_Frm_FrameEve0_flg)) {
 l_flg_clr(&Lin_Frm_FrameEve0_flg);
 /* Something is done */
 }
 else if(0 != l_flg_tst(&Lin_Frm_FrameSlv0_flg)) {
 l_flg_clr(&Lin_Frm_FrameSlv0_flg);
 /* Something is done */
 }

 status.Word = l_ifc_read_status(0);

 if(status.Bit.errorrsp) {
 /* Processing in response to the error */
 }

 if(LD_DATA_AVAILABLE == ld_raw_rx_status(0)) {
 ld_get_raw(0, data);
 }

 /* Has a signal been sent by the master node? */
 if(0 != l_flg_tst(&Lin_Sig_Command_flg)) {
 l_flg_clr(&Lin_Sig_Command_flg);
 if(0x1234u == l_u16_rd(&Lin_Sig_Command)) {
 l_u16_wr(&Lin_Sig_Status_Slv0, 0x0101u);
 l_u16_wr(&Lin_Sig_Status_Slv1, 0x0201u);
 /* Something is done */
 }
 else if(0x5678u == l_u16_rd(&Lin_Sig_Command)) {
 l_u16_wr(&Lin_Sig_Status_Slv0, 0x0100u);
 l_u16_wr(&Lin_Sig_Status_Slv1, 0x0200u);
 /* Something is done */
 }
 }

 if(status.Bit.gotosleep) {
 /* Some Sleep Mode Processing */
 }

 return;
}

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 28 of 30

3. References
• LIN Specification Package Revision 2.0: http://www.lin-subbus.org
• LIN Protocol Specification Revision 2.0 http://www.lin-subbus.org
• LIN Diagnostic and Configuration Specification Revision 2.0: http://www.lin-subbus.org
• LIN Application Program Interface Specification Revision 2.0: http://www.lin-subbus.org
• LIN Physical Layer Specification Revision 2.0 http://www.lin-subbus.org
• H8/36024 Group H8/36014 Group Hardware Manual: REJ09B0025-0400

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 29 of 30

Revision Record
Description

Rev.

Date Page Summary

1.00 Jan.31.06 — First edition issued

H8/300H Tiny Series H8/36014 Group
LIN (Local Interconnect Network): Slave Volume

REJ05B0783-0100/Rev.1.00 January 2006 Page 30 of 30

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	1. Overview of LIN Communications Systems
	1.1 Connection to the LIN Bus
	1.1.1 System Configuration
	1.1.2 Resource Usage

	1.2 Overview of LIN Communications
	1.2.1 Unconditional Frame
	1.2.2 Event-Triggered Frame
	1.2.3 Sporadic Frame
	1.2.4 Master Request Frame
	1.2.5 Slave Response Frame

	2. Specifications of LIN2.0 Library
	2.1 Configuration of Files for the Library
	2.2 ROM/RAM Capacity
	2.2.1 Heap Area

	2.3 API Functions
	2.3.1 List of API Functions
	2.3.2 Core API
	2.3.3 API for Frames of Raw Diagnostic Data

	2.4 How to Use the API Functions of the LIN Library
	2.4.1 Initialization of LIN System
	2.4.2 Applications

	3. References
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

