To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS



Notice

1. Allinformation included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4, Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6.  Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in a particular
application. Y ou may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shal not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visua
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medica equipment or

systems for life support (e.g. artificial life support devices or systems), surgica implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9.  Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. Thisdocument may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.




PRELIMINARY

RENESANS APPLICATION NOTE

HEW
HEW Code Generation (CodeGen)

Introduction

This Application Note gives an in-depth explanation on various setting of the project generation.
The generated files and start up flow of the MCU are explained.

An example of porting a C code from SLP to TINY is also illustrated.

Target Device
All

ANO0309001/Rev.1.00 September 2003 Page 1 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

Contents
O O 1YY VT 4
pZ2 10\ o] 4 o TR 1 1= | SRR 5
G T O (=T i o = o (0= SRR 7
3.1 Creating @ NEW WOIKSPACE .....cuiiiiiiiiiiiiiete e ettt e e e e ettt e e e e e s e s aabbe et e e e e e e s nbbbeeeeaaeeesannbebeeeaaaeaaan 7
3.2 Selecting the TArget CPU ......ueeiiiiii e s s e e e e e e s s et e e e e e e s s nne e e e e e e e e s snnrnreeeeeeenean 9
TR T @ o] 1T o IS 111 Vo P EEP 10
3.3.1 Operation Mode (not applicable for this eXample) ... 11
3.3.2 Address Space (not applicable for this eXample) ..o 11
3.3.3 YT o) ] ] = YRR 12
3.34 SEACK CAICUIALION ...ttt e e e e e st e e e e e e e e e sanbbe e e e e e e e e e e annns 12
3.35 Change the number of parameter registers from 2(default) t0 3 .......ccccceeev i, 12
3.3.6 Treat double @s flOAL .........ooiiiiii s 12
3.3.7 Pass StruCt parameter Via MEQISTEI ...ttt e e e e e e ebeaeeeeaa e as 12
3.3.8 Pass 4 byte parameter / return value Via reQISter .........cuvuriiieciiiiiiiee s cciiiree e e e e s sveree e e e 12
3.3.9 Use try, throw and CatCh Of CH+ ... 13
3.3.10 Enable/disable run time type information...............eoiiiiiiiiii e 13
3.4 Setting the Content of Files to0 be Generated ...........ooveeiiiiiiiiiiiie e 13
34.1 Use /O Library (not applicable for this eXxample)........ccccveieeeiiiiiiiieec e 13
3.4.2 USE HEAP IMEIMOIY ...ttt ettt ettt et et aeae et sesesseesesebebnbnrnrnnes 14
3.4.3 Generate MaiN() FUNCHON ......oiiiioii e e e e e e e e e e s s s e e e e e e e s annnes 14
3.4.4 1/O Register DefiNItioN FIlES .......uuuiiiie i a e e e s e e e aee s 14
3.4.5 Generate Hardware Setup FUNCLION ......coiiiiiiiiiiiie et e e e e 15
3.5 Setting the Standard LIDIary ..........cooo i e e e s e e e e e e e e 16
3.6 SEttiNG the STACK ATB@ ..o i e e e e e e e e e e s et e et e e e e s s s ntbraeereeaeeesnnnrnreees 17
T A 1= 11 oo g (oI A= Tox (o PR PR PRTT TR 19
3.8 Setting the Target System for DEDUGQING.....ccoiiiuuiiiiiii e e e e e ernrreeees 20
3.9 Changing the File Name t0 be Created ........ccooiiiiiiiiiii et e e 20
3.10 Confirming Setting (Summary Dialog BOX) ........c.uuuuiiiiiiiiiiiiiiiiee et 22

ANO0309001/Rev.1.00 September 2003 Page 2 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

N T C 1T g = = =T o PR 24
4.1 Project type: -APPIICALION ..o r e e e e e e e ab e e e e e e e e e e e aaae 24
4.1.1 Lo o o 1 o RERR 24
4.1.2 1)1 o X oSS 25
4.1.3 [(SET=11 o] (o I ol PP PPRTRPPTP 25
4.1.4 L] o] o SPRPR 25
4,15 0] ] 0 = Lo F- g U= oS PESER 26
I T~ o] < o [ SRS 26
4.1.7 L] = T 2 1 o PR SPPRRRR 26
4.2 Project type: -Assembly APPIICALION .........eviiiiiie e 26
421 111 0] (0 K] (o PP UP TR 26
422 L(STST 1 0] (0 ] (o PP PPPPPPPPPPPPPPPPPRt 26
423 ] = 0d Tt = PP UTPPRR 27
4.2.4 SWOTKSPACE NAIMES.SIC . ...ettiietieee ettt ee e e e e e e et bttt e e e e e e e s e abbbe et e e ae e e s e aababeeeeeaaeeaaaasnbbeaeaaaeaeaaannes 27
4.2.5 1YL 11 o] 1R o SPPRRRR 27
4.2.6 AT L=Tox 01 Lo RRRRPRPRIRt 27
LT 7= T U o N (1 TP ET PRI 28
6. Porting from A Device t0 ANOINEI DEVICE ......ouviiiiiiiiiie ittt 29
6.1 Checking the AVailable FilES.........ccuuiiiiiii e e e e e e e eeeeae s 29
6.2 Copying and Adding the FIleS ... e e 30
6.3 UNderstanding the COOE ...........uuiiiiiiiiie ettt e e b e e e 31
0V o To L1 Y/ T aTo R aT= TN md 0o | r= o SR 32
AV ] (0] g T =Tel o] {0 PP PPT PP 36

ANO0309001/Rev.1.00 September 2003 Page 3 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

1.

Overview

High-performance Embedded Workshop (HEW2.2) from Renesas is a flexible code development and debugging environment for
applications targeted at Renesas microcontrollers. It provides an up-to-date “look and feel” with all of the features you would expect

from a modern development environment.

The main features are:

A configurable build engine that allows you to set-up compiler, assembler and linker options via in easy to use interface.
An integrated text editor with user customizable syntax coloring to improve code readability.

A configurable environment to run your own tools.

An integrated debugger which allows you to build and debug in the same application.

ANO0309001/Rev.1.00 September 2003 Page 4 of 37



PRELIMINARY

HEW
[ | zE N ESAS HEW Code Generation (CodeGen)

2. Invoking the HEW

After the installation of the HEW, the installer creates a folder whose name “Renesas High-performance Embedded Workshop” in
the “Program” folder of the “Start” menu of the Windows®. In the “Renesas High-performance Embedded Workshop” folder,
shortcut of the HEW support files will be registered. The contents of the “Start” menu and its submenu maybe differ depending on
your installation.

| Start Menu »

Mew Cffice Document

Open Office Document

Set Program Access and Defaults

a Windows Lpdate

WinZip

¥ Accessories

@ Startup

Programs

Documents
@ Ha3,HS 300 Simulator Debugger Help

@ High-performance Embedded Workshop 2 Help
Search 3 @ High-performance Embedded Workshop 2 Read Me

Setkings L4

Help HIM To HEW Project Converter
@ Mapwiew
] online Manuals [Has,H 300] -English(03 04)

Run...

Shut Down. ...

[dstart | @ @

Figure 1 Invoking the HEW from the “Start” Menu

If you click “High-performance Embedded Workshop 2” from the menu, the HEW will be invoked and the “Welcome!” dialog box
(Figure 2) will be displayed.

Alternatively, you can open the project promptly without the “Welcome!” dialog box if you change the setting via “Tools-
>Options”. For details of this setting, refer to chapter 6, ““Customizing the environment”, of the High-performance Embedded
Workshop 2 User’s Manual.

ANO0309001/Rev.1.00 September 2003 Page 5 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)
Welcomel ___________________________@EH

— O ptions;
g oK.
(i reate S heW pro ect wurks aces
. I - Cancel
7 Open s recert preiect werksnses: Adminiztration...

F%a

Z

il

E " Browse to another project work space

Figure 2 Welcome! Dialog Box

If you use the HEW for the first time or if you want to work on a new project, select the “Create a new project workspace” radio
button and click “OK”.

If you want to work on an existing project, select the “Open a recent project workspace” or “Browse to another project workspace”
radio button and click “OK”.

If you want to cancel the HEW, click “Cancel”.

If you want to control the component in the HEW, click on “Administration...”, which will invoked via “Tool->Administration...”.
For details of this setting, refer to chapter 5, “Tool Administration”, of the High-performance Embedded Workshop 2 User’s
Manual.

ANO0309001/Rev.1.00 September 2003 Page 6 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

3. Creating a Project

3.1 Creating a New Workspace

When you have selected the “Create a new project workspace” radio button and clicked “OK” on the “Welcome!” dialog box, the
“New Project Workspace” dialog box (Figure 3), which is used to create a new workspace and project, will be launched. You will
specify a workspace name (When a new workspace is created, the project name is the same as the default), a CPU family, a project
type, and so on, on this dialog box.

Enter the name of your workspace, “Tutorial”, for example, in the “Workspace Name” field, and the “Project Name” field will show
“tutorial” and the “Directory” field will show “C:\Hew2\Tutorial”.

If you want to change the project name, enter a new project name manually in the “Project Name” field.

If you want to change the directory used for the new workspace, click the “Browse...” button and specify a directory, or enter a
directory path manually in the [Directory] field.

New Project Workspace ) P

WWiorkzpace Mame;
IT utorial

Cancel
Project Marme:

IT utonial Browsze. .

Plik

Directony:
IE:'\HEWERTutDriaI

CPLI farnily:
IHE Tirw/Super Low Power j
Tool chain:
| Hitacti H Tinp/SLP =

@ Azzembly Application
@ Ermpty &pplication

@ Librany

Figure 3 New Project Workspace Dialog Box

Select the CPU family from the drop-down list of “CPU family” combo box. If you are not sure the CPU family of the
microcontroller, you can search from our website at “http://www.renesas.com/eng/products/mpumcu/index.html” or contact our sale
representative for clarification.

The “Tool chain” combo box is depending on the installed toolchain which you selected earlier. HEW will automatically select the
relevant tool chain based on the CPU family such as SLP, H8, TINY, SH etc.

ANO0309001/Rev.1.00 September 2003 Page 7 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

Table1 Item of “Project type”

“Project type:” Description Type of Files Generated *
Application This project is used to create a program that “dbsct.c”
includes the initial routine files written in C/C++ “intprg.c”
language. “resetprg.c”
“sbrk.c”
“<Workspace name>.c”
“sbrk.h”
“stacksct.h”
Assembly This project is used to create a program that “vecttbl.src”
Application includes the initial routine files written in assembly  “intprg.src”
language. “resetprg.src”

“<Workspace name>.src”
“stacksct.src”

“vect.inc”
Empty Application This project is used to set up the tool chain. No file is to be generated
Library This project is used to create a library file. No file is to be generated

*Please refer to 3.0 File Generated for detail function of each file.

Note  For this example, we selected Application as the “Project type” before proceed.

ANO0309001/Rev.1.00 September 2003 Page 8 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

3.2 Selecting the Target CPU

When you click “OK” on the “New Project Workspace” dialog box, the project generator will be invoked. Start by selecting the CPU
that you will be using. CPU types shown in the “CPU Type:” list are classified into the CPU series shown in the “CPU Series:” list.

The selected items in the “CPU Series:” list box and the “CPU Type:” list box specify the files to be generated. Select the CPU type
of the program to be developed. If the CPU type which you want to select is not displayed in the “CPU Type:” list, select a CPU type
with similar hardware specifications or select “Other”.

Clicking “Next>" moves to the next display. Clicking “<Back” moves to the previous display or the previous dialog box. Clicking
“Finish” opens the “Summary” dialog box. Clicking “Cancel” returns the display to the “New Project Workspace” dialog box.
“<Back”, “Next>", “Finish”, and “Cancel” are common buttons of all the wizard dialog boxes.

Mew Project -Step 1 il

YW'hich CPU do you want to use for
h thiz project?

CPU Type:
|38IZI1 ;I
3822 J
3823
3824
3825
3826
3827
3042
WA ll
< Back Mest = Finizh | Cancel |
Figure 4 Selecting the Target CPU (Step 1)

Note: For this example, we selected SLP (Super Low Power) as CPU Series and 3802 as CPU Type before proceed.

ANO0309001/Rev.1.00 September 2003 Page 9 of 37



LENESANS

PRELIMINARY

HEW

HEW Code Generation (CodeGen)

3.3 Option Setting

There are two ways to approach “Option Setting” dialog box that are shown below.

1. When creating a new project:

Clicking the “Next>" button on the Step 1 screen opens the dialog box shown in Figure 5.

On this screen, you can specify the options common to all project files in Step 2. The specifiable items depend on the CPU selected

in Step 1.

MNew Projeckt -Step 2

Specify global ophions.

 Operating Made: I 'I
Address Space; I ¥ I

bderit of Libran: Code Size

Stack calculation: IMedium 'I

[ IChange number of parameter regis
[ITreat double as float

["1Pazs struct parameter via register
[|Pasz=s 4-byte parameter/return walu
U= try, throw and catch of C++
["1Enable/dizable runtime tpe infarm

J | i

X

¢ Back I et | Finizh | Cancel |

Figure 5

Option Setting (Step 2)

ANO0309001/Rev.1.00

September 2003

Page 10 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

2. After a project had been built:

Above similar changes can be made even a project had been built. Under Menu Bar Section, click on [Options->Hitachi H8
Tiny/SLP Toolchain->CPU], as shown below in Figure 6.

Note: Above Toolchain type is dependent on the type of CPU Series being chosen.

Hitachi H& Tiny/SLP Toolchain d |

Configuration : .ﬁ.sseml:ul_l,ll Link.-"LiI:urar_l,II Standard Libray  CPU |T|:u:u|n:| 1 I 'I

IDEI::ug j

=8 All Loaded Projects
[+-03 Printf_LCD

CFLU : ISLF‘[Super Lo Power] j

Stack calculation ; | Medium j

Snall
[~ Change number of p Large ult] ta 3

[T Treat double as float

[T Pass struct parameter via register

[ Pazs 4-byte parameter/ieturn value via register
[T Use try, throw and catch of C++

[ Enable/dizable runtime type infarmation

[ Pack struct, union and class

k. I Cancel

Figure 6 Option Setting (After a project been built)

3.3.1 Operation Mode (not applicable for this example)

Operation Mode specifies the operating mode of the object to be created. This option is will only be available depending on the
specify CPU series and highly dependant on Address Space (see below). For example, the H8S CPU family with 2357F CPU Type
with a 16M Address Space, can only operates in the Advanced mode while Tiny series can only operate in the Normal mode. On the
other hand, H8/300H series can operate in either Normal (16 bit addressing) or Advanced mode with 20 or 24 bit addressing.

The HEW project generator will only allow options to be used that are correct for the device chosen.

3.3.2 Address Space (not applicable for this example)
Address Space specifies the address space of the object to be created. This option is also device dependant. The HEW project
generator will only allow options to be used that are correct for the device chosen.

Please refer to relevant “C/C++ Compiler Assembler Optimizing Linkage Editor User’s Manual” for the list of possible address
space.

ANO0309001/Rev.1.00 September 2003 Page 11 of 37



PRELIMINARY

HEW
u (EN ESAS HEW Code Generation (CodeGen)

3.3.3 Merit of Library

The Merit of Library specifies whether the priority of the standard library is speed or code size. One built for small code size, or one
built for speed of execution. This can be selected using the drop down list.

If Code Size has been chosen, compiler will reduce code size (number of bytes) and improved code efficiency.

If Speed had been chosen, the time to execute the whole program or function will be minimized. However, this might increase the
size of the code.

3.34 Stack Calculation

The Stack Calculation affects the way that changes to the value of the stack pointer are calculated by specifying the range of the
stack address.

[Small]  1-byte calculation of the stack address.

[Medium] 2-byte calculation of the stack address.

[Large] 4-byte calculation of the stack address.

Small Stack Calculation means that only the lowest byte of the stack pointer is used when adding or subtracting to the value of the
stack pointer, this limits the total stack size to H’FE bytes and means that the stack section must start and end on H’100 page
boundaries. This reduces the size and speed of instructions used to alter the value of the stack pointer. Because of the limits on the
stack size with Small Stack calculations it is not suitable for advanced mode projects or H8/300 / H8/300L projects. This is because
the stack will be inadequate for the library required. This setting is only suitable for H8S and H8/300H Normal Mode projects.

Medium Stack Calculation uses only the lowest word of the stack pointer when adding or subtracting to the value of the stack pointer.
The gives a total possible stack size of 64k, which is much more than is required for standard H8 applications. The stack section
must reside completely within a 64k page of RAM. This setting is the optimum setting for the vast majority of projects.

Large Stack Calculation uses the full four bytes of the stack pointer when adding or subtracting to the value of the stack pointer. This
will cause the compiler to operate at all times and places no restrictions on stack size or location in relation to memory page
boundaries.

3.35 Change the number of parameter registers from 2 (default) to 3

The default for the HEW is to use two registers to pass parameters between functions. This however can be changed to three
registers.

If this option is activated, it will change the calling convention used for one function to call another. The user needs to be aware of
this when writing assembler functions that are called by, or can call, C functions. As these options are altered the Required C
Runtime Library files to be used will change to meet the chosen settings. The usual setting here is to use three registers to pass
parameters as this will reduce stack usage and make the code smaller and faster.

3.3.6 Treat double as float

This option forces the compiler to treat all variables declared as type double, as if they were type float. Floats only take up 4 bytes
instead of 8 bytes; they do not have the same precision though.

3.3.7 Pass struct parameter via register

This option will force the compiler to pass structure parameters using registers if possible. The standard method for passing
structures is by making a copy of the structure on the stack. Structures will only be passed via a register if they are 4 bytes in size or
less and so can fit in a register.

3.3.8 Pass 4 byte parameter / return value via register

This option will force the compiler to pass variables of 4 bytes in size using two 16 bit registers (e.g. RO and R1) instead of passing
them via the stack.

ANO0309001/Rev.1.00 September 2003 Page 12 of 37



LENESANS

PRELIMINARY

HEW

HEW Code Generation (CodeGen)

3.3.9 Use try, throw and catch of C++

The Use try, throw and catch of C++ option enable C++ exception processing. Enabling this option may reduce the code
performance; the default setting is to disable C++ exception processing.

3.3.10 Enable/disable run time type information

The Enable/disable run time type information option enables or disables use of Run Time Type Information for dynamic_cast and
typeid. This option is not selected by default and should not be selected for code to be compiled for a library or other relocatable

module.

3.4 Setting the Content of Files to be Generated

Click the “Next>" button on the Step-2 screen to display the screen shown in Figure 6.

On this screen, specify information that is necessary to generate files.

x
What kind of initialization routine
& would you like to create?
™| Use [0 Library
Humber of [YE Streams:
E
¥ Use Heap Memany
Heap Size: IH'EEI
Generate main(] Function
IE zource file j
IV 140 Register Definition Files
Generate Hardware Setup
Function
INDne ;I
¢ Back | Mext » I Finizh | Cancel I

Figure 7

3.4.1 Use I/O Library (not applicable for this example)
If Use I/O Library is checked, the standard I/O library can be used. Specify the number of 1/O streams to be used simultaneously in

the Number of 1/O Streams box.

This library is generally for file operation related such as printf, scanf etc.

Setting the Content of Files to be Generated (Step 3)

ANO0309001/Rev.1.00

September 2003

Page 13 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

3.4.2 Use Heap Memory
This is used by functions such as malloc and calloc.

If Use Heap Memory is checked, the function sbrk() for heap area management will be generated. Specify the number of bytes of the
heap area in the Heap Size: edit box.

User is advised to uncheck this function.

3.4.3 Generate main() Function

The Generate main() Function option will create a skeleton main function, in a C or C++ source file with the same name as the
project. You can also select None from the drop-down list to disable the creation of the main function.

3.4.4 I/O Register Definition Files

The 1/O Register Definition Files option will create a header file with definitions for the 1/0 registers of the on chip peripherals.
These can be used in the users code when accessing these registers. This file will be named <iodefine.h> with the content which
dependant on device selected.

It is a good idea to generate an iodefine.h header file and take some time to look through it. The <iodefine.h> file uses structures for
each peripheral, some of the registers can be accessed using bit fields, so that only the bit or bits required need be considered in the C
code, rather that a read modify write of the whole register. This may present opportunities to improve your code, but will involve
more modifications to existing projects.

ANO0309001/Rev.1.00 September 2003 Page 14 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

3.4.5 Generate Hardware Setup Function

Then select whether or not to generate a sample code for the program that makes initial settings of the 1/0 registers from the
Generate Hardware Setup Function drop-down list.

The Generate Hardware Setup Function option can be used to generate a skeleton for a Hardware setup function, in a C /C++ source
file or Assembly source file, to be run as part of the power up sequence for the device. If selected a setup file is generated which
includes inactive code (it is all surrounded by comments) to access every register listed in the <iodefine.h> header file.

=

= Tutorial #include "iodefine.h”
E‘"@ Tutorial #ifdef _ cplu=plus
£ C source file extern "C" {
#endif
extern void HardwareSetup():
#ifdef _ cplusplus

intpra.c B
resetprg.c fendif
shrk.c
g Tutorial o
223 Dependencies
[Z] indefine.h S

woid HardwareSetupi)

shikh P_SCI3.SHR.BYTE = 0.
; F_SCI3.SHR.BIT.COM

Hackzoth F_SCI3.5MR.BIT CHR
F_5CI3.SHR.EIT.PE
F_5CT3 SHR EIT EM
F_SCI3.SHR.BIT . STOP
F_5CI3.SHR.EIT K
F_SCT3.SHR.BIT.CES

TR TR TS e
L b e e

o
o
%)
H
ol
[13]
[}
s
)
o
=1 =1
- -
o}
o]
[T I R T
R o

o

ol

[

H

w

o

o

2

Jus)

=

a8

o

=

=
wnowowow oo
e e

*

i @ Projects lg Mavigation I lLI

Figure 8 Hardware Setup

Notes: If you want to use an existing main function, uncheck [Generate main() Function]; add the file of the function
after generating the project. If the name of the function differs from main, change the caller of the function in
resetprg.c.

For the contents of such sample files as a vector table definition file or 1/O register definition file that will be
generated by the project generator, check the description in the hardware manual for the target CPU.

ANO0309001/Rev.1.00 September 2003 Page 15 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

3.5 Setting the Standard Library

The screen shown in Figure 9 is displayed when the “Next>" button is clicked in the Step-3 screen. This screen is used to set details
of compilation by the C/C++ compiler.

New Project -Step 4 x|

— Library :

[lFuntime : runkime raoutines ]
[wlrew : Performs memaorny allocation and
[Jctupe.h : Handles and checks charac
[TImath.h : Performs numenical calculatio
[Irnathf .k : Perfarms numerical calculatic
[Tstdarg.h : Supports access to vanable
[w]ztdio.h : Performs input/output handlir
[w]=tdlib.b : Perfarms C proaram standard
[Jztring. b : Perfarmz sting camparizan,
[Tios[EC++] : Performg inputoutput proc
[Jcomplex(EC++] : Performs comples nu
[ztring[EC++] : Performs sting maripulz

Y I il

Enableal |  Disableal |

< Back | Mext > I Finizh | Cancel I

Figure 9 Setting the Standard Library (Step 4)

These settings will set up which modules will be included in the run time library. The HEW compiler includes a library builder
utility but pre-built library files are not supplied.

The standard C library modules, which will be used in the project, must be selected to be built by the library generator here. This
selection can be altered once the project has been started.

The runtime library module and new library module are not selectable. These modules are selected by default and cannot be
unchecked.

Click on “Enable all” to select all standard library functions.

Click on “Disable all” if you do not want to select all standard library functions. For this, only the minimum required functions,
runtime and new, are selected.

These header files can also be edited in the C file at later stage.

ANO0309001/Rev.1.00 September 2003 Page 16 of 37



PRELIMINARY
HEW
u {EN ESAS HEW Code Generation (CodeGen)

3.6 Setting the Stack Area

The screen shown in Figure 8 is displayed when the “Next>" button is clicked in the Step-4 screen.

This screen is used to specify the stack area.

The initial value of the stack area differs depending on “CPU Type:” selected in the Step-1 screen. To change the stack size after a
project has been created, select the “Project -> Edit Project Configuration” menu item of the HEW window.

New Projeck -Step 5 EI

YWwhat are the stack settings’y

Stack Pointer Address:
[power-on rezet]

|HFFad

Stack Size:
IH'EIZI

¢ Back | MHext » I Finizh | Cancel

Figure 10 Setting the Stack Area (Step 5)

The stack area is defined in stacksct.h that is generated by the HEW. If stacksct.h has been edited in an editor, its modification after
you have selected the “Project -> Edit Project Configuration” menu item of the HEW will not be available. Thus, it is best to set the
stack up as required at this stage, although these settings can be altered once the project has been created.

ANO0309001/Rev.1.00 September 2003 Page 17 of 37



LENESANS

PRELIMINARY

HEW

HEW Code Generation (CodeGen)

Stack |

Stack Pointer Address:

[powwer-on reset)

Edit Project Configuration

X

Initial ¥ alue |

Stack Size: H100 Initial ¥ alue |
(1] % I Cancel |
Figure 11 Edit Project Configuration

Note: The naming difference between Start Stack Address and Initial Stack Pointer Address in referring to stack
address as below.

RAM

4
ROM:!

SECTION

FFOn0

/"""\.____/'""\

B

STACK

I g0 Byte

Start Stack Address =FF00

ADDRESS

ROM!
v

RAM

FFz0

Initial Stack Pointer Address =FF80

STACK

!

Stack Reserved,
ERY (SF) =80 Byte

Figure 12

Naming Different Between Start Stack Address & Initial Stack Pointer Address

ANO0309001/Rev.

1.00

September 2003

Page 18 of 37



PRELIMINARY

LENESANS HEW

HEW Code Generation (CodeGen)

3.7 Setting the Vector

Clicking the “Next>" button in the Step-5 screen displays the screen shown in Figure 13.

In this screen, a vector is specified.

If “Vector Definition Files” is checked, the HEW creates a vector table definition file. They cover both the reset vectors and the
interrupt vectors.

The “Handler” column of “Vector Handlers:” displays the handler program name, and the “Vector” column displays the vector
description.

To change the handler program, click the name of the handler program to be changed, and enter a new name.

If the handler name in the “Vector Handlers:” list is changed, the HEW does not create the reset program (resetprg.c).

Mew Project -Step b El

Wwihat supporting files would you
\ like to create?

¥ wector Definition Files

YWector Handlers:

H andler | Wechar
PowerOM_Reset 0 Power On

KN ¥

< Back Mewut > Firigh Cancel

Figure 13 Setting the Vector (Step 6)

ANO0309001/Rev.1.00 September 2003 Page 19 of 37



LENESANS

PRELIMINARY

HEW

HEW Code Generation (CodeGen)

3.8 Setting the Target System for Debugging

When the “Next>" button is clicked in the Step-6 screen, the screen shown in Figure 14 is displayed. This screen is used to specify
the target system for debugging. Select (check) the target for debugging from the list under “Targets:”. Selection of no target or of

multiple targets is allowed.

x
— Target :
[aLE300L H8/300L Emulatar
< Back ket » Firish Cancel
Figure 14 Setting the Target System for Debugging (Step 7)

If you change “Target type:”, you can specify the other target system for debugging.

3.9 Changing the File Name to be Created

When the “Next>" button is clicked in the Step-7 screen, the screen shown in Figure 15 is displayed.

The screen displays a list of files created by HEW according to the previous settings. The [File
Name] column in the list shows a file name, “Extension” shows an extension, and “Description” shows the description of a file. The
file name can be changed. To change a file name, select it by clicking it and change it to a new file name.

ANO0309001/Rev.1.00

September 2003

Page 20 of 37



LENESANS

PRELIMINARY

HEW

HEW Code Generation (CodeGen)

Click the “Finish” button without changing the settings. When the button is clicked, the “Summary” dialog box will be displayed.

Mew Project -Step 9 R

The following source files will be

X

wy generated:

File M ame ! Et... | Diescription

dbzct C Setting of B,R Section

shrk, C Fragram of shrk

iodefine h Definition of [/0 Reqiz

intprg C Intermupt Programm

rezetprg C Rezet Program

Example C b ain Program

shrk h Header file of zhrk file

stackzct h Setting of Stack area

1] | i
< Back [Ewt = | Finizh | Cancel |

Figure 15

Changing the File Name to be Created (Step 9)

Note: A file with an extension “h” or “inc” (shown in the [Extension] column) is an include file. If you change the file
name of an include file, the file name at the include directive have to be modified.

ANO0309001/Rev.1.00

September 2003

Page 21 of 37



PRELIMINARY

HEW
u (EN ESAS HEW Code Generation (CodeGen)

3.10 Confirming Setting (Summary Dialog Box)

When the “Finish” button is clicked, the screen shown in Figure 16 is displayed which shows a list of generated files on the
“Summary” dialog box.

Confirm the contents of the dialog box and click “OK”.

When “Generate Readme.txt as a summary file in the project directory” checkbox is checked, the project information displayed on
the “Summary” dialog box will be stored in the project directory under the text file name "Readme.txt".

x|

Project
-------- PROJECT GEMERATOR -------- =
FROJECT MAME : Example
FREOJECT DIRECTORY : C:%Hew:hE amplehE =ample
CFPU SERIES : SLPISuper Lo Pawer]
CPU TFE : 802
TOOLCHAIM MARE Hitachi HE Ting/SLP
TOOLCHAIM YERSIOHN : 1.0.0
GEMERATIOM FILES :
C:A\Hew:AExamplehE amplehdbect.c

Setting of B.R Section

C:%Hew2hE sampleE samplehsbrl.c
Program of zbrk

C:A\HewAE amplehE zamplebiodefing h
Defintion of 1/0 Register

C:A\HewME zamplehE amplebintprg.
Interrupt Program

C:A\Hew:AE xamplehE samplerezetprg.c

Reset Program -
< b

Click OF. to generate the project aor Cancel to abort.

[v¥ Generate Readme. bt as a summary file in the project directany

Qk. Canicel

Figure 16 Confirming Setting (Summary Dialog Box)

When the “OK” button is clicked in the Summary Dialog Box, HEW will open a project generated by the project generator (Figure
17).

ANO0309001/Rev.1.00 September 2003 Page 22 of 37



PRELIMINARY

LENESANS HEW

HEW Code Generation (CodeGen)

The project generated by the project generator includes minimum option for the C/C++ compiler, the assembler, the inter-module
optimiser and the object converter. Thus, the project can be built.

£ Example - Hitachi Embedded Workshop
File Edit ‘iew Project Options Build Tools wWindow Help

g @|teetTallowe@scn sz |(D]|n “Im & B |
T o

] |[Dbug session Hdre|mr|asssia
ERENEtE
)|
Eio)- -

E--l@ Example
=23 L source file

==l

Example.c
intprg.c
resetprg.c
shrk.c
=-C3 Dependencies
- [E] sbikh
o |E] stackscth

_@Prnjeck QNa\ﬂg... |

ki
7]

4 Build /& Debuy Find in Files ersion Cotitrol
Ready

ms [ [um

Figure 17 Sub-windows of HEW

For more detail on how to change the state of the HEW and how to use each window such as the editor window, please refer to the
“High-performance Embedded Workshop 2 User’s Manual”

ANO0309001/Rev.1.00 September 2003 Page 23 of 37



PRELIMINARY

HEW
u (EN ESAS HEW Code Generation (CodeGen)

4. Files Generated

The following table shows the generated files (with default setting) when using the project generator:
Table 2 Files Generated

“Project type:” Type of Files Generated *
Application “dbsct.c”
“intprg.c”
“resetprg.c”
“sbrk.c”
“<Workspace name>.c”
“sbrk.h”
“stacksct.h”
Assembly Application “intprg.src”
“resetprg.src”
“stacksct.src”
“<Workspace name>.src”

“vecttbl.src”

“vect.inc”
Empty Application No file is to be generated
Library No file is to be generated

4.1 Project type: -Application

4.1.1 dbsct.c
This file contains the memory map setting for the application. The program will set the starting and end address of ROM and RAM.
Besides, it also set the initialize data in ROM (D), initialize data in RAM (R) and also global variable/variable (B).

For more detail about the memory map setting and information, please refer to the respective device Hardware Manual.

0x00000400 PResetPRG
PIntPRG
0x00000800 P
ROM C
C$DSEC
C$BSEC
D Data fram D
0x0000FB80 B ] area will be
RAM R copied to R
0x0000FESD S e

P: Program area

C: Constant area

CY$DSEC: Address area for initialized data section
C$BSEC: Address area for uninitialized data section
D: Initialized Data

B: Uninitialized data

R Global variabled initialized data

S Stack area

Figure 18 Memory Map

ANO0309001/Rev.1.00 September 2003 Page 24 of 37



PRELIMINARY
HEW
u {EN ESAS HEW Code Generation (CodeGen)

4.1.2 intprg.c
This program contains the entire interrupt vector and interrupt program for the device. In this file, user can write in the interrupt
routine for the particular interrupt.

The library file <machine.h> is used to include intrinsic function definitions, e.g. set_vbr. This library header can be removed if none
of the intrinsic function will be used.

For example, user can modify or add in the routine for IRQO (vector =4) as below.

__interrupt(vect=4) void INT_IRQO(void)

{
unsigned short delay;
sound_buzzer(1);
for (delay = 0 ; delay < 5000 ; delay++);
sound_buzzer(0);
clear_irq0_nQ;
}

For more detail information about the interrupt, please refer to the chapter on “Exception Handling” in respective device Hardware
Manual.

4.1.3 resetprg.c

This module contains the reset program for the application. The number of exception event is device dependant. For example, for
SLP H8/38024, it only has Power On Reset program. For SH3 7727, it has 2 Exception Event, Power On Reset and Manual Reset.

The library file <machine.h> is used to include intrinsic function definitions, e.g. set_vbr. It also can be used in language extensions
for embedded systems. This library header can be removed if none of the intrinsic function will be used.

A reset is the highest-priority exception. The internal state of the CPU and the registers of the on-chip peripheral modules are
initialized. The reason for the Reset Exception Handling is vary and depend on device.

The few most common reasons are:
e The CPU internal state and the registers of on-chip peripheral modules are initialized.
e The PC is loaded from the reset exception handling vector address, after which the program starts executing from the
address indicated in PC.
e  When system power is turned on or off.

After the Reset Exception Handling, the application will jJump to main() function and execute it.

Besides main(), this module also contains a few pre define function such as Hardware Setup, SIM 1/O etc. User can remove the
comment on these functions whenever they are not in use.

For more detail information about the interrupt and intrinsic function, please refer to the chapter on “Exception Handling” in the
Hardware Manual of respective device.

41.4 sbrk.c

This module contains the heap area-setting program. This is used by functions such as malloc and calloc.

The heap segment provides more stable storage of data for a program; memory allocated in the heap remains in existence for the
duration of a program. Therefore, global variables (storage class external), and static variables are allocated on the heap. The
memory allocated in the heap area, if initialized to zero at program start, remains zero until the program makes use of it. Thus, the
heap area need not contain garbage.

ANO0309001/Rev.1.00 September 2003 Page 25 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

4.1.5 <workspace name>.c
This module contains the skeleton of main program for the user to edit.

41.6 sbrk.h

This file contains the header file of sbrk file. It defines the heap size according to setting by the user in Step 3 during project
generation.

4.1.7 stacksct.h

This file contains the setting of stack area. User should not modify this line.

Select the “Project -> Edit Project Configuration” menu item of the HEW window to change the stack section setting and initial
stack value (first instruction)(Figure 11).

FILE (resetprg. src
DATE ‘Wed, Jul 09, 2003
DESCRIFTION :Re=st Program
EEW TFYEE (HB.-3802

Thi=z file is generated by Hitachi Project Generator {(Ver.2.1).

cinclude "yect . inc"

.import _main
import _PowerOH_Reset_ 5SP

CCR_Init: equ B'10000000

c=ection ResetPRG, code
_PowerOH_Reset .
_Manual_FRe=est:

<m3v.w__ # _PowerON Reset_SP. SE . Initialize 5P

ldz #CCE_Init CCR

ij=r @ main

z=leep
cend

Figure 19 Initial Stack Pointer

4.2 Project type: -Assembly Application

4.2.1 intprg.src

This file contains the entire interrupt program for the application. The content is similar to intprg.c. Besides the different in the
language been used, which is assembly language instead of C/C++, intprg.src does not contain the interrupt vector table.

For detail, please refer to 3.1.2 intprg.c

4.2.2 resetprg.src

This file contains the reset program for the application. The content is the same as resetprg.c but only different in the language been
used, which is assembly language instead of C/C++.

For detail, please refer to 3.1.3 resetprg.c

ANO0309001/Rev.1.00 September 2003 Page 26 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

42.3 stacksct.src

This file contains the setting of stack area. User should not modify the stack size. The content is similar to stacksct.h. The only
different is this file also contain Reset stack pointer.

4.2.4 <workspace name>.src
This module contains the skeleton of main program for the user to edit.

4.2.5 vecttbl.src
This module contains the initialization of the vector table.

For more detail information about the interrupt, please refer to the chapter on “Exception Handling” in the Hardware Manual of
respective device.

4.2.6 vect.inc
This module contains the definition of vector table for the application.

For more detail information about the interrupt, please refer to the chapter on “Exception Handling™ in respective device Hardware
Manual.

ANO0309001/Rev.1.00 September 2003 Page 27 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

5. Start Up Flow

The resetprg.c file prepares the MCU before the actual execution of the application.

A
B.

® mm o

Initialize the Stack
Mask the interrupt

Initialize the variable by copying all physical data in the ROM space to the RAM space. For example, a global variable of
int count =25 is declared. Variable count had an unknown data in RAM when power up. The INITSTC.c routine will copy
the initial data “25” from the ROM space (D are) to the RAM space (R area).

Initialize all the necessary 1/O function if it’s enable in Step 3.
Setup all peripherals (hardwareSetup.c).
Clear internal mask.

Jump to main routine where by the actual application begin.

srofifdef _ cplusplus <7 Remowe the comment when vou use global class cbject
srextern "CU O { 7 Sections CSINIT and CS$END will be generated
Ao tendif

srextern vold _CALL INIT(wvoid):
sosemtern wold _CALL EHD{ woid):
so¥ifdef _ cplusplus

Ve

Ao tendif

#pragna section ResetPRG (i)

__entry({vect=0) woid PowerON_FReset{void)

set_imask_ccr(1):(ii)
_INITSCT( 3 (i)

Fa R v e . i T 7~ Remowe the comment when wvou use global class object

<o _IHIT_IOLIBQ): Uv] < Remowe the comment when you use SIH I-0

2 errno=0; Z« Remove the comment when you use errno

s =mrand(1l); s Remowe the comment when you use rand()

s _slptr=HULL: #« Remowes the comment when you use strtoli()
HardwareSetup( ) ; [V) <« U=ze Hardware Setup

set_imask_ccr(ﬂ);[vﬂ

main(); (Vi)

s _CLOSEATL( ) < Remove the comment when you use SIM I.0
s _CALT, ENDQ ) < Remove the comment when ywou use global class cbject
sleep():
b
S/ interrupt(wect=1) wvoid Hanual_ Reset(wvoid) < Remowve the comment when yvou use Manual Reset
Z
Figure 20 Start Up Flow

ANO0309001/Rev.1.00 September 2003 Page 28 of 37




PRELIMINARY

LENESANS HEW

HEW Code Generation (CodeGen)

6. Porting from A Device to Another Device

HEW provides a flexible code development and debugging environment for applications targeted at Renesas microcontrollers. Thus,
it is easy to port a program from one device to another device. In the following example, we quoted the sample program from
Interfacing to EZPROM with 12C Emulation (Port) to demonstrate the simplicity of porting the program from SLP H8/38024
(Workspace name: 12C) to Tiny 3644 (Workspace name: 3644).

For full detail and explanation on how the program works, please refer to Application Note Interfacing to EZPROM with 12C
Emulation (Port).

6.1 Checking the Available Files

In this step, we will need to check and confirm which files were generated by the HEW. For those files generated by the HEW, user
need to check whether any modification been made.

Please refer to 3.0 Files Generated for detail.

x| 1 x|
= 12 EE=] 4]
B3 12C - 3644

B3 € source file =43 C source file
Co[E : L[] e
el i2c : 4] dbsetc
% intprg.c 9 hzetup.c
E resetprg.c E intprg.c
E . EI resetprd.c

Q shrk.c E shrk.c

23 Dependencies =43 Dependencies
S = = T (N B! (R E] indefine h
indefine.h shrk.h
+ s 1 01 =] stackscth
- |B] stackseth

] ) Projects leNavigaﬁnn I - 2] Projects leNavigaﬁon I
Figure 21 Files in I2C Workspace Figure 22 Initial Files in 3644 Workspace

In this example, as the project generator will create all necessary setting for the new device; we realized that most of the files were
auto generated except “rw.c” and “i2c.h”.

Note: Users are advice to generate the project target to the new device (3644) and port the code from other project
into the new project.

ANO0309001/Rev.1.00 September 2003 Page 29 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

6.2 Copying and Adding the Files

Copy the content of “rw.c” and “i2c.h” file from 12C Workspace to 3644 workspace. Save both files according to its original name.
Then add the files into 3644 workspace.

Not to forget “i2c.c” which contains the main program also been edited.

=l x|

ERET
= 3644

223 C source file
S E5] 2644.c
9 dbsct.c
E hwgetup.c
Q intprg.c
9 resetprg.c
] nec
LR Q shrk.c
E‘E‘ [ependencies
----- g] i2ch
----- ] indefine h
----- =] shikh

..... =] stackscth

Il 2] projects l@Navigaﬁnn I
e

Figure 23 Files in 3644 Workspace After Added “rw.c” & “i2c.h”

Note: If you try to compile or build the application in 3644 workspace, error message will be prompted out. This is
because further modification is needed before its error free.

For more information on modifying the project, please refer to “Chapter 3 Modifying the Project” in “High-
performance Embedded Workshop 2 Tutorial” manual.

ANO0309001/Rev.1.00 September 2003 Page 30 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

6.3 Understanding the Code

After understanding the code, you will need to locate the critical code line, which is device dependant such as 10 pin configuration
and specific register configuration.

For example, Figure 24 below shows the definition of Tiny 3644 pin configuration in “i2c.h” file (12C workspace). There is no
specific register configuration been used in this example.

o | #define OF _DONHE 0=00
= 12C #define BUS BUSY N=01l
@ #define NO_RESPONSE =02
=-E 120 #defins ERR_RESPONSE 0x04
23 C source file
¢ [ dbscte <+ SDA and SCL port definition.
% !20'0 SE oo ]l ST pont '5“p11+ = output
- [Z] intprg.e efine SDA IC_REG P_IC.PCR? BYTE
E resetprg.c fdefine _ IO SET—BIT =0t output
E o #define SDA IC _RESET BIT lxfe Soinput
P e[F] sbike .
i . <% checl A port low or high =
=3 Dependsnoies SFfine SDi DATA_ REG F_I0.PDR7 EYIE
e i2c.H #dofine Sh DATA SET—BIT et
-5 indefine.h #define SDA DATA EESET_BIT I=fe
bik.h
Str kot h #% control SCL port as input o output *7
slagksct @%_IO_REG P_I0.PCRE . BYTE
#define I SETBIT O=0L output
#define SCL_IC_RESET BIT l=zfe Soinput
ok porttey—mr—lr gl
efine SCL DATA EEG P_I0 . PDRES BYTE
#define SCL TATA SETBIT =it
#define SCL _DATA EESET_BIT D=fe

SoT20 modules
vold byte write(woid):

] rmid nage writelvnid) -
@ijem l‘é'jNa\rigaﬁon I 4 I i

Figure 24 “i2c.h” file of 12C Workspace (SLP H8/38024)

From the earlier explanation, we understand that most of the generated files are generic across all kind of device except
<iodefine.h>(contains the entire pins definition), which is device dependant.

Thus, when porting this program to 3644 device, these definitions need to be modified.

ANO0309001/Rev.1.00 September 2003 Page 31 of 37



LENESANS

PRELIMINARY

HEW
HEW Code Generation (CodeGen)

6.4

Modifying the Program

Before modifying the code, we need to compare the <iodefine.h> file for both devices.

intprg.c
resetprg.c
WG

] M~g]smkc
E1-23 Dependenciss
Qch

smkh
stackscth

fdefa s t—ad e i EFE
=fine P_IO (* (volatlle Struct =t_1io *)0x0000FFCE)
#define THEF e orobati ruct—at—prni—e ) e A 00EFCD

un=igned char PWDRL1Z:1:

un=igned char PWDRL11:1:

un=igned char PWDRL10:1:

} BIT:

} PWDELL;

o S
fdefine P ROM (#(volatile struct =t_rom *)0x0000F020) =
fdefine P AEC (#(volatile struct =t_asc *)0x0000FFBC) =
#define
#define
#detf ine
#def ine
#define
#def ine
#def ine
#def ine

P SCI3 (#(wvolatile struct st_=cid *=)0=z0000FF91).-=
P THRA (#(volatile struct st_tmra =)0=z0000FFEBO).-*
P _UDT (#(wolatile struct =t_wdt =)0x0000FFB2) =
FP_THRC (#*{volatile =struct =t_tmrc *)0z0000FFE4).*
F_THRF (#*{volatile =struct =t_tmrf *)0z0000FFEG). *
P_THRG (*{volatile struct =t_tmrg *)0z0000FFEC). *
P_ICD (= (volatlle =truct =t_lcd *)DKDDDDFFCD) SE

PWDRL12
PWDRL11
PWDRL1O

ROM Address
ABC Address

SCI3 Address
THEA Address
WDT Address
THRC Address
THEF Address
THRG Address
LCD Address

S

trrte—struct

bl A
I-0 Address

P —Address

*
*
*

P_SYSCR (#i{volatile struct st_svscr =*=)10x0000FF90).* SYSCRE Address*s

*.7
*.
*.
*.
*.
*
*
*.
2.7,
*

#define P_PUHI (#({volatile struct st pwml *#30x0000FFL0).~* PWH1 Address #*~

1]

N 3] Projects l | Mavigation I

Figure 25 I/O address Definition of I2C Workspace (SLP H8/38024)

Change =~
Change *~

SAR
SARY

EQU. ICE0.UN_SAR
EQU. ICED . UN_SARY

#define
#define

st_io %) 0=FFDO)
un_suscrl®i0xFEED
umn, Svscr2*)DxFFF1)
un_iegrl =)0=xFFFZ)
un_iegr? *)0=FFF3)
un_ienrl *)10=xFFF4)
un_irrl =)0=xFFF&)
un_iwpr *)0=FFFE)
un_m=tcrl*)0=FFF9)
un_t=cr *)0=xFFFC)

=

(*®{volatile

sigolatile
(#(volatile
(#({volatile
(#({volatile
(#(volatile
(*({volatile
(#({volatile
(#(volatile
(*({wvolatile

stackschh

nnicn
union
union
union
union
union
union
union
union

SYSCR2Address*/
IEGR]1 Address=*~
IEGRZ Addres=*~
IENR1 Addres=z*~
IFER1 Address=*~
IWPE Addre=s=*-
MSTCR1Address*~
TSCE Address=~

#define
#define

<1

i @ Projects l QNa\rigaﬁon ]

Figure 26 I/O address Definition of 3644 Workspace (Tiny 3644)

From the <iodefine.h> file, we can see that both devices have general 10 port. However, the defined name for both 10 port are
different (Figure 25 & Figure 26). Thus, after porting the code to 3644, we need to modify “P_IO.PDR7.BYTE” to
“10.PDR7.BYTE”. Same modification also needs to be done on other similar definitions.

Besides the above comparison, we also realized that the bit definitions of PDR7 and PDR8 for both devices are the same. Thus,
modification is not needed (Figure 27 & Figure 28).

ANO0309001/Rev.1.00 September 2003 Page 32 of 37




PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

x| + FDRE; o Y
Un1omn 4 * PIE *
E@ 12€ un=igned char BYTE: <% Byte Accesz *~
E"@ 12C =truct { <% Bit Access %
=23 € source file unsigned char P77:1: S® F77 *
i (] dbsctc unsigned char F76:1: <%  P7h ®/
_____ 9 e unsigned char P75:1; % B75 ®
St un=igned char P74:1: S® F74 *
""" 9 intprg.c unsigned char F73:1: s E738 *
2] resetprg.c un=zigned char F72:1; S F72 */
. g w.c unsigned char P71:1: S B *
2 H shikc un=igned char P70:1: % F70 *
= i + BIT: S .7
=29 Dependenciss 1 PDR7: x y
5 i2ch s T TORD
i 1 un=igned char BYTE; <% Bwte Accesz *-/
i B struct { <% Hit Access %S
i un=igned char P87:1: Sx F&7 *
HaksL un=zigned char PBA:1: e P26 x5
un=igned char PB5:1: % F&& *
un=igned char P84:1: % F&4d *
unzigned char PE3I:1:; e P23 x4
un=igned char P8Z2:1: % F&2 *
unsigned char F81:1: S Fal *
un=s=igned char FE0O:1:; e P20 *
1 BT S ®/
%+ PDRS: s *.
TRIo o *= PDRES E2
un=igned char BYTE: <% Hyte Access *~/
=5 =trurt 4 <% Hit Arress ¥
@ Projects l #_| Mavigation I LLI
Figure 27 PDR7 & PDR8 Definition of I2C Workspace (SLP H8/38024)
e | unsignegI%har BO:1; S Bit 0 *.7
3 e *
=G 3B ¥ : PDRE % oy
E"@ 3644 char wki3; % *
Ela C zource file union { <% PDE7 *
6440 unsigned char BYTE: <% Byvte Access %/
dbsitc =truct { ; S Bit_ Access ®7
. un=zigned char 5 S Bt 7 *®
hwsetup.c unsigned char S* Bit & *
intprg.c unsigned char S Eit & *
resetpro.c un=zigned char ; S Bit 4 *®
oo ¥ BIT: S* ®/
: FDR7: o= x/
shik.c Tunion 4 * PLR X
E-4Z3 Dependencies unsigned char BYTE: /% Byte Access %=/
----- iZzch =truct { <% Bit Access %7
" un=zigned char B7:1: S Bit: Z *
un=igned char B6:1: S Bit & *
un=igned char B5:1: S Bit & *®
""" stackscth unsigned char B4:1; S Bif *®
un=igned char B3:1: S Bit: 3 *®
unzigned char BZ:1; S Bl 2 *®/
un=igned char Bl:1: S Eit: 1 *
un=igned char BO:1: S Bit 0O *®
T BIT SE *.

T PLDRE: * *
char wld e *®.
union { <% PDRE *®.

un=zigned char BYTE: <% Byte Access ®7

E)projects l€|Na\rigaﬁnn I <1 stroct, f 7% Bit  Access %/
Figure 28 PDR7 & PDR8 Definition of 3644 Workspace (Tiny 3644)

The same comparison is carried out for PCR7 and PCR8. There is a different in definition for both devices (Figure 29 & Figure 30).
Thus, modification is needed for PCR7 and PCR8. We need to change “P_lO0.PCR8.BYTE” to “IO.PCR8” in 3644 workspace.

ANO0309001/Rev.1.00 September 2003 Page 33 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

£ } PCRE& bR ;* *;
g * *
E@ I unicn 1 * FLH E3
E‘@ 12C un=igned char BYTE: <% Byte Access %7
El{ﬁ C zource file ztruct { <% Bit Access %7
[ . unsigned char PCR?7:1: I PCR?7 */
unzigned char PCR76:1:; S PCR7E *.
= un=igned char PCRE75:1:; Sx PCR7YS *
""" g intprg.c unsigned char PCR74:1: S % PCR74 */
E rezetprg.c un=igned char PCRE73:1: x PCR73 *
WL unzignhed char PCR72:1:; S PCR72 *
_____ 3 shik.c un=igned char PCRE71:1: % PCR71 *.
= : unzigned char PCR70:1: S PCR?0 *
+ BIT: rx *.
1+ PCR7: S *
THICn * LLkg x
un=zigned char BYTE: <% Byte Access *7
=truct { <% Bit Access %7
unzigned char PCRE7:1: S PCRE7 *.
un=igned char PCRE6:1: SE FCRER *
unzigned char PCRES:1: S PCREE *
un=igned char PCREE84:1: S PCRE4 *.
unszigned char PCREI:1: S PCREZ *.
un=igned char PCRE2:1: SE PCREZ2 *
unzigned char PCRE1:1: S PCRE1 *
un=igned char PCREE0:1: % FPCRE0 *.
+ BIT: Sx *.
1+ PCRE: s *
Union o * PHEYT *.
— =1 2l —~har RYTE- <%  Fute Aroess ®0
@ijeml@Navigaﬁon I K1l e
Figure 29 PCR7 & PCRS8 Definition of 12C Workspace (SLP H8/38024)
x| un=zigned char BYTE: <% Byte Access %/
=truct { <% Bit Access %/
E@ 6id unsigned char wk 2 e %
=-0E 3644 unsigned char WKFS:1: S WEFE ®/
B2 T source file unsigned char WEFP4:1: S WEFP4 *
4l o unsigned char WKP3:1: S WEP3 */
dbsct o un=igned char WEP2:1: S WEF2 */
: unsigned char WEP1:1: S WEF1 *
hwsetup.c un=igned char WEPD:1: = WEFD */
mtprg.c T BIT: S *./
resetpro.c g FMES. L% ®
char wke[2]: S *
i unsigned char PCE1: <% PCR1 */
: unsigned char PCRZ; <% PCRZ *s
B3 Dependencies char wk7[2]: % ®/
..... i2ch unsigned char FCRE: ~# PCRE ®/
" clar teb ®
kb i un=signed char PCRE7: <% PCR7 *
20K un=igned char PCRE: <% PCRS *
----- stacksct.h . S *
union un_sy=crl { A% unlon SYSCE1 %
unsigned char BYTE: <% Byte Access *7
struct { s% Bit Access %/
un=s=igned char SSBEY :1: S SSBEY */
un=zigned char 5TS :3; Ee STS * .0
un=igned char HESEL:1: S HESEL *
T BIT: S *.
B S *.
union un_sy=cr? { #% union SYSCRZ *-
B @ijem l(':lNa\figaﬁon I ﬂ_l un=iagned char BYTE- A% Hute Aroess ®0
Figure 30 PCR7 & PCR8 Definition of 3644 Workspace (Tiny 3644)

ANO0309001/Rev.1.00 September 2003 Page 34 of 37



LENESANS

PRELIMINARY
HEW

HEW Code Generation (CodeGen)

After modification, “i2c.h” file in 3644 workspace as shown in Figure 31.

) #define SDA_DATA REG
[E1-Z3 Dependencies #define SDA DATA SET_EIT
..... = m #define SDA_DATA RESET BIT

iodefine. b

1= #define OF_DONE 000
#define BUS BUSY 0=01
E‘"'@ S, #defin=e NO RESPONSE 002
SR g“ #define EFR_RESPONSE nx=04
-4 C zource file
L El Idd <7 SDA and SCL port definition.
..... &
%]dbmtc <% control SDA port as input or output ®
""" Q hWSEtUP-C #define SDA IO REG I0.PCR?
""" EI intprg. e #define SDA IO _SET_EIT 0=x01 sooutput
..... Eg resetpro.c #define SDA IC_RESET_BIT lzfe soinput
----- ggrwc )
Ed i
_____ T shikc * check SDA port low or high =

IO . FDE7 .BEYTE
0x01
Oxfe

<% control SCL port as input or output =7

""" md sbrk.h #define SCIL_IO_REG 10, PCRS

----- E] stackscth #define SCL_IC SET_BIT 0=01 s soutput
#define SCI_I0 RESET BIT Oxfe .~ input
<% check SCL port low or high #*-
#define SCL_DATA REG 10.FDRS .EYTE
#define SCL_DATA SET EIT 0z=01
#define SCL_DATA RESET BIT Oxfe
ZoT2C modules
void byte_write(woid):

S ] 1 s 1 el W
@Pm]em IQNavigaﬁgn I ‘ timhl Tnags w1 telrmn
Figure 31 “i2c.h” file of 3644 Workspace (Tiny 3644) after modification

Compile and build the workspace and Tiny 3644 is ready to interface with EZPROM using 1°C Emulation (Port).

The above example is to demonstrate the wonders of C portability. It is a basic example of how to deal with the C files.
However, in a more complex and microcontroller with different features and architecture, the porting will be much tougher,
Considerations such as:-

Memory space, example small RAM size
Peripheral channels such as 2 serial ports but only one is available peripheral usage, timer etc,
Different compiler with different directive, and
4. others
are important before doing the porting.

[

REFERENCE

1. Application Note “The HEW Project Generator For The Hitachi H8 v4 compiler” (Issue: APP20011101-01), Hitachi Micro
Systems Europe Ltd, 16.11.2001.

2. ““SuperH RISC Engine Hitachi Embedded Workshop 2.0 Tutorial (Hitachi Toolchain)”, Hitachi Ltd, 16.10.2001.

ANO0309001/Rev.1.00 September 2003 Page 35 of 37




LENESANS

PRELIMINARY

HEW
HEW Code Generation (CodeGen)

Revision Record

Description

Rev. Date Page

Summary

1.00 September.03 —

First edition issued

ANO0309001/Rev.1.00

September 2003

Page 36 of 37



PRELIMINARY

HEW
u {EN ESAS HEW Code Generation (CodeGen)

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

ANO0309001/Rev.1.00 September 2003 Page 37 of 37



	Overview
	Invoking the HEW
	Creating a Project
	Creating a New Workspace
	Selecting the Target CPU
	Option Setting
	Operation Mode (not applicable for this example)
	Address Space (not applicable for this example)
	Merit of Library
	Stack Calculation
	Change the number of parameter registers from 2 (default) to
	Treat double as float
	Pass struct parameter via register
	Pass 4 byte parameter / return value via register
	Use try, throw and catch of C++
	Enable/disable run time type information

	Setting the Content of Files to be Generated
	Use I/O Library (not applicable for this example)
	Use Heap Memory
	Generate main() Function
	I/O Register Definition Files
	Generate Hardware Setup Function

	Setting the Standard Library
	Setting the Stack Area
	Setting the Vector
	Setting the Target System for Debugging
	Changing the File Name to be Created
	Confirming Setting (Summary Dialog Box)

	Files Generated
	Project type: -Application
	dbsct.c
	intprg.c
	resetprg.c
	sbrk.c
	<workspace name>.c
	sbrk.h
	stacksct.h

	Project type: -Assembly Application
	intprg.src
	resetprg.src
	stacksct.src
	<workspace name>.src
	vecttbl.src
	vect.inc


	Start Up Flow
	Porting from A Device to Another Device
	Checking the Available Files
	Copying and Adding the Files
	Understanding the Code
	Modifying the Program


