
Initializing Blank Flash
Devices on Embedded

Platforms

80C2000_AN003_02

November 2, 2009

6024 Silver Creek Valley Road San Jose, California 95138

Telephone: (408) 284-8200 • FAX: (408) 284-3572

Printed in U.S.A.

©2009 Integrated Device Technology, Inc.

®

GENERAL DISCLAIMER
Integrated Device Technology, Inc. ("IDT") reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or
performance. IDT does not assume responsibility for use of any circuitry described herein other than the circuitry embodied in an IDT product. Disclosure of the information
herein does not convey a license or any other right, by implication or otherwise, in any patent, trademark, or other intellectual property right of IDT. IDT products may
contain errata which can affect product performance to a minor or immaterial degree. Current characterized errata will be made available upon request. Items identified
herein as "reserved" or "undefined" are reserved for future definition. IDT does not assume responsibility for conflicts or incompatibilities arising from the future definition
of such items. IDT products have not been designed, tested, or manufactured for use in, and thus are not warranted for, applications where the failure, malfunction, or
any inaccuracy in the application carries a risk of death, serious bodily injury, or damage to tangible property. Code examples provided herein by IDT are for illustrative
purposes only and should not be relied upon for developing applications. Any use of such code examples shall be at the user's sole risk.

tlepage
Copyright © 2009 Integrated Device Technology, Inc.
All Rights Reserved.

The IDT logo is registered to Integrated Device Technology, Inc. IDT is a trademark of Integrated Device Technology, Inc.

3

Initializing Blank Flash Devices on Embedded
Platforms

This application note describes a design method for an embedded system that easily allows loading the
contents of a (potentially blank) flash from the PCI bus. A secondary benefit is that when the switches are
reset, different boot images can be selected.

This application note applies to both the Tsi106 and Tsi107 devices. Any differences are noted in the document
(see Section 1.4, “Tsi106 Restrictions” 7).

This application note covers the following topics:

Topic Page

Section 1.1, “Overview” 4

Section 1.2, “Hardware Implementation” 4

Section 1.3, “Local Program Software” 6

Section 1.4, “Tsi106 Restrictions” 7

Section 1.5, “Other Restrictions” 8

Section 1.6, “Conclusion” 8

The Tsi106 and Tsi107 can load start-up code from a flash device called the boot flash. This flash device is
typically located on the local memory bus, but can be optionally redirected to the PCI bus. To enhance
performance or system architecture, the boot flash should be on the local bus.

When an embedded system is manufactured, the boot flash is often completely blank and requires initialization
from a master image. If a boot-sector flash (pre-loaded with appropriate software) is not appropriate or not
available, the local memory bus flash can be programmed in place only with special tools such as in-circuit
programmers or JTAG tools.
Initializing Blank Flash Devices on Embedded Platforms

80C2000_AN003_02

Integrated Device Technology

www.idt.com

4

The Tsi106 and Tsi107 share a common architecture, and the same restrictions that prevent the most obvious
solutions from working affect them all. These restrictions include the following limitations:

• External PCI masters cannot write to the flash/ROM addresses.

• External PCI masters cannot configure the target system sufficiently to force it to boot into a
configured and downloaded DRAM. The target must initialize its own memory, which requires it to
run a program, which in turn requires a non-blank flash.

• When the controller is configured to boot from a PCI-hosted ROM, it loses the access to the local boot
ROM space that RCS0 controls.

• When the controller is configured to boot from local ROM, it loses access to the PCI boot ROM space
that a PCI-to-ISA bridge usually provides.

The following sections provide a solution that works for the Tsi106 and Tsi107 and requires only a small
amount of hardware and software support.

1.1 Overview
The method outlined in this application note uses one of the additional chip-select lines (RCS1, RCS2 and
RCS3) that the Tsi106 and Tsi107 provide. (RCS2 and RCS3 are available only on the Tsi107.) With a small
amount of hardware, the system can recover access to the local ROM when booting from PCI by relocating the
local boot ROM to a different chip select. The system requires that the embedded controller has the following
facilities:

• Access to a PCI-hosted local ROM

• Hardware to re-route RCS0 and one of RCS1, RCS2 or RCS3

1.2 Hardware Implementation
The hardware requirement is minimal, and can be implemented with a three-position jumper. It can fit in a PAL
or tiny fraction of an ASIC, or can be implemented with discrete gates. Two different implementation methods,
which are shown in Figure 1 and Figure 2, consist of a few gates that are inserted between the RCS0 signal and
the chip select (CS) of the flash or a simple three-position jumper.
Initializing Blank Flash Devices on Embedded Platforms

80C2000_AN003_02

Integrated Device Technology

www.idt.com

5

Figure 1. RCS Routing Logic - PAL/FPGA Version

Figure 2. RCS Routing Logic - Jumper Version

Whether logic, jumpers, or switches are used depends largely upon reliability and the designer’s accessibility
requirements. Any of these methods can serve for the purposes of this application note. The following VHDL
code is representative of code that a PAL or ASIC implementation uses:

rcs0o_L <= ‘0’ WHEN ((rcs0i_L = '0' AND progmode_L = '1')
OR (rcs1i_L = '0' AND progmode_L = '0'))

ELSE '1';

rcs1o_L <= '0’ WHEN (rcs1i_L = '0' AND progmode_L = '0')
ELSE '1';

The essence of the logic is that in normal mode when PROGMODE is high, the RCS0_OUT and RCS1_OUT
pins follow their respective RCSx_IN inputs and act as normal flash, ROM, or I/O chip selects. In program
mode, when PROGMODE is asserted low, RCS1_OUT is deactivated and RCS0_OUT is asserted whenever
RCS1_IN is asserted.

RCS0

MPC10X

FlashMPC824x

RCS1

Memory

PAL or Logic

CS

PROGMODE

+3.3V

330

PCI Boot

Flash
Memory

CS

330

ProgMode

RCS0_IN

RCS1_IN
RCS0_OUT

RCS1_OUT

JUMPER

RCS0_IN

RCSx

RCS0_OUT
Initializing Blank Flash Devices on Embedded Platforms

80C2000_AN003_02

Integrated Device Technology

www.idt.com

6

Note that RCS0 appears to be asserted while booting from PCI. The memory controller does not drive the line,
and the external pull-down apparently makes it low. The logic must account for this situation, and the board
must not fail to operate when a flash device is present and always enabled. (Usually, when PCI boot is enabled
RCS0 is not used.) The logic shown above handles this situation.

Note also that the logic is required even if RCS1 is never used. Without PROGMODE, the flash would be
permanently enabled when PCI boot is selected. Therefore, while the logic can be simplified, it cannot be
reduced to an 'OR' of the two signals (RCS0 and RCS1). PROGMODE must be involved.

1.3 Local Program Software
Hardware and a few software issues must be addressed. A custom controller program for the PCI master, which
transfers the desired program to the device to program, must be created. This image could be embedded in the
PCI boot ROM or transferred to PCI memory from disk, depending on the complexity of the master program.

An alternate approach is to have the same code run in both the PCI and local ROM spaces. Because the Tsi106
and Tsi107 devices do not treat the memory spaces differently, no programming effort is required for the
application. Instead, the code can be manually instructed to copy itself to local ROM or can automatically
detect it running on PCI and initiate the transfer automatically.

The general programming steps are as follows:

1. Set board to boot from PCI space with hardware jumper or switch. Use a switch enabling a pull-down
resistor on RCS0. This step must be done in hardware.

2. Enable 'program mode' using a hardware jumper if needed.

3. Apply power and reset.

4. The board fetches instructions from PCI.

5. Initialization software sets the PICR2[CF_FF0_LOCAL] bit to re-enable local access to the RCS1
flash space.

6. Startup code either automatically enters program mode or waits for a command from the user.

7. Software copies itself from PCI ROM (at 0xFF800000–0xFFFFFFFF or as size indicates) to local
ROM (at 0xFF000000–0xFF7FFFFF) using normal flash write algorithms. With the logic above writes
to the RCS1 space are redirected to the RCS0 flash space.

8. Remove program mode and PCI boot options.

9. Apply reset. The board boots from newly-programmed local flash.

Note that the software routine must use the proper alignment of stores when writing to the RCS1 space: 32- or
64-bits. The Tsi107 does not require that the write operation is the same size of the write, but the store address
must be properly adjusted. The following copy sequence is used:

//!===

//! Enter unlock sequence for flash if needed, by doing dummy writes to

//! special addresses.

lis r3,0x0010 //! Set R3 = 1M

mtctr r3 //! store in counter register

lis r3,0xFFF0 //! R3 is now PCI flash/ROM address

lis r4,0xFF00 //! R4 is now local aliases flash address
Initializing Blank Flash Devices on Embedded Platforms

80C2000_AN003_02

Integrated Device Technology

www.idt.com

7

loop:lbz r5,0(r3)

//! Do program enable sequence for flash, if needed.

stb r5,0(r4) //! Write new byte

addi r3,1 //! Next byte-aligned byte

addi r4,4 //! Next word-aligned byte (see text).

bdnz loop //! Until 1M done

Many flash devices require write sequences to dummy addresses before write operations can occur. This
requirement is not shown in the code above.

1.4 Tsi106 Restrictions
The Tsi106 implements the methods that this application note describes, but has a serious limitation. The
Tsi106 rejects writes to the RCS1 space unless they are 64-bit single-beat writes. The only way to generate
such a cycle is to use the floating-point unit to do a store. Since MPE60x processors do not have floating point,
they cannot implement this method at all if the Tsi106 is used.

For others, the only difference shows up in writing to the RCS1 address (which is actually the boot ROM).
Since the write must occur in the floating-point unit, the code changes to:

align 8 //! itof must be aligned

itof:bss 8 //! 8 byte to hold GPR->FPR transfer

//! Enter unlock sequence for flash if needed, by doing dummy writes to

//! special addresses.

lis r3,0x0010 //! Set R3 = 1M

mtctr r3 //! store in counter register

lis r3,0xFFF0 //! R3 is now PCI flash/ROM address

lis r4,0xFF00 //! R4 is now local aliases flash address

lis r6,HI(itof)
ori r6,r6,LO(itof) //! R6 points to ‘itof’ buffer

loop:lbz r5,0(r3) //! Move data from GPR5 to FPR5

stb r5,0(r6)

lfd f5,0(r6)

//! Do program enable sequence for flash, if needed.

stfd f5,0(r4) //! Write new byte

addi r3,1 //! Next byte-aligned byte
Initializing Blank Flash Devices on Embedded Platforms

80C2000_AN003_02

Integrated Device Technology

www.idt.com

8

addi r4,4 //! Next word-aligned byte (see text).

bdnz loop //! Until 1M done

Note that the writes that unlock and enable programming for the flash device must be done with the 64-bit FPR
registers.

1.5 Other Restrictions
Because the limited number of address lines that the Tsi106, flash ROMs larger than one Mbyte cannot be
directly programmed. Software might be able to do bank selection to control the high-order address pin
(SDMA0/SDBA1/AR0) directly, which the Tsi106 does not drive when writing to the RCS1 space. This
functionality is beyond the scope of this application note, but is relatively straightforward.

The RCS0 space is often subdivided into spaces for ROM and I/O on embedded controllers. If so, this
application note is still valid as long as the software can handle the fact that the I/O addresses change when in
program mode. Because the change from local to PCI occurs only at reset, software should be able to configure
I/O addresses then.

1.6 Conclusion
With some teamwork between the software and hardware, a blank, unsocketed flash program can be soldered
directly to an embedded controller or computer system.
Initializing Blank Flash Devices on Embedded Platforms

80C2000_AN003_02

Integrated Device Technology

www.idt.com

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	tlepage

