To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS

>
e
j=2
=
Q
=
o
)
Z
)
—t
D

HIl SeriesOS

Application Note

Renesas Microcomputer
Development Environment
System

Renesas Electronics Rev.3.00 2005.01

www.renesas-electoronics.com

Rev. 3.00 Jan. 12,2005 Page ii of xx
RENESAS

Keep safety first in your circuit designs!

. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 3.00 Jan. 12,2005 Page iii of xx
RENESAS

Preface

The HI series OS (operating system) is a machine-installed realtime multitasking OS
manufactured by Renesas Technology Corp. based on the I TRON specifications.

This application note is targeted towards the following engineers.

Targeted Engineers

Requirements

Engineers who understand the ITRON
specifications

Must know the terms used in the ITRON
specifications

Engineers who understand the outline
series OS

of the HI Must understand the functions provided by the
Hl-series OS

Engineers who plan to develop systems using Must have programming experience in

the HI series OS

assembly language and C language and
understand written programs

This application note gives supplementary information about the development of applications
using the HI series OS and answers questions frequently asked by users of the HI series OS.

Application Note Structure:

This application note contains the following four sections:

Section

Contents

Section 1
Functions of the HI series OS

Describes the functions and objects of the HI series OS and
answers related FAQs.

Section 2
Creation of application programs

Describes creation of application programs using the Hl
series OS and answers related FAQs.

Section 3
Configuration

Describes configuration of the HI series OS and answers
related FAQs.

Section 4
Device-dependent specifications

Answers FAQs related to the device-dependent
specifications of the HI series OS.

Section 5
Debugging

Describes debugging of application programs using the HI
series OS and answers related FAQs.

For details of each OSin the HI series, refer also to the user's manual of the OS to fully understand

it.

Rev. 3.00 Jan. 12,2005 Page iv of xx

RENESAS

Related M anuals:

Please read al so the following manual s related to this application note.

User's manual of the HI series OS used

Hardware manual and programming manual of the microcomputer used
User's manual of the cross compiler used

High-performance Embedded Workshop (HEW) User's Manual

Termsand Symbols Used in this Application Note

Term or Symbol Description

H and D’ “H is a prefix for a hexadecimal value and “D” is for decimal.

A value without a prefix is a decimal value.

Copy-back A caching method used in the SH-4 series microcomputer. In

the SH-3 and SH3-DSP series microcomputers, the equivalent
method is called "write-back", but both are collectively called
"copy-back" in this application note.

Descriptions of Product Names

Product Name Description

HI7000/4 OS based on the nITRON4.0 specifications for the SH-1, SH-2, and
SH2-DSP series microcomputers manufactured by Renesas Technology
Corp.

HI7700/4 OS based on the nITRON4.0 specifications for the SH-3, SH3-DSP, and
SH4AL-DSP series microcomputers manufactured by Renesas
Technology Corp.

HI7750/4 OS based on the nITRON4.0 specifications for the SH-4 and SH-4A
series microcomputers manufactured by Renesas Technology Corp.

HI7000/4 series Collective name for HI7000/4, HI7700/4, and HI7750/4.

HI12000/3 OS based on the nITRONS3.0 specifications for the H8S family

microcomputers manufactured by Renesas Technology Corp.

HI1000/4 OS based on the uITRON4.0 specifications for the H8SX family

microcomputers manufactured by Renesas Technology Corp.

HEW Abbreviation of High-performance Embedded Workshop, an integrated

system development environment manufactured by Renesas Technology
Corp.

Rev. 3.00 Jan. 12,2005 Page v of xx
RENESAS

pl TRON Specifications Referred to in this Application Note

This application note uses the terms of the ul TRON4.0 specifications. When using the OS based
on the uI TRONS3.0 specifications, note the following differences in terms.

Term Description

Service call A term used in the pITRON4.0 specifications. In the nITRON3.0
specifications, the equivalent is called a "system call", but both are
collectively called a "service call" in this application note.

Task context Name of a system state in the LITRON4.0 specifications. The name
depends on the version of the uITRON specifications (for example, it is
called task portion in the nITRON3.0 specifications), but all are
collectively called "task context" in this application note.

Non-task context Name of a system state in the uITRON4.0 specifications. The name
depends on the version of the uITRON specifications (for example, it is
called non-task portion or task-independent portion in the pITRON3.0
specifications), but all are collectively called "non-task context" in this
application note.

Interrupt mask bits Collective name for all interrupt mask bits in the status register (SR) of
the SuperH™ family microcomputers and in the condition code register
(CCR) and extended register (EXR) of the H8S family microcomputers
and H8SX family microcomputers.

Object Targets to be manipulated by service calls are collectively called
"objects"; these include tasks, semaphores, event flags, mailboxes,
message buffers, fixed-length memory pools, variable-length memory
pools, cyclic handlers, alarm handlers, and overrun handlers.

Cyclic handler An object in the nITRONA4.0 specifications. In the pITRON3.0
specifications, the equivalent object is called a "cyclic start handler", but
both are collectively called a "cyclic handler" in this application note.

Initialization routine A term used in the unITRON4.0 specifications. In the uITRON3.0
specifications, the equivalent is called a "system initialization handler”,
but both are collectively called an "initialization routine" in this application
note.

Rev. 3.00 Jan. 12,2005 Page vi of xx
RENESAS

FAQ Description Format:

This application note answers FAQsin the following format:

Classification of questions

Examples:
System state
Configuration operation

» Configurator
Classification=t" Semagphore
Question |

1S &1 Applicable Hi series OS
Examples:
HI7000/4
HI7700/4
HI7750/4
Answer _ HI2000/3
N HI1000/4

Answer

\l Question

(Continued onnextpage) 5, [To o
continues on the next page.

Rev. 3.00 Jan. 12, 2005 Page vii of xx
RENESAS

Rev. 3.00 Jan. 12, 2005 Page viii of xx
RENESAS

Contents

Section 1 Functions of the HI SEreS OS ... 1
R Y £ = 0 (10 = = S 1
111 FAQSaDOUL SYSIEM StALEccviiveieecieeeceeeseeste et e e se e e sre st s resreere e eaeeens 4
O 1o SRS 8
121 WhHa [S@N OBJECE?.....ciiieieieiieieie sttt sttt st sae et saesesbeseesesseseenens 8
122 1D ASSIONMENT ..ottt sttt sttt s e et b e et se st b e e ene b neene 8
123 FAQSANOUL OIJECES.....cuiieiirieirie e b e e sbe e 9
1.3 Service Call Parameter ChECK........ccociiiieiiiee sttt 13
131 Instalation in HI7000/4 SEMEScccoveerieireriee ettt st st 14
132 Ingtalationin HI2000/3 and HI1000/4ccccovieirieneieenieese e 15
1.3.3 FAQ about Service Cal Parameter CheCK........cccouevieieeieiie e 21
O I S 2R TTS 23
141 TaskSand FUNCHIONS.......ccccoiirireeieiesiese ettt see ettt sne e eenaesee s s 23
142 TaSK INITAHON ...ceeiceiieeeee ettt 25
O T I S QS - o2 (= SRS 26
144 CPU AllOCEHON t0 TASKS c.eveeeririeieiisieresiesienestesie e steste e stesee e stessesestesessestesessessenenns 29
ISR o111 oo SRS 35
146 FAQSBDOUL TASKS.....ceiieeeeieriinieriieteseeteeseestese e ste e eeeseesteseestessesresneeneenseseenseses 39
L5 INEEITUDES. ..o e et r et 53
15.1 Processing before Handler Initiation after Interrupt Occurrence.......cccoeeeveveeeene 53
152 Kernd Interrupt Mask LEVEL..........ocviceiice e 56
153 Notes When Using an H8S or H8SX Family MiCroCOMPULESc.cccevuevvereervenenn 57
1.5.4 Noteson Interrupt Handler Creation...........cocooeieeerenenieeieeie e 60
155 FAQSADOUL INLEITUPBLSoueiveietiiieiete sttt sttt sttt 61
168 EVENE FIAOS .ottt ettt e et et b e et b bbb e ene 76
1.6.1 Specification of Event Flag Clearing.........ccocvovveverieceeresese s sreseeeesee e 76
1.6.2 FAQaboUt EVENL FIAgS....ccoiiieiecie ettt s 79
S (7= 0] (SR 82
1.7.1 Task Deadlock by Using SEMaphOre..........ccoeiereriieriire e 82
R T |V U1 SRRSO 84
181 PriOrity INVErSIONcoiiiiceitereet ettt sttt st 84
1.82 Overview of MULEX PrOCESSING......cccuereereerereriesiesseseeeeseeseessessessessessesssessessessessenes 85
0L T = 1 oo) PSPPSR 87
1.9.1 Overview of MailboX ProCESSING.......ccccoueveiiie et 87
19.2 Overview of Sending aMessage Using MailboX........cccooeririninenienenieeeeie e 88
1.9.3 Oveview of Receiving aMessage Using MailboX.........cccovevrinenneneicnenncneenns 91

Rev. 3.00 Jan. 12,2005 Page ix of xx
RENESAS

194 FAQaADOUL MalBOXccuiiitiiieiie ettt ettt ettt et sre e re e eas 93

O T Y=o = 2 U 1 = SRS 95
1.10.1 Overview of Message BUffer ProCESSING........cvveeeeeeieerieriesesesreeeseeresseeseesaeseeeas 95
1.10.2 1.10.2 Overview of Sending a Message Using Message Bufferccccooeveienenee. 96
1.10.3 Overview of Receiving a Message Using Message BUFfer..........cccvveenenncnieenn 99
Nt B T = Y O 1 1= L= PSR 101
1.11.1 Overview of Data QUEUE PrOCESSING ...c.vevvervrrrerrereeeereesieseessessessesseseeseeseesessseseens 101
1.11.2 Overview of Sending aMessage Using Data QUEUE............ccccevverereeeeeeieeiiennens 102
1.11.3 Overview of Receiving aMessage Using Data QUEUE.............ccceeveveeeeieereeiiennens 105
112 MEMOTY POOI ..ottt ettt ae e 107
1121 Fragmentalion........oceerereeeruerieeirieseeteste et se e ss e bbb s b n e s e e ens 107
1.12.2 FAQ about MEmMOry POOIccoiiiiirieiniereeeeseeee s 109
113 TiMEMaNAJEMENEeeiviiieeeeeeeereee s e te et s e e e se et e e saestesseeseeseesseaeseesresseeseenneneeneeseens 111
1.13.1 Concept of TiMe MaNAGEMENLcceeeereererienesesreeeeeeseeseesesresresresresseseeseseens 111
1.13.2 Moadification of Hardware Timer Cycle Unitccccoveieieiesie e seeeeeeiennns 113
1.13.3 CyCliC HANAIEN ...t nn 117
1.13.4 Overview of Timer Management ProCESSING.........ccurerueererieiererieesieseeeseeseeenees 118
Section 2 Application Program Creation...........cecveiveeereesesieeseeseseeseeneeeneens 121
21 Overview of Processing from Reset to Task Initiationccccvveeveevevenie v, 121
2.2 Overview of CPU Initialization ROULINE..........ccoiveiiririeine s 122
221 FAQsabout CPU Initialization ROULINEcccceiieiieceeee e 138
2.3 Overview of Kernel Initialization ProCeSSINGccvierieirierieisiesese e 144
231 INitialiZation ROULINEcceveieeeieesiesie ettt sre st eeenean 144
2.3.2 Shifting to Multitask ENVIFONMENLc.ccoevereresese e seeeas 145
2.3.3 FAQabout Kernel Initialization ProCeSSINGccccvieeeeieeieereseesesesreseeseeseeeenens 146
24 Overview of System [dliNg ProCESSINGccieieeereeieeiesees e e sre e se e se e e e sre e e e eeeneas 148
24.1 Systemldling Processing Using SLEEP INStructionccccoeeeveienienieeieenenne. 148
242 FAQsabout System 1dling ProCESSING.......ccrveirerieirisieiresie e 151
25 Overview of System Termination ProCESSING........ccovveririrerirerierere e 154
251 Sample System Termination ProCESSING......ccccevererereeerieeeereeseseseeseesseeseeneenees 155
252 FAQ about System Termination ProCESSING........cccovvveeeeereeierese e ste e eeeeeeas 158
2.6 Application Program TYPES.......cccuiieieieiise st steseeee e see e sreste s e eseeaesae e seesresreeneessenseneas 160
2.6.1 Task Creation EXAMPIE.......cooiiiiiiieeeee e s 161
2.6.2 Interrupt Handler Creation EXamMpPIe.........coooeiiiieiniieeeesee e 162
2.6.3 CPU Initialization Routine Creation EXample..........cccooeorineinineineneeseiees 166
2.6.4 System Termination Processing Creation Example.........ccocvvvvvvevceceececvecseneenn, 169
26,5 System ldling Routine Creation EXample........cccccivieieiieiecienese e 170
2.6.6 Initialization Routine Creation EXample.........cccoovveieieeienieeieseese e 171
2.6.7 Timer Interrupt Routine Creation EXample.........ccorriiiiie e, 172

Rev. 3.00 Jan. 12,2005 Page x of xx

RENESAS

2.6.8 Task Exception Processing Routine Creation EXxample..........ccoovveeereeecvereeneeneenn 173

2.6.9 Extended Service Call Routine Creation Examplecccccoveveveveceneneceeceenn, 173
2.6.10 CPU Exception Handler Creation EXample.........ccccveveeeieieneiie v 174
2.6.11 Time Event Handler Creation EXample.........ccoeverirerieeiiere e 174
2.7 Development Procedures for Application Programs............ccueveeneneeneneeeseneeeseneenens 176
SeCtion 3 CONFIQUIALIONccueeieeeeseeee et sreenne e 179
3.1 Configuration Procedure OULIINE.........cccueiciieiiie ettt 179
3.2 Defining Kernel ENVIFONMENL.........ccoi e st see e sre e seeaeeesnenes 183
3.21 Definition by Configurator (H17000/4 Series and HI1000/4)ccceveeienereenne 183
322 FAQ 8b0Ut CONFIQUIBLONc.eivieeiirieieterieeete sttt s ene e neene s 225
3.23 Definition by Setup Table (HI2000/3)ccceerviereriiinirieeeeseeesie e 227
324 FAQ about SEtUP TaDIEceeceeceeecese e e 243
ICRCIINNES - S 4= X O o0 - o] o [OOSR 245
3.3.1 Stack Size Calculation from Stack Frame SiZe.........coovevveeeveneiesenese s 245
3.3.2 Stack Size Calculation by CallWalKercocoiiierieiieieee e 245
3.4 System Configuration PrOCEOUEceiiieeririeerie st ee e eene s 260
I R o (000 ST 261
342 HITTOO A ...ttt 261
A3 HITTE0 A .ottt 261
344 HI2000/3.....cc ettt 261
345 HILO0O A ...ttt ettt sttt 271
34.6 FAQsabout System Configurationccccoeveeerereienienieese s 282
Section 4 Device-Dependent SPeCifiCations..........cccevvevevieereeresieeseesesee e 289
41 FAQs about Device-Dependent SPeCifiCations..........cccveeeiecerieciere s 289
411 Cache Enabling SEttiNg......cccuciieieiieiise s e 290
412 CACNEUSAGE ...ttt bt bbbt na e e 292
4.1.3 Restrictions on Write-Back MO (1)ceverveerierieeneneeesie e 295
414 Restrictions on Write-Back MO (2)c.coereeeririeinineese et 297
TS O ox o 1B o] oo (S 299
4.1.6 XIY MEMOIY USAQE....uiciiiiiieeieieeieieesiesteste e ste e e saesaessstesaestestesresresnesnesssensenes 300
T A S W oo o 1Y 1/ 301
IR T W 01 £ Y USRS 302
4.1.9 Control of Timer Used by OS.......cccooeiiiiriiine et 304
4.1.10 CPU Initialization Routine Written in C Language...........ccveereereneeenienenenienens 305
4.1.11 Location of Interrupt Entry/Exit Processing ROULINE..........cccocvvivveieneneeeereeienes 306
4.1.12 Initialization of EXtErna MEemMOTY.......cccccceveiieiesene et 307
4.1.13 Transition to POWEr-DOWN MOGEcccouvueuirincinineeseneee s 308

Rev. 3.00 Jan. 12,2005 Page xi of xx
RENESAS

SECtioN 5 DEDUGGING -..eeuveieeerieeieeieseere et st e se et e et e saeeaesreesreensessaesseeneeas 311

51
52

53

54

55

56

57

OVEIVIEW Of DEDUGGING. ... e iveiverreeieieiteie e st e e e e e stesre e s re e e e e esaeseestesresresreeneenaeneenes 311
L 000 7= RS 312
521 Preparation fOor DEDUGQING.coeiererieeieierienie sttt sieses e see e sre e seeneeneas 312
522 SysStem GOING DOWN.......coiiieiiriiieierieie sttt 316
523 Typesof System DOWN CAUSEScccoeiririiieirieeee sttt 316
L 20000 SRR 323
5.3.1 Preparation for DEDUGGING......cceiuirereeieriestesesteseseseseeseesaeseestesresressesseenseeenees 323
532 SysStemM GOING DOWN......cccveieiiiie et e et st sresre e eeneas 325
5.3.3 Typesof System DOWN CAUSEScoeruererreerierieriesiesiesieseeeesessieseeseesae e sseseeneas 326
HILOOO/A ...ttt ettt ettt ettt e e b e st e s et e st eseese st enees e st eseesessenenseseenennn 332
54.1 Preparation for DEDUGGING.c.vierieeririeirire e e 332
54.2 System GOING DOWN......ccueieriise et seee st e e e se et sre s e enaeneenes 334
54.3 Typesof System DOWN CalSESccceeueeuieieeiieriestesestesteseeseeseesse e sressesseesesssenees 334
Determining SysStem DOWN LOCALION.ccoeiieriiriere et seeie e st st se e e e eeesnens 339
55.1 Determining the Location of a Program Module through Mapview..................... 339
Examples and Solutions of CPU EXCEPLION..........cciireiririeerieeriesee s 344
56.1 Falure in HardWare.......cccoooiiieiiseneeiee e st s enean 346
5.6.2 INCOrrect CoNfigUIatioN........ccvvuerueeieeeiese et ne s 346
5.6.3 Error in Program DESCIIPLIONccuecieeeiesese et s eee e see e e re e sre e e eaenneeas 350
FAQS about DEDUGGING .. veveveeieeieeeeiesieste et tee e eaesee e s e sre e e esae s e tesresresresnessesnsenseseens 355
57.1 Saving aProgram in ROM.........cccoeeiririeiiiinieisisieesesees et e st saene s 356
5.7.2 System-Down When Memory POOl iSUSEccooiirieininineeeees e 361

Rev. 3.00 Jan. 12, 2005 Page xii of xx

RENESAS

Section 1
Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10
Figure1.11
Figure 1.12
Figure 1.13
Figure 1.14
Figure 1.15
Figure 1.16
Figure 1.17
Figure 1.18
Figure 1.19
Figure 1.20
Figure 1.21
Figure 1.22
Figure 1.23
Figure 1.24
Figure 1.25
Figure 1.26
Figure 1.27
Figure 1.28
Figure 1.29
Figure 1.30
Figure 1.31
Figure 1.32
Figure 1.33
Figure1.34

Figures

Functions of the HI Series OS

State of the HI SErieS OS SYStEMccviereece e 2
System State and Interrupt Mask Bit VAlUEcccevuecveeececesese e 3
Sample Code for Context Check (HI7000/4 Series and HI1000/4).........ccccvevevieieernennn. 5
Sample Code for Context Check (HI2000/3)cccovueiuererieeiirieniese e 6
Sample Code USING 10C_CPU ...c.veveuirieeeieiieeeie ettt 7
Sample Setup Table (2655asup.src for H8S/2655) (1/2)vcvevivvereieeiireeieerieie e 10
Sample Setup Table (2655asup.src for H8S/2655) (2/2)cvevvvevivieeirieeeeeereeseneens 11
Kernel EXtension FUNCHON VIBW ...t 14
Library File DEfinition (1)ccoeeeeveierere e e e ste sttt st e e e e sreneas 16
Library File Definition (2)ccooeeereie et s 17
Library File Definition (3)......cccvireerireereee ettt 18
Library File DEfiNition (4)ccooireereeenieeieseeeie et 18
Library File DEfiNition (5) ..coocoeeeriereeesieeeseesese s stese s s e s sre e e e eneeseeneas 19
Library File DEfiNition (6)ccccveeieiecenieeiesiesie et se e e e e s re e sre e e e e eas 20
Differences between Tasks and FUNCLIONScooveiienicinennesese e 24
Task SEAtE TraNSITIONScceieiie et ae e e e e 25
Task State Transitions for Shared Stack FUNCLION..........cccoocevirieviviinceee e 28
TASK PIIOMTY (1) cveeeeereeeeieriiieiesiei ettt 29
LIS G 0 Y 2 RSN 30
LIS L0 Y (<) TSRS 30
Priority Before a Service Call Islssued to Other Tasks......cccocvveveeeveceeieevieseseenn, 31
Priority After a Service Call IsIssued to Other Tasks (1) .coceeererererenerieeiiee e, 32
Priority After a Service Call Islssued to Other Tasks (2)cevevereeerenenerieienenieens 32
Priority Before a Service Call IsIssued to Current TasK........ccccveevereeienenieienenienens 33
Priority After a Service Call IsIssued to Current Task (1)...ccccevevvvrivrerereereereenennens 33
Priority After a Service Call IsIssued to Current Task (2).....cccceeveeieveeeeeeveeieenennn 34
Overview of General Event Wait Service Call ProCessing.......cccovevveeereeeeseeseeneens 35
Overview of Event Wait Service Call Processing with Timeout.............cccccevevennne 36
Overview of Event Wait Service Call Processing with Polling..........cccceoveneieninnee 37
Task Creation WINOOW..........coeeierere st eese st see e ee e sresseeseeneens 42
DSP Selection in CoNfigUIALOrcccueieereresese e e e eees 46
DSP Selection for Task Creation by Service Call (Sample Code)cceevevveviennee. 47
FPU Selection in Configurator (TA_COPL).....c.ccce e 49
FPU Selection in Configurator (TA_COP2).......ccco i 50
FPU Selection in Configurator (TA_COPL and TA_COP2).......ccccecervrenereenerienens 51

Rev. 3.00 Jan. 12,2005 Page xiii of xx
RENESAS

Figure 1.35
Figure 1.36
Figure 1.37
Figure 1.38
Figure 1.39
Figure 1.40
Figure 1.41
Figure 1.42

Figure 1.43
Figure1.44
Figure 1.45
Figure 1.46
Figure 1.47
Figure 1.48
Figure 1.49
Figure 1.50
Figure 1.51
Figure 1.52
Figure 1.53
Figure 1.54
Figure 1.55
Figure 1.56
Figure 1.57
Figure 1.58
Figure 1.59
Figure 1.60
Figure 1.61
Figure 1.62
Figure 1.63

Figure 1.64
Figure 1.65
Figure 1.66
Figure 1.67
Figure 1.68
Figure 1.69
Figure 1.70
Figure 1.71
Figure 1.72

FPU Selection for Task Creation by Service Cal (Sample Code)ccccvevvevevrernnne 52
Overview of Processing before Handler Initiation after Interrupt Occurrence (1) ...53
Overview of Processing before Handler Initiation after Interrupt Occurrence (2) ...54
Overview of Processing before Handler Initiation after Interrupt Occurrence (3) ... 55

Overview of Interrupt Mask by Kernel ..o 56
Kernel Interrupt Mask Level and Interrupt LEeVElS.........ccoovvevrineinencceecie 57
UL T o = g L= 0T £ 64
Overview of Processing before Interrupt Handler Initiation

after INtEITUPL OCCUITENCEecveieeceeeeesees ettt e e te e st e e reere e e esaesresteseesnea 65
Sample Code of Interrupt HaNAIENoooiiiiieieeeee s 68
Example of #pragmainterrupt USAge........ccoerrireininieiene e 74
Overview of Event Flag Processing without Clearingcccveveeneinenieienenieens 76
Overview of Processing with Clearing (HI2000/3)cccovevveverieienieneseseeeeeeneenens 77
Overview of Processing with Clearing (H17000/4 Series and HI1000/4) 78
Sample Code when aTask Setsthe Event Flag........cccocvevveveveve e, 80
Sample Code when an Interrupt Handler Setsthe Event Flag..........ccooeeeeeeeiciieneenen. 81
Semaphore Usage EXAMPIE.......cooiiieeeeeere st 82
Deadlock Example (Tasks Cannot OPErate)cooeeeereeerenenenieneseseee s 83
Overview oOf Priority INVErSION.........cceverire it 84
Overview of MULEX PrOCESSINGcccveveriiie i ae e e e st e e sre s 85
Overview of MaillboX ProCESSINGcccceveeiiererisie e e e s e s 87
Overview of Sending aMessage Using MailboXccceoerireniienenieneeceeee e 88
MeSSage HEAOE! FOMMIBLSceivirieeete ettt 89
Sample Code for SENdiNg MESSAgE.ceririeiriirieerie ettt 90
Overview of Recelving Message for Mailbox with Messages.........ccoeveveveevcrenennnn, 91
Overview of Receiving Message for Mailbox with No Messages.........cccoceeevvennnee. 92
Example of Checking that Message iS RECAIVEd..........ccccvvevecerececieecesere e 94
Overview of Message BUFfer PrOCESSINGccocerererierieninereee e 95
Overview of Sending a Message for Message Buffer with Enough Free Space........ 97
Overview of Sending a Message for Message Buffer with Insufficient

LS S 7= o S S 98
Overview of Recelving Message for Message Buffer with Messages...................... 99
Overview of Recelving Message for Message Buffer with No Messages............... 100
Overview of Data QUEUE PrOCESSING......ccccoerverierierieniereeeeee e e seesee e snessesseeseeseens 101
Overview of Sending a Message for Data Queue with Enough Free Space............ 102
Overview of Sending a Message for Data Queue with Insufficient Free Space...... 103
Overview of Forcible Send Processing by Data QUEUE...........ccccevvvererereeceerienenns 104
Overview of Recelving Message for Data Queue with Messages..........cccccceveiienene 105
Overview of Recelving Message for Data Queue with No Messages..........ccocueue. 106
Overview Of Fragmentalion..........c.coererieieresese e 107

Rev. 3.00 Jan. 12,2005 Page xiv of xx

RENESAS

Figure 1.73
Figure 1.74
Figure 1.75
Figure 1.76
Figure 1.77
Figure 1.78
Figure 1.79
Figure 1.80
Figure 1.81

Section 2
Figure2.1
Figure 2.2
Figure 2.2
Figure 2.3
Figure 2.4
Figure2.4
Figure2.4
Figure 2.5
Figure 2.6
Figure 2.6
Figure 2.6
Figure2.7
Figure 2.8
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure2.18
Figure2.19
Figure 2.20
Figure 2.21
Figure 2.22

Overview of tSlp_tSK(3) PrOCESSING.....c.eeerereereereereriestesseseeeeseesseseessessesseesesseenees 111

Error intslp _tsk(3) PrOCESSINGccueiueeiieieiesie ettt e e e nnens 112
Configurator Window for Time Management Settings.........ccoceveeieveeesieeeeseesnennn, 114
Calculation of Time TiCK CYCle ..o 114
Header File for Timer Driver in Standard Sample Program (2655ause.src) 115
Overview of Cyclic Handler Initiation (HI7000/4 Series and HI1000/4)................ 117
Overview of Cyclic Handler Initiation (HI2000/3)ccovevvrviesieneeeeeeeeeeseenen 117
Overview of Timer Driver Processing (HI7000/4 SEri€s)cccocveveveeeneeeeveeseenen. 118
Overview of Timer Driver Processing (HI2000/3 and HI1000/4)........ccccccvevuernnee. 119
Application Program Creation

Procedure after CPU Reset and Until Task [Nitiation...........cccoceveevincinennineneenens 121
HI7000/4 CPU Initiaization Routine: Assembly Language (SH7604) (1/2)............. 124
HI7000/4 CPU Initiaization Routine: Assembly Language (SH7604) (2/2)............. 125
HI7000/4 CPU Initialization Routine: C Language (SH7604)ccccccovevvvcveveeenen. 126
HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (1/3)............. 127
H17700/4 CPU Initialization Routine: Assembly Language (SH7708) (2/3)............ 128
H17700/4 CPU Initialization Routine: Assembly Language (SH7708) (3/3)............ 129
HI7700/4 CPU Initialization Routine: C Language (SH7708)........cccccvvevvvvcveeeeenns 130
HI7750/4 CPU Initiaization Routine: Assembly Language (SH7750) (1/3)............. 131
HI7750/4 CPU Initiaization Routine: Assembly Language (SH7750) (2/3)............. 132
HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (3/3)............. 133
H17750/4 CPU Initialization Routine: C Language (SH7750)cccoveereneerenennens 134
H12000/3 CPU Initiaization Routing (H8S/2655) (1/2).......ccccvvureerererirenirieerenieenens 135
HI2000/3 CPU Initiaization Routine (H8S/2655) (2/2).......ccceeeverienvieeereeeeeenens 136
H11000/4 CPU Initiaization Routing (H8SX/1650)ccccererereereneeirieneeiesieneneens 137
Definition in CPU Initialization ROULINE..........cccerieirierisieniee e 140
INITSCT() PrOCESSING.veveeereeieiesieinsestesessessesessessesessessessssessesessessesessessensssesseneans 141
Sample Initialization ROULINE COUE...........eceririeeririeene e 144
System Idling Processing Using SLEEP Instruction (HI17000/4 Series).................. 148
System Idling Processing Using SLEEP Instruction (HI2000/3)cccoeeeeveereenen. 149
System Idling Processing Using SLEEP Instruction (HI1000/4)ccccccevevuennee. 150
System Termination Processing (HI7000/4)cccocovveeeeveeiese e se s 155
System Termination Processing (HI17700/4 and HI7750/4).........ccoovoiienienceeiennennn. 156
System Termination Processing (H12000/3)coovireereneeenieiene s 157
System Termination Processing (HI1000/4)c..cvvereeereninenieiesesieese e 157
SAMPIE TASK COUE.......eueeueeieseeie ettt e e e e e e snesrennas 162
Sample Interrupt Handler Code (HI7000/4 SEN€S) ...ccuvcuveeeveeienieeie e seeeeeeae e 162
Sample of Interrupt Handler Code when Using IRL Interrupts
000 =) RSP 163

Rev. 3.00 Jan. 12,2005 Page xv of xx
RENESAS

Figure 2.23
Figure 2.24
Figure 2.25

Figure 2.26
Figure 2.27

Figure 2.28
Figure 2.29
Figure 2.30
Figure 2.31
Figure 2.32
Figure 2.33
Figure 2.34
Figure 2.35
Figure 2.36
Figure 2.37
Figure 2.38
Figure 2.39
Figure 2.40
Figure 2.41
Figure 2.42

Section 3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Sample Direct Interrupt Handler Code (HI7000/4)ccccooevevieneveseeeeeereeseenie e
Sample Interrupt Handler Code (HI2000/3)ccvieeieeeeierierecie et eeeeneens
Sample Modification of Assembly-Language CPU Initialization Routine

(L2000) TSSO
Sample C-Language CPU Initialization Routine Code (HI12000/3)ccccccvvreerenne
Sample Modification of Assembly-Language CPU Initialization Routine

(HIZOOO/) ..ottt et b e bbbt bbb
Sample C-Language CPU Initiaization Routine Code (HI1000/4)cccccevevnnee.
Sample System Termination Processing Code (HI2000/3)ccccoevvveeeeieeveeieennens
Sample System Idling Routine Code (HI2000/3)cooeuerinenineneneneeee e
Sample Initialization ROULINE COUE..........ccoeeririeinereere e
Sample Timer Interrupt ROULINE COE........coviriiiririeieereeeee e
Sample Task Exception Processing Routing Code..........ccccovevereveneieseseeieeieneens
Sample Extended Service Call Routing Code.........cccvvveeevevenie v
Sample CPU Exception Handler Code.........cooovvieieiierecieiesec e
Sample Cyclic Handler Code (HI7000/4 Series and HI1000/4)........cccceveeneneereene.
Sample Cyclic Handler Code (HI2000/3)ccooerieiienenirieenienieese e
Sample Alarm Handler Code (Only in HI7000/4 SEfi€s)coooveeneneneneienienieene
Sample Overrun Handler Code (Only in HI7000/4 SEF€S)ccvovveeereeeeieerierinieens
Dividing Functionsin a Top-Down Mannercccccevueveeverevesieseeseseseseeseeeens
Merging Same Functions and Eliminating Functional Dependencyc.c.........
Example of ITRON Objects Assigned to INterfaces..........cocooevenerenenencneeieeiene

Configuration
Configuration Procedure OULIINEccooveererese e
Whole Linkage OULIINEc.ciiiice et s snn
Separate LiNKage OULIINE...........ccvieeieese et sre s
ConfigUIator INITIALTON.eieieeeeeee et
LIS VA=
Modification of Task INformation...........cccecevirieieninieneee s
Definition Of SEACK ATEaL.......cciiireireree e e
Modification Of Static StaCk SIZE........ccuvireiiirerireree s
Registration of Task |D t0 USe Static StaCKcceceieieeeeieeieser et seeee e
Completion of Static Stack Information Definition............cccooeeeieninieninieieienns
POP-UP MEBNU.....ooiieeee e e e
[Creation of Task] Dialog BOXcceeuririiririeiniriesese e
[Definition of Task Exception Processing Routing] Dialog BoXccecvevvevveneene.
Configurator Initiation (HI7000/4).........ccccoueiieieiiesesese e seesesee e e s e seeeeseens
Configurator Initiation (HI7700/4 and HI7750/4)ccceveeveveeieieeeceeeeceeeesie s
Configurator Initiation (HIZ000/4)........cccoeiriereeierenie st

Rev. 3.00 Jan. 12,2005 Page xvi of xx

RENESAS

Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27
Figure 3.28
Figure 3.29
Figure 3.30
Figure 3.31
Figure 3.32
Figure 3.33
Figure3.34
Figure 3.35
Figure 3.36
Figure 3.37
Figure 3.38
Figure 3.39
Figure 3.40
Figure 3.41
Figure 3.42
Figure 3.43

Figure 3.44

Figure 3.45
Figure 3.46
Figure 3.47
Figure 3.48
Figure 3.49
Figure 3.50
Figure 3.51
Figure 3.52
Figure 3.53
Figure 3.54

Kernel Extension Function View (HI7000/4)........cccccueoeeeeresienieseseseseseeseeneeneens 204
Kernel Extension Function View (HI7700/4 and HI7750/4).........ccccoovvvveeeceeieennens 205
Time Management Function View (H17000/4, HI7700/4, and HI7750/4) 206
Time Management Function View (HI1000/4)ccooeeeieninienenene e 207
Debugging Function View (H17000/4, HI7700/4, and HI7750/4)ccccooeveerenne. 209
Debugging Function View (HIZ000/4)........coiireinereieseneee e 210
Service Calls Selection View (HI7000/4, HI7700/4, and HI7750/4)ccceueneeee. 211
Interrupt/CPU Exception Handler View (HI7000/4).......c.cooecieveeieveneneseeeeeeeenes 212
Interrupt/CPU Exception Handler View (HI7700/4 and HI7750/4)........ccccceevenee. 213
Interrupt/CPU Exception Handler View (HI1000/4)cccoeierireneneneneneseeeens 214
Trap Exception Handler View (HI7700/4 and HI7750/4)coovovineeenineenene 216
Prefetch Function View (HI7700/4 and HI7750/4)cccovreenneenreeneseieeseees 217
INitialization ROULINE VIBW ..o 219
Task View (HI7000/4, HI7700/4, and HI7750/4)........cccvoureinineinineesenieeseeeees 220
Task VIiew (HILO00/A)......cceerireeerieneeesienieiesieseesesiees e seeesse st ssenessessesessesessenses 221
SEMAPNOTE VIBW ...ttt e 223
Constant Definition Field of Setup Table..........cooeiriiiiinineeese e 228
Task Registration Field of Setup Table.......ccovieirircic e 230
Fixed-Length Memory Pool Registration Field of Setup Table.......cccceeveeeeiveciennns 232
Variable-Length Memory Pool Registration Field of Setup Table...........cccc......... 234
Cyclic Handler Registration Field of Setup Table.......ccoevevevevvciveceeeeeceen, 236
System Call Trace Function Registration Field of Setup Table...........ccoceeeeieennee. 237
Task Extended Information Registration Field of Setup Table........c.ccccovvrvrieenne. 239
Event Flag Extended Information Registration Field of Setup Table...................... 239
Semaphore Extended Information Registration Field of Setup Table..................... 240
Mailbox Extended Information Registration Field of Setup Table.........ccccccceeienens 240
Fixed-Length Memory Pool Extended Information Registration Field of

SELUD TADI@. ..t e e e 241
Variable-Length Memory Pool Extended Information Registration Field of

SEIUP TADIE. b 241
Cyclic Handler Extended Information Registration Field of Setup Table............... 242
[VS = (0 o OSSR 246
YT g OIS = o 1 o] o 1SS 247
HEW OpPtion SEIECHION.......coiiiiieiiteie ettt s 248
HEW OpPLioN SELINGS.cueevereeieriereeiesieresie ettt sttt s 249
CallWalKEr SEAITUD.....eveeeeeereceeterere ettt e 250
TN == o] oo SRS 251
Read File SAECHON.....c.civiieeece e e 252
Stack Size Display Example by CallWalKercccoovieveececievece e, 254
Overview of Sample Task PrOCESSINGccrrrerererereeieeiee e e e 255

Rev. 3.00 Jan. 12,2005 Page xvii of xx
RENESAS

Figure 3.55
Figure 3.56
Figure 3.57
Figure 3.58
Figure 3.59
Figure 3.60
Figure 3.61
Figure 3.62
Figure 3.63
Figure 3.64
Figure 3.65
Figure 3.66
Figure 3.67
Figure 3.68
Figure 3.69
Figure 3.70
Figure3.71
Figure 3.72
Figure 3.73
Figure 3.74

Section 4
Figure4.1
Figure4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure4.7
Figure 4.8
Figure 4.9
Figure 4.10

Section 5
Figure5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

System Configuration ProCEAUIE............ccueveieerere e e e see e e eeeneens 260
[LTS = (B o TS 262
Project Selection from POp-UP MENUc..cceveeieeeice et 264
File AdditioN IMBNUcueiiieieee et e 265
Additional File SEECHION.coieieeerees e 266
OptLINKer SEECtioN MENUc.oiviieiiieereeee e 267
Section Information AdditioN...........ccoeeiireiniene e 268
Additional Section INformation INPULccccceeeiecenieccere e 269
Added Section Information Confirmation...........ccceceverriirerniinerneeesee s 269
BUITA EXECULTION.....ceiiiiiiee ettt 270
HEW SEAITUD ..o e e 272
Project Selection from POp-Up MeNUccciiieinineneesee e 273
FIle AdItION MENU ..o 274
Additional File SEIECION.........cooiiiieriesee s 275
H8S, H8/300 Standard Toolchain SElection MeNUccccovevvereieneneeseresesieee 276
SECHiON SEING MENU ..ot 277
Section Information AdditioN..........ccoceeieieiererie e 278
Additional Section INformation INPUL ..o 279
Added Section Information Confirmation............ccccevevireininecneeeee s 279
BUIA EXECULION.... vttt 280
Device-Dependent Specifications
CPU Initialization Routine When Using Cache (SH7708)..........ccccovevenennienenienens 290
Coding Example for Disabling Cache (HI7700/4)cccovineiienneneee e 292
Coding Example for Enabling Cache (HI7700/4)coeeeveeiesie s 293
Coding Example for Disabling Cache (HI7750/4)cceceveiieiie e 294
Coding Example for Enabling Cache (HI7750/4)coeveieeieiie s 294
Overview of Write-Back MOcoeriiirieeie et 296
Configuration of Variable-Length Memory BIOCKS..........cccooeerinneneinenecnenens 297
Example of Storing Variable-Length Memory Block Contentsin Cache................. 298
A1 (0o = 1 T S 304
Errorsin System Timein Standby MOGE.........ccccecevecieieciere e 308
Debugging
Procedure for Debugging Abnormal State in the System..........cccvevvvvevenceieecienenne 311
System Down Routine Calling Interface (HI17000/4 SEES)ccooveeereneeerienenenienens 312
Debugging Code Example (HI7000/4 SEIT€S)cccvieeereeieerieseeneseeseestessesseseeeeseens 313
Example of Setting a Breakpoint (HI7000/4)........ccccoveeeeeieeierere e e seeeesae s 314
Example of Setting a Breakpoint (HI7700/4, HI7750/4).......coevveievieeeieeieeeienns 315
System Down Information Parameter Format (HI7000/4 Sefies)coceveeeeeeeieeneennn. 316

Rev. 3.00 Jan. 12,2005 Page xviii of xx

RENESAS

Figure 5.7 Examplesof System Down Information 1 and 2..........ccecevereeeeeiievnniesieseseseeieneens 318

Figure 5.8 Example of System Down Routine Calling Interface (HI2000/3).........ccccevvevvecvennnne 323
Figure 5.9 Debugging Code Example (HI2000/3).......cccccuevieiereneieseeeeieeseseeste e svessessenneseens 323
Figure5.10 Example of Setting a Breakpoint (HI2000/3)cccoeerererieeneene e 324
Figure5.11 System Down Information Parameter Format (HI2000/3)ccovveveerierneneeneenne 325
Figure5.12 Example of System Down Routine Modification (HI2000/3)..........cccceovreerenennnn. 330
Figure5.13 Example of System Down Routine Calling Interface (HI2000/3).........cccecvvvrernnne 330
Figure 5.14 Debugging Code Example (HI2000/3).......ccccceveiieieneieneeieneeseseeste e sesreseenennens 331
Figure5.15 Example of System Down Routine Calling Interface (HI1000/4)..........ccccceveivennene 332
Figure 5.16 Debugging Code Example (HIZ000/4)coiriierinerenieeeneee e 333
Figure5.17 Example of Setting a Breakpoint (HIZ000/4)........cccccovirerninenenineesese e 333
Figure5.18 System Down Information Parameter Format (HI1000/4)coveveerenneneereenne 334
Figure5.19 List Output Setting for Optimizing Linkage Editor..........cccccevvvivvvnceviecesececenens 340
Figure 5.20 Initiated MapView WINOWc.cccoeieieieeinececieseese ettt e e sne st 341
Figure5.21 Window for Reading @File........cccceiieiiecicieses et 342
Figure 5.22 Window for Listing SYMDOISc.coiiiiiiiiiiee e 343
Figure5.23 Window for Specifying CPU OPLioNS...........coeririeerinieiereseesesieese e 347
Figure5.24 Mapping List in @aMap File.......ccoooiiiniieee e 348
Figure 5.25 Example of Task Operation and Stack AllOCEHION.........cccovevererievenere e 349
Figure 5.26 Bad Coding Example for Sending aMeSSage.......cccvcuvveeieveevene v 350
Figure 5.27 Bad Coding Example Causing System-DOWN..........ccooveeeeieerenie v seseeeeseenie e 352
Figure 5.28 Window for Specifying Output of Compiler Information Messages...........cccceeeeene 353
Figure5.29 Example of a Function Call through an Illegal Pointer Variable............c.ccccoovnneee. 354
Figure5.30 Example of CPU Initialization Routine (HI7000/4 SEfi€s)ccccovvvererenenenenienenns 357
Figure 5.31 Example of Section Initialization Processing (HI7000/4 Series)c.ccccvvvvevvecuennne 358
Figure 5.32 Example of CPU Initialization Routine (HI2000/3)ccccoverieieieesesieeeeieeseenie e 359
Figure 5.33 Example of aCall to Section Initialization Processing (HI2000/3)........ccccccevecuennen. 359
Figure 5.34 Example of CPU Initialization Routine (HI1000/4)ccccoeririenenerieneneereene e 360
Figure5.35 Example of aCall to Section Initialization Processing (HI11000/4)..........ccccooeruenene. 360
Figure5.36 Configuration of Variable-Length Memory BIOCKS...........cccocvenrinennineccee 361

Rev. 3.00 Jan. 12, 2005 Page xix of xx
RENESAS

Rev. 3.00 Jan. 12,2005 Page xx of xx
RENESAS

Section 1 Functions of the HI Series OS

Section 1 Functions of the HI Series OS

11 System State

The state of the HI series OS system is classified into one of the following two contexts.
Tablel1l System State

Name System State

Task context (including task portion) State or context in which a task is being executed.

Non-task context (including non-task State or context in which an interrupt handler, an interrupt
portion or task-independent portion) service routine, or a time event handler, which is not a
task, is being executed.

When issuing a service call, note the system state. When specialized service calls are provided for

the task context and non-task context, respectively, check the system state and issue an appropriate
service call.

Table1.2 Differencein Service CallsDueto System State

Context Service Call Description
Task context XXX_YYYy* Wait state can be entered.
Non-task context IXXX_yyy* Wait state cannot be entered.

Note: * Some service calls use the same name for the task context and non-task context (such

as sns_yyy). For details on service calls, refer to the user's manual of the HI series OS
used.

The system state can be checked according to the value of the interrupt mask hits IMASK value).

The state of the HI series OS system is also classified in adifferent way as follows.

Rev. 3.00 Jan. 12,2005 Page 1 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Table1.3 Dispatch-Disabled State and CPU-Locked State

Name System State
Dispatch-disabled/ Dispatch-disabled state Task context state in which an interrupt
dispatch enabled state can be accepted but dispatch processing
is not performed (task switching is not
generated).
Dispatch-enabled state The dispatch-disabled state is canceled.
CPU-locked/ CPU-locked state No interrupt is accepted or no dispatch
CPU-unlocked state processing is performed.
CPU-unlocked state The CPU-locked state is canceled.

These states cannot be determined through the value of the interrupt mask bits (IMASK value).
They may be recognized as the task context even when the interrupt mask bit value (IMASK
value) isnot 0. Seefigure 1.1 for the state of the HI series OS system.

Task execution

Task context Dispatch-disabled state

CPU-locked state

System state |—

Interrupt handler execution
(including time event handler execution)

Non-task context > CPU-locked state*

Kernel execution

Note: * Not supported in the HI2000/3.

Figurel.l Stateof theHI SeriesOS System

Rev. 3.00 Jan. 12, 2005 Page 2 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

I System state |

—| Task context I— —| Non-task context |—

*2

Interrupt handler
execution

Task execution

[IMASK = 0] [IMASK = 0
ena_dsp loc_cpu
dis_dsp unl_cpu iloc_cpu lTiunchu

Dispatch- loc_cpu CPU-locked CPU-locked *3
disabled state 1 state state
[IMASK = 0] [IMASK = 0] [IMASK = 0]

-
unl_cpu

Notes: 1. Inthe HI2000/3, the task execution state is entered when unl_cpu is issued.
The dispatch-disabled state is not entered.
2. The interrupt handler execution state includes timer handler execution and initialization
handler execution states.
3. This state is not supported in the HI2000/3.

Figurel.2 System Stateand Interrupt Mask Bit Value

For the relationship between the application program and the system state, refer to section 2.6,
Application Program Types.

Table 1.4 shows the priority of processing among tasks, the dispatcher (during kernel execution),
and interrupt handlers.

Tablel.4 Priority of Processing

Priority Processing

High Interrupt handler, time event handler, CPU exception handler, etc.
¢ Dispatcher (part of processing performed by the HI series OS)
Low Task

e Theinterrupt handler takes priority over the dispatcher.

e The priority of atime event handler (including the cyclic handler, alarm handler, and overrun
handler) is equal to or lower than the priority of the timer interrupt handler which performs
time management processing, and is higher than that of the dispatcher.

e The CPU exception handler takes priority over both the dispatcher and the processing that
generated the CPU exception.

e Thetask has alower priority than the dispatcher.

Rev. 3.00 Jan. 12,2005 Page 3 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

111 FAQsabout System State

This section answers questions about system state which are frequently asked by users of the HI
series OS.

FAQ Contents:
(1) Common Subroutine in Task Context or Non-Task CONtEXLccccveeeeeeieereenesiesesesieenens 5
(2) UsSiNg the CPU EXCIUSIVELYc.cooiiieeeee e e 7

Rev. 3.00 Jan. 12, 2005 Page 4 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(1) Common Subroutinein Task Context or Non-Task Context

Classification: System state

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Please explain how to distinguish the system state, between the task context
and non-task context, in which a common subroutine is called?

Answer HI17000/4 HI7700/4 HI7750/4 HI1000/4

The system state in which a service call isissued can be checked by the sns_ctx

service cal (referring to the context). When TRUE (= 0) is passed asreturn

parameter "BOOL state”, the subroutine calling state is the non-task context.

When FALSE (= 0) isreturned, the state is the task context. Figure 1.3 shows a sample program
for checking the context.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void Common_Sub_Routine(VP_INT exinf)
{

BOLL state;
(description omitted)

state = sns_ctx();

if(state == TURE){ /* Call from non-task context */
(processing description omitted)

}

elsef /* Call from task context */
(processing description omitted)

}
}
Figure1.3 Sample Codefor Context Check (H17000/4 Series and H11000/4)

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 5 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer HI2000/3

The system state in which a subroutineis called can be checked by theref_ims

system call (referring to the interrupt mask level). When 0 is passed as return

parameter "UINT imask", the subroutine calling state is the task portion.

When the return value is not 0, the state is the non-task portion. Figure 1.4 shows a sample
program for checking the context.

#include "hi2000.h"

void Common_Sub_Routine(INT stacd)

{

ER ercdq;
UINT imask;

(description omitted)

ercd = ref_ims(&imask);

if(imask != 0){
/* Processing when a subroutine is called from a non-task context */
/* or from CPU-locked state */
}
else{

/* Processing when a subroutine is called from a task context */

}

Figure 1.4 Sample Codefor Context Check (H12000/3)

When aref_ims system call isissued in the CPU-locked state during task portion execution, the
value passed through return parameter UINT imask is not 0 and the non-task context is
recognized.

Since the non-task context and CPU-locked state cannot be distinguished in the HI2000/3 even
when theref_ims system call is used, the application must prepare a means for distinguishing
them (for example, using a specialized parameter in common subroutines).

Rev. 3.00 Jan. 12, 2005 Page 6 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(2) Usingthe CPU Exclusively

Classification: System state

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

What is the best way to disable all tasks (including the kernel) during execution of a specific task?

Answer
Theloc_cpu service call should be used.

After loc_cpu is executed, interrupts or task switching below the kernel interrupt mask level are
disabled. Note the kernel interrupt mask level setting because interrupts equal to or higher than the
kernel interrupt mask level are accepted.

After required processing to exclusively use the CPU is completed, be sure to cancel the CPU-
locked state by the unl_cpu service call.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"
#pragma noregsave(task)

void task(VP_INT exinf)
{

BOLL state;
(description omitted)

loc_cpu(); /* Enters the CPU-locked state */
/* Starts processing in the CPU-locked state */

(processing description omitted)

/* Terminates processing in the CPU-locked state */
unl_cpu(); /* Cancels the CPU-locked state */

(description omitted)

Figure1.5 Sample Code Using loc_cpu

Rev. 3.00 Jan. 12,2005 Page 7 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

12 Objects

121 What Isan Object?
The targets of manipulation by service cals, such astasks, are collectively called objects.

Multiple objects can be created for each object type, and these are identified by ID numbers.

122 ID Assignment

An ID number is assigned for each object when the object is created through the following
methods.

Table1l5 |ID Assignment for Objects

HI Series OS ID Assighment Method
HI7000/4 series Assignment by the configurator
Assignment by a service call
HI2000/3 Assignment by a setup table
HI1000/4 Assignment by the configurator

Because the HI2000/3 and HI11000/4 do not provide the dynamic assignment method (assignment
by a service call), the IDs must be assigned by a setup table or configurator in advance.

Rev. 3.00 Jan. 12, 2005 Page 8 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

123 FAQs about Objects

This section answers questions about objects which are frequently asked by users of the HI series
os.

FAQ Contents:
(1) Registered Task and TasK Dcccoveirerieirrieiesee s 10
(2) Static Definition DBy CONFIGUIBLON..........cceirieiiereeese e eene e 12

Rev. 3.00 Jan. 12,2005 Page 9 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Registered Task and Task ID

Classification: Object

Question HI12000/3

Are|Ds automatically assigned to tasks in the order of task registration starting from ID 1, or can
any ID (value) be assigned to atask in a special method?

Answer
IDs starting from 1 are automatically assigned to tasks in the order of task registration.

Because the HI12000/3 does not provide the dynamic task creation function, tasks must be defined
in advance. Figure 1.6 shows a sample setup table.

1%0% %0 %% %6 %o %0 Vo %o %o Yo %o Vo %o %o Yo %o Vo Yo %o Yo %o Yo Yo Yo Vo %o Yo Yo %o Vo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo

1%%% TASK define section % %%
1%%6 %o %o %o %o %o %o Yo Yo Yo %o %o Yo Yo Yo Yoo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o %o Yo Yo Yo Yo %o Yo
Usage
TASK_TOP_LABEL ;: COMMENT
import _TASKA TASK.C :
! .import _TASKB TASK.C ,

[~ Declares the start addresses of the tasks to
be used as external reference symbols.
(Add or modify these as necessary.)

Figure1.6 Sample Setup Table (2655asup.src for H8S/2655) (1/2)

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 10 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer
jom- Usage
; .res.b SIZE + TSKSTKSIZ ; [RANGE];;: COMMENT
;TSK?_SP_LABEL: .equ $;; COMMENT
TSKSTKSIZ: .equ 50+(10*2)+(6*1)+6+8; [50...] ;: Task minimum stack size
.section h2sstack, stack, align = 2

(36) + TSKS

TSK2_SP: equ $

.[50...] ;: tskid2 stack area

resb 8 <Task stack area definition>
resb (32) + TSKSTKSIZ ; [50..] Line 1: Defines the stack size to be used.
TSK3 SP: equ $ Line 2: Defines the stack label
- resb 8) (tagk stack bottom)
res.b (32) + TSKSTKSIZ ; [50..] Line 3: Defines the shared stack
TSK4 SP: equ $ mapagement area.
- resb 8 (this can be omitted when the
. shared stack is not used)
.section h2ssetup, code, align =2
_HI_H8S: .res.b 10 ;: System Area
jmmm=—- Usage
;LABEL .data.b IMOD, ITSKPRI <Task definition>
; .data.l ITSKADR, ITSKSP Format:
; LABEL : .data.b IMOD, ITSKPRI
NOEXS: .assign 0 .data.l ITSKADR, ITSKSP
RDY: .assign 1 (1) LABEL
DMT: .assign (-1) A label can be specified (this can be omitted).
TDTLEN: .assign 10; <- Not Changg ! | (2) IMOD (task initial state)
.section h2ssetup, code, falign Defines a task and initial state after initiation.
_HIL_TDT: .equ $-TDTLEN a) NOEXS (= 0): Not registered
_TDT_TOP: equ _$ ﬁi‘ _____ b) RDY (= 1): Task is ready after initiation
| tdt_id1: .data.b DMT, 1 c) DMT (= -1): Task is in dormant state after
i .data.l _TASKA, TSK1_SP initiation.
Ttdt_id2: T T datab DMT, 2"~~~ (3) ITSKPRI (initial priority of task)
.data.l _TASKB, TSK2_SP Defines the initial priority of the task.
tdt_id3: .data.b NOEXS, 3 (4) ITSKADR (initial start address of task)
.data.l 0, TSK3_SP Defines the start address of the task.
tdt_id4: .data.b NOEXS, 4 * The start address defined by the external
.data.l 0, TSK4_SP reference symbol must be specified here.
tdt_id5: .data.b NOEXS, 5 (5) ITSKSP (initial stack pointer of task)
.data.l 0, TSK4_SP Defines the stack pointer (bottom address)
TDT_BTM: when the task is initiated.
TSKCNT: .equ (TDT_BTM-TDT_TOH * The stack label defined in the task stack area
;:[0...255] definition section must be specified here.

Figure1.6 Sample Setup Table (2655asup.src for H8S/2655) (2/2)

Rev. 3.00 Jan. 12, 2005 Page 11 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(2) Static Definition by Configurator

Classification: Object

Question HI17000/4 HI7700/4 HI7750/4

The configurator has views (setting items) for defining (creating) tasks or event flags.
Should these items be defined (specified) only when objects are statically created?

Should they not be defined (specified) when objects are dynamically created (through cre_tsk,
etc.) in the code?

Answer
Definition in each object creation view is not always necessary.

It is not necessary when objects are dynamically created in the code (program). When an object is
created by defining it in the creation view for that object, it does not need to be created in the code
(program), and the object can be used immediately after the system is started.

Note that the maximum object ID (maximum number of objects to be used) must always be
defined for each object type (such as the task or event flag) through the configurator. If these
definitions are omitted, objects may not be created dynamically in the code (program) in some
cases.

Rev. 3.00 Jan. 12, 2005 Page 12 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1.3 Service Call Parameter Check

In the HI series OS, the context or parameters to be checked when a service call isissued are
classified into the following two types.

e Dynamic parameters. Parameters which change dynamically during system operation
— Whether objects such as tasks or semaphores are used,
— Context when a service call isissued,
— Status of the target task, etc.
e Static parameters
— Maximum value for the specified ID, etc.

Table 1.6 shows differencesin operation depending on whether the parameter check function is
enabled.

Table1.6 Differences Depending on the Parameter Check Function

Parameter Check
Function Check Targets Advantages Disadvantages

Not installed Dynamic parameters e Fast processing If the system goes out of
control because of an
error in a service call
parameter, it is difficult
to determine the error.

(parameter check e Small program size
function is disabled)

Installed e Static parameters Easy debugging e Slow processing
(parameter check ¢ Dynamic e Large program size
function is enabled) parameters

For installation (enabling) of the parameter check function in the HI series OS, refer to the
appropriate section for each OS in this application note.

Rev. 3.00 Jan. 12, 2005 Page 13 of 362
RENESAS REJ05B0364-0300

Section 1

Functions of the HI Series OS

131

In the HI7000/4 series, the parameter check function isinstalled by settings in the Kernel

Installation in HI 7000/4 Series

Extension Function view of the configurator.

Eh

O = =

Hirw Opan Save

Wiew Ganersm Halk

o Ll

Gareratn | Halp

= HIF A1 Coni guestion infor

Fmme| Execubion Conci

Tme Marsgement Furs
Cisbaggng Furcion
Senipe Calls Selecion
|k TP Esepbion
Trap Espephion Handis
Prevdetch Funcion
Iraimbizmion Foutne
Task

P edi Chiiack Funectiin

¥ panarverkan ch ek finctian e ireakalled, e eders will D
cheapkes] whean sarAces calls imsuad

¥ (retall b Prarameder Chieck Fu nctian JCFO_PaRsHE

L= Furnetian
¥ yma) L Hree proca s or(SH T 29 alciwhich hss DBP bEin BR, v musi e2lacihe

Semaphom ek bios
Eweni Flasg
it iy ™ WUeme [EF Funchian [CFS_DEF]

Fdmihno=

Fdutes

Ieesage Bufer
Foed-mge MemonyFoo
Wanshlg-zze MemonF

Cachea Lock Furctian

ol Hander I e G el [T i OSH T T CeL) Tl P CLICaERed Lok K61 iR SR,
&L= Hanrber wau iy ed med et Hes chech: baae
Chmrnun Handler B
Extended Seraces Call [Ui Cae b Lok Furectian PO _CesLa
T I I}
FarHalp. prass F1 [HUM 4

Figurel.7 Kernel Extension Function View

Select the [Install the Parameter Check Function [CFG_PARCHK](C)] check box for [Parameter
Check Function] in the kernel extended function view to install the parameter check function (this
check box is selected at default in the configurator).

Rev. 3.00 Jan. 12, 2005 Page 14 of 362

REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

13.2 Installation in H12000/3 and H11000/4

In the HI2000/3 and H11000/4, the parameter check function isinstalled by selecting the library
filesincluding the parameter check function when the system is configured.

Specify the library files including the parameter check function in the HEW project file during
configuration to install the parameter check function. (The library files with this function are
selected by default in the HEW project file provided as standard.)

The following describes an example of alibrary file definition procedure when using the H8S,
H8/300 Series C/C++ Compiler Package V6.0.00 in the H8S/2655 advanced mode of HI2000/3
V1.10rl.

In the active HEW workspace, select [H8S, H8/300 Standard Toolchain...] from [Optiong] in the
header menu.

Rev. 3.00 Jan. 12, 2005 Page 15 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

L A |

it £y J, Tibal i 7 dimi y Wavasin Cbares |

i — = & [wam |

Figure1.8 Library File Definition (1)

Select the [Link/Library] tag in the [H8S, H8/300 Standard Toolchain] dialog box to see the
current settings. Figure 1.9 shows the displayed current settings.

Rev. 3.00 Jan. 12, 2005 Page 16 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

=.H3,/300 Standard Toolchain BHE |
Cotfiguratiorn : Ea"E++| fizzembly Link/Library |Standard LiI:urar_l,II CRU A I *I
IhQEa j Categony : Ilnput j

I:I .-'f-..sseml:ul_l,l SDurCE:I Show entries for
-7 Linkage spmbal | - -

EI@ kizlin |L|I:|rar_l,l file:s j
e € source e FERCIOIE Add..
- Ce+ saurce fil SPRCJDIR bR Cat it
I:l Azzembly source Inzert...
-7 Linkage spmbal | H—

- R _ Bemove |
F- C source file 4+ | + |
I:l C++ source file
I:l Azzembly source g Duown
[+ Linkage symbal | Vv Usze ertry paint ; Brelinker contral ;

=1 hizen [H_25_CPOINI [Auto =]
-7 C zource file
-] Co++ source file Optionz Link.Library :
D Azzembly FOUNCE, | -enty=_H_25_CPUIMNI -noprelink, -sdebug -nomeszage ﬂ
- Linkage symbol |+ hzt="$[COMFIGDIRPROJECTHAME L map" -nooptimize

4 | | .,l -gtart=hid_2z hZssetup.hZsuzer hZsilint h2zc, Ptazk Q200 ki ;l

] I Cancel |

Figure1.9 Library File Definition (2)

The default kernel library file includes the parameter check function. This example shows the
procedure for switching from the default library fileto alibrary file that does not include the
parameter check function.

Select the current library file and click the [Insert...] button.

Rev. 3.00 Jan. 12, 2005 Page 17 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Inser library file

Belative to

Cancel |

HE" inztallation directar

File path :

Figure1.10 Library File Definition (3)

Specify [Relative to:] and [File path:] and click the [OK] button.

Insert library file : |
Belative to 0k, I
IF'rl:uie-:t directony j Cancel |

File path :
| ilib*s 25 ak . it

Figurel.11 Library File Definition (4)

Rev. 3.00 Jan. 12, 2005 Page 18 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

=.H3,/300 Standard Toolchain BHE |
Cotfiguratiorn : Ea"E++| fizzembly Link/Library |Standard LiI:urar_l,II CRU A I *I
I hiz6a j Categary : I [t j

I:I Assembly SD""CE:I Show entries for ;
-7 Linkage spmbal | =

EI@ hiZln ILiI:nrar_l,l files j
(0 € source file SPROIDIAhIb G akrins b add.
D C++ zource file PR DJDIR [Shilbebaknips. =
-] Assembly source $HPROJDIR]:hilbh2Eacik. lib Inzert...

-7 Linkage spmbal |
- DR _ Remove|
F- C source file 4+ | + |

-] C++ source file

I:l Azzembly source Up Diown
-7 Linkage spmbal | ¥ Use entry point : Brelinker contral :
=1 hizen [H_25_CPOINI [Auto =]

-7 C zource file
-] Co++ source file Optionz Link.Library :
D Azsembly source -entry=_H_25_CPUIMNI -noprelink, -sdebug -nomeszage ﬂ
- Linkage symbol |+ hzt="$[COMFIGDIRPROJECTHAME L map" -nooptimize

4 | | .,l -gtart=hid_2z hZssetup.hZsuzer hZsilint h2zc, Ptazk Q200 ki ;l

] I Cancel |

Figure1.12 Library File Definition (5)

Select the default library filein the [H8S, H8/300 Standard Toolchain] dialog box, and click the
[Remove] button.

Rev. 3.00 Jan. 12, 2005 Page 19 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

=.H3,/300 Standard Toolchain

Canfiguration :

| hizEa

[

-5 hizin

=I5 [

05 hizn

-2 C source file
-1 C++ source il
I:l Azzembly source
D Linkage symbol |

H-[_] C source fil
-1 C++ source il
I:l Azzembly source
Cl Linkage symbol |

H-[Z] C source fil
-1 C++ source il
I:l Azzembly SOUICE |
Cl Linkage symbal [+
| 2

I:l Azzembly SDurCE;I
-7 Linkage spmbal |

C/C++ | Assembly Link/Library |Standard Library | cPU <] ¥]

Categon : I Imput j
Show entries for
I Library filez j

${PR OJDIR kil 26 ks hib Add.
${PR 0JDIR shilis 26acif.lib

Inzert...

2| 4]

Up [
W' Use entry point - Prelinker contral :
[CH_25_cPUMI [uto =]

O ptiong Link/Libran ;

-entp=_H_25_CPUINI -noprelink -sdebug -nomeszage ﬂ
gt="$[COMFIGDIREPROJECT HAME]. map" -nooptimize
-gtart=hid_2z hZssetup.hZsuzer hZsilint h2zc, Ptazk Q200 ki ;l

] | Cancel |

Figure1.13 Library File Definition (6)

Click the [OK] button in the [H8S, H8/300 Standard Toolchain] dialog box to reflect the new
settings in the HEW workspace. This completes switching of the kernel library.

Rev. 3.00 Jan. 12, 2005 Page 20 of 362

REJ05B0364-0300

RENESAS

Section 1 Functions of the HI Series OS

133 FAQ about Service Call Parameter Check

This section answers a question about service call parameter check which is frequently asked by
users of the HI series OS.

FAQ Contents:

(1) Parameter Check ENablEd/DISADIEUvovrrroeeeserreooeeeeeeeeeseesssseseesssseeeessseeseseseeseesssesee 2

Rev. 3.00 Jan. 12, 2005 Page 21 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Parameter Check Enabled/Disabled

Classification: Service call parameter check

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

The functional libraries provided by the OS are classified into those with the parameter check
function and those without the function.

What purpose should they be used for?

Answer

The libraries with the parameter check function are provided by the OS to be used for debugging.
They check errorsin coding (parameter correctness) of the user-created application programs.

When the libraries with the parameter check function are used, the overhead of the parameter
check function increases the processing time and the amount of processing code in comparison
with usual service calls.

After the debugging step is completed, we recommend that the libraries without the parameter
check function be used to generate load modules to be included in the final product.

Note: Dynamic parameters are always checked even when the parameter check function is not
installed.

Rev. 3.00 Jan. 12, 2005 Page 22 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

14 Tasks

141 Tasks and Functions
Table 1.7 shows the differences between tasks and functions.

Tablel.7 Differences between Tasks and Functions

Iltem Task Function

Program description No difference in program description

A task may be configured with one function (or a group of functions) in
some cases.

Initiation The OS determines the task to The main function initiates each
initiate according to the priority and function.
specified initiation order.

Management OS Function
Interface OS functionality (such as service Parameters
calls)
Dependency and Tasks are loosely coupled and Functions are tightly coupled and
coupling independent dependent on each other

Rev. 3.00 Jan. 12, 2005 Page 23 of 362
RENESAS REJ05B0364-0300

Section 1

Functions of the HI Series OS

main function

void main()
(description omitted) _1-

event(x);

(description omitted)

(description omitted) RN

{ -

communicate(); " ----

The functions called by the main

function are executed in the order of AN

calls.

Key manipulation function

[void event(int x)

{

(description omitted)

if(a == x)
out = portx;

(description omitted)

}

Communication control function

void communicate()

{
(description omitted)
sub_xxx();

(description omitted)

}

Calculation task

Key manipulation task

Communication control task

void calculate()
(description omitted)
a=b+c;

(description omitted)

void event(int x)

{

(description omitted)

if(a == x)
out = portx;

(description omitted)

}

void communicate()

{
(description omitted)
sub_xxx();

(description omitted)

oS

The OS determines the order of task execution according to the external events, and allocates
the CPU to the task in the determined order.

Figure1.14 Differences between Tasksand Functions

Rev. 3.00 Jan. 12, 2005 Page 24 of 362
REJ05B0364-0300

RENESAS

Note: *

Not supported by HI2000/3 or HI1000/4.

Section 1 Functions of the HI Series OS
14.2 Task Initiation
Figure 1.15 shows the procedure to initiate a task.
CPU allocation
READY < - RUNNING
Waiting for
a A N CPU allocation
Wait release Wait condition:

| WAITING Ii

A

Resumption Suspension
A 4
| WAITING-SUSPENDED Ii
Resumption Suspension Wait release
A 4
!l SUSPENDED Ii
Forcible
Initiation 4 termination
DORMANT <
Forcible termination I Exit
S
Creation* Deletion*®
A 4
4 Exit and deletion*
NON-EXISTENT <

Figurel1l.15 Task State Transitions

RENESAS

Rev. 3.00 Jan. 12, 2005 Page 25 of 362

REJ05B0364-0300

Section 1 Functions of the HI Series OS

Task State Description

NON-EXISTENT The task has not been registered in the kernel.
(does not exist in the system)

{ cre_tsk()*, acre_tsk()*, etc.

DORMANT The task has been registered in the kernel, but has not yet been
(inactive) initiated.

| sta_tsk(), act_tsk(), etc.

READY The task is ready to be executed and is waiting for CPU resource
(executable) allocation.
RUNNING The CPU is allocated to the task and the task is being executed.

(executing)

Note: * Not supported by the HI2000/3 or HI1000/4.

143 Task Stacks
Table 1.8 shows the stacks used by tasks.

Table1l.8 Task StacksAvailablein HI SeriesOS

Stack HI7000/4 Series HI2000/3 HI1000/4
Dynamic stack Available Not available Not available
Static stack Available Available Available
(Shared stack) (Available) (Available) (Available)

For details on the stack allocation and shared stack function, refer to the user's manual of the HI
series OS used.

Rev. 3.00 Jan. 12, 2005 Page 26 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(1) Typesof Task Stack
Table 1.9 shows the types of task stack.

Table1l9 Typesof Task Stack

Stack Type Description

Dynamic stack This type of stack area is allocated in the space managed by the OS for the
required size, and a stack is actually assigned for a task when the task is
initiated.

Static stack This type of stack area is allocated for each task, and a stack is actually

assigned for a task when the task is initiated.

(2) Shared Stack Function

Multiple tasks that use static stacks can share one stack area. This shared stack function reduces
the task stack size.

Table 1.10 shows the required memory used by dynamic stacks, static stacks, and shared stacks.

Table1.10 Stack Typesand Required Memory

Stack Type Required Memory
Dynamic stack The total size (%) of all task stacks does not need to be allocated.
Static stack e The total size (%) of all task stacks must be allocated.

(shared stack function) e When the shared stack function is used, multiple tasks can share one

task stack, which reduces the required memory size.

Figure 1.16 shows the task state transitions for the shared stack function.

Rev. 3.00 Jan. 12, 2005 Page 27 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

CPU allocation
READY > ol RUNNING
Waiting for
A A A A CPU allogcation

Wait release Wait conditior{'

WAITING
A
Resumption Suspension
A4
WAITING-SUSPENDED
Resumption| |Suspension Wait release
A 4
> SUSPENDED
A
Stack allocation

WAITING-SUSPENDED
Shared stack double-wait state

Resumption‘ h v Suspension

Stack allocation WAITING
Shared stack wait state

When the shared task is & Forcible terminatio

n
monopolized by a task v Forcible
Initiation 4 termination
> DORMANT <
Forcible termination y'y Exit
Creation* Deletion*
A 4

Exit and deletion*

NON-EXISTENT <

Note: * Not supported by the HI2000/3 or HI1000/4.

Figure1.16 Task State Transitionsfor Shared Stack Function

Note: Tasks that use dynamic stacks cannot use the shared stack function.

Rev. 3.00 Jan. 12, 2005 Page 28 of 362

REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

14.4 CPU Allocation to Tasks

The CPU resourceis allocated to tasks according to the priority levels defined for tasks. For the
task priority, asmaller value indicates a higher priority level, and alarger value indicates a lower
priority level.

The priority among tasks is determined by the priority level of each task. This section describes
task priority control asillustrated in the accompanying figures.

High 4 Priority level — —
Priority level 1 L3 Task A]
Priority
Priority level2 —» Task B Task C > Task D —‘
Priority level 3 " Task E
Low Y

First First-Come-First-Served (FCFS) order Last

Figure1.17 Task Priority (1)

Figure 1.18 shows the priority after task A releases the right of execution by issuing atask
terminating or deleting service call or by entering the event wait state because of a service call.

Rev. 3.00 Jan. 12, 2005 Page 29 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

High 4 Priority level —

Priority level 1

Priority

Priority level2 “»| TaskB »| TaskC > Task D —‘

Priority level 3 | Task E

Low Y

First FCFS order Last

Figure1.18 Task Priority (2)

After task B releases the right of execution by entering the event wait state because of aservice
call, task C entersthe READY state. Figure 1.19 shows the priority after task B exits from the
WAITING state.

High 4 Priority level —

Priority level 1

Priority

Priority level 2 Task C » Task D > Task B —‘

Priority level 3 | Task E

Low Y

First FCFS order Last

Figure1.19 Task Priority (3)

Note: A task is scheduled to be executed last for the same priority level (placed at the end of the
queue for the same priority level) on a First-Come-First-Served (FCFS) basis.

Rev. 3.00 Jan. 12, 2005 Page 30 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

If ahigher-priority task becomes ready while alower-priority task is being executed, the lower-
priority task execution is suspended (moves from the RUNNING state to the READY state) and
the higher-priority task is executed first.

In the I TRON specifications, suspending alower-priority task in favor of a higher-priority task is
called preempting.

The following describes the priority change when atask issues a service call to other tasks with
different priority levels or when aservice cal isissued to the current task.

(1) Service Call to Other Tasks
The following describes task execution control when atask issues service calls.

Theinitia state before a service call isissued is assumed to be as follows.

High4 | Priority level —

Priority level 1

Priority

Priority level 2 | Current task Task 1 —‘

Priority level 3 | Task 2
Lowy

First FCFS order Last

Figure1.20 Priority Beforea Service Call IsIssued to Other Tasks

The task which issues a service call is called the current task. Figure 1.21 shows the state after the
current task issues an initiating service call (sta _tsk or act_tsk) to task A of the same priority level
asthe current task and to task B of alower priority level than the current task, and tasks A and B
enter the READY state.

Rev. 3.00 Jan. 12, 2005 Page 31 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

High4 | Priority level —

Priority level 1

Priority
Priority level 2 »| Current task > Task 1 > Task A —‘
Priority level 3 Task 2 > Task B
Lowy
First FCFS order Last

Figure1.21 Priority After a Service Call Islssued to Other Tasks (1)

Figure 1.22 shows the state after the current task issues an initiating service call to task C of higher
priority than the current task and task C entersthe READY state.

High4 | Priority level —
Priority level 1 L3»| Task C :|
Priority
Priority level 2 = Current task > Task 1 > Task A —‘
Priority level 3 Task 2 > Task B
Lowy
First FCFS order Last

Figure1.22 Priority After a Service Call Islssued to Other Tasks (2)

As shown, the priority of the current task is changed by a service call to task C of higher priority
than the current task, and the current task isimmediately preempted when the service cal is
issued.

Rev. 3.00 Jan. 12, 2005 Page 32 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(2) ServiceCall to Current Task
The following describes the priority control when a service call isissued to the current task.

Theinitia state before a service call isissued is assumed to be as follows.

Highd | Priority level —

Priority level 1

Priority

Priority level 2 2 Current task > Task 1 —‘

Priority level 3 Task 2

Lowy

First FCFS order Last

Figure1.23 Priority Beforea Service Call Islssued to Current Task

Figure 1.24 shows the state after the priority level of the current task is modified to be higher
(modified from priority level 2to 1).

High4 | Priority level —
Priority level 1 '3 Current task |—
Priority
Priority level 2 Task 1 —
Priority level 3 Task 2
Lowy

First FCFS order Last

Figure1.24 Priority After a Service Call Islssued to Current Task (1)

Rev. 3.00 Jan. 12, 2005 Page 33 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Figure 1.25 shows the state after the priority level of the current task is modified back toits
origina level (modified from priority level 1to 2).

High4 | Priority level —

Priority level 1

Priority

Priority level2 »| Task 1 Current task —‘

Priority level 3 | Task2

Lowy

First FCFS order Last

Figure1.25 Priority After a Service Call Islssued to Current Task (2)

In this case, the processing after the priority change depends on whether there is atask of the same
priority level as the current task as shown below.

Table1.11 Differencesin Processing after Priority Change

Current Task

Same-Priority Task Current Task Processing Execution
When a same-priority task The current task is placed at the end of the same- Preempted
exists priority queue according to the scheduling rule (FCFS

basis).
When no same-priority The current task is placed at the beginning of the Execution is
task exists same-priority queue. continued

Rev. 3.00 Jan. 12, 2005 Page 34 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

145 Polling

Service callsfor waiting for events on objects are classified into three types. general wait, wait
with timeout, and wait with polling. This section describes the differences in processing of these

service cals (using an event flag in this example).

Figure 1.26 gives an overview of wai_flg service call processing as an example of general event

wait service cadls.

Kernel

(1)

wai_flg —

The requested event
has already occurred.

|
The requested event
has not occurred.

Kernel

Event
flag

Receives the event and
continues processing.

Kernel

Event

Waits for the event.

The requested event
occurrence is reported.

“ l

wai_flg <~—

Event
flag

Receives the event and
resumes processing.

Figure1.26 Overview of General Event Wait Service Call Processing

Rev. 3.00 Jan. 12, 2005 Page 35 of 362

RENESAS

REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Thetask issuesawai_flg service call for an event flag.
(2) When the specified event has already occurred, the return code shows normal termination

(E_OK) and the task processing

(3) When the specified event has not occurred, the task processing is suspended and the task enters
the WAITING state until the event occurrence is reported.

continues.

(4) When the specified event isreported by a set_flg service call from atask or an interrupt

handler, the return code shows normal termination (E_OK) and the task processing resumes.

Figure 1.27 gives an overview of twai_flg service call processing as an example of an event wait

service call with timeout.

(1

twai_flg —

Kernel

Event
flag

The requested event
has already occurred.

]
The requested event
has not occurred.

twai_flg ~—

Receives the event and
continues processing.

Waits for the event.

The requested event
occurrence is reported.

(4) l

event occurring.

The specified time has
passed without requested

(6)

twai_flg ~—

Event
flag

Receives the event and

resumes processing.

twai_flg -—

Resumes processing

after timeout.

Kernel

Event
flag

Figure1.27 Overview of Event Wait Service Call Processing with Timeout

Rev. 3.00 Jan. 12, 2005 Page 36 of 362
REJ05B0364-0300

RENESAS

Section 1 Functions of the HI Series OS

(1) Thetask issuesatwai_flg service call for an event flag.

(2) When the specified event has already occurred, the return code shows normal termination
(E_OK) and the task processing continues.

(3) When the specified event has not occurred, the task processing is suspended and the task enters
the WAITING state for the specified time until the event occurrence is reported.

(4) When the specified event isreported by a set_flg service call from atask or an interrupt
handler, the return code shows normal termination (E_OK) and the task processing resumes.

(5) When the specified event is not reported within the specified time, the return code shows time
out (E_ TMOUT) and the task processing resumes.

Figure 1.28 gives an overview of pol_flg service call processing as an example of an event wait
service call with polling.

(1)

T
Event
pol_fly —— flag
|
The requested event The requested event
has already occurred. has not occurred.
(2 (3) l

Event Event

pol_flg <-—— pol_flg —-——

flag flag
) Continues processing without
Receives the event and receiving an event because
continues processing. the event has not occurred.

Figure1.28 Overview of Event Wait Service Call Processing with Polling

(1) Thetask issuesapol_flg service call for an event flag.
(2) When the specified event has already occurred, the return code shows normal termination
(E_OK) and the task processing continues.

(3) When the specified event has not occurred, the return code shows polling failed (E_TMOUT)
and the task processing continues.

Rev. 3.00 Jan. 12, 2005 Page 37 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Table 1.12 shows the differences among general event wait, wait with timeout, and wait with
polling.

Table1.12 Differences Among General Event Wait, Wait With Timeout, and Wait With

Polling
Wait Service Call WAITING State Wait Time
General wait Entered Not specified
Wait with timeout Entered Specified
Wait with polling Not entered Not specified

Rev. 3.00 Jan. 12, 2005 Page 38 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

14.6 FAQsabout Tasks

This section answers questions about tasks which are frequently asked by users of the HI series
os.

FAQ Contents:

(1) Initialization and Task INItIAtioNccceceiieiieiiceee e e s enea 40
(2) Defining and Initiating Tasksin aConfiguration File............coeviireinieneinenecsereee 41
) I LR 1] g0 1K= = 2SSO 43
(4) Stack for INitial S TASKeiveereieeerie e e 44
(5) Managing Tasks for the DSP COPrOCESSOL.........cvieiueereeeeeesiestesesresreseeeessesseseeseessessessens 45
(6) Managing Tasks for the FPU COPIOCESSO.........ccctreieirienenie ettt 48

Rev. 3.00 Jan. 12, 2005 Page 39 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Initialization and Task Initiation

Classification: Task and task initiation

Question

HI17000/4

HI7700/4

HI7750/4

HI12000/3

HI11000/4

Please explain in detail the relationship between the main() function and tasks.

Answer

The ul TRON specifications have no concept of the main() function (the system start function).
The system using the I TRON specifications determines which task to initiate according to the

task priority defined in the system and the order of task initiation requests.

System initialization or task initiation can be specified in the main() function. In this case, the
main() function must be defined astheinitial start task or the system initialization routine. Each
task isinitiated by a service call issued in the main() function.

Refer also to section 1.4.1, Tasks and Functions in this application note.

Rev. 3.00 Jan. 12, 2005 Page 40 of 362

REJ05B0364-0300

RENESAS

Section 1 Functions of the HI Series OS

(2) Defining and Initiating Tasksin a Configuration File

Classification: Task and task initiation

Question HI17000/4 HI7700/4 HI7750/4 HI1000/4

What should be done to execute Main_Task() after defining it in the create and initiate mode in the
task list through the configurator?

Answer
No other definition related to task creation and initiation is necessary through the configurator.

Specify [Start Task after Creation (TA_ACT)] for the attribute of theinitia start task in the
window displayed after "Create” (or "Modify") is selected in the task list in the task view of the
configurator. The kernel initialization processing makes the task enter the READY state.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 41 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

Figure1.29 Task Creation Window

Rev. 3.00 Jan. 12, 2005 Page 42 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(3) Initiating Tasks

Classification: Task and task initiation

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

If all tasks are set to the DORMANT state, how should they be initiated?

Answer HI7000/4 HI7700/4 HI7750/4 HI11000/4

When all tasks are defined in the DORMANT state, they can be initiated
asfollows:

1. Defineaninitialization routine and initiate tasks through service calls.

2. Define an interrupt handler or atime event handler (cyclic handler or alarm handler) and
initiate tasks through service calls.

We recommend that tasks be defined with [Start Task after Creation (TA_ACT)] specified for
general usage.

Answer HI2000/3

When all tasks are defined in the DORMANT state, they can be initiated
asfollows:

1. Defineasysteminitialization handler and initiate tasks through service calls.
2. Define an interrupt handler or a cyclic handler and initiate tasks through service calls.

We recommend that the task initial state should be defined as [READY state after initiation
(RDY)] instead of [DORMANT state after initiation (DMT)] in the setup table for general usage.

Rev. 3.00 Jan. 12, 2005 Page 43 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(4) Stack for Initial Start Task

Classification: Task and task initiation

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Which stack area does the task initiated immediately after initialization use?

Answer

Theinitia start task uses the task stack assigned at creation. The kernel assigns an actual stack to
the task according to the task creation information.

The following section areas are used as the task stack areas.

e HI7000/4 series

— Static stack: B_histstk

— Dynamic stack: B_hidystk
e HI2000/3

— Static stack: h2sstack (dynamic stack is not supported)
e HI1000/4

— Static stack: B_histack (dynamic stack is not supported)

For the static stack, an areain the above section areais assigned during task initiation processing
for the size defined at creation.

For the dynamic stack, the kernel allocates an areain the above section area for the specified size,
and actual stack areais assigned for atask when the task isinitiated.

The section areas for the stacks can be determined by the user. For the allocation of the stack
section areas, refer to the following.

HI Series OS Reference

HI7000/4 series Section describing "Changing Linkage Address" in the
appropriate configuration guide.

HI2000/3 Section 3.4.4 in this application note

HI1000/4 Section 3.4.5 in this application note

Rev. 3.00 Jan. 12, 2005 Page 44 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(5) Managing Tasksfor the DSP Coprocessor

Classification: Task and task initiation

Question HI17000/4 HI7700/4

What should be kept in mind when using the DSP unit in the HI series OS?

Answer

When atask uses DSP functions, TA_COPO should be specified for the task attribute parameter
when the task is created. The task with TA_COPO specified saves and restores the DSP registersin
the same way as for the general registers.

To specify TA_COPO for the task registered through the configurator, specify the [Uses DSP
(TA_COPO)] check box under [Attribute] in the Creation of Task window.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 45 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

Figure1.30 DSP Selection in Configurator

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 46 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

To create atask by aservice cal during system operation, specify TA_COPO as the task attribute
parameter in the cre_tsk service call.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(MainTask)
void MainTask(VP_INT stacd)
{

ER ercd;

T_CTSK pk_ctsk;

(processing description omitted)

pk_ctsk.tskatr = (TA_HLNG | TA_COPO0) /* Task attribute = high-level language description,
DSP coprocessor used */
pk_ctsk.exinf =0; /* Extended information = 0 */
pk_ctsk.task = (FP)task_A; /* Task initiation address */
pk_ctsk.itskpri = 1; /* Priority at task initiation */
pk_ctsk.stksz = 264; /* Task stack size */
pk_ctsk.stk = (VP)sp_taskA; /* Start address of task stack area */
ercd=cre_tsk(TASK_A, &pk_ctsk); /* Create task A */
ercd=sta_tsk(TASK_A, (VP_INT)0x00000001); /* Initiate task A (initiation code = 0x1) */

(processing description omitted)

}
Figure1.31 DSP Selection for Task Creation by Service Call (Sample Code)

For details on the task attribute parameter during task creation, refer to the HI7000/4 Series User's
Manual.

When anon-task program (such as an interrupt handler or time event handler) uses DSP functions,
each program must save and restore the DSP registers. For details, refer to the HI7000/4 Series

User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 47 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(6) Managing Tasksfor the FPU Coprocessor

Classification: Task and task initiation

Question HI7750/4

What should be kept in mind when using the FPU functionsin the HI series OS?

Answer

When using FPU functions, specify TA_COP1 or TA_COP2 for the task attribute parameter when
creating atask. Table 1.13 shows each parameter meaning.

Table1.13 TA_COPland TA_COP2 Meaning

Task Attribute Meaning
TA_COPH1 The task uses FPU register bank 0
TA_COP2 The task uses FPU register bank 1

The task with TA_COP1 or TA_COP2 specified saves and restores the FPU registers in the same
way as for the general registers. Table 1.14 shows which of the TA_COP1 and TA_COP2
attributes should be specified.

Table1.14 TA_COP1land TA_COP2 Specifications

Case Attribute Specification Remarks

Matrix operation is [TA_COP1|TA_COPZ2] Both FPU register banks are
necessary used

Floating-point operation [TA_COP1]* Only one FPU register bank
is necessary is used for general floating-

point operation

No floating-point None
operation is necessary

Note: * TA_COP2 is not recommended because if it is specified, FR in FPSCR must be set to 1
in the beginning of the task and task exception processing routine.

The following describes how to specify the attribute.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 48 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

When the task registered in the configurator uses FPU bank 0, specify the [Uses FPU (Bank 0)
(TA_COP1)] check box under [Attribute] in the Creation of Task window.

Lreahon ol §ask

Task |

10 Heamre can be specifiad when Ao is
Falactad in the 1L Mumber

|0 Mumber

Aldress
aldmess |

Afribute
¥ Etat Task ates CreationTa_ACT)

¥ Uses FPUBank)TA_COP1)
™ Uses FRIKBank1KTA_COPZ)

I0 Marne |

Stack
Stack Sige || el 000000
DD 0T 4
Stack Aeas |

-

Task Initiaicn Prdriks

Eriorigy |1 "|

Decriplion Language

F High-Level LangizageTa_HLNG)
™ Bssembly Language{TA_&SM)

Estenced Infamrnalicn

—

Ciefine Task Exceplion Frocessing |

(oo]

Infomrnadon

Cancel |

Figure1.32 FPU Selection in Configurator (TA_COP1)

(Continued on next page)

RENESAS

Rev. 3.00 Jan. 12, 2005 Page 49 of 362
REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

When the task registered in the configurator uses FPU bank 1, specify the [Use FPU (Bank 1)
(TA_COP2)] check box under [Attribute] in the Creation of Task window.

Figure 1.33 FPU Selection in Configurator (TA_COP2)

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 50 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

When the task registered in the configurator uses both FPU banks 0 and 1, specify the [Use FPU
(Bank 0) (TA_COP1)] and [Use FPU (Bank 1) (TA_COP2)] check boxes for [Attribute] in the

Creation of Task window.

reohon ol | ask

Task |

|C Mumiber

ID Heame cambe specilied when Ao is
salectad in the D Rumber

Address

Fifiy=n1]

e

Afribute

[+ Etan Task afer CreationTA_ACT)

F Uses FRUBankI WTA_COPZ)

Stack
Stack Sige || 00000400
00004
Statk Areas |

I0 Mame

—

-

Task nitialion Pricrity

Eriorigy |1 "|

Descriplion Language

+ High-Leval LanguageTa_HLME
I fgsambly Languag s{TA_ASH)

Estencded Infamnalicn

—

Ciefine Task Exceplion Processing |

| Create I Cancel |

Inomrasbon

Figure1.34 FPU Selection in Configurator (TA_COPland TA_COP2)

(Continued on next page)

RENESAS

Rev. 3.00 Jan. 12, 2005 Page 51 of 362
REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

To create atask by aservice call during system operation, specify TA_COP1 or TA_COP2 asthe
task attribute parameter in the cre_tsk service call.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"
#pragma noregsave(MainTask)
void MainTask(VP_INT stacd)
{

ER ercd;

T_CTSK pk_ctsk;

(processing discription omitted)

pk_ctsk.tskatr = (TA_HLNG | TA_COP1)

/I pk_ctsk.tskatr = (TA_HLNG | TA_COP2)

=~
=

pk_ctsk.exinf =0;
pk_ctsk.task = (FP)task_A;
pk_ctsk.itskpri = 1;
pk_ctsk.stksz = 264;
pk_ctsk.stk = (VP)sp_taskA;

ercd=cre_tsk(TASK_A, &pk_ctsk);
ercd=sta_tsk(TASK_A,(VP_INT)0x00000001);

(processing discription omitted)

pk_ctsk.tskatr = (TA_HLNG | TA_COP1 | TA_COP2) /*Task attribute = high-level language description,

/* Task attribute = high-level language description,

FPU coprocessor bank 0 used */ <« (1)
/* Task attribute = high-level language description,
FPU coprocessor bank 1 used */ «(2)
FPU coprocessor banks 0 and 1 used */ «(3)
/* Extended infomation = 0 */
/* Task initiation address */
/* Priority at task initiation */
/* Task stack size */
/* Start address of task stack area */
/* Create task A */
/* Initiate task A (initiation code = 0x1) */

Figure1.35 FPU Selection for Task Creation by Service Call (Sample Code)

(1) Task attribute specification when the FPU functions are used in bank 0.
(2) Task attribute specification when the FPU functions are used in bank 1.
(3) Task attribute specification when the FPU functions are used in banks 0 and 1.

For details on the task attribute parameter during task creation, refer to the HI7000/4 Series User's

Manual.

When anon-task program (such as an interrupt handler or time event handler) uses FPU functions,
each program must save and restore the FPU registers. For details, refer to the HI7000/4 Series

User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 52 of 362
REJ05B0364-0300

RENESAS

Section 1 Functions of the HI Series OS

15 Interrupts

151 Processing before Handler Initiation after Interrupt Occurrence
This section gives an overview of the processing for an interrupt generated during task execution.
(1) H8Sand H8SX Family Microcomputers

Figure 1.36 gives an overview of the processing before an interrupt handler isinitiated after an
interrupt occurs.

4)
A;Interrupt Interrupt handler

3)
(1) Vector table

% Interrupt handler

(2 Interrupt handle

Interrupt handler

PC Interrupt handler
|

| | I
I Microcomputer processin d d
! P P 9 ! Application !

processing !

ER7(SP)—>

Figure1.36 Overview of Processing before Handler Initiation
after Interrupt Occurrence (1)

1. The microcomputer detects an interrupt generated during task (or interrupt handler) execution.
2. The microcomputer saves the SR and PC register information in the current stack.

3. The microcomputer analyzes the interrupt source and obtains the address of the corresponding
interrupt handler registered in the vector table.

4. Theinterrupt handler registered in the vector table isinitiated.

Rev. 3.00 Jan. 12, 2005 Page 53 of 362
RENESAS REJ05B0364-0300

Section 1

Functions of the HI Series OS

2

SH-1, SH-2, and SH2-DSP Series Microcomputers

Figure 1.37 gives an overview of the processing before an interrupt handler is initiated after an
interrupt occurs.

(4) Interru
H pt entrance H
ig\and exit processing
Interrupt : Interrupt
® ' h 5
andler :
Vector table
(1) :
Interrupt entrance
and exit processing | /' eeerreereeeesssssssssssssee e
Interrupt entrance
(2) and exit processing . :
Interrupt handler — H
Interrupt H
PC Interrupt entrance : handler :
and exit processing i
SR : H
R15(SP)— : ;

«— Microcomputer processin
, P P 9 Kernel

processing

Application
processing

Figure 1.37 Overview of Processing before Handler Initiation
after Interrupt Occurrence (2)

The microcomputer detects an interrupt generated during task (or interrupt handler) execution.
The microcomputer saves the SR and PC register information in the current stack.
The microcomputer analyzes the interrupt source and obtains the address of the corresponding

interrupt handler registered in the vector table.

When the address registered in the vector table points to the interrupt entrance and exit

processing, the interrupt entrance and exit processing provided by the kernel is performed, and
then the interrupt handler isinitiated.

Note: Theinterrupt handler initiated through the interrupt service routine (kernel) isthe usual
interrupt handler.

When the address registered in the vector table points to an interrupt handler, the interrupt

handler is directly initiated without involving kernel management.
Note: The interrupt handler directly initiated without involving the interrupt service routine
(kernel) is called a direct interrupt handler.

Note: Thedirect interrupt handler is only supported by the HI 7000/4.

Rev. 3.00 Jan. 12, 2005 Page 54 of 362

REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Theinterrupt entrance and exit processing is called the interrupt service routine.
(3) SH-3, SH3-DSP, and SH-4 Series Microcomputers

Figure 1.38 gives an overview of the processing before an interrupt handler isinitiated after an
interrupt occurs.

(1)

Interrupt

|::> VBR+H'600 —{ Interrupt entrance | (2) ,/', i
and exit processing) -* :PC

'SR

| Interrupt handler
'

! Interrupt handler
i

*1 Interrupt handler

Interrupt handler

@ |
i ¢ Interrupt
"t \handler
\ Microcomputer E Kernel processing Application
processing ! ' processing

Figure 1.38 Overview of Processing before Handler Initiation
after Interrupt Occurrence (3)

1. The microcomputer detects an interrupt generated during task (or interrupt handler) execution
and modifies the PC value to a specified address (VBR value + H'600).
Note: Inthe HI series OS, the interrupt entrance and exit processing (interrupt service routine)
islocated at this address (VBR value + H'600) in advance.

2. The microcomputer saves the SR and PC register information in the current stack.

3. The microcomputer analyzes the interrupt source and obtains the address of the corresponding
interrupt handler registered in the vector table.

4. Theinterrupt handler isinitiated.

Rev. 3.00 Jan. 12, 2005 Page 55 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

15.2 Kernel Interrupt Mask Level

The kernel has acritical section where execution is performed with interrupts masked to prevent
conflict occurring in kernel internal information.

e Acceptance of an interrupt generated during execution of the critical section in the kernel is
delayed until execution of the critical section finishes.

e Thecritical section is processed at the kernel interrupt mask level.

Interrupt

Interrupt

5 Accepts interrupts. { ‘5 Interrupt

Interrupt

5 I::> Prohibits interrupts.

Critical section

Interrupts generated during task Interrupts generated during critical section
execution are immediately accepted. execution are delayed.

Figure1.39 Overview of Interrupt Mask by Kernel

Note: Interrupts with interrupt levels higher than the kernel interrupt mask level are accepted
immediately even during execution of the critical section.

Rev. 3.00 Jan. 12, 2005 Page 56 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Interrupt

=

Interrupts lower than kernel Interrupt

interrupt mask level are delayed
during critical section execution. X

Interrupts higher than the kernel
interrupt mask level are accepted

even during critical section
execution.

|
o I o -
Interrupts with interrupt levels lower 4 Interrupts with interrupt levels higher
than kernel interrupt mask level than kernel interrupt mask level

Kernel interrupt mask level

Figure1.40 Kerne Interrupt Mask Level and Interrupt Levels
Noteson Interrupt Handlerswith Higher Levelsthan Kernel Interrupt Mask Level:

e Service calls cannot be issued by interrupt handlers with interrupt levels higher than the kernel
interrupt mask level. If called, normal system operation cannot be guaranteed.

e Executethe RTE instruction to return from an interrupt handler with an interrupt level higher
than the kernel interrupt mask level.

153 Notes When Using an H8S or H8SX Family Microcomputer

When using an H8S or H8SX family microcomputer, note that the acceptable interrupts depend on
the combination of the interrupt control mode and the mask level value. The HI series OS can be
used in the four interrupt control modes of the H8S family microcomputers and in the two
interrupt control modes of the H8SX family microcomputers.

The following tables show the relationship between the interrupt mask levelsin each interrupt
control mode and the acceptable interrupts (either O or 1 can be specified for the shaded sectionsin
the tables).

Rev. 3.00 Jan. 12, 2005 Page 57 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Table1.15 Interrupt Mask Levelsin Interrupt Control Mode 0

Interrupt Mask CCR Value EXR Value

Level (imask) I ul 12 I 10 Acceptable Interrupts
! ! Only NMI

0 0 Al

Table1.16 Interrupt Mask Levelsin Interrupt Control Mode 1

Interrupt Mask CCR Value EXR Value

Level (imask) | ul 12 11 10 Acceptable Interrupts
3 1 1 Only NMI

2 1 0 Control level 1

1 0 1 All

0 0 0 All

Table1.17 Interrupt Mask Levelsin Interrupt Control Mode 2

Interrupt Mask CCR Value EXR Value

Level (imask) | ul 12 1 [0] Acceptable Interrupts
7 1 1 1 Only NMI

6 1 1 0 Priority level 7

5 1 0 1 Priority levels 6 to 7

4 1 0 0 Priority levels 5 to 7

3 0 1 1 Priority levels 4 to 7

2 0 1 0 Priority levels 3to 7

1 0 0 1 Priority levels 2 to 7

0 0 0 0 All

Rev. 3.00 Jan. 12, 2005 Page 58 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Table1.18 Interrupt Mask Levelsin Interrupt Control Mode 3

Interrupt Mask CCR Value EXR Value

Level (imask) | Ul 12 1 10 Acceptable Interrupts

8 1 1 1 1 1 Only NMI

7 1 Control level 1

6 0 1 1 0 Priority level 7 at control
levels 0 and 1

5 0 0 1 0 1 Priority levels 6 to 7 at
control levels 0 and 1

4 0 0 1 0 0 Priority levels 5 to 7 at
control levels 0 and 1

3 0 0 0 1 1 Priority levels 4 to 7 at
control levels 0 and 1

2 0 0 0 1 0 Priority levels 3 to 7 at
control levels 0 and 1

1 0 0 0 0 1 Priority levels 2 to 7 at
control levels 0 and 1

0 0 0 0 0 0 All

Note: If level 7 isused asthe kernel interrupt mask level in interrupt control mode 3, service
calls cannot be issued by an interrupt handler of control level 1.

Rev. 3.00 Jan. 12, 2005 Page 59 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

154 Noteson Interrupt Handler Creation
Note the following when creating interrupt handlers.

Table1.19 Noteson Interrupt Handler Creation

Iltem Note

Interrupt handler A long execution time degrades the system throughput.

ﬁxme:utlon (processing) The execution time strongly affects the system response.

Service calls from Interrupt handlers with interrupt levels higher than the kernel interrupt
interrupt handler*' mask level cannot issue service calls.

The NMI interrupt handler cannot issue service calls.

Return from interrupt Issue the ret_int service call** to return from an interrupt handler with an

handler*® interrupt level equal to or lower than the kernel interrupt mask level. Use
the RTE instruction to return from an interrupt handler with an interrupt
level higher than the kernel interrupt mask level.

Notes: 1. If an ext_tsk (exd_tsk) service call is issued, execution is shifted to the system
termination routine.
2. If a method other than the ret_int service call is used, correct system operation cannot
be guaranteed.
3. The HI7000/4 series does not support the ret_int service call; therefore, it is not
necessary in the HI7000/4 series.

Rev. 3.00 Jan. 12, 2005 Page 60 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

155 FAQsabout Interrupts

This section answers questions about interrupts which are frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Modifying INtErTUPE IMASK......c.ciiiiiieeie et e e e nrea 62
(2) MUILIPIE INEEITUDES ...ttt ettt sttt st 63
(3) Processing before Initiating Interrupt HaNAIercooveeeiiecece e 65
(4) Terminating Interrupt HanAIEr ..o 67
(5) Interrupt Handlersthat Are Not Managed by the OS..........ccco e 70
(6) Restrictions on Direct Interrupt Handler USage........ooeeveieenencene e 71
(7) Sample Definition File INfOrmationcccoviiieienieeiescse s 72
(8) Task Switching from Interrupt HaNAIEr ..o 74

Rev. 3.00 Jan. 12, 2005 Page 61 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Modifying Interrupt Mask

Classification: Interrupt

Question

Isthe use of set_imask() to modify the interrupt mask level prohibited?

HI17000/4

HI7700/4

HI7750/4

HI12000/3

HI11000/4

Answer

set_imask() does not process the internal OS information. Accordingly, if aservice call of the OS
isissued after set_imask() is called, correct operation cannot be guaranteed.

The OS recognizes the system state according to the interrupt mask information. The OS not only
distinguishes between the task context and the non-task context but also manages the dispatch-
disabled state and CPU-locked state in the task context, and the CPU-locked state in the non-task
context. Service calls are used for processing of the internal information under the OS control in
addition to interrupt mask processing.

For this reason, we recommend that the service call provided by the OS should be used to modify

the interrupt mask level.

Rev. 3.00 Jan. 12, 2005 Page 62 of 362

REJ05B0364-0300

RENESAS

Section 1 Functions of the HI Series OS

(2) MultiplelInterrupts

Classification: Interrupt

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Does the number of interrupts that occur during system operation affect system performance?

Answer

The number of interrupts used does affect system performance. Specifically, though, the levels of
interrupts, when there are multiple interrupts, rather than the total number of interrupts has the
greatest effect on system performance.

For example, if an interrupt occurs whose level is higher than the target interrupt function
(hereafter called the interrupt handler), the higher-level interrupt handler is processed first and the
target interrupt handler is suspended until the higher-level interrupt handler processing ends. The
order of processing is determined by the interrupt levels rather than the order of occurrence, and in
thisway the interrupt levels affect system operation.

If al interrupt handlers used in the system are set to the same level, the interrupt handler for
emergency use may not be initiated immediately (interrupt acceptance may be delayed) in some
Cases.

Accordingly, the interrupt levels or processing priority of the interrupt handlers used in the system
must be carefully considered.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 63 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

<Interrupt handlers used in the system have various interrupt levels>

High

Interrupt
Interrupt level 4
P handler D_¢

END

Interrupt ‘
Interrupt level 3 handler C_/

Interrupt level 2

END

Interrupt
handler B_¢/

Interrupt

Low Interrupt level 1

handler A

)8

A higher-level interrupt generated during lower-level
interrupt handler execution is accepted.

Multiple interrupts

Dispatch
processing

<All interrupt handlers used in the system have the same interrupt level>

Interrupt

handler D
Interrupt

handler C
Interrupt
handler B
Interrupt
handler A

Same Interrupt level

Other interrupts are

_) delayed during interrupt

handler B execution.

Figure1.41 MultipleInterrupts

Rev. 3.00 Jan. 12, 2005 Page 64 of 362

REJ05B0364-0300 RENESAS

Section 1

Functions of the HI Series OS

(3) Processing before I nitiating Interrupt Handler

Classification: Interrupt

Question

HI7700/4

HI7750/4

It takes an extremely long time before an interrupt handler isinitiated after an interrupt occurs.

Please explain the processing before interrupt handler execution after an interrupt occurrence.

Answer

Figure 1.42 gives an overview of the processing before the interrupt handler isinitiated after an

interrupt occurs.

Interrupt

Interrupt entrance

Interrupt masked
(blocked state)

) 4

and exit processin

Saves register information

Analyzes interrupt source

Prepares for interrupt
handler initiation

Initiates interrupt handler

Interrupt
handler

Figure1.42 Overview of Processing before Interrupt Handler Initiation after Interrupt

Occurrence
(Continued on next page)
Rev. 3.00 Jan. 12, 2005 Page 65 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

If it takes an extremely long time before an interrupt handler isinitiated after an interrupt occurs,
the following possible causes should be checked.

e A higher-level interrupt occurs when the interrupt handler isinitiated.
¢ A higher-level interrupt occursimmediately before the interrupt handler isinitiated.

e When the interrupt handler isinitiated, interrupts for the current processing are masked with a
higher-level than the interrupt level of the interrupt handler.

Rev. 3.00 Jan. 12, 2005 Page 66 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(4) Terminating Interrupt Handler

Classification: Interrupt

Question HI2000/3 | HI1000/4

Should any interrupt handler whose level is not higher than the kernel interrupt mask level be
terminated by ret_int even when it issues no service call?

Answer

After interrupt handler processing, the ret_int service call should be used for the following
purposes.

e Torecognize theinterrupt nesting
e To recognize the task switching

By using ret_int for the above purposes, correct return processing will be done.

If the RTE instruction is used, execution returns to the interrupt generating function, and task
switching due to a service call by the interrupt handler or the timeout task due to the timer handler
cannot be recognized. Thiswill result in a contradiction in the system status. To avoid such a
contradiction, the HI series OS providestheret_int service call.

When the system uses the timeout function, interrupt handlers whose interrupt levels are lower
than the timer driver interrupt level must be terminated by ret_int regardless of whether they issue
service calls to recognize the timeout task due to the timer handler and avoid any contradiction in
the system status.

When the system does not use the timeout function, the termination of interrupt handlers depends
on whether the handlersissue service calls.

When the system does not use the timeout function and if al interrupt handlers in the system do
not issue service calls affecting task switching, they can be terminated by the RTE instruction
regardless of the interrupt nesting levels.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 67 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

When the system does not use the timeout function, and if some interrupt handlers issue service
calls affecting task switching but interrupts are never nested, the interrupt handlers must be
terminated in the following ways.

Theinterrupt handlers that issue service calls affecting task switching must be terminated by
ret_int.

Theinterrupt handlers that do not issue service calls affecting task switching must be
terminated by the RTE instruction.

If interrupts are nested, the interrupt handlers must be terminated in the following ways.

The interrupt handlers whose interrupt levels are not higher than any interrupt handlers that
issue service calls affecting task switching must be terminated by ret_int regardless of whether
they issue service calls affecting task switching (because whether task switching is required
must be recognized).

Theinterrupt handlers that do not issue service calls affecting task switching and whose
interrupt levels are higher than any interrupt handlers that issue service calls affecting task
switching must be terminated by the RTE instruction.

Figure 1.43 shows a sample code of an interrupt handler.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

extern VP int_stk001; <
(2
static const VP p_stk = (VP) & int_stk001; <@
«— (4)

#pragma interrupt (Inhhdr (sp = p_stk, sy = $ret_int))
void Inhhdr (void){

/* Interrupt handler processing */

}
Figure1.43 Sample Code of Interrupt Handler

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 68 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

(1) Specify the allocated interrupt stack.

(2) Definetheinitia value of the stack pointer as a const type value.

(3) Declare the interrupt handler as an interrupt function by #pragma interrupt.
— Specify stack switching (sp=p_stk)
— Specify interrupt function end (sy=%ret_int)

(4) Describe the interrupt handler as avoid type function.

Rev. 3.00 Jan. 12, 2005 Page 69 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(5) Interrupt Handlersthat Are Not Managed by the OS

Classification: Interrupt

Question HI17000/4 HI7700/4 HI7750/4

To process a specific interrupt handler prior to any other processing, an interrupt should be made
without involving OS management. How can this be done?

Answer

Interrupt handlers higher than the kernel interrupt mask level are processed outside of the kernel
management and are suitable when a specific interrupt handler should be processed without
involving OS management. Note, however, that such interrupt handlers cannot issue any service
call.

In another way, the HI7000/4 provides the direct interrupt handler function, which initiates
interrupt handlers without involving kernel operation. The direct interrupt handlers are also
processed outside of the kernel management and cannot issue any service call, but thisfunction is
suitable for top-priority processing of a specific interrupt handler without involving OS
management.

Rev. 3.00 Jan. 12, 2005 Page 70 of 362
REJ05B0364-0300 RENESAS

Section 1

Functions of the HI Series OS

(6)

Restrictionson Direct Interrupt Handler Usage

Classification: Interrupt

Question HI7000/4

Are there any restrictions on direct interrupt handler usage?

Answer

Note the following restrictions when using direct interrupt handlers.

No service call can beissued from direct interrupt handlers.

Direct interrupt handlers must be defined through the configurator.

(Dynamic creation is not available for direct interrupt handlers.)
The stack must be switched to that for interrupt handlers.

TRAPA #25 must be used to return from a direct interrupt handler.

For details, also refer to the user's manual of the OS used.

Rev. 3.00 Jan. 12, 2005 Page 71 of 362

RENESAS

REJ05B0364-0300

Section 1 Functions of the HI Series OS

(7) Sample Déefinition File Information

Classification: Interrupt

Question HI2000/3 | HI1000/4

Our system has the following configuration:

[Interrupt mode: 2]

NMI: Not used

Interrupt level 7: Not used

Interrupt level 6: Kernel and cyclic handler (TPUQ)
Interrupt level 5: Timer interrupts (TPUL, 2, 3, 4, and 5)
Interrupt level 4: External interrupts (IRQO, 10, and 15)
Interrupt level 3: External interrupts (IRQ1 and 11)
Interrupt level 2: External interrupts (IRQ4 and 5)
Interrupt level 1: DMAC (DMTENDOA)

Interrupt level 0: Not used

If interrupts can be nested at the maximum level, please answer the following questions.

1. What level isthe nesting of interrupts which are equal to or lower than the kernel interrupt
mask level?

2. What level isthe nesting of interrupts which are higher than the kernel interrupt mask level
(including NM1)?

3. What level isthe nesting of interrupts which are equal to or lower than the kernel interrupt
mask level and higher than the timer interrupt level?

4. What level isthe nesting of interrupts which are equal to or lower than the kernel interrupt
mask level and higher than the TPUO interrupt level?

5. What leve isthe nesting of interrupts which are equal to or lower than the kernel interrupt
mask level and higher than the IRQO interrupt level?

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 72 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

Al

Interrupts equal to or lower than the kernel interrupt mask level will be nested when alevel-1
interrupt occurs during task execution or when alevel-2 interrupt handler is executed during level-
1 interrupt handler processing. Asthe kernel interrupt mask level is 6, interrupts equal to or lower
than level 6 will be nested unconditionally. Therefore, the nesting level for interrupts equal to or
lower than the kernel interrupt mask level is 6.

A2
Asno interrupt is defined as higher than the kernel interrupt mask level, the nesting level for
interrupts higher than the kernel interrupt mask level (including NMI) isO.

A3

The cyclic handler (TPUOQ) satisfies the condition for interrupts equal to or lower than the kernel
interrupt mask level (level 6 in this case) and higher than the timer interrupt level (level 5in this
case). Therefore, the nesting level is 1.

A4

Thereis no interrupt handler defined as being equal to or lower than the kernel interrupt mask
level (level 6 in this case) and higher than the TPUO interrupt level (level 6 in this case).
Therefore, the nesting level isO.

A5:

Thetimer interrupts (TPU1, 2, 3, 4, and 5) and cyclic handler (TPUO) satisfy the condition for
interrupts equal to or lower than the kernel interrupt mask level (level 6 in this case) and higher
than the IRQO interrupt level (level 4 in this case). Therefore, the nesting level is 2.

Rev. 3.00 Jan. 12, 2005 Page 73 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(8) Task Switching from Interrupt Handler

Classification: Interrupt

Question HI2000/3 | HI1000/4

After irot_rdg(0) is executed in an interrupt handler, task switching does not immediately occur.
Why isthis?

Answer

Task switching occurs when the dispatcher isinitiated after the interrupt handler processing is
completed. However, the dispatcher may not be initiated for the following reasons. Check the
description of the interrupt handler that issuesirot_rdq(0) and the system status when an interrupt
OCCurs.

1. Descriptionsin the interrupt handler

For the HI2000/3, the interrupt handler is written by using an assembly directive of the cross
compiler asfollows.

#pragma interrupt (parameter1 (sp = parameter2, sy = parameter3))

1. parameter1: Start address of the interrupt handler
2. parameter2: Bottom address of the stack area for the interrupt handler
3. parameter3: Interrupt handler termination processing

Figure 1.44 Example of #pragmainterrupt Usage

parameter3 should be specified as follows according to the combination of the interrupt level
of the interrupt handler and the kernel interrupt mask level.

(1) No service cdl can be issued by an interrupt handler whose interrupt level is higher than
the kernel interrupt mask level. Because such an interrupt handler must be terminated by
the RTE instruction, parameter3 should not be specified (written).

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 74 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

(2) Aninterrupt handler whose interrupt level isequal to or lower than the kernel interrupt
mask level must issuethe ret_int service call during interrupt handler termination
processing. Therefore, parameter3 should be specified as sy = $ret_int.

If termination processing is not specified for an interrupt handler equal to or lower than the kernel
interrupt mask level, task scheduling will not occur after interrupt handling.

2. System state when the interrupt handler processing ends

Task scheduling may not occur depending on the system state when the interrupt cause is

generated as follows.

(2) If the system isin the dispatch-disabled state when the interrupt cause is generated, which
means that task switching is disabled, the task being executed when the interrupt occurs
continues processing after the interrupt handler processing ends.

(2) Eveniif the system isin the task RUNNING state, if the interrupt mask level issetto a
value other than 0 by the chg_ims service call issued by the task being executed at that
time, the task being executed when the interrupt occurs continues processing after the
interrupt handler processing ends.

Rev. 3.00 Jan. 12, 2005 Page 75 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

16 Event Flags

16.1 Specification of Event Flag Clearing

The specification of event flag clearing (TA_CLR attribute setting) differs among the HI series OS
specifications as follows.

Table1.20 Differencesin Specification of Event Flag Clearing

HI Series OS Specification of Event Flag Clearing

HI2000/3 Specified for each task as a parameter (the fourth parameter) when a
service call is issued

HI7000/4 and HI1000/4 Specified for each event flag when an event flag is created

Figure 1.45 gives an overview of the event flag processing when event flag clearing is not
specified.

(1)
Event flag Task A Task B Task C
<bit pattern> [—|<wait pattern> | <wait pattern> | <wait pattern>
00000000 00000010 00000100 00000101
<wait mode> <wait mode> <wait mode>
OR wait OR wait OR wait
()
Task X > Event flag Task A Task B Task C
<set pattern>| <bit pattern> | <wait pattern>— <wait pattern> | <wait pattern>
00000100 00000100 00000010 00000100 00000101
or interrupt handler <wait moge> <wait moge> <wait moge>
OR wait OR wait OR wait
(©)
Event flag Task A
<bit pattern> |—{<wait pattern>
00000100 00000010
<wait mode>
OR wait

Figure1.45 Overview of Event Flag Processing without Clearing

Rev. 3.00 Jan. 12, 2005 Page 76 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1. TasksA, B, and C wait for an event flag.
2. Task X (or an interrupt handler) reports an event (sets a bit pattern) for the event flag.
3. Theevent flag clears the WAITING state of the tasks whose condition is satisfied (tasks B and

Q).

D

Figure 1.46 gives an overview of the event flag processing in the HI2000/3 when event flag

clearing is specified.

Specification of TA_CLR Attributein H12000/3

(1)
Event flag Task A Task B Task C
<bit pattern> [—|<wait pattern> —{<wait pattern> f—{<wait pattern>
00000000 00000010 00000100 00000101
<wait mode> <wait mode> <wait mode>
OR wait OR wait OR wait
<clear setting>| |<clear setting>| |<clear setting>
Specified Specified Not specified
()
Task X > Event flag Task A Task B Task C
<set pattern>| <bit pattern> |—|<wait pattern> |—|<wait pattern> |{<wait pattern>
00000100 00000100 00000010 00000100 00000101
- <wait mode> <wait mode> <wait mode>
or interrupt handler OR wait OR wait OR wait
<clear setting>| [<clear setting>| |<clear setting>,
Specified Specified Not specified
)
Event flag Task A Task C
<bit pattern> |—|<wait pattern> —{<wait pattern>
00000000 00000010 00000101
<wait mode> <wait mode>
OR wait OR wait
<clear setting>| |<clear setting>
Specified Not specified

Figure1.46 Overview of Processing with Clearing (H12000/3)

1. TasksA, B, and C wait for an event flag.

2. Task X (or an interrupt handler) reports an event (sets a bit pattern) for the event flag.

3. Theevent flag clears the WAITING state of the task whose condition is satisfied (task B) and
immediately clears the bit pattern of the event flag.

Rev. 3.00 Jan. 12, 2005 Page 77 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

When the TA_CLR attribute is specified, all bitsin the bit pattern for the event flag are cleared
when one waiting task is released from the WAITING state, and no more tasks are released from
the WAITING state. The bit pattern before clearing is returned as the event flag bit pattern
information at WAITING state clearing.

2

Figure 1.47 gives an overview of the event flag processing in the HI7000/4 series and HI1000/4

Specification of TA_CLR Attributein H17000/4 Series and HI1000/4

when event flag clearing is specified.

1
Event flag Task A Task B Task C
<bit pattern> |—|<wait pattern>|— <wait pattern>{—<wait pattern>
00000000 00000010 00000100 00000101
<clear setting> <wait mode> <wait mode> <wait mode>
Specified OR wait OR wait OR wait
@
Task X > Event flag Task A Task B Task C
<set pattern>| <bit pattern> |—{<wait pattern>|— <wait pattern> —<wait pattern>
00000100 00000100 00000010 00000100 00000101
- <clear setting> <wait mode> <wait mode> <wait mode>
or interrupt handler Specified OR wait OR wait OR wait
(©)
Event flag Task A Task C
<bit pattern> |—{<wait pattern>|— <wait pattern>
00000000 00000010 00000101
<clear setting> <wait mode> <wait mode>
Specified OR wait OR wait

Figure1.47 Overview of Processing with Clearing (H17000/4 Seriesand H11000/4)

Tasks A, B, and C wait for an event flag.
Task X (or an interrupt handler) reports an event (sets a bit pattern) for the event flag.

The event flag clears the WAITING state of the task whose condition is satisfied (task B) and
immediately clears the bit pattern of the event flag.

The HI7000/4 series and H11000/4 differ from the HI2000/3 in that event flag clearing is specified
for the event flag itself.

Rev. 3.00 Jan. 12, 2005 Page 78 of 362

REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

16.2 FAQ about Event Flags

This section answers a question about event flags which is frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Clearing EVENt FIagS.......cuciiiieie ettt st st e e e te e saesbesnennean 80

Rev. 3.00 Jan. 12, 2005 Page 79 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Clearing Event Flags

Classification: Event flag

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Isthere any way to clear an event flag after multiple tasks waiting for the same flag pattern are
made ready?

Answer

A flag pattern can be cleared after multiple tasks waiting for the same flag pattern are released
from the WAITING state. The following describes how to clear the flag in two cases: when setting
the flag through atask and when setting it through an interrupt handler.

1. Setting the Flag through a Task
Specify a higher priority level to the task that sets the event flag pattern than the tasks waiting
for the event flag. After the service call processing is completed, execution returns to the task
that sets the flag pattern. Perform the flag pattern clearing processing after the setting
processing. Figure 1.48 shows a sample code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(EventFlag_Set_Task)

void EventFlag_Set_Task(VP_INT exinf)
{

ER ercd;
(processing description omitted)

ercd = set_flg((ID)flgid, (FLGPTN)setptn); /* Sets event flag */
if(ercd 1= E_OK){
/* Error processing */
else{
ercd = cIr_flg((ID)flgid, (FLGPTN)clrptn); ~ /* Clears event flag pattern */
if(ercd 1= E_OK){
/* Error processing */
}
}

(processing description omitted)

Figure1.48 Sample Codewhen a Task Setsthe Event Flag

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 80 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

(Continued from previous page)

Answer

2. Setting the Flag through an Interrupt Handler

Astheinterrupt handler processing takes priority over the task and dispatcher processing, an
event flag can be cleared after multiple tasks waiting for the flag pattern are released from the
WAITING state by successively setting and clearing the event flag. Figure 1.49 shows a

sample code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void EventFlag_Set_Interrupt(void)
{

ER ercd;
(processing description omitted)

ercd = iset_flg((ID)flgid, (FLGPTN)setptn);
if(ercd |= E_OK){
/* Error processing */
else{
ercd = iclr_flg((ID)flgid, (FLGPTN)clrptn);
if(ercd != E_OK){
/* Error processing */
}
}
(processing description omitted)

}

/* Sets event flag */

/* Clears event flag pattern */

Figure1.49 Sample Codewhen an Interrupt Handler Setsthe Event Flag

RENESAS

Rev. 3.00 Jan. 12, 2005 Page 81 of 362
REJ05B0364-0300

Section 1 Functions of the HI Series OS

17 Semaphore

171 Task Deadlock by Using Semaphore

A semaphore is used to manage resources that require exclusive control (such resourcesinclude
software resources such as shared memory or non-reentrant functions in addition to hardware
resources).

Figure 1.50 shows an example of semaphore usage.

(1) @) 3
Wai_sem—| Processing using resource I— sig_sem
[]
| |
: Semaphore :
I E R — (o] |
L 1

Time

@ : Indicates a resource.

Figure1.50 Semaphore Usage Example

1. A task obtains the semaphore.
2. Processing is performed by using the obtained resource.
3. Thetask releases the resource after completing the processing.

To use aresource that requires exclusive control, first obtain the semaphore, and then perform
processing by using the resource. After completing the processing, rel ease the semaphore.

The kernel does not provide a function to automatically release the obtained resource when the
task completes processing; the task must always rel ease the obtained semaphore when compl eting
its processing.

Figure 1.51 shows an example of deadlock (tasks cannot operate).

Rev. 3.00 Jan. 12, 2005 Page 82 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Task
priority (1)

wai_sem()—] ft-------f--
Low

) (4)

i —wai_sem(2)— wai_sem(1)--------------
AO® :

: 5)

****** E*””—wai_sem(z)”f

et !

1 ' |

1 ' :

S I —

: |

. |

. |

ffffffffff I i I

|

Time

Figure1.51 Deadlock Example (Tasks Cannot Oper ate)

Task 1 obtains semaphore 1.

Task 2 obtains semaphore 2.

A w DN PR

An interrupt occurs, and the interrupt handler processing switches tasks (from task 1 to task 2).

Task 2 requests semaphore 1 but cannot obtain it because the resource (semaphore) has been

obtained by task 1. Task 2 entersthe WAITING state for release of the resource and tasks are

switched (from task 2 to task 1).

5. Task 1 requests semaphore 2 but cannot obtain it because the resource (semaphore) has been
obtained by task 2. Task 1 entersthe WAITING state for release of the resource.

Asaresult, tasks 1 and 2 both wait for a semaphore which has been obtained by the other, and
they will never be released from the WAITING state. This state is called deadlock.

Such deadlock cases cannot be avoided within the OS, and must be examined and solved during
the design steps of the application (user system).

RENESAS

Rev. 3.00 Jan. 12, 2005 Page 83 of 362
REJ05B0364-0300

Section 1 Functions of the HI Series OS

1.8 M utex

181 Priority Inversion

Figure 1.52 gives an overview of priority inversion.

.) -
High | Tk 1)------o--- L wai_sem(1)- ff---eoneeoe oo o
A
! G
Task . I | A Vo R
priority E Wal_ﬂg(”i
(1) i L6
Low wai,sem(1)— ------ -~ - ?—sig,semﬂ)-- -

@ |® ; (4) ;
s e |
| ‘ ‘

:Semaphore1 | E o :

B R R I B [B e [|
E E Time
: :

Priority inversion

Figure1.52 Overview of Priority Inversion

1. Task 3 obtains semaphore 1 and continues processing.

2. Aninterrupt occurs and the interrupt handler processing switches tasks (from task 3 to task 1).

3. Task 1 requests semaphore 1 but cannot obtain it because the resource (semaphore) has been
obtained by task 3. Task 1 entersthe WAITING state for release of the resource, and tasks are
switched (from task 1 to task 3).

4. Aninterrupt occurs and the interrupt handler processing switches tasks (from task 3 to task 2).

Task 2 issues an event wait request and tasks are switched (from task 2 to task 3).

6. Task 3 completes the processing that uses the resource, and rel eases semaphore 1. At thistime,
task 1, which has been waiting for release of the resource, obtains semaphore 1 and resumes
processing.

o

Rev. 3.00 Jan. 12, 2005 Page 84 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Higher-priority task 1 should be executed instead of task 2, but it cannot be executed because the
resource (semaphore) needed for task 1 processing has been obtained by lower-priority task 3.
Such a problem where a higher-priority task is kept pending because of the lower-priority task
processing is called priority inversion.

182 Overview of Mutex Processing

Figure 1.53 gives an overview of mutex processing.

D

b I
priority

(1))

Low @ loc_mtx(1) @

o
=+ | H——1
| |
| |
: Mutex 1 \ A J :
I S [- 1 |

Time

Figure 1.53 Overview of Mutex Processing

1. Task 3 obtains mutex 1 and continues processing. (At thistime, the priority of task 3 israised
from 3 to 1 (ceiling priority).)

2. Aninterrupt occurs and the interrupt handler processing wakes up task 1. However, task
switching does not occur because task 3 has the highest priority (task 3 isheld at priority 1 and
continues processing).

3. Aninterrupt occurs and the interrupt handler processing wakes up task 2. However, task
switching does not occur because task 3 has the highest priority (task 3 isheld at priority 1 and
continues processing).

Rev. 3.00 Jan. 12, 2005 Page 85 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

4. Task 3 completes the processing that uses the resource, and releases mutex 1. (At thistime, the
priority of task 3 isrestored from 1 to 3, and control is switched to task 1.)

5. Task 1 obtains mutex 1 and continues processing. (At thistime, the priority of task 1 israised
from 1to 1 (ceiling priority).)

The task that obtains a mutex (locks a mutex) is executed by being automatically raised to the
ceiling priority specified for the mutex, and can continue processing without entering the
WAITING state even when task 1 or 2 becomes ready.

When task 3 releases the mutex (unlocks the mutex), it is modified back to the previous priority
and tasks 1 and 2 are executed in that order.

Rev. 3.00 Jan. 12, 2005 Page 86 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1.9 M ailbox

191 Overview of Mailbox Processing
Table 1.21 summarizes the advantages and disadvantages of using mailboxes.

Table1.21 Advantagesand Disadvantages of Using M ailboxes

Advantages Disadvantages
e Small overhead because only the message storing Shared memory (or a shared address
address is transferred. space) must be prepared.

o No limitation on the message amount because the
messages are managed by using a link list.

e Alarge amount of message can be sent.

Figure 1.54 gives an overview of mailbox processing.

Shared memory area

4

Message

(Data)
| (1) N @)
| rcv_mbx
(2) snd_mbx
N o

?

Mailbox

Figure1.54 Overview of Mailbox Processing

Allocate a memory area where a message isto be stored, and write a message in that area.
Issue asnd_mbx service call to send the message address to the mailbox.

Issue arcv_mbx service call to receive the message address from the mailbox.

Read the information in the areaindicated by the received message address.

> w DN

Rev. 3.00 Jan. 12, 2005 Page 87 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

19.2 Overview of Sending a M essage Using M ailbox

Figure 1.55 gives an overview of sending a message using a mailbox.

Mailbox

.
snd_mbx

?

=7

A 4

S

snd_mbx T

Continues task processing.

Figure1.55 Overview of Sending a M essage Using Mailbox

At the head of each message, a kernel management area must be allocated to manage the link list.
Thisareais called a message header.

As the managing method, the FIFO (first-in first-out) method or message priority method can be
selected. Accordingly, the message header format to be sent differs depending on the mailbox
message managing method.

Figure 1.56 shows the message header formats for these two methods.

Rev. 3.00 Jan. 12, 2005 Page 88 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Message header for FIFO method

#include "itron.h"
#include "kernel.h"

#define MBX (ID) 0x0001

typedef struct {
T_MSG t_msg; «— (1)
B msgcont[20]; <« (2)
} USER_MSG;

USER_MSG msg_A;

Kernel
management area

msg_A—> }

User message
area

Message header for message priority method

#include "itron.h"
#include "kernel.h"

#define MBX (ID) 0x0001

typedef struct {
T_MSG_PRI t_msg; <« (3)
B msgcont[20]; <« (4)
} USER_MSG;

USER_MSG msg_A;

msg_A >
Kernel
management area
«(3)
Message priority
management area
User message @)

area

Figure1.56 Message Header Formats

Asthe HI series OS cannot distinguish between these message header formats, note the
combinations of the mailbox attribute and message header shown below.

Table1.22 Combinationsof Mailbox Attribute and M essage Header

Message Managing

Method

Message Header

FIFO

Message Priority

FIFO

Handled correctly.

No effect on processing but memory
space is wasted.

Message priority

First 4 bytes of the user message Handled correctly.

area is handled as the priority area.*

Note: *

Some messages may not be sent (an error may occur) because of the information in
the first 4 bytes of the user message area in some cases.

In addition, the following notes must be observed when sending message data.

Notes when sending message data

(1) Do not modify the kernel management area after sending the message data.
(2) When sending message data for the first time, send it with the kernel management area cleared
to 0. Figure 1.57 shows a sample code for sending message.

Rev. 3.00 Jan. 12, 2005 Page 89 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

#include "itron.h"

#include "kernel.h"
#include "kernel_id.h"
#pragma noregsave (Task)

typedef struct user_msg{

T_MSG t_msg; <« (1)
B data[10];
} USER_MSG;
/I typedef struct user_primsg{
// T_MSG_PRI t_pri_msg; <« (2)
/I B data[10];

/I '} USER_PRIMSG;

void Task(VP_INT exinf)
{

ER ercd;
USER_MSG *message;

(description omitted)
ercd = get_mpf((ID)mpfid, (VP)message); <« (3)
if(ercd 1= E_OK){

/* Error processing */

}

/* User message storing processing */

message->t_msg.msghead = 0; «— (4)
/I message->t_pri_msg.msghead = 0; «(5)
ercd = snd_mbx((ID)mbxid, (T_MSG *)message); <« (6)

if(ercd 1= E_OK){
/* Error processing */

}
(description omitted)

ext_tsk();
}

Figure 1.57 Sample Codefor Sending M essage

Declares a user message (message header for FIFO management).

Declares a user message (message header for message priority management).

Allocates amemory areafor the message.

Clears the kernel management area in the message to O (for FIFO management).

Clears the kernel management areain the message to O (for message priority management).
Sends the message.

o 0k~ wbdhPE

Rev. 3.00 Jan. 12, 2005 Page 90 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

193 Overview of Receiving a M essage Using M ailbox

The following gives an overview of receiving a message using a mailbox.

? < rcv_mbx
]
o]
]

~_r

= rcv_mbx

T @ |
/Continue:taSK processingl

Figure 1.58 Overview of Receiving M essage for Mailbox with M essages

Rev. 3.00 Jan. 12, 2005 Page 91 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

rcv_mbx

al

-------------------- rcv_mbx

al

' Suspends processing E
i andenters WAITING
\ state foramessage. !

.......................

Figure 1.59 Overview of Receiving M essage for Mailbox with No M essages

Rev. 3.00 Jan. 12, 2005 Page 92 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

194 FAQ about Mailbox

This section answers a question about mailbox which is frequently asked by users of the HI series
os.

FAQ Contents:

(1) Sequential Transfer to MailboX.......ccccveieieieiise e e 94

Rev. 3.00 Jan. 12, 2005 Page 93 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Sequential Transfer to Mailbox

Classification: Mailbox

Question

HI17000/4

HI7700/4 HI7750/4 HI12000/3

HI11000/4

Isit possible to send the same message sequentially to a mailbox?

Answer

The same message must not be sequentially sent to a mailbox. If attempted while the sent message
has not yet been received, the message management information(link list) of the mailbox will be

damaged.

The same message can be sent again only after confirming that the previously sent message has
been received by the target task. Figure 1.60 shows this procedure.

Sending
task

€CEIVINGY rrevrrereees
task

Creates a message to sendl =
| 9 T

snd_mbx

rcv_mbx

|

—————— rcv_mbx

/ Mailbox 1

Processing using received message

?

can be sent
sequentially.

Same message

<——— snd_mbx

Mailbox 2

Figure 1.60 Example of Checkingthat M essage is Received

Rev. 3.00 Jan. 12,2005 Pag
REJ05B0364-0300

e 94 of 362

RENESAS

Section 1 Functions of the HI Series OS

1.10 Message Buffer

1.10.1 Overview of Message Buffer Processing
Table 1.23 summarizes the advantages and disadvantages of using message buffers.

Table1.23 Advantages and Disadvantages of Using M essage Buffers

Advantages Disadvantages

No shared memory (nor shared address space) Large overhead because a message itself is sent.
is required

Figure 1.61 gives an overview of message buffer processing.

Message buffer

snd_mbf ———>> ——— > rcv_mbf

Figure1.61 Overview of Message Buffer Processing

Allocate a memory areawhere amessage is to be stored, and write a message in that area.
Issue asnd_mbf service call to send the message to the message buffer.

Issue arcv_mbf service call to receive the message from the message buffer.

Read the received information.

A w DN PR

Rev. 3.00 Jan. 12, 2005 Page 95 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

In the HI series OS, amessage buffer with buffer size = 0 can be created. Note the following in
this case.

e No message can be stored in a message buffer with buffer size = 0, and the receiving task
completely synchronizes with the sending task.

e A messageis copied from the sending task to the receiving task at one time, which can reduce
the copying steps through the message buffer.

1.10.2 Overview of Sending a M essage Using M essage Buffer

The message buffer processing differs depending on the sufficiency of free space in the message
buffer asfollows.

Table1.24 Message Sending Processing Depending on Free Spacein M essage Buffer

Free Space Found in Message Buffer Insufficient Free Space in Message Buffer

A sent message is stored in the message buffer The sending task is placed in the WAITING state

and the sending task continues processing. for message sending until sufficient space to
store the sent message is created in the
message buffer.

Rev. 3.00 Jan. 12, 2005 Page 96 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Figure 1.62 gives an overview of sending a message when the message buffer has sufficient free

space.

® snd_mbf

v

Message buffer

Free space

snd_mbf

| Continues task processing. |

Message buffer

|

Free space

Figure1.62 Overview of Sending a Message for M essage Buffer with Enough Free Space

RENESAS

Rev. 3.00 Jan. 12, 2005 Page 97 of 362

REJ05B0364-0300

Section 1 Functions of the HI Series OS

Figure 1.63 gives an overview of sending a message when the message buffer does not have
sufficient free space.

Message buffer

® snd_mbf

A4

K[| 1<

When the message buffer
does not have sufficient
free space.

Free space

~r

Message buffer

When the message buffer
does not have sufficient
free space.

i Enters WAITING state for
| free space in the buffer

(waiting for message
sending).

K| 1<

Free space

Figure1.63 Overview of Sending a M essage for M essage Buffer with Insufficient Free

Space

Rev. 3.00 Jan. 12, 2005 Page 98 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1.10.3 Overview of Receiving a M essage Using M essage Buffer

The following gives an overview of receiving a message using a message buffer.

Message buffer

A

KKK K

Free space

rcv_mbf

~ >

Message buffer

b

KKK

Free space

_—

rcv_mbf

I Continues processing I

Figure1.64 Overview of Receiving M essage for M essage Buffer with M essages

Rev. 3.00 Jan. 12, 2005 Page 99 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Message buffer ’

<——— rcv_mbf

Free space

Message buffer ’

i Enters WAITING state for
E a message

' (waiting for message

! receiving).

Free space

Figure1.65 Overview of Receiving M essage for M essage Buffer with No M essages

Rev. 3.00 Jan. 12, 2005 Page 100 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

111 DataQueue

1111 Overview of Data Queue Processing
Table 1.25 summarizes the advantages and disadvantages of using data queues.

Table1.25 Advantagesand Disadvantages of Using Data Queues

Advantages Disadvantages
e No shared memory (nor shared address A large amount of message cannot be sent
space) is required because the message size is fixed.

o A message itself is copied, but its size is
fixed at 4 bytes (the overhead is small).

Figure 1.66 gives an overview of data queue processing.

| (1) | Data queue

snd_dtq —> ——> rcv_diq

Figure1.66 Overview of Data Queue Processing

Allocate a memory areawhere amessage is to be stored, and write a message in that area.
Issue asnd_dtq service call to send the message to the data queue.

Issue arcv_dtq service call to receive the message from the data queue.

Read the received information.

A w DN PR

Rev. 3.00 Jan. 12,2005 Page 101 of 362

RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

1.11.2 Overview of Sending a M essage Using Data Queue

The data queue processing differs depending on the sufficiency of free space in the data queue as
follows.

Table1.26 Message Sending Processing Depending on Free Spacein Data Queue

Free Space Found in Data Queue Insufficient Free Space in Data Queue

A sent message is stored in the data queue and The sending task is placed in the WAITING state

the sending task continues processing. for message sending until sufficient space to
store the sent message is created in the data
queue.

Figure 1.67 gives an overview of sending message when the data queue has free space.

Data queue

Free space

=
® snd_dtq ———— IZ'

| Write I——}
Free space

~r

Data queue

Free space

snd_dtq
1

I Continues task processing I E

Figure1.67 Overview of Sending a M essage for Data Queue with Enough Free Space

Rev. 3.00 Jan. 12, 2005 Page 102 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Figure 1.68 gives an overview of sending message when the data queue does not have sufficient
free space.

Data queue
® snd_dta Writ -}Ef Read
rite ea
I g

=1 |
TA

A4

Data queue

Enters WAITING state for |
free space in the queue |
(waiting for message

sending).

Figure 1.68 Overview of Sending a Message for Data Queue with I nsufficient Free Space
The data queue has the forcible send function.

The forcible send function overwrites the oldest data in the data queue with the sent data when the
data queue area does not have sufficient free space to store the sent message data. Note that the
overwritten data is managed as the latest data, and thusisread last.

Rev. 3.00 Jan. 12,2005 Page 103 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Figure 1.69 gives an overview of the forcible send processing.

Data queue

_ oA
® fsnd_dtq }E* —
M
™A

Data queue
’
|

fsnd_dtq

1
I Continues task processing I E
| Write |— E{- Read

'

Figure1.69 Overview of Forcible Send Processing by Data Queue

Rev. 3.00 Jan. 12, 2005 Page 104 of 362

REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1.11.3 Overview of Receiving a M essage Using Data Queue

The following gives an overview of receiving a message using a data queue.

Data queue

rcv_dtq

‘
|
]

->Free space

Free space

A

Data queue
Free space ®
A .

Free space rev_dtq
>
L Read |
E |Continues processing |
o 1,
Free space
Free space

Figure1.70 Overview of Receiving M essage for Data Queue with M essages

Rev. 3.00 Jan. 12,2005 Page 105 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Data queue

Free space

Free space
I S o

Free space

Free space

Free space

<——— rev_diq

Data queue

Free space

Free space
ot =

Free space

Free space

Free space

Enters WAITING state for
a message
(waiting for message
receiving).

Figure1.71 Overview of Receiving M essage for Data Queue with No M essages

Rev. 3.00 Jan. 12, 2005 Page 106 of 362
REJ05B0364-0300

RENESAS

Section 1

Functions of the HI Series OS

112

1121

Memory Pool

Fragmentation

Fragmentation means that the used areain memory is divided into small non-contiguous pieces.
Figure 1.72 gives an overview of fragmentation.

D

Task
priority

Low élz_mpl(200) M

)
— get_mpl(100) =———---------------

4
rel_mpl(200) —

© |

(6)
— get_m.pI(SOO)

~

! @) ‘ !

| Variable-length memory pool ! |

| |

| <Used area> <Used area> <Used area> <Free area> <Free area> |

| 0 byte 200 bytes 200 bytes 200 bytes 200 bytes |

| <Total free v |

| area> <Used area> <Used area> <Used area> |

| 600bytes |77 il | I | el 100 bytes 100 bytes 100 bytes |

| <Available <Free area> |

| area> 400 bytes <Free area> <Free area> <Free area> |

| 600 bytes 300 bytes 300 bytes 300 bytes |

: <Total size> <Total free area> <Total free area> <Total free area> <Total free area> :

| 600 bytes 400 bytes 300 bytes 500 bytes 500 bytes |

| <Available area> <Available area> <Available area> <Available area> |

| 400 bytes 300 bytes 300 bytes 300 bytes |

| | | | P -
Time

Figure1.72 Overview of Fragmentation

Task 1 requests and obtains a 200-byte area.
An interrupt occurs and the interrupt handler switches tasks (from task 1 to task 2).
Task 2 requests and obtains a 100-byte area. (The processing using the obtained memory area

switches tasks (from task 2 to task 1).)

o

Task 1 returns the previously obtained 200-byte area.
An interrupt occurs and the interrupt handler switches tasks (from task 1 to task 3).
Task 3 requests a 500-byte area, but enters the WAITING state for afree area because the

maximum contiguous free area is 300 bytes even though the total free areais 500 bytes.

Rev. 3.00 Jan. 12,2005 Page 107 of 362

RENESAS

REJ05B0364-0300

Section 1 Functions of the HI Series OS

Such a condition, as shown above, is called fragmentation.
The HI series OS does not provide garbage collection, which solves fragmentation problems.

Fragmentation of the memory pool area must be solved through an application (user system).

Rev. 3.00 Jan. 12, 2005 Page 108 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1122 FAQ about Memory Pool

This section answers a question about memory pool which is frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Useof Maloc() FUNCHIONociieceieeeeeese ettt 110

Rev. 3.00 Jan. 12,2005 Page 109 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

(1) Useof malloc() function

Classification: Memory pool

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Isit possible to use the malloc() function in the system using the ul TRON-based OS?

Answer
The malloc() function cannot be used in the system using the ul TRON-based OS.
The OS cannot recognize the area all ocated by the malloc() function.

If the area allocated by the malloc() function overlaps the area allocated by the memory pool
functions, data may be damaged.

Accordingly, when the system must manage memory, use the memory pool functions provided by
the OS.

Rev. 3.00 Jan. 12, 2005 Page 110 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1.13 TimeManagement

1.13.1 Concept of Time Management
Table 1.27 shows the meaning of parameter tmout used in the time management function.

Table1.27 Meaning of Parameter tmout

HI Series OS tmout Meaning
HI7000/4 series and HI1000/4 tmout value (ms)
HI2000/3 tmout value x hardware timer cycle time

Figure 1.73 shows an example of processing when tdp_tsk(3) is executed with the hardware timer
cycle specified as 1 ms (CFG_TICNUME = 1 and CFG_TICDENO = 1).

s s 5 5 5 7

HI7000/4 series and | 1 | : :
HI1000/4 O . : {1
HI2000/3 e .]

Q : Service call issued
[: Timeout

Figure1.73 Overview of tslp_tsk(3) Processing

Rev. 3.00 Jan. 12,2005 Page 111 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Table 1.28 describes the error between the tmout value and the obtained timeout period shown in

the above figure.

Table1.28 Error when Issuing tdp_tsk(3)

HI Series OS tmout Value

Error

HI7000/4 series
and HI1000/4

tmout value = 3
Wait time is 3 ms

Period after the service call is issued to register
the task under the timer control and until the
next time tick is supplied (X)

HI2000/3 tmout value = 3

Third hardware timer cycle

Period after a hardware timer cycle is started
and until the service call is issued to register the
task under the timer control (Y)

Seefigure 1.74 for errors (X) and (Y).

s 5 7

Time
>

HI7000/4 series and

= |

HI11000/4 ! C | .
> '
Error (X)
HI2000/3 O
—> : :
Error (Y) ; :

QO : Service call issued
[: Timeout

Figure1.74 Error intslp_tsk(3) Processing

Rev. 3.00 Jan. 12, 2005 Page 112 of 362
REJ05B0364-0300

RENESAS

Section 1 Functions of the HI Series OS

The error affects the hardware timer cycle time. Table 1.29 shows the relationship between the
hardware timer cycle time and the error.

Table1.29 Hardware Timer Cycle Timeand Error

Hardware Timer

Cycle Time Advantages Disadvantages
When a shorter time is The error in time management is As the hardware timer cycle
specified reduced. processing is increased, the time that
can be assigned to task processing is
reduced.
When a longer time is As the hardware timer cycle The error in time management is
specified processing is reduced, the time that increased.
can be assigned to task processing
is increased.

1.13.2 Moadification of Hardware Timer Cycle Unit
This section describes how to modify the hardware timer cycle unit by using the following means.

e HI7000/4 series and HI1000/4: Configurator
e HI2000/3: Header file for timer driver

(1) HI7000/4 Seriesand H11000/4

The hardware timer cycle time (time of the time tick supplying cycle, hereinafter called the time
tick cycletime) is set as 1 ms at default and can be modified through the configurator.

Figure 1.75 shows the configurator window for time management settings.

Rev. 3.00 Jan. 12,2005 Page 113 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Bl i Gamrersta Hal
0D = &2 o w7
Hirw Opai Seva Conesdsto | Halp
= HI G4 Coni guestion infor
Emmel Eoscubon Condil Trri e b o i v ik F o £ O
Emmal Extention Funciin

F Liss Tirme Manasgemen] Functiares [CFG_TIMIEE]

Cisbaggng Furcion T st PG e v o e o e o e 1 0 | R |
Senioe Calls Selscion
|k TP Esepbion
Trap Espephion Handis

baD] ®
ot Timer Intemupt Humber[GFG_TIMRTH)
Iritmizminn Fout
.;"u; mRonHmne Timer Inkemupk Lesel [GFG_TIWHTLYL 11 -
Semaphom

Do) 1 2 08
Exvern Flarg Tirvea vl Handhar Sta:H Bige | Fo_TWRETHET) [Bes]
Clmtm iy

Spectiysiacksie of hander which shacks s i3 He mosi

Faibo i1y &l v v B,

Fdutes
Ieesage Bufer

Foed-mge MemonyFoo
| 1 TGk

Wanshlg-zze MemonF KFa vEl

Cwcic Hander Tme TickCple = [me] =r 1ms

#lmm Handber | 1 EFE_TEDERD 1

Chmrnun Handler

Extended Sarips Call ?ﬂﬂuﬂtl{:ﬁhtuﬂma denomnator or & makcule ey
T I I}
FarHalp. prass F1 [HUM 4

Figure1.75 Configurator Window for Time Management Settings

As shown in the window, thetimetick cycleis expressed by CFG_TICNUME (the numerator of
thetimetick cycle) and CFG_TICDENO (the denominator of the timetick cycle) in the following
expression.

TIC_DENO (denominator of time tick cycle)

TIC_NUME (numerator of time tick cycle)
| Time tick cycle | = 1x

Figure1.76 Calculation of TimeTick Cycle

This setting controls the time tick cycle (1 ms at default) so that it can be longer or shorter. In the
default settings, the 1-mstimetick cycle base is defined as divided into 1/1, that is, the parameters
are specified as CFG_TICNUME =1 and CFG_TICDENO = 1. The default timetick cycleis used
for time management of the whole system.

Rev. 3.00 Jan. 12, 2005 Page 114 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

CFG_TICNUME and CFG_TICDENO can be set to the following values.

e CFG_TICNUME (numerator of the timetick cycle): 1 to 65,535
o CFG_TICDENO (denominator of the timetick cycle): 1to 100

Accordingly, the 1-mstime tick cycle can be modified into a minimum of 0.01 ms (10 ps:
CFG_TICNUME =1 and CFG_TICDENO = 100, that is, 1/100) and a maximum of 65,535 ms
(65 s: CFG_TICNUME = 65,535 and CFG_TICDENO = 1, that is, 65,535/1).

(2) HI2000/3

The hardware timer cycletimeis set as 1 msin the standard sample program and can be modified
in the definition in the header file for the timer driver.

Figure 1.77 shows the header file for the timer driver in the standard sample program.

B R T
s

;* specifications ;

*

¥ name =_HIPRG_TIMINI : H8S/2655 TPUO initialize handler ; *
* function = ; *
;* notes = *
;* date =99/02/22 *
;* author = Hitachi, Ltd. *
;* attribute = public *
;* class = system *
;* linkage = *
;* input = ccr(B): interrupt disable *
* = exr(B): interrupt disable *
;* output = all register unchanged *
*

;* end of specifications ;

B R
’

(description omitted)
Hardware timer cycle time
s##HHHEE setting data #HH##HHHHHHHHHHHHE LR

TGRA_DATA: .assignéh'30d3,;d 12500-1;: (10000us (p/16))-1: 10ms = 10000us, p = 20MHz

Figure1.77 Header Filefor Timer Driver in Standard Sample Program (2655ause.sr ¢)
An example of the hardware timer cycle time calculation is shown below.
Reference: Calculation of Hardware Timer Cycle Time

This example describes how to obtain the 10-ms hardware timer cycle time when the H8S/2655
(whose operating frequency is 20 MHz) is used in the HI2000/3.

Rev. 3.00 Jan. 12,2005 Page 115 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

The hardware timer cycle time (T) is determined by the counter clock cycle time (t) and counter
value (n) asfollows.

T={tx(n+1)

Valuet isdetermined by the counter clock (¢/1, ¢/4, ¢/16, or ¢p/64) selected in the timer control
register (TCR).

When the CPU clock (¢) is 20 MHz, value t becomes as follows.

Counter clock = ¢/1: t=50ns

e Counter clock = ¢p/4: t =200 ns
e Counter clock = ¢/16: t =800 ns
e Counter clock = ¢/64: t=3.2 us

Valuenis determined by setting a value from 0x0000 to OxFFFF in output compare match A
(TGRA). Accordingly, when the CPU clock (¢) is20 MHz, value T falls within the following
ranges.

e Counter clock = ¢/1: T =50nsto 3.27 ms

e Counter clock = ¢/4: T =200nsto 13.1 ms

e Counter clock = ¢/16: T =800 nsto 52.4 ms
e Counter clock = ¢/64: T =3.2 usto 209.7 ms

[Calculation of 10-ms cycle]
Output compare match A (TGRA) = Timer cycletime(s) x n—1

In the above formula, timer cycletime (s) = 10 x 10™ to specify a 10-mstimer cycle time. When
the CPU clock (¢) is 20 MHz and ¢/16 is selected as the counter clock, value n is obtained as
follows.

n=20x10°+ 16

Accordingly, output compare match (TGRA) becomes as follows:

Output compare match A (TGRA) = Timer cycletime(s) xn—1
=(10x 10°) x (20 x 10° + 16) —1
= 12,499 (0x30D3)

To obtain a 10-mstimer cycle time (s) when using 20-MHz CPU clock (¢), the value set to output
compare match A (TGRA) should be 12,499 (0x30D3).

Rev. 3.00 Jan. 12, 2005 Page 116 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

1.13.3 CyclicHandler
(1) HI7000/4 Seriesand HI11000/4
Figure 1.78 shows an example of cyclic handler initiation when the initiation phaseis 2 ms, the

initiation cycle is 3 ms, and the hardware timer cycleis set to 1 ms (CFG_TICNUME =1 and
CFG_TICDENO = 1).

5 5555555555

R TS S S S B
Without TA_PHS O : : ! : ' ' !
attribute T e : i i | . B ::I:
|Initiati0n phasel: | Initiation cycle | ' :

With TA_PHS Oee——_—————] —— f—

attribute —— R i :
|Initiation phasel: | Initiation cycle | ' | Initiation cycle | ' | Initiation cycle | '

QO : Created

/\ : Initiated
D : Executed

Figure1.78 Overview of Cyclic Handler Initiation (HI 7000/4 Series and HI1000/4)

(2) HI2000/3

Figure 1.79 shows an example of cyclic handler initiation when the cyclic initiation interval is3
ms and the hardware timer cycleissetto 1 ms.

7 77 7

ittt

|
Without TCY_INI Qs ¥ ',' ¥ :
attribute Lo ﬁ .
Lo A

i

With TCY_INI O
attribute H

QO : Created
/\ : Initiated
[: Executed

Figure1.79 Overview of Cyclic Handler Initiation (HI2000/3)

Rev. 3.00 Jan. 12,2005 Page 117 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

1134 Overview of Timer Management Processing

The following gives an overview of timer management processing.

Timer driver

| Update system clock |

Repeat the processing for all alarm
handlers initiated at the same time.

Any alarm handler
to initiate?

Initiate alarm handler

Repeat the processing for all cyclic
handlers initiated at the same time.

Any cyclic handler
to initiate?

Initiate cyclic handler

Repeat the processing for all tasks
generating timeout at the same time.

Any task to
generate timeout?

Yes Perform processing for
timeout task

Repeat the processing for all tasks whose
specified processor time is exceeded.

Processor time fo
tasks exceeded?

Processing end

Initiate overrun handler

Figure1.80 Overview of Timer Driver Processing (HI7000/4 Series)

Rev. 3.00 Jan. 12, 2005 Page 118 of 362
REJ05B0364-0300 RENESAS

Section 1 Functions of the HI Series OS

Timer driver

| Update system clock |

Repeat the processing for all cyclic
handlers initiated at the same time.

i Yes
Anyt(;)'iililt(i)afizgdlef Initiate cyclic handler

No

Repeat the processing for all tasks
generating timeout at the same time.

Any task to
generate timeout?

Processing end

Perform processing for
timeout task

Figure1.81 Overview of Timer Driver Processing (H12000/3 and HI1000/4)
Thefollowing items also affect the time for timer driver processing.

e Number of alarm handlers to be initiated at the same time (only for HI7000/4 series)

e Number of cyclic handlersto be initiated at the same time

e Number of tasks to generate timeout at the same time

e Number of tasksto initiate overrun handler at the same time (only for HI7000/4 series)

If the number of tasks to generate timeout or the number of handlers (cyclic handlers and alarm
handlers) to be initiated at the same time becomes large, the corresponding service processing
should be repeated more times, which will result in increased timer driver processing time. If the
timer driver processing timeisincreased, the following problems will arise.

o Degradation in response to other interrupts
e Dédayinsystemtime

Rev. 3.00 Jan. 12,2005 Page 119 of 362
RENESAS REJ05B0364-0300

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 120 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

Section 2 Application Program Creation

2.1 Overview of Processing from Reset to Task Initiation

Figure 2.1 gives an overview of the processing after a CPU reset (including a power-on reset) and
until task initiation in the HI series OS.

Including a power-on reset
and a manual reset

CPU initialization —>»Kernel initialization processing
routine
4 Specify the stack for kernel initialization
(N processing.
Initialize the device and Initialize kernel management areas.
hardware. (Create each control block (CB).)
Initialize the bus state
controller. — - -
Initialize the external Create the initially defined objects.
memory. — -
y Error generate Yes —»(System termination processing)
in creation?
Create the CPU initialization No
routine in the application to
suit with the system hardware.
A
\ J Initiate initialization routine.
- Yes __}+— routine
/ Defined?
(Initiate kernel initialization processing.)— o \
Initialize timer
device.

CGEND

Initialize the software necessary
for system initiation.
y

. . Register objects.
Move to the multitask environment. Initialize resources

(Dispatch processing) Initialize hardware (e.g. memory
area initialization).

Create the initialization routine in
the application to suit with the
system.

Figure2.1 Procedure after CPU Reset and Until Task Initiation

When a CPU reset signal is input, the CPU initialization routine defined at the reset vector is
initiated.

Rev. 3.00 Jan. 12,2005 Page 121 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

2.2 Overview of CPU Initialization Routine

The CPU initialization routine carries out the processing needed for the entire software, including
the kernel, to operate. To be more specific, the CPU initialization routine includes the following
processing.

e Setsup the bus state controller (BSC) to enable external memory (such as SDRAM or SRAM).
o Specifiesthe stack pointer for the CPU initialization routine.
o Initializes the sections.

The CPU initialization routine carries out the initialization necessary for the microcomputer and
hardware used, and thus the CPU initialization routine must be created in the application in
accordance with the microcomputer and hardware.

The CPU initialization routine cannot be written entirely in C language; part of it must be written
in assembly language.

A C program accesses the stack (memory). If the stack areais accessed before the necessary
settings are completed, a CPU exception may occur (a CPU exception causes abnormal system
termination (system down)). Accordingly, the CPU initialization routine must be written in
assembly language until the stack settings are compl eted.

The HI series OS provides sample files of the CPU initialization routine. Refer to it and create the
CPU initialization routine in accordance with the hardware and microcomputer used.

Table 2.1 summarizes the sample CPU initialization routine.

Rev. 3.00 Jan. 12, 2005 Page 122 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

Table2.1 Overview of CPU Initialization Routine Processing

CPU Initialization Routine

HI Series OS Assembly-Language Descriptions C-Language Descriptions

HI7000/4 series .

BSC settings to enable external memory e Initialization of sections
(SUCh as SDRAM or SRAM) ° Enab“ng of cache

Settings of stack pointer

HI2000/3 .

Settings of stack pointer See note below.
Settings of interrupt control mode
Settings of peripheral modules

HI1000/4 .

Settings of stack pointer See note below.

BSC settings to enable external memory
(such as SDRAM or SRAM)

Settings of interrupt control mode
Settings of peripheral modules

Note The HI2000/3 and HI1000/4 do not provide a C-language sample file of the CPU
initialization routine. Create the routine be referring to section 2.6.3, CPU Initialization
Routine Creation Example.

The following shows the sample CPU initialization routine provided by each HI series OS.

Rev. 3.00 Jan. 12,2005 Page 123 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

ok kkkkkkk ok khkkkk ok hkkkhkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkokk o«

* HI7000/4 CPU initialize routine >
* Copyright (c) Hitachi, Ltd. 2000. 3
* Licensed Material of Hitachi, Ltd. 7

X

Tk kk ok ok ok ko k ok kkk ko kR kR Rk ko ko ko ko k ok ok ke

’
R S T T T

s
,

;* HI7000/4(HS0700IT141SR) V1.0

* FILE =7604_cpuasm.src ; s

;* CPU type = SH7604 i

kA Ak kA kAR A AR A Ak Ak kA hhk ko khkhh ko kA hkhkhkhkhkhhhhhhhkhkhkhkhhhkhkhhkhhkhhkhkhkhhhkhhkhhkhhkk.
.program _hi_cpuasm
.heading "hi_cpuasm : CPU initialize rg-) o .
.export _hi_cpuasm Defines data for initialization processing.
.import _hi_cpuini Modify the values or add data as necessary.

.section P_hi , code, align =4
H **-
;

;* BSC address

**

BSC BASE .assign h'ffffffe0 ; BSC base address

BCR .assign h'ffffffe0-BSC_BASE ; BCR1 address offset
BCR2 .assign h'ffffffe4-BSC_BASE ; BCR2 address offset
WCR .assign h'ffffffe8-BSC_BASE ; WCR address offset
MCR .assign h'ffffffec-BSC_BASE ; MCR address offset
RTCSR .assign h'fffffff0-BSC_BASE ; RTCSR address offset
RTCNT .assign h'fffffff4-BSC_BASE ; RTCNT address offset
RTCOR .assign h'fffffff8-BSC_BASE ; RTCOR address offset
MD,REG?BASE .assign h'ffff8000 ; mode register base address of SDRAM
CMF_BIT .assign h'0080 ; CMF bit in RTCSR
****~k**********************'k*******************~k****************************-
;* BSC initial data 7
;* After reset, you must initialize BSC for memory (stack) access at first. s
;* Please modify these definition in order to your hardware. 5
**
BCR1_DATA .assign h'a55a0000 + h'03f0 ; BCR1 initial data
BCR2_DATA .assign h'a55a0000 + h'00fc ; BCR2 initial data
WCR_DATA .assign h'a55a0000 + h'aaff ; WCR initial data
MCR_DATA .assign h'a55a0000 + h'0000 ; MCR initial data

RTCSR_DATA .assign h'a55a0000 + h'0000 ; RTCSR initial data
RTCNT_DATA .assign h'a55a0000 + h'0000 ; RTCNT initial data
RTCOR_DATA .assign h'a55a0000 + h'0000 ; RTCOR initial data

éTP_REFHESH .assign h'a55a0000 ; RTCSR initial data (stop count-up)
MODE_DATA .assign h'0000 data of SDRAM mode register
MODE_ADDRESS .assign MD_REG._| BASE+MODE DATA ; address to set MODE_DATA
IDLE_TIME .assign 566 ; loop counter for idle-time

{ REFRESH_CNT .assign h'8 ; counter for dummy refresh

o

Figure2.2 HI17000/4 CPU Initialization Routine: Assembly L anguage (SH7604) (1/2)

Rev. 3.00 Jan. 12, 2005 Page 124 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

kkkkkkkkk ko k ok kkkkkkkhkkhkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkhkkkhkkkkk*k

* NAME
* FUNCTION

_hi_cpuasm
= CPU initialize routine ;

B T s
s

asm.

’
ke
)

[Initializes the bus state controller.

eewx |njtialize BSC

mov.|
ldc

mov.|
mov.|

mov.|
mov.|

mov.|
mov.|

mov.|
mov.|

mov.|
mov.|
mov.|

mov.|
mov.|

mov.|
mov.|

#BSC_BASE, r0
r0, gbr

#BCR1_DATA, r0
10, @(BCRH1, gbr)

#BCR2_DATA, r0
r0, @ (BCR2, gbr)

#WCR_DATA, r0
10, @(WCR, gbr)

#MCR_DATA, r0
r0, @(MCR, gbr)

@(RTCSR, gbr), r0
#STP_REFRESH, r0
r0, @(RTCSR, gbr)

#RTCNT_DATA, r0
10, @(RTCNT, gbr)

#RTCOR_DATA, 10
10, @ (RTCOR, gbr)

Remove comment characters (;) as necessary.

; set BCR base address to gbr

; initialize BCR1

; initialize BCR2

; initialize WCR

; initialize MCR

; dummy read for CMF off
; stop refresh

; initialize RTCNT

; initialize RTCOR

s
s
s
s
s
s
’
’
s
s
s
s
s
s
s
s
’
s
s
s
s
s
s
s
s
1
’

>

;¥** Initialize SDRAM

7 Initializes external memory (SDRAM).

Remove comment characters (;) as necessary.

; set mode register

; loop for dummy refresh

i mov.| #I.I-:)hl_%j:I.ME, r0 ; loop for i
i ;hi_cpuasm010:
; add #1,10
cmp/eq #0, r0
bf hi_cpuasm010
mov.w #MODE_DATA, r0
mov.| #MODE_ADDRESS, r1
mov.w 0, @r1
mov.l #RTCSR_DATA, r0 ; initialize RTCSR
mov.l r0, @(RTCSR, gbr)
mov #0, r1
#REFRESH_CNT, r2

;hi_cpuasm020:
mov.|
tst

bt

add
cmp/eq
bt

mov.|
bra
mov.|

@(RTCSR, gbr), r0
#CMF_BIT, rO
hi_cpuasm020

#1,

r1, r2
hi_cpuasm030
#RTCSR_DATA, r0
hi_cpuasm020

r0, @(RTCSR, gbr)

; check CMF bit

; loop counter up

; if end dummy refresh

; then goto hi_cpuasm030
; clear CMF bit

’
s
’
s
’
’
s
’
’
’
’
s
s
’
; mov.w
s
s
’
’
’
’
’
’
’
’
’
1
’

—— After completing the CPU initialization
/ processing written in assembly language,
L2\,

mov.l # r; cpuini, r0 “'get hi_cp branches to the initialization processing
jmp 10 ;jumptoh| written in C language.
nop , never retarT o urs porTt
.pool
.end

Figure2.2 HI17000/4 CPU Initialization Routine: Assembly L anguage (SH7604) (2/2)

RENESAS

Rev. 3.00 Jan. 12,2005 Page 125 of 362
REJ05B0364-0300

Section 2 Application Program Creation

KA kKKK K kKKK KK kKKK kKRR KKk kKKK KKk kKKK KKk KKK Kk kKKK KKk kA KKKk [

/* HI7000/4 CPU initialize routine */
/* Copyright (c) Hitachi, Ltd. 2000. */
1* Licensed Material of Hitachi, Ltd. */
/* HI7000/4(HS0700ITI41SR) V1.0 */

/*******~k**/
/**/
/* FILE =7604_cpuini.c; */
/* CPU type = SH7604 */
/**/
#include <machine.h>

#include ‘itron.h"

#include "kernel.h"

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void) ; - :
{ + Calls the section expanding processing.
Remove comment characters (/* and */) as
/*** Initialize Hardware Environment ***/ necessary.
/*** |nitialize Software Environme **/
CFINITSCT(; * AT T /* Call section-initialize routine A
vsta_knl();. S /* Sta(t.kei:ﬁel W

Calls the kernel initialization processing.

After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

Figure2.3 HI7000/4 CPU Initialization Routine: C Language (SH7604)

Rev. 3.00 Jan. 12, 2005 Page 126 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

ekkkkkkkkk ko k ok ko k ko kkk ko hkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkdkkkkkkkkkkkkk -

¥ HI7700/4 CPU initialize routine ;*;
* Copyright (c) 2000 (2003) Renesas Technology Corp. %
¥ and Renesas Solutions Corp. All Rights Reserved. 7

**
kKA kKA kA A AR A I A h Ak kA hhkhkhhkhkhhhhkhhkhhkkhkhhkhkhhhkhkhhkhhkhkhhhkhhhkhkhkhhkhkhkhkhhhhkrhhhkhhhkhh.

;
;* FILE = 7708_cpuasm.src ; e
;* CPU type = SH7708

ik e e ok

* HI7700/4 (HS0770ITI41SR) V1.0

.program _hi_cpuasm

.export _hi_cpuasm

.import _hi_cpuini

.import __kernel_pon_sp

.import __kernel_man_sp

.section P_hicpuasm, code, align = 4

s
B L R
s s

* EXPEVT address, data

ok kkkkkkkk kA kkkkkkkkkhhkkhkkkkkkkkhkkkhkkkkkkk

CCN_BASE .assign h'ffffffd0
EXPEVT .assign h'ffffffd4-CC

’PONfCODE .assign h'

:i*****************;?‘* *&-kQc-k'&*****-k*-k*******’F-i95*'*'%9{*'%%9{*‘-&?}'%‘*'-’2'*'-l('*'-ﬁ?9('%'%929{%’-&3@9{*‘&%1"""""'"

+~ Defines data for initialization processing.
T(Modify the values or add data as necessary.

E ; EXPovr——auurcssorser

; power-on reset exception code

'* BSC address '*'
**
BSC_BASE .assign h'ffffff6é0 ;BSC base address

BCR1 .assign h'ffffff60-BSC_BASE ; BCR1 address offset

BCR2 .assign h'ffffff62-BSC_BASE ; BCR2 address offset

WCR1 .assign h'ffffff64-BSC_BASE ; WCR1 address offset

WCR2 .assign h'ffffff66-BSC_BASE ; WCR2 address offset

MCR .assign h'ffffff68-BSC_BASE ; MCR address offset

DCR .assign h'fffffféa-BSC_BASE ; DCR address offset

PCR .assign h'fffffféc-BSC_BASE ; PCR address offset
RTCSR .assign h'ffffffée-BSC_BASE ; RTCSR address offset
RTCNT .assign h'ffffff70-BSC_BASE ; RTCNT address offset
RTCOR .assign h'ffffff72-BSC_BASE ; RTCOR address offset

RFCR .assign h'ffffff74-BSC_BASE ; RFCR address offset
SDMR_CS2 .assign h'ffffd000 ; SDMR (CS2) base address
SDMR_CS3 .assign h'ffffe000 ; SDMR (CS3) base address
CMF_BIT .assign h'0080 ; CMF bit in RTCSR

s
PRERRHFE R IR AEF R IR RFRAIFERIRAFF R IR RFRRIHERIRARFERAR LRI RI I IIR AR F R I I IRk

i BSC initial data

LR KKk ko ko k ok ko
s

:* After reset, you must initialize BSC for memory (stack) access at first. N

;* Please modify these definition in order to your hardware. 5
**
BCR1_DATA .assign h'0000 ; BCR1 initial data
BCR2_DATA .assign h'3ffc ; BCR2 initial data
WCR1_DATA .assign h'3fff ; WCR1 initial data
WCR2_DATA .assign h'ffff ; WCR2 initial data
MCR_DATA .assign h'0000 ; MCR initial data
DCR_DATA .assign h'0000 ;DCR initial data
PCR_DATA .assign h'0000 ; PCR initial data
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h'000 ; RFCR initial data
STP_REFRESH .assign h'a500 ; RTCSR initial data(stop count-up)
SDMR2_DATA .assign h'0230 ; SDMR_CS2 initial data
SDMR3_DATA .assign h'0230 ; SDMR_CS3 initial data
IDLE_TIME .assign h'566 ; loop counter for idle-time
REFRESH_CNT .assign h'8 ; counter for dummy refresh

Figure2.4 HI17700/4 CPU Initialization Routine: Assembly L anguage (SH7708) (1/3)

Rev. 3.00 Jan. 12,2005 Page 127 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

R i ittt A A AR A A A AR A A A SR AR A A A A A AL A LA R SRS A LA AR

* NAME = _hi_cpuasm ;*;
* FUNCTION = CPU initialize routine s
~k**~k~k*************************
h| _cpuasm:
e Initialize BSC

mov.i #BSC_BASE, r0 ; set BCR base address to gbr

Idc r0, gbr

mov.w #BCR1_DATA, r0 ; Initialize BCR1

mov.w 10, @(BCR1, gbr)

mov.w #BCR2_DATA, r0 ; Initialize BCR2
mov.w r0, @(BCR2, gbr)

mov.w #WCR1_DATA, r0 ; Initialize WCR1
mov.w r0, @(WCR1, gbr)

mov.w #WCR2_DATA, r0 ; Initialize WCR2
mov.w r0, @(WCR2, gbr)

mov.w #MCR_DATA, r0 ; Initialize MCR
; mov.w 10, @(MCR, gbr)
: mov.w #DCR_DATA, r0 ; Initialize DCR
; mov.w 10, @(DCR, gbr)

mov.w #PCR_DATA, r0 ; Initialize PCR
mov.w r0, @(PCR, gbr)

mov.w #STP_REFRESH, r0 ; stop refresh
mov.w r0, @(RTCSR, gbr)

mov.w #RTCNT_DATA, rO ; Initialize RTCNT
mov.w r0, @(RTCNT, gbr)

mov.w #RTCOR_DATA, r0 ; Initialize RTCOR
mov.w 10, @(RTCOR, gbr)

mov.w #RFCR_DATA, r0 ; Initialize RFCR
_______ mov.w 10, @(RFCR, gbr)

Initializes the bus state controller.
Remove comment characters (;) as necessary.

Figure2.4 HI17700/4 CPU Initialization Routine: Assembly L anguage (SH7708) (2/3)

Rev. 3.00 Jan. 12, 2005 Page 128 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

;*** |nitialize SDRAM

.

L Initializes external memory (SDRAM).
Remove comment characters (;) as
necessary.

;hicpuasm01 0:
; add

mov.|
mov.|
mov.b

mov.|
mov.|
mov.b

mov.w
mov.w

; mov.w
;hi_cpuasm020:
; mov.w

mov.|

cmp/eq
bf

cmp/ge
_bf

#IDLE_TIME, 10

#-1, 10
#0, 10
hicpuasm010
#SDMR_CS2, r0

#SDMR2_DATA*4, r2
r1, @(r0, r2)

#SDMR_CSS3, 10
#SDMR3_DATA*4, r2
r1, @(r0, r2)

#RTCSR_DATA, 10
10, @(RTCSR, gbr)

#REFRESH_CNT, r2
@(RFCR,gbr), 10

r2, r0
hi_cpuasm020

; loop for idle-time

; Initialize SDMR(CS2)
; write dummy data(r1)
; Initialize SDMR(CS3)
; write dummy data(r1)

; Initialize RTCSR

; read RFCR
; if end dummy refresh
;. else goto hi_cpuasm020

s
’
s
s
s
s
s
’
s
s
s
s
s
’
s
s
s
s
s
]
s

;hi_cpuasm030:

;***** Initialize sp and jump to hi_cpuini() written by C-language

mov.|
mov.|
mov.|

cmp/eq
bf

mov.|

’hi,cpuasm040:

#CCN_BASE, r2
#PON_CODE, r3
@(EXPEVT, r2), r0
r3, r0
hi_cpuasm050

#__kernel_pon_sp, r2

; get CCN base address

; get exception code to power-on
; get exception code

; if exception != power-on

; then hi_cpuasm050

; get stack address

mov r2, r15 ; set SP
“movl '#Zfl_hi_cpuini, 0 ;"Qet hi_cpuih'i'address
imp @ro ; jump to hi_cpuini()
_nhop 5 ; never return to this point
’hi,cpuasmOSO:
mov.| #__kernel_man_sp, ; get stack address
bra hi_cpuasm040
. nop After completing the CPU initialization
’ .pool > processing written in assembly language,
; branches to the initialization processing
.end written in C language.

Figure2.4 HI17700/4 CPU Initialization Routine: Assembly L anguage (SH7708) (3/3)

RENESAS

Rev. 3.00 Jan. 12,2005 Page 129 of 362
REJ05B0364-0300

Section 2 Application Program Creation

JER R KR KKK KKK KKK KKK KKK KA KA KA KKHKKHA KA KA KIAKFAAKRA KA K I A KT RAKRA IR K IR KK [

/* HI7700/4 CPU initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7700/4(HS0770ITI41SR) V1.0A */

/**/
/**/
/* FILE =7708_cpuini.c; */
/* CPUtype = SH7708 */
/********************'k****'k*********'k****'k****'k******************************/
#include <machine.h>

#include ‘itron.h"

#include "kernel.h"

R R ARk KKK kKKK KKKk KKKk kKKK k kKK Kk k kK k kR ok k kK KKk k kR Rk Sk kR Kk k ko [

/* environment data */
/**/
#define IOBASE Oxfffffe80 /* 1/0 base address = Oxfffffe80 */
#define CCR (Oxffffffec - IOBASE) /* CCN CCR address offset */
#define CACHE_ON 0x00000001 /* CACHE enable data */
#define CACHE_OFF 0x00000000 /* CACHE disable data */
/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini

/**/
/* NAME = hi_cpuini */
/* FUNCTION = CPU initialize routine */

JEREF KR KKK K KA KK E KKK FHHIRHKIE KA KFHKKHA KA KA KFRKFAAIRA KRR FHFIRAKRA IR KR KK [

#pragma noregsave(hi_cpuini)

void hi_cpuini(void)

{

/¥** |nitialize Hardware Environment ***/

set_gbr((VP)IOBASE); /

gbr_write_long(CCR, CACHE_OFF); + Calls the section expanding processing.

Remove comment characters (/* and */) as

/*** Initialize Software Environment ** necessary.
§ /& _INITSCT(); */ A /* Call section-initialize routine ~ */
vsta_knl(); = /* Start kernel */

} \
~ |Calls the kernel initialization processing.

After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

Figure2.5 HI7700/4 CPU Initialization Routine: C Language (SH7708)

Rev. 3.00 Jan. 12, 2005 Page 130 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

ekkkkkkkkk ko k ok ko k ko kkk ko hkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkdkkkkkkkkkkkkk -

¥ HI7750/4 CPU initialize routine ;*;
* Copyright (c) 2000(2003) Renesas Technology Corp. %
* and Renesas Solutions Corp. All Rights Reserved. i
e HI17750/4(HS0775ITI41SR) V1.0 %5
**
:**
* FILE = 7750_cpuasm.src ; 7
;* CPU type = SH7750 oM
,**

.program _hi_cpuasm

.heading "hi_cpuasm : CPU initialize routine"

.export _hi_cpuasm

.import _hi_cpuini

.import __kernel_pon_sp

.import __kernel_man_sp

.section P_hicpuasm, code, align = 4
;**
;* EXPEVT address, data *

ok ok kK K ok kK kR K R Rk Kk Rk Kk Rk Kk Rk ok Rk Kk Rk K ok

CCN_BASE .assign h'ff000020
EXPEVT -assign hff000024-C

’PON _CODE assign h'Q

C Defines data for initialization processing.
ASE ’; gl Modify the values or add data as necessary.

; power-on reset exception code

,* BSC address

**

BSC BASE .assign h'ff800000 ;BSC base address
BCR .assign h'ff800000-BSC_BASE ; 'BCR1 address offset
BCR2 .assign h'ff800004-BSC_BASE ; BCR2 address offset
WCR1 .assign h'ff800008-BSC_BASE ; :WCRH1 address offset
WCR2 .assign h'ff80000c-BSC_BASE ;WCR2 address offset
WCR3 .assign h'ff800010-BSC_BASE ; WCR3 address offset
MCR .assign h'ff800014-BSC_BASE ; MCR address offset
PCR .assign h'ff800018-BSC_BASE ; PCR address offset
RTCSR .assign h'ff80001c-BSC_BASE ; RTCSR address offset
RTCNT .assign h'ff800020-BSC_BASE ; RTCNT address offset
RTCOR .assign h'ff800024-BSC_BASE ; RTCOR address offset
RFCR .assign h'ff800028-BSC_BASE ; RFCR address offset
SDMR2 .assign h'ff900000 ;SDMR2 address
SDMR3 .assign h'ff940000 ; SDMR3 address
CMF BIT .assign h'0080 ; CMF bit in RTCSR
**
,* BSC initial data ;*;
;¥ After reset, you must initialize BSC for memory(stack) access at first. N
;* Please modify these definition in order to your hardware.
**
BCR1_DATA .assign h'00000000 ; BCR1 initial data
BCR2_DATA .assign h'3ffc ; BCR2 initial data
WCR1_DATA .assign h'77777777 ; WCR1 initial data
WCR2_DATA .assign h'fffeefff ; WCR2 initial data
WCR3_DATA .assign h'07777777 ; WCR3 initial data
MCR_DATA .assign h'00000000 ;MCR initial data
PCR_DATA .assign h'0000 ; PCR initial data
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h'000 ; RFCR initial data
STP_REFRESH .assign h'a500 ; RTCSR initial data(stop count-up)
SDMR2_DATA .assign h'0230 ; SDMR2 initial data
SDMR3_DATA .assign h'0230 ; SDMR3 initial data
IDLE_TIME .assign h'1000 ; loop counter for idle-time
_.B.EFRESH CNT _.assign h'8 ; counter for dummy refresh

Figure2.6 HI7750/4 CPU Initialization Routine: Assembly L anguage (SH7750) (1/3)

Rev. 3.00 Jan. 12,2005 Page 131 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

B T T L
’

;* NAME = _hi_cpuasm 7
;* FUNCTION = CPU initialize routine ; *
shkkkkkhhkkhkkhhkhkhkhkhhhhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhhhk.
_hi_cpuasm:
kx> Initialize BSC

mov.l #BSC_BASE, r0 ; set BSC base address to gbr

Idc r0, gbr

mov.l #BCR1_DATA, r0 ; Initialize BCR1

mov.l r0, @(BCR1, gbr)

mov.w #BCR2_DATA, r0 ; Initialize BCR2
mov.w r0, @(BCR2, gbr)

mov.l #WCR1_DATA, r0 ; Initialize WCR1
mov.l r0, @(WCRH1, gbr)

mov.l #WCR2_DATA, r0 ; Initialize WCR2
mov.l r0, @(WCR2, gbr)

mov.l #WCR3_DATA, r0 ; Initialize WCR3
; mov.l r0, @(WCRS3, gbr)

: mov.l #MCR_DATA, r0 ; Initialize MCR

; mov.l r0, @(MCR, gbr)

mov.w #PCR_DATA, r0 ; Initialize PCR
mov.w r0, @(PCR, gbr)

mov.w #STP_REFRESH, r0 ; stop refresh
mov.w r0, @(RTCSR, gbr)

mov.w #RTCNT_DATA, rO ; Initialize RTCNT
mov.w r0, @(RTCNT, gbr)

mov.w #RTCOR_DATA, r0 ; Initialize RTCOR
mov.w 10, @(RTCOR, gbr)

mov.w #RFCR_DATA, r0 ; Initialize RFCR
_______ mov.w 10, @(RFCR, gbr)

~
Initializes the bus state controller.
Remove comment characters (;) as necessary.

Figure2.6 HI7750/4 CPU Initialization Routine: Assembly L anguage (SH7750) (2/3)

Rev. 3.00 Jan. 12, 2005 Page 132 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

;*** |nitialize SDRAM

.

/Initializes external memory (SDRAM).
Remove comment characters (;) as necessary.

;hicpuasm01 0:
; add

mov.|
mov.|
mov.b

mov.|
mov.|
mov.w

mov.w

mov.w

mov.w

cmp/ge
_bf

mov.|

cmp/eq
bf

;hi_cpuasm020:

#IDLE_TIME, r0 ;loop for idle-time

#-1, 10

#0, 10

hicpuasm010

#SDMR2, r0 ; Initialize SDMR(CS2)
#SDMR2_DATA*4, r2

r1, @(r0, r2) ; write dummy data(r1)
#SDMR3, r0 ; Initialize SDMR(CS3)
#SDMR3_DATA*4, r2

r1, @(r0, r2) ; write dummy data(r1)

#RTCSR_DATA, 10
10, @(RTCSR, gbr)

#REFRESH_CNT, r2
@(RFCR, gbr), 10

r2, r0
hi_cpuasm020

; Initialize RTCSR

; read RFCR
; if end dummy refresh
; else goto hi_cpuasm020

;
;
; mov.b
;
;
:
;

;hi_cpuasm030:

;***** Initialize sp and jump to hi_cpuini() written by C-language

mov.|
mov.|
mov.|

cmp/eq
bf

mov.|

’hi,cpuasm040:

#CCN_BASE, r2
#PON_CODE, r3
@(EXPEVT, r2), r0
r3, r0
hi_cpuasm050

; get CCN base address

; get exception code to power-on
; get exception code

; if exception != power-on

; then hi_cpuasm050

#__kernel_pon_sp, r2 ; get stack address

mov r2, r15 ; set SP
“movl #';hi_cpuini, 0 ;"Qet hi_cpuih'i'address
imp @ro - ; jump to hi_cpuini()
_hop 5 ; Never return to this point
’hi,cpuasmOSO:
mov.| #__kernel_man_sp, r. ; get stack address
bra hi_cpuasm040
. nop After completing the CPU initialization
’ .pool processing written in assembly language,
; branches to the initialization processing
.end written in C language.

Figure2.6 HI17750/4 CPU Initialization Routine: Assembly L anguage (SH7750) (3/3)

Rev. 3.00 Jan. 12,2005 Page 133 of 362

RENESAS REJ05B0364-0300

Section 2 Application Program Creation

JR R R K KK KKK KKK KKK K KKK KKK KA K KKK KA KKK A KA AK KA K I A KA AR A KA K I RK IR AR A KKK KR KK [

/* HI7750/4 CPU initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.0A */
/**/
/‘k*******************************'k***/
/* FILE =7750_cpuini.c; */
/* CPU type = SH7750 */

/*****'k**/
#include <machine.h>

#include ‘itron.h"

#include "kernel.h"

#define CCR_DATA 0x0000090d /* CACHE enable data */
/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)

L Calls the section expanding processing.
Remove comment characters (/* and */) as
necessary.

/*** Initialize Hardware Environment ***/
/* vini_cac((UW)CCR_DATA); */

/¥** |nitialize Software Environme

CFINITSCT(), +f A /¥ Call section-initialize routine_*/

vsta_kni();. ¥ Start kernel */

_ Calls the kernel initialization processing.

After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

Figure2.7 HI7750/4 CPU Initialization Routine: C Language (SH7750)

Rev. 3.00 Jan. 12, 2005 Page 134 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

ko kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkhkkkhkkkkhkkhhkkkkkkkkkkhkkkok

:*** * k%
okl HI12000/3 Version (uITRON V3.0) ol
R HI2000/3 user/system application file bl
kkk *kk
okl Copyright (c) Hitachi, Ltd. 1998. ol
ek Licensed Material of Hitachi, Ltd. el
kkk * kK
Y***
.program _2655acpu
.heading "### 2655acpu.src : H8S/2655 initialize module ###"
' .section h2susr_ram, data, align = 2

.res.b
CPUINI_SP: equ $

.section h2suser, code, align = 2
' .export _H_2S_CPUINI

.import _H_2S_INIT

.aifdef DX

.import _HI_DEAMON_INI

.aendi
:***
;* specifications ; *
;*name = _H_2S_CPUINI : H8S/2655 initialize module ; *
;* function = ; *
;¥ notes = ; *
;* date = 99/02/22 ; *
* author = Hitachi, Ltd. ; *
;* attribute = public ; *
;¥ class = system ; *
;* linkage = ; *
;¥input = none ; *

. *

;¥ output = none

;* end of specifications ;

kkkkkkhkkkhhkkhhkkhkhkkhhkkkkkkhhkkhkkkkkk

.radix d JIXXXXX -> g

™ Defines data for initialization processing.
Modify the values or add data as necessary.

SYSCR .assign h'00ffff39
MSTPCRH: .assign h'00ffff3c
MSTPCRL .assign h'00ffff3d

system control register #######;:SYSCR
RAME: .assign b'00000001 ;:RAM enable

system control register
;:module stop control register H
module stop control register L

NMIEG: .assign b'00001000 NMI edge select
INTMO: .assign b'00010000 ;:interrupt mode 0
INTM1: .assign b'00100000 ;:interrupt mode 1
MACS .assign b'10000000 ;:MAC register saturation

module stop control register H ####;:MSTPCRH
A D: .assign b'11111101 ;:A/D module select

D_A: .assign b'11111011 ;:D/A module select
PPG: .assign b'11110111 ;:PPG module select
TMR: .assign b'11101111 ;:TMR module select
TPU: .assign b'11011111 ;:TPU module select
DTC: .assign b'10111111 ;:DTC module select
DMAC .assign b'01111111 ;:-DMAC module select

module stop control register L ####;:MSTPCRL

SCI0: .assign b'11011111 ;:SCI0 module select
SCI1: .assign b'10111111 ;:SCI1 module select
SCl2: .assign b'01111111 ;:SCI2 module select

e e B oo E o f e E oo f e e ot e neoeensoeaeaoaneas

Figure2.8 HI12000/3 CPU Initialization Routine (H852655) (1/2)

Rev. 3.00 Jan. 12,2005 Page 135 of 362

RENESAS

REJ05B0364-0300

Section 2 Application Program Creation

_H_2S_CPUINI:
mov.l #CPUINI_SP:32, sp ;:get CPUINI_SP
mov.b @SYSCR:32, rOL ;:get SYSCR
and.b #low~(INTMO | INTM1):8, rOL ;:clear interrupt mode bit
orb #low (INTMO | INTM1):8, rOL ;:set interrupt mode = 3
mov.b rOL, @SYSCR:32 ;:set SYSCR
> Q> —
mov.b @MSTPCRH:32, rOL ;:get MSTPCRH
and.b #low TPU:8, rOL ;:set TPU bit off
mov.b rOL, @ MSTPCRH:32 ;:set . .
: Add the following processing as necessary.
.aifdef DX « Initialization of the bus state controller
jsr ~ @_HI_DEAMON_INI ;:call| o Initialization of external memory (SDRAM)
.aendi
" jmp ;:goto HI2000/3 initialize module ™

Calls the kernel initialization processing.

After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

Figure2.8 HI12000/3 CPU Initialization Routine (H852655) (2/2)

Rev. 3.00 Jan. 12, 2005 Page 136 of 362

REJ05B0364-0300

RENESAS

Section 2 Application Program Creation

kkkkkkkkkkkkkkkkkkkkk ok ko kkkkhkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkk

R T R Y

:* *
:* HI1000/4 Version (ulTRON V4.0) *
;¥ HI1000/4 user/system application file *
ok *
:* Copyright (C) 1998, 2003 Renesas Technology Corp. All right reserved *
ok *

.program _1650cpu

.heading "### 1650cpu.src : H8SX/1650 initialize module ###"
' .section P_hicpuini, code, align =2
' .export _KERNEL_H_CPUINI

.import _KERNEL_HI_OS_SP

.import _vsta_knl

:***
;* specifications ; o
;*name = 1650cpu.src : H8SX/1650 initialize module ;

;* function = CPU Initialize routine ;
;¥ notes = ;
;* input =none ;

* Ok F % oy oy

;¥ output = none
;* end of specifications ;

B s
s

™ Defines data for initialization processing.
Modify the values or add data as necessary.

.a53|gn h'00FFFF32 ,,mterrupt control register

MSTPCRA .assign h'O0FFFDC8 ;:module stop control register A
ABWCR: .assign h'00FFFD84 ;:bus width control register
ASTCR: .assign h'00FFFD86 ;:access state control register
WTCRA: .assign h'00FFFD88 ;:wait control register A
WTCRB: .assign h'0O0FFFD8A ;:wait control register B
s##H#H#HEEHEE interrupt control register ##########; INTCR
INTMO: .assign b'00010000 ;iinterrupt mode bit0
INTM1: .assign b'00100000 ;iinterrupt mode bit1
s####H### module stop control register A #######;:MSTPCRA
MSTPAO: .assign h'FFFE ;;TPUch5-0

: VBR_ADR: .assign 0 ;'VBR address

" KERNEL_H_CPUINI:
mov.l # KERNEL_HI_OS_SP:32, s
mov.l #VBR_ADR, er0

4 Add the following processing as necessary.
e Initialization of the bus state controller

Idc.I er0, vbr ;:s€ e Initialization of external memory (SDRAM)
mov.l #h'ffffff00, er0 sini
Idc.l erO, sbr yinitial SBR
; mov.w B0, O RBWCR sset ABWCR T
; mov.w #h' 0000 @ASTCR:32 ;:set ASTCR
; mov.w #h'0000, @ WTCRA:32 ;:set WTCRA
; mov.w_ #h'0000, @ WTCRB:32 _ssetWTCRB
' mov.b #INTMA, roL —— .
mov.b rOL, @ NTCR:32 Calls the kernel initialization processing.
; After completing the CPU initialization
mov.w @MSTPCRA:32, r0 processing, be sure to call the kernel initialization
and.w #MSTPAO0:16, r0 ™ |processing.
mov.w 10, @MSTPCRAV

Y

_;igoto vsta_knl

Figure2.9 HI11000/4 CPU Initialization Routine (H8SX/1650)

Rev. 3.00 Jan. 12,2005 Page 137 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

221 FAQsabout CPU Initialization Routine

This section answers questions about CPU initialization routine which are frequently asked by
users of the HI series OS.

FAQ Contents:

(1) Transferring PrOgramsccceeeieeeeieeieeiesestesestestes e eaesaesae s e sreste s e esee e essesseseessesaesnesnes 139
(2) Defining Initial Stack POINLENcviiiiiricree s 142
(3) Hang-up after INitialiZation..........cccceeieeeeeiesece e e 143

Rev. 3.00 Jan. 12, 2005 Page 138 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(1) Transferring Programs

Classification: CPU initialization routine

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Please explain how to transfer all sectionsfrom ROM to RAM by using the ROM support function
(ROM to RAM mappedsections in the Optlinker).

Answer

To transfer P_xxx sections (code sections) from ROM to RAM and execute them in RAM, the
section initialization processing must be done in the CPU initialization routine, that is, the P_xxx
section contents must be copied to the R sections.

B_xxx sections should be placed in RAM; they do not need to be placed in ROM first and then
transferred to RAM.

When the ROM support function is used, they are transferred to RAM and execution can be
started with the kernel initialization by simply issuing vsta_knl in the CPU initialization routine.

For details on program transfer, refer to the following descriptions in the compiler application
notes.

e Application note for SuperH™ RISC engine Family C/C++ Compiler Package
Q&A: Transfer to RAM and Execution of a Program

e Application note for H8S, H8/300 Series C/C++ Compiler Package
Q&A: How to Run Programsin RAM

The following shows an example of program transfer in the SH7770.

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 139 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

(Continued from previous page)

Answer

AR KKK KKK K KKK KRR KKK KRR KK KRR K kKKK KRRk KKK Kk R KKKk kA KKKk kK

/* HI17750/4 CPU initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.1.00 */

KRR KK KK kK kKK kKK kKK kKK kKKK kKK kKK KKK kKK kKK kKKK kA Kk KK KR K KR KR KK KKK IR KKk KKk
KR KKK KKK KKK KA KKK KRR A KKK R A A KKK I A A KKK IR A A KR KA KK I AR A KA KA KK KA

/* FILE =7770_cpuini.c; */
/* CPU type = SH7770 */
/***/
#include <machine.h>

#include ‘"itron.h"

#include "kernel.h"

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

Remove comment characters (/* and */) to call

void hi_cpuini(void) the section initialization processing.

/¥ ER ercd; */

/*** Initialize Hardware Environment **%,
/* ercd = vini_cac((ATR)(TCAC_IC [ABLE | TCAC_OC_ENABLE | TCAC_P1_CB)); */

/¥** |nitialize Software Environgaent ***/
e _INITSCTO;. % 2
vsta_knl(); /* Start kernel */

/*_Call section-initialize routine_._*/

Figure2.10 Definition in CPU Initialization Routine

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 140 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(Continued from previous page)

Answer

KA KKk KKK Kk kKKK KKk KKKk kKKK k kKKK Kk k KKKk k kKK ok k kR Kk k kR KKKk [

/* HI7750/4 section initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.1.00 */

/**/
/**/
/* FILE = 7770_initsct.c ; */
/**/
#include <machine.h>

#include ‘itron.h

extern int *B_BGN, *B_END, *D_BGN, *D_END, *D_ROM;
extern void _INITSCT(void);

#pragma section _hicpuini

/**/
/* NAME =_INITSCT ; */
/* FUNCTION = Section Initialize routine ; */

R KKk k KKKk kKKK KKKk KKK KKk kKA Kk k kKKK Kk k kKK Kk k KKKk k kR Kk k ok kKKK Kk [

void _INITSCT(void)

register int *p, *q;

for(p = B_BGN; p<B_END; p++) /* 0 clear B-section */
*p=0;

for(p = D_BGN, q = D_ROM; p<D_END; p++, g++) /* Copy D-section -> R-section */
*p = *q;

Figure2.11 INITSCT() Processing

Rev. 3.00 Jan. 12,2005 Page 141 of 362

RENESAS

REJ05B0364-0300

Section 2 Application Program Creation

(2) Defining Initial Stack Pointer

Classification: CPU initialization routine

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Is the stack pointer defined in the project file used for system creation atemporary stack pointer
used until the kernel starts execution?

Answer

This stack pointer is used until the kernel starts execution, that is, it is used by the CPU
initialization routine.

The specified stack area must be set as accessible when the CPU initialization routine is initiated.
Before the stack pointer is specified by the CPU initiaization routine, the stack area must be
enabled (necessary settings must be made in the bus state controller (BSC) to enable external
memory such as SDRAM or SRAM).

In kernel initialization processing initiated after the CPU initialization routine is completed, the
stack pointer is switched to point to the kernel stack allocated through the configurator.

Rev. 3.00 Jan. 12, 2005 Page 142 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(3) Hang-up after Initialization

Classification: CPU initialization routine

Question

HI17000/4

HI7700/4

HI7750/4

HI12000/3

HI11000/4

Isit possible that execution will hang up during CPU initialization?

Answer

After the CPU initialization routine processing, the kernel initialization processing is called, but
after the kernel initialization processing, execution does not return to the CPU initialization

routine.

Control is passed to the initial start task after the kernel initialization processing.

Therefore, if execution hangs up without control being passed to theinitia start task, any of the
following may be the cause; check the system for each possibility.

e The stack area used during kernel initialization isinsufficient, and another areais overwritten

and damaged.
e TheRAM areaused during kernel initialization cannot be accessed.

e Thetarget board generates anillega interrupt or an undefined exception.

e Initially defined information isincorrect, and an error occursin kernel initialization.

For an overview of the processing after the CPU initialization routine isinitiated, refer to section
2.1, Overview of Processing from Reset to Task Initiation in this application note.

RENESAS

Rev. 3.00 Jan. 12,2005 Page 143 of 362
REJ05B0364-0300

Section 2 Application Program Creation

2.3 Overview of Kernel Initialization Processing
Thekerndl initialization processing includes the following.

e Switching to the kernel stack pointer

e Creating and initializing the kernel management areas (management tables)
e Creating and initializing the initially defined objects

e Cadling the system initialization routine

The kernel initialization processing creates and initializes the necessary information for kernel
operation.

231 Initialization Routine
Theinitiaization routine can be created as a C-language function.

Figure 2.12 shows a sample of the initialization routine code.

#include "itron.h"

#include "kernel.h" } ﬁzD—' Includes standard header files.
#include "kernel_id.h"

void inirtn(VP_INT exinf)
{

/* Initialization routine processing */

}

Figure2.12 Samplelnitialization Routine Code
Theinitialization routine must be created in accordance with the application programs.

Refer to the provided sample initialization routine (timer initialization routine) and create the
routine in accordance with the application programs used.

Rev. 3.00 Jan. 12, 2005 Page 144 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

232 Shifting to Multitask Environment

After kernel initialization processing is completed, the dispatcher isinitiated. The dispatcher
schedules tasks as follows.

o Whentasksare READY
The dispatcher assigns the CPU to the task which has the highest priority among the READY
tasks (the task which has the highest priority level and which received an initiation request first
among the tasks having the same priority level).

e When no tasksare READY
The dispatcher passes control to system idling processing, which causes the system to enter the
idle state (SUSPENDED state) until atask entersthe READY state (initiated).

Rev. 3.00 Jan. 12,2005 Page 145 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

233 FAQ about Kernél Initialization Processing

This section answers a question about kernel initialization processing which is frequently asked by
users of the HI series OS.

FAQ Contents:

(1) Initializing Kernel WOrK ATEa.........ccvieeiciesiece sttt st e e resre e 147

Rev. 3.00 Jan. 12, 2005 Page 146 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(1) Initializing Kernel Work Area

Classification: Kernel initialization processing

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Should the kernel work area beinitialized (cleared to O) in the CPU initialization routine?

Answer
The kernel work area does not need to be initialized in the CPU initialization routine.

For the kernel work area (B_hiwrk section area), the kernel initialization processing creates and
initializes the necessary information for kernel operation.

Rev. 3.00 Jan. 12,2005 Page 147 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

24 Overview of System Idling Processing

When no task should be executed (no task is READY), the kernel enters the system idle state (to
be more specific, interrupt masks are canceled and an infinite loop is entered).

241 System Idling Processing Using SLEEP Instruction
(1) HI7000/4 Series

To use the power-down mode of the microcomputer in the system idling processing, create a task
of the lowest priority level; in that task, make the necessary settings and execute the SLEEP
instruction.

Figure 2.13 shows a sample code.

#include "itron.h"

#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

#pragma inline_asm(sleep) =m— | Uses #pragma inline_asm to execute a
static void sleep(void) SLEEP instruction.
{

sleep

}

Specifies #pragma noregsave because the
#pragma noregsave(ldleTask) ~&I—— registers do not need to be saved when a
task is initiated.

void IdleTask(VP_INT exinf)
{

while(1){
/* Make necessary settings in SBYCR. */
sleep();

}

}

Figure2.13 System Idling Processing Using SLEEP I nstruction (HI 7000/4 Series)

Rev. 3.00 Jan. 12, 2005 Page 148 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(2) HI12000/3

Figure 2.14 shows the system idling processing provided as a samplefile.

R R T T

;* end of specifications ;

R R

;* specifications ; *
;*name =_H_SYSTEM_IDLE : HI2000/3 SYSTEM IDLING DEFINE *
;* function = ; *
;¥ notes = ; *
;* date =99/02/22 ; *
;¥ author = Hitachi, Ltd. ; *
;* attribute = public ; *
;¥ class = system ; *
;* linkage = ; *
Finput = ; *
;¥ output = ; *

*

*

"H_SYSTEM_IDLE:
bra $;:forever loop

sleep ;:sleep define
bra _H_SYSTEM_IDLE:8 ;;branch _H_SYSTEM_IDLE

’

Figure2.14 System ldling Processing Using SLEEP I nstruction (HI2000/3)

Rev. 3.00 Jan. 12,2005 Page 149 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

(3) HI1000/4

Figure 2.15 shows the system idling processing provided as a samplefile.

ckkkkhkkhkhkhkhkhhhkhkhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhkhhhhhhhhhhkhkhhkhhhhhkhhhhkhkhhhkhrrhk
*

HI1000/4 Version (UITRON V4.0)

HI1000/4 kernel idle routine

CRTETETRT

%
%
%
%

Copyright (C) 1998, 2003 Renesas Technology Corp. All right reserved

* ok ok kO

chkkkkhkhkhhkhkhhhhkhkhhkhkhhhhhhhhhhkhhkhkhhhhhhhhkhhkhhkhhdhhhhhhkhkhkhhkhhhhhkrhhhkkhkhhkhhhhk
.program _1650idle
.heading "### 1650idle.src : kernel idle routine ###"
.section P_hiidle, code, align = 2

Y .export _KERNEL_H_SYSTEM_IDLE

;***
; *specifications ;

; *name _KERNEL_H_SYSTEM_IDLE : HI1000/4 kernel idle routine
; *function
; *notes

; *input

; *output

; *end of specifications ;
;***
_KERNEL_H_SYSTEM_IDLE:

; bra $;.forever loop

,

* o ok ok Ok b

sleep ;:sleep define
bra _KERNEL_H_SYSTEM_IDLE:8 ;:branch _KERNEL_H_SYSTEM_IDLE

,
kkkkkkkkkkkkkkkkkkkkkkkhkkkdkkkkkkkkkkokk -

' .end; of 1650idle.src

Figure2.15 System Idling Processing Using SLEEP I nstruction (H11000/4)

Rev. 3.00 Jan. 12, 2005 Page 150 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

242 FAQsabout System Idling Processing

This section answers questions about system idling processing which are frequently asked by users
of the HI series OS.

FAQ Contents:
(1) Return from [dI@ SEALE........ccuecieieceieeeee s sttt sr e resne e 152
(2) SLEEP Instruction Execution inthe ldle State ..o 153

Rev. 3.00 Jan. 12,2005 Page 151 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

(1) Returnfrom ldle State

Classification: System idling processing

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3

HI11000/4

The kernel remainsin the idle state after dlp_tsk is executed. What could cause this?

Answer
This may be caused by any of the following.

e Thetask that issued slp_tsk cannot be made READY .

— Thereis no task to wake up the task that issued slp_tsk.

— Thetask to wake up the task that issued dp_tsk isnot initiated.

— Theinterrupt handler to wake up the task that issued slp_tsk is not initiated.
e Thereisno other task that should be executed than the task that issued slp_tsk.

The kernel enters the system idle state when no task isin the READY state.

Create atask or interrupt handler to wake up the task that issued slp_tsk. Thiswill cause execution

to return from the system idle state.

Rev. 3.00 Jan. 12, 2005 Page 152 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(2) SLEEP Instruction Execution in theldle State

Classification: System idling processing

Question

HI17000/4 HI7700/4

HI7750/4 HI12000/3 HI11000/4

When the kernel detects the system idle state, it enters the sleep state by executing the SLEEP
instruction. Please explain in detail this OS processing.

Answer

The kernel simply executes a SLEEP instruction.

The kernel does not control SBY CR. It must be controlled through the application when a SLEEP

instruction is executed.

RENESAS

Rev. 3.00 Jan. 12,2005 Page 153 of 362
REJ05B0364-0300

Section 2 Application Program Creation

25 Overview of System Termination Processing

If an abnormal state is found in the system, the system termination processing isinitiated. The
following isalist of the causes of system termination (system down).

e The system termination processing is forcibly called from an application program
e Anerror or conflict isfound in the initially-defined object information

e Anerror is detected within the kernel

e Anundefined interrupt or exception is detected

The system termination processing must be prepared as an application program by the user. Refer
to the provided sample file and create the program in accordance with the application programs.

Variousitems of error information are passed to the system termination processing. At debugging,
the error information passed through parameters when an abnormal state is found in the system
can be checked by specifying breakpoints through the emulator or the I CE; thisis useful for
system error anaysis.

For details on the parameters passed to the system termination processing, refer to the user's
manual of the HI series OS used or section 5, Debugging, in this application note.

Rev. 3.00 Jan. 12, 2005 Page 154 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

251 Sample System Termination Processing
(1) HI7000/4

Figure 2.16 shows the system termination processing provided as a samplefile.

KKKk KKKk kKKK Kk k KKK Kk ok kKKK ko kKK ok ok kR Rk ok kK ko k ok kR k kK Kk k ok

* H17000/4 System down routine */
* Copyright (c) Hitachi, Ltd. 2000. */
1* Licensed Material of Hitachi, Ltd. */
/* HI7000/4(HS0700ITI41SR) V1.0 */

R KKK KKK kKK kAR kKK KKK K KKK KKK KA KKK KA AR KA K KA A K KKK KKK KKK KKK KKK KK KKK KA KK, [
KKK KK kKK kKK kKK kKK kKK kK kKK kKK kK ok kK kKK kK kK k Kk k KKk KKk kKK kKK k kA Kk ok [

/* FILE = 7604_sysdwn.c ; */
/**/
#include <machine.h>

#include ‘"itron.h"

#include "kernel.h"

#include "kernel_id.h"

#pragma section _hisysdwn
/* #pragma interrupt (_kernel_sysdwn) */

/**/

/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/***~k*******'k~k*******'k*'k**********'k~k***/
void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /*system down type */
/* type >= 1 : system down of user program */
/* type == 0 :initial information error */
/* type == -1 : context error of ext_tsk */
/* type == -2 : context error of exd_tsk */
/* type == -16: undefined interrupt / exception */
ER ercd; /* error code */
/* type >= 0 : error code of user program */
/* type == 0 : error code of initial information */
/* type == -1 : error code of ext_tsk */
/* type == -2 : error code of exd_tsk */
/* type == -16: interrupt vector number */
VW inf1; /* information-1 */
/* type >= 0 : information of user program */
/* type == 0 : indicator of initial information error */
/* type == -1 : address of ext_tsk call */
/* type == -2 : address of exd_tsk call */
/* type == -16: address of interrupt occurrence */
VW inf2; /* information-2 */
/* type >= 0 : information of user program */
/* type == 0 : number of error initial information */
/* type == -16: SR of interrupt occurrence */
set_imask(SR_IMS15); /* mask all interrupt */
while(TRUE); /* endless loop */

Figure2.16 System Termination Processing (HI7000/4)

Rev. 3.00 Jan. 12,2005 Page 155 of 362

RENESAS REJ05B0364-0300

Section 2 Application Program Creation

(2) HI7700/4 and HI17750/4

Figure 2.17 shows the system termination processing provided as a samplefile.

kKKK K kKKK KKk KKK Kk k kKKK kKRR ok k kR K kR kKK Kk kR Kk kKK Kk ok ok

* HI7700/4 System down routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7700/4(HS0770ITI41SR) V1.0 */

/**/
/**/
/* FILE =7708_sysdwn.c ; */
/'k***~k*********************************/
#include <machine.h>

#include ‘"itron.h"

#include "kernel.h"

#include "kernel_id.h"

KKk KKK Kk kKKK Kk kKKK Kk kKKK ok ok KKKk ok ok kR Kk ok kK k kK k kK Kk k ok

/* environment data */
/**/
#define MD_BIT 0x40000000 /* SR.MD bit */

#pragma section _hisysdwn
/*#pragma interrupt(_kernel_sysdwn) */

[KKK KA KKK kKK kA kKKK kKK KKK kKK KKK K kKK Kk KK kKKK kKK KKK KR KK KA K KKK KKK KKK KA KKk [

/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/**/
void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /* system down type */
/* type >= 1 : system down of user program */
/* type == 0 : initial information error */
/* type == -1 : context error of ext_tsk */
/* type == -2 : context error of exd_tsk */
/* type == -16: undefined interrupt/exception */
ER ercd; /* error code */
/* type >= 0 : error code of user program */
/* type == 0 : error code of initial information */
/* type == -1 : error code of ext_tsk */
/* type == -2 : error code of exd_tsk */
/* type == -16: interrupt vector number */
VW inf1; /* information-1 */
/* type >= 0 : information of user program */
/* type == 0 : indicator of initial information error */
/* type == -1 : address of ext_tsk call */
/* type == -2 : address of exd_tsk call */
/* type == -16: address of interrupt occurrence */
VW inf2; /* information-2 */
/* type >= 0 : information of user program */
/* type == 0 : number of error initial information */
/* type == -16: SR of interrupt occurrence */
{
set_cr(MD_BIT | (SR_IMS15 << 4)); /* mask all interrupt */
while(TRUE); /* endless loop */

Figure2.17 System Termination Processing (HI7700/4 and HI7750/4)

Rev. 3.00 Jan. 12, 2005 Page 156 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(3) HI12000/3

Figure 2.18 shows the system termination processing provided as a samplefile.

B R R T

;* specifications ; *
;*name =_HIPRG_ABNOML : abnormal quit handler ; *
;* function = ; *
;¥ notes = ; *
;* date =99/02/22 ; *
;* author = Hitachi, Ltd. ; *
;* attribute = public ; *
;¥ class = system ; *
;* linkage = ; *
Finput = ; *
;¥ output = ; *

*

;* end of specifications ;
;***
_HIPRG_ABNOML:

orc #HIDEF_IMASK_CCR:8, ccr ;:interrupt mask for CCR register

orc #HIDEF_IMASK_EXR:8, exr ;:interrupt mask for EXR register

bra $;:forever loop

Figure2.18 System Termination Processing (H12000/3)
(4 HI1000/4

Figure 2.19 shows the system termination processing provided as a samplefile.

Rk

* NAME = vsys_dwn ;
* FILE =vsys_dwn.src ;
;* FUNC = System down routine ;
;* NOTE = *:
* INPU = none : i
* OUTP = none *:

**

.section P_hisysdwn, code, align = 2
.export _vsys_dwn
.export _ivsys_dwn
_vsys_dwn:
_ivsys_dwn:
bra _vsys_dwn:8
rts

.end; of vsys_dwn.src

R

*

Figure2.19 System Termination Processing (H11000/4)

Rev. 3.00 Jan. 12,2005 Page 157 of 362

RENESAS

REJ05B0364-0300

Section 2 Application Program Creation

252 FAQ about System Termination Processing

This section answers a question about system termination processing which is frequently asked by
users of the HI series OS.

FAQ Contents:

1) SyStEM-DOWN CAUSEScciiteieicieiieetieeetetesee e stestesse e esaeaetesrestesresresseeneeneeseeeseestenrenns 159
(

Rev. 3.00 Jan. 12, 2005 Page 158 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(1)) System-Down Causes

Classification: System termination processing

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

The system goes down after initialization processing. Please explain how to determine the cause of
this.

Answer
Thefollowing isalist of the causes of system down.

e The system termination processing is forcibly called from an application program
e Anerror or conflict isfound in the initially-defined object information

e Anerror is detected within the kernel

e Anundefined interrupt or exception is detected

Set a breakpoint to the beginning of the system termination processing to obtain parameters at
system-down to analyze the cause of this.

For details on the parameters passed to the system termination processing, refer to the user's
manual of the HI series OS used or section 5, Debugging, in this application note.

Rev. 3.00 Jan. 12,2005 Page 159 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

2.6 Application Program Types
Table 2.2 application programs are necessary to develop a system by using the HI series OS.

Table2.2 Application Program Typesand Necessity

Type Necessity Remarks
Task Always

Interrupt handler Always

CPU initialization routine Always

System termination processing routine Always

System idling processing routine Always
Initialization routine Optional

Timer interrupt routine *1

(including timer initialization routine)

Task exception processing routine Optional *2
Extended service call routine Optional *3
CPU exception handler Optional *2
Cyclic handler Optional

Alarm hander Optional *2
Overrun handler Optional *2

Always: Must always be prepared.

Optional: Must be prepared when necessary.

Notes: 1. Not necessary when the system does not use the time management function.
2. Supported by the HI7000/4 series; not supported by the HI2000/3 or HI1000/4.
3. Supported by the HI7000/4 and HI1000/4 series; not supported by the HI2000/3.

Table 2.3 shows the relationships among these application programs, the system state, and the
service call types that can be issued.

Rev. 3.00 Jan. 12, 2005 Page 160 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

Table2.3 Application Programsand System State

Service Call Type that Can be

Application Program System State Issued

Task Task context Service calls for task context
Interrupt handler Non-task context Service calls for non-task context
Initialization routine Non-task context Service calls for non-task context
Task exception processing routine Task context Service calls for task context
Extended service call routine Issuing context*' Issuing context*'

CPU exception handler *2 *3

Cyclic handler Non-task context Service calls for non-task context
Alarm hander Non-task context Service calls for non-task context
Overrun handler Non-task context Service calls for non-task context

Notes: 1. The context when the service call is issued is inherited.

2. The issuing context in the HI7000/4 series and the non-task context in the HI1000/4.
The CPU exception handler is not supported by the HI2000/3.

3. For details on the service calls that can be issued, refer to the user's manual for the HI
series OS.
26.1 Task Creation Example

A task should be created as a C-language function. Read the following notes before terminating a
task.

Table2.4 ServiceCall for Task Termination and Notes

HI Series OS Service Call Notes

HI7000/4 series ext_tsk() or exd_tsk() The task terminating service call can be omitted (the
service call ext_tsk() service call is assumed when omitted).

HI2000/3 ext_tsk() system call The task terminating service call must not be omitted

(a task must always be terminated by an ext_tsk()
system call). When execution is returned from the
task to its caller, correct system operation cannot be
guaranteed.

HI1000/4 ext_tsk() service call The task terminating service call can be omitted (the
ext_tsk() service call is assumed when omitted).

For the value of each context register when atask isinitiated, refer to the user's manual for the Hi
series OS used.

Rev. 3.00 Jan. 12,2005 Page 161 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

Figure 2.20 shows a sample of the code for atask.

#include "itron.h"
#include "kernel.h"

Includes standard header files.

#include "kernel_id.h"

#pragma noregsave(Task) &— |

Specifies #pragma noregsave because the
registers do not need to be saved when the
task is initiated.

void Task(VP_INT exinf) <,
{ \

/* Task processing */

ext_tsk();

When the task is initiated by an act_tsk() service call,
the exinf value defined at task registration is passed

through a parameter.

When the task is initiated by a sta_tsk() service call,
the stacd value specified by the service call is

passed through a parameter.

/* exd_tsk(); */

—

Defines termination of task processing.

}

Note:

Figure2.20 Sample Task Code

series OS used.

26.2

The following shows a sample of the interrupt handler code for each HI series OS.

@

For the standard header files that should be included, refer to the user's manual for the HI

Interrupt Handler Creation Example

Sample Interrupt Handler Code for H17000/4 Series

Figure 2.21 shows a sample of an interrupt handler code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void Inh(void)
{

/* Interrupt handler processing */

G ———————]

Includes standard header files.

function.

Writes an interrupt handler as a void-type

Notes: 1.

Figure2.21 Samplelnterrupt Handler Code (H17000/4 Series)

For the standard header files that should be included, refer to the user's manual of the

HI series OS used.

When using a coprocessor, all of its registers must be saved and restored in the

interrupt handler.

Rev. 3.00 Jan. 12, 2005 Page 162 of 362

REJ05B0364-0300

RENESAS

Section 2 Application Program Creation

By using IRL interrupts, two interrupt sources of different levels can be assigned to one vector
table. When using IRL interrupts, write the interrupt handler as shown in the following example.

#include "itron.h"
#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

#define |_HILEVEL 15 Zu)—' Defines the higher level. |

void vec071_handler14(void) «_
%),

{ Y
/* IRL14 interrupt processing *7\

} Writes the interrupt processing for each level. |

void vec071_handleri5(void)

/* IRL15 interrupt processing */
}

Writes the interrupt handler to be registered

)) s
void vec071(void) - "= for an interrupt source as a void-type function.

{

if((get_imask()) == |_HILEVEL)
vec071_handler15();

else
vec071_handler14();

}

Figure2.22 Sampleof Interrupt Handler Code when Using IRL Interrupts (HI7000/4
Series)

Note the following when using the direct interrupt handler in the HI7000/4.

e Theinterrupt handler isinitiated without involving kernel management when an interrupt
occurs.

e Thedirect interrupt handler cannot issue service calls.

Figure 2.23 shows a sample of adirect interrupt handler code.

Rev. 3.00 Jan. 12,2005 Page 163 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

#include "itron.h"
#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

Defines the stack size for the

N interrupt handler.
#define stksz 512~

VW stk[stksz / sizeof(VW)]; “&l—— ﬁ]l:gﬁitisrg: dT::Ck area for the
static const VP p_stk = (VP) & stk[stksz / sizeoiLVW)]; P -
=S)

Defines the stack pointer for the
interrupt handler.

#pragma interrupt(Directinh(sp = p_stk, tn = 25))
/* #pragma interrupt(high(sp = p_stk)) */

e
, . &
/* #pragma interrupt(nmi()) */ ’ \Z\ Declares the interrupt handler
as an interrupt function by using

#pragma interrupt.
void Directlnh(void) T prag P

{ \ Writes the interrupt handler as a

/* Interrupt handler processing */ void-type function.

Figure2.23 SampleDirect Interrupt Handler Code (H17000/4)

Note: * Specify the following in #pragma interrupt.

e Stack switch setting (sp=)
Stacks must not be switched in the NMI interrupt handler.

e Trap return setting (tn = 25)
Specify tn = 25 for the interrupt handler that is lower than the kernel interrupt
mask level. The interrupt handler (including NMI) that is higher than the kernel
interrupt mask level must be terminated by the RTE instruction, and the trap return
setting must not be made.

The direct interrupt handler is not supported by the HI7700/4 or HI7750/4.

Rev. 3.00 Jan. 12, 2005 Page 164 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(2) Samplelnterrupt Handler Code for HI2000/3 and HI1000/4

The interrupt handler must save and restore the register values when an interrupt occurs. Create
the interrupt handler through the following procedure.

Table25 Interrupt Handler Creation Procedure

Processing Description

Saving registers used in the e Saves stack pointer.

interrupt handler The stack pointer must be modified to point to the stack area

dedicated to the interrupt handler (this processing can be
omitted when the interrupt handler does not use a stack).

e Saves register contents.

Interrupt processing Processing performed in the interrupt handler

Restoring registers used inthe e Restores register contents.

interrupt handler The stack pointer must be modified (this processing can be

omitted when the interrupt handler does not use a stack).

Terminating the interrupt Calls the ret_int routine when the interrupt level is lower than the
handler kernel interrupt mask level or executes the RTE instruction when
the interrupt level is higher than the kernel interrupt mask level.

Theinterrupt handler should be created by using the interrupt function creation directive (#pragma
interrupt) of the C compiler. Figure 2.24 shows a sample of an interrupt handler code.

Rev. 3.00 Jan. 12,2005 Page 165 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

*1

#include "hi2000.h" =] I Includes standard header files.

Defines the stack size for the

:%)/ interrupt handler.
#define stksz 512 ~

VW stk[stksz / sizeof(VW)];, &b Allocates the stack area for the
static const VP p_stk = (VP) & stk[stksz / sizeof(VW)]; <. interrupt handler.

D

=2

Defines the stack pointer for the

#pragma interrupt(inthdr(sp = p_stk, tn = 25)) interrupt handler.

/* #pragma interrupt(high(sp = p_stk)) */
/* #pragma interrupt(nmi()) */

I

EY)! *2
\ Declares the interrupt handler
as an interrupt function by

void inthdr(void) = using #pragma interrupt.

=
{ \
Writes the interrupt handler as a

% H *
/* Interrupt handler processing */ void-type function.

Figure2.24 Samplelnterrupt Handler Code (H12000/3)

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.
2. Stack switching and interrupt function termination must be specified in #pragma
interrupt. For details, refer to the user's manual of the HI series OS used.

2.6.3 CPU Initialization Routine Creation Example

The HI2000/3 and HI11000/4 provide sample files written in assembly language. To use a CPU
initialization routine written in C language, acall for the C-language CPU initialization routine
should be added to the assembly-language CPU initialization routine.

The following shows sample modifications of the CPU initialization routine written in assembly
language and samples of the CPU initialization routine code written in C language for the
H12000/3 and H11000/4, respectively.

Rev. 3.00 Jan. 12, 2005 Page 166 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

H12000/3
_H_2S_CPUINI:
mov.l #CPUINI_SP:32, sp ;:get CPUINI_SP
mov.b @SYSCR:32, rOL ;:get SYSCR

and.b #low~(INTMO|INTM1):8, rOL ;:clear interrupt mode bit
orb #low (INTMO|INTM1):8, rOL ;:set interrupt mode = 3

mov.b rOL, @SYSCR:32 ;:set SYSCR

mov.b @MSTPCRH:32, rOL ;:get MSTPCRH

and.b #low TPU:8, rOL ;:set TPU bit off

mov.b rOL, @ MSTPCRH:32 ;:set MSTPCRH

.aifdef DX

jsr @_HI_DEAMON_INI ;:call to init deamon code

.aendi

bsr @ _h_cpuini_c - ;:call to C-language initialize routine
N

jmp @_H_2S_INIT ;:goto HI2000/3 initialize module

Calls the C-language CPU initialization routine.
After the assembly-language CPU initialization
routine is completed, call the C-language CPU
initialization routine.

Note: This example assumes the h_cpuini_c is the name of the C-language CPU initialization routine.

Figure2.25 Sample Madification of Assembly-L anguage CPU Initialization Routine

(H12000/3)

void h_cpuini_c(void)

{
/*** |nitialize Hardware Environment ***/
/*** |nitialize Software Environment ***/

/I _INITSCT(); /* Call section-initialize routine */

}

Figure2.26 Sample C-Language CPU Initialization Routine Code (HI2000/3)

Rev. 3.00 Jan. 12,2005 Page 167 of 362

RENESAS REJ05B0364-0300

Section 2 Application Program Creation

(2) HI11000/4

_KERNEL_H_CPUINI:
mov.l #_KERNEL_HI_OS_SP:32, sp ;:SP <- OS stack
mov.l #VBR_ADR, er0 i
Idc.1 er0, vbr ;:set VBR address

mov.l #h'ffffff00, er0 ;iinitial SBR
Idc.1 er0, sbr ;:initial SBR

; mov.w #h'00ff, @ ABWCR:32 ;:set ABWCR

; mov.w #h'0000, @ ASTCR:32 ;:set ASTCR

; mov.w #h'0000, @ WTCRA:32 ;:set WTCRA

; mov.w #h'0000, @ WTCRB:32 ;:set WTCRB
mov.b #INTM1, rOL ;:set interrupt mode 2
mov.b rOL, @INTCR:32 ;:set INTCR
mov.w @MSTPCRA:32, r0 ;:get MSTPCRA
and.w #MSTPAOQ:16, r0 ;:set TPU bit off
mov.w 0, @ ISTPCRA:32 ;:set MSTPCRA
imp @_h_cpuini 5, ;:goto _h_cpuini

Calls the C-language CPU initialization routine.
After the assembly-language CPU initialization routine is
completed, call the C-language CPU initialization routine.

Note: This example assumes that h_cpuini is the name of the C-language CPU initialization routine.

Figure2.27 Sample Moadification of Assembly-L anguage CPU Initialization Routine
(H11000/4)

void h_cpuini(void)

{
/*** Initialize Hardware Environment ***/
[*** |nitialize Software Environment ***/

/I _INITSCT(); /* Call section-initialize routine */

i vsta knl(); . [Startkerel /A i

Calls the kernel initialization processing.

Be sure to call the kernel initialization processing
after the CPU initialization processing is
completed.

Figure2.28 Sample C-Language CPU Initialization Routine Code (H11000/4)

Refer also to section 2.2, Overview of CPU Initialization Routine.

Rev. 3.00 Jan. 12, 2005 Page 168 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

264 System Termination Processing Creation Example

The HI2000/3 and HI11000/4 provide sample files written in assembly language. To write the
system termination processing in C language, refer to the following sample code.

*1

#include "hi2000.h" =57 I Includes standard header files.
*2 =) Writes the system termination processing as
void HIPRG_ABNOML(void) a void-type function.

{

set_imask_ccr(0xC0); /* All interrupts masked */
set_imask_exr(0x07); /* All interrupts masked */
while(1); /* endless loop */

Figure2.29 Sample System Termination Processing Code (H12000/3)

Notes. 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

2. Thefunction must be named HIPRG_ABNOML in the HI2000/3 or vsys dwn in the
HI1000/4 because the kernel refers to the function by these respective names.

Rev. 3.00 Jan. 12,2005 Page 169 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

2.6.5 System ldling Routine Creation Example

The HI2000/3 and HI11000/4 provide sample files written in assembly language. To write the
system idling routine in C language, refer to the following sample code.

*1

#include "hi2000.h" =57 I Includes standard header files.
*2 =3 Writes the system idling routine as a void-type
void HIPRG_IDLE(void) function.

{

set_imask_ccr(0x00); /* All interrupt masks canceled */
set_imask_exr(0x00); /* All interrupt masks canceled */
while(1); /* endless loop */

Figure2.30 Sample System Idling Routine Code (H12000/3)

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.
2. Thefunction must be named HIPRG_IDLE in the HI2000/3 or
KERNEL_H_SYSTEM_IDLE in the HI1000/4 because the kernel refersto the
function by these respective names.

Rev. 3.00 Jan. 12, 2005 Page 170 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

2.6.6 Initialization Routine Creation Example

The HI2000/3 and HI11000/4 provide sample files written in assembly language. To write the
initialization routine in C language, refer to the following sample code.

*1

#include "hi2000.h" '*PM—| Includes standard header files. |

*2
void inirtn(VP_INT exinf)
{

/* Initialization routine processing */

}

Figure2.31 SampleInitialization Routine Code

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.
2. Inthe HI2000/3, the extended information (exinf) is not passed to the initialization
routine; do not create a code for receiving this information (the HI2000/3 does not
provide a parameter for thisinformation).

Rev. 3.00 Jan. 12,2005 Page 171 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

2.6.7 Timer Interrupt Routine Creation Example

Figure 2.32 shows a sample of atimer interrupt routine code.

*1

#include "itron.h" |
#include "kernel.h" =), 1 Includes standard header files.
*2
void _kernel_tmrint(void) "B ————————1 Writes the timer interrupt routine as a void-type
{ function.

/* Timer interrupt routine processing */

Figure2.32 Sample Timer Interrupt Routine Code

Notes: 1. For the standard header files that should be included, refer to the user's manual of the

HI series OS used.
2. Thefunction must be named as follows because the kernel refers to the function by
these respective names.
HI Series OS Function Name
HI7000/4 series _kernel_tmrint
HI2000/3 Any user-defined name
HI1000/4 _KERNEL_H_TIM

Rev. 3.00 Jan. 12, 2005 Page 172 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

268

Task Exception Processing Routine Creation Example

The task exception processing routine is only supported by the HI7000/4 series OS. Figure 2.33
shows a sample of atask exception processing routine code.

#include "itron.h"

#include "kernel.h" I

Includes standard header files.

#include "kernel_id.h"

#pragma noregsave(Texrtn) <& oo |

Specifies #pragma noregsave because the task|
exception processing routine does not need to
save register contents when a task is initiated.

void Texrtn(TEXPTN texptn, VP_INT exinf)
{

TS ——Tt

/* Task exception processing routine processing */

Writes the timer interrupt routine as a void-type
function.

The exception source and extended
information are passed through parameters.

Figure2.33 Sample Task Excepti

269

on Processing Routine Code

Extended Service Call Routine Creation Example

The extended service call routine is only supported by the HI7000/4 series OS. Figure 2.34 shows
asample of atask exception processing routine code.

#include "itron.h"
#include "kernel.h"

}%J]

ER_UINT Svertn(VP_INT par1, VP_INT par2) =& j——
{

#include "kernel_id.h"

I Includes standard header files.

The parameter values specified by cal_svc are
passed to the extended service call routine.
Specify the same number of parameters as

/* Extended service call routine processing */

return E_OK;

those specified by cal_svc.

=3

I Sends a return value to the caller.

Figure2.34 Sample Extended Service Call Routine Code

RENESAS

Rev. 3.00 Jan. 12,2005 Page 173 of 362
REJ05B0364-0300

Section 2 Application Program Creation

2.6.10 CPU Exception Handler Creation Example

The CPU exception handler is supported by the HI7000/4 series and HI1000/4. Figure 2.35 shows
asample of the CPU exception handler code.

#include "itron.h"

#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

void cpuexphdr(void) =& Wr'ites the CPQ exlception handler as a
void-type function in the same way as the
interrupt handler.

/* CPU exception handler processing */

Figure2.35 Sample CPU Exception Handler Code

26.11 TimeEvent Handler Creation Example
(1) CyclicHandler Example

(@) Samplecyclic handler codefor the HI 7000/4 series and HI 1000/4

#include "itron.h"

#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

void cychdr(VP_INT exinf) — Writes the cyclic handler as a void-type function
| Ty — ’
{ in the same way as the general interrupt handler.
The exinf value defined at creation is returned
/* Cyclic handler processing */ through a parameter.

}

Figure2.36 Sample Cyclic Handler Code (HI7000/4 Series and HI1000/4)

Rev. 3.00 Jan. 12, 2005 Page 174 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(b) Sample cyclic handler code for the H12000/3

#include "hi2000.h" ’*%D—' Includes standard header files. |

void cychdr(void) ?%JJ—| Writes the cyclic handler as a void-type function. |

#pragma asm
stm.| (er0-er1), @-sp ;: Saves er0 and er1 in the stack.

bsr cychdr_main ;: Calls the main processing.
ldm.| @sp+, (er0-er1) ;: Restores er0 and er1.
rts

#pragma endasm
void cychdr_main(void)

/* Cyclic handler processing */

}

Figure2.37 Sample Cyclic Handler Code (H12000/3)

(2) Alarm Handler Example (Supported Only in the HI 7000/4 Series)

#include "itron.h"
#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

void almhdr(VP_INT exinf) =& Writes the alarm handler as a_void-type function in
{ the same way as the general interrupt handler.

The exinf value defined at creation is returned
through a parameter.

/* Alarm handler processing */

Figure2.38 Sample Alarm Handler Code (Only in HI7000/4 Series)

(3) Overrun Handler Example (Supported Only in the HI 7000/4 Series)

#include "itron.h"
#include "kernel.h" Includes standard header files.
#include "kernel_id.h"

void ovrhdr(ID tskid, VP_INT exinf) % Writes the overrun handler as a void-type function in the
{ same way as the general interrupt handler.

The tskid value of the task that caused initiation of the
overrun handler and the exinf value defined at creation

are returned through parameters.

/* Overrun handler processing */

Figure2.39 Sample Overrun Handler Code (Only in HI7000/4 Series)

Rev. 3.00 Jan. 12,2005 Page 175 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

2.7 Development Proceduresfor Application Programs
A system using the HI series OS can be devel oped though either of two approaches:

(1) The system is newly developed
(2) Programs of an existing system are used

In approach (1), the programs listed in section 2.5, Application Program Types are created, and
integrated into the final form of the system.

As this approach newly creates every application program, optimum programs to embed the HI
series OS can be devel oped.

(2) Dividing the functions in a top-down manner

The functions must be divided as far as possible. This step determines the functions that can be
simultaneously processed in parallel. The divided functions are defined as tasks or interrupt
handlers.

Application system

FunctionB| |Function C Dt‘(‘)"szél\:/”n‘?“r:::nigra

Processing 1||Processing 2”Processing 3| ---------------------------- \/

Figure2.40 Dividing Functionsin a Top-Down Manner

Rev. 3.00 Jan. 12, 2005 Page 176 of 362
REJ05B0364-0300 RENESAS

Section 2 Application Program Creation

(2) Combining tasks (functions) for the same processing after divided
The action to combine the tasks for the same processing is called atask merge (no task merge
is needed for interrupt handlers, because ahandler is defined for each interrupt source). This
step defines the tasks for which functional dependency is eliminated.

| Application system |

- - - Divide functions in a
Function B | | Function C_| | top-down manner

Processing 1 "Processing 2||Processing 3| ---------------------------- \/

[1]

| Merge the same processing tasks and eliminate functional dependency |

Application system

D :A'_> Processing x — Q

— Processing 1

Input Output

1, e
: Ly
Processing 2

Figure2.41 Merging Same Functionsand Eliminating Functional Dependency

After this step, objects of the HI series OS are assigned to the interfaces (synchronization and
communication) between multiple tasks or between atask and an interrupt handler.

Rev. 3.00 Jan. 12,2005 Page 177 of 362
RENESAS REJ05B0364-0300

Section 2 Application Program Creation

Application system

D :,_> Processing x
4

Input

_—><]

Output

Processing 1

| |
A

[>——>

N

Assign objects to interfaces

(

Application system

Task 3
D — Interrupt
A handler
A—} z Task 1

1
N

I

!

JAN

Input Semaphore Output
Event flag Task
| % <
handler ¢
> b P

Mailbox

Figure2.42 Example of ITRON Objects Assigned to Interfaces

These steps embed the HI series OS into the existing product's application programs that do not
include RTOS.

Rev. 3.00 Jan. 12, 2005 Page 178 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Section 3 Configuration

31 Configuration Procedure Outline

The procedure for configuring a system using the HI series OS is described below.

Application

programs
Register in HEW project file

4]

Build

Kernel information (High pzﬁz\r,mance
definition file) Load module
niton ™ Embedded Workshop)

Y

N

Kernel function Workspace provided by HI series OS
library file Already registered when the file is opened
Note: Can be modified as required.

Figure3.1 Configuration Procedure Outline

System configuration is to create, by means of the HEW, aload module from the user-created
application programs, kernel information definition file (setup table or configuration file), and
kernel function library file provided by the HI series OS.

For details of the user-created application programs, refer to section 2.6, Application Program
Types.

For details of the kernel information definition file (setup table or configuration file), refer to
section 3.2, Defining Kernel Environment.

For details of the kernel function library file provided by the HI series OS, refer to the user's
manual of the HI series OS used.

For details of the HEW, refer to the online help of the compiler package used or the user's manual .

Rev. 3.00 Jan. 12,2005 Page 179 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

A system can be configured in the following two modes.

Table3.1 System Configuration Modes

Configuration Mode Overview Supporting OS

Whole linkage*' The kernel, configuration file, and HI7000/4 series,
application programs are linked into a HI12000/3, and HI1000/4
single load module (called a "whole load
module").

Separate linkage** The code portion and data portion of the HI7000/4 series
kernel are linked into separate load
modules.

The code portion of the kernel is called the "kernel load
module", and the linkage unit for the kernel load module is
called the "kernel side".

The data portion of the kernel is called the "kernel environment
load module", and the linkage unit for the kernel environment
load module is called the "kernel environment side".

Notes: 1. The application programs can be included in the whole load module or can be linked
into another load module (called the "application load module").

2. The application programs can be included in the kernel load module or kernel
environment load module, or can be linked into another application load module.

The outlines of whole linkage and separate linkage are shown in figures 3.2 and 3.3, respectively.

Rev. 3.00 Jan. 12, 2005 Page 180 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Kernel function

library file :
« " HEW
ernel information (High-performance i

definition file Embedded Workshop) Taﬂer;::(ﬁ%e

Application :

programs
HEW -
. Application
(High-performance |o§g module
Embedded Workshop)

Figure3.2 WholeLinkage Outline

Rev. 3.00 Jan. 12,2005 Page 181 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Kernel function

library file

HEW

Information
definition file on

kernel side

Kernel L

information
definition file

Information
definition file on
kernel

environment side

Load module on

(High-performance
kernel side

Embedded Workshop)

HEW

Load module on

(High-performance kernel

Application

programs

Embedded Workshop) environment side

HEW

(High-performance
Embedded Workshop)

Application

load module

Notes: 1. The application programs specified to be on the kernel side in the configurator are necessary.
2. The application programs specified to be on the kernel environment side in the configurator are necessary.

Figure3.3 SeparatelLinkage Outline

Rev. 3.00 Jan. 12, 2005 Page 182 of 362
REJ05B0364-0300

RENESAS

Section 3 Configuration

The advantages and disadvantages of separate linkage, compared to whole linkage, are listed
below.

Advantages.

e Since aload module can be created with only the kernel, the load module does not need to be
re-created every time an application file or kernel environment file is changed.

o Even after the kernel load module is saved in ROM, the kernel environment load module can
be re-created by changing configuration parameters, such as the maximum task ID
(CFG_MAXTSKID) without updating the kernel load module.

Disadvantages:

e Sincethekernel references the kernel environment file information during operation, the
address where to locate the kernel environment file information needs be determined in
advance and this address has to be defined at linkage.

e The above address cannot be changed unless the kernel load module is re-linked.

3.2 Defining Kernel Environment
The kernel environment can be defined by two methods: setup table and configurator.

e HI7000/4 seriesand HI1000/4: Kernel environment is defined by the configurator
e HI2000/3: Kernel environment is defined by the setup table

Each definition method is described in the following sections.

321 Definition by Configurator (H17000/4 Series and H11000/4)

Table 3.2 lists the files output from the configurator (kernel environment definition files; hereafter
referred to as the configuration files).

Rev. 3.00 Jan. 12,2005 Page 183 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Table3.2 FilesOutput from Configurator (HI7000/4 Series)

No. File Name Contents Remarks
1 kernel_def_main.h Kernel function definition, such as
embedded service calls
2 kernel_def_inidata.def Object initial definition data on the
kernel load module side
3 kernel_def_vct.inc Vector information (written in assembly HI7000/4 only
language)
4 kernel_cfg_main.h Kernel environment information
definition, such as maximum task ID
5 kernel_cfg_inidata.def Object initial definition data on the
kernel environment load module side
6 kernel_id.h Automatic ID assignment result
corresponding to kernel_cfg_inidata.def
7 kernel_macro.h Header file defining kernel configuration

macro

Table3.3 FilesOutput from Configurator (HI1000/4)

No. File Name

Contents

Remarks

kernel_setup.src

Setup file

2 kernel_id.h

Header file with automatic ID assignment
result

For C language

kernel_id.inc

Header file with automatic ID assignment
result

For assembly language

3 kernel_macro.h

Header file defining kernel configuration
constants

For C language

kernel_macro.inc

Header file defining kernel configuration
constants

For assembly language

kernel_sysini.src

File defining system initialization routine

kernel_vector.src

File defining vector table creation
information

For details of the abovefiles, refer to the HI 7000/4 Series User's Manual or the HI1000/4 User's
Manual for the HI series OS used.

Rev. 3.00 Jan. 12, 2005 Page 184 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

(1) Overview of configurator operations

This section describes the construction and operations of the configurator with HI7000/4 as an
example.

(a) Configurator window
The initiation window of the configurator is shown in figure 3.4.

Figure3.4 Configurator Initiation

Rev. 3.00 Jan. 12, 2005 Page 185 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

The configurator construction is as follows:
o Left side of window: Configuration information view list window
e Right side of window: Configuration information input window

Theinitiation window of the configurator is different for each HI series OS. For details,
refer to the online help of the configurator.

(b) Saving configurator information

After necessary definitions by the configurator are completed, save the registered contents
and create configuration files. [Save] and [Generate] in the configurator header menu
function as shown in table 3.4.

Table3.4 [Save] and [Generate] Contents of Configurator

Button Contents
[Save] Creates a file with extension hcf in the sample folder which
= saves the definitions made by the configurator.
SavE
[Generate] Creates the configuration files based on the definitions made by
the configurator.
Generate

After definitions are modified by the configurator, be sure to perform the following:
— Update the definitions by using [Save].
— Make the configuration files reflect the modifications by using [Generate].

Rev. 3.00 Jan. 12, 2005 Page 186 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(c) Operating configurator definitions
How to operate the definitionsis described below using “Task” in the configuration
information view list window as an example.

Eh

Heres Cpsin)

Wiew nmn =
0 = =]

HIFDA0AConhaunaion il

[e— 2

Caemia] Ewpouion Condi
Eaemig] Ewicirion Fuacta
T b B0 el Fus
CharEvyl faly F L CFR
Sanace Cals Ead e oo
i nup VO Excaphon
rebluhalon Foulng

Semaphons
Cvemnt Flag
D Olpmum
a1l =t
i
feliy s g Do
-z Memony Poo
wanabk—zoe kMemon F
Cherlas Fan o ket
e Haral ar
Cheairun Hamd ar
Eslatded Saraice Cal

ForHsip, press F1

| L
Gersrais | Help
Tk Infomatian
e Tack 0 [CF C_MEXTEADY [tmza
W Stalie Stath Task D [CFO_STETKID) i
Wi Task Priaiy [CF0_WAKTEKPRI) 255
Crmiamic Glick Arpi S 10 _THKETRER 3] D31 3030 Wiy |
List of Gtabc Stacks
Eatk Mami Etach Bl Tack Da which uss T slatk
List of Tagka
¥ | Dbamo Etalis aler croabon | AdErass Fricelly Stach B
al | |

VAT B Tl e v i T 3 el S b il S bosy ereri on of Blakic
Ehaack, dexfl nilion af Espepdion Frocessing am ignomd e hose seent oudpubed o build
il Prech bl safing cosdilar are cme_lke=USE yicr_ b= USE del_lir=L5E

Figure3.5 Task View

The Task View isawindow for inputting various information and creating/del eting tasks.
The contents displayed in the configuration information input window in the Task View are

listed in table 3.5.

RENESAS

Rev. 3.00 Jan. 12,2005 Page 187 of 362

REJ05B0364-0300

Section 3 Configuration

Table3.5 Contentsof Configuration Information Input Window in Task View

Configuration Information
No. Input Window Contents

1 Task Information*' The current definitions of the following items are displayed.

e Maximum task ID

o Maximum task priority

e Maximum task ID using static stack
e Dynamic stack area size

2 List of Static Stacks** The current definitions of the following items relevant to
static stacks are displayed.
e Stack area name
e Stack area size
e Task ID using stack area

3 List of Tasks*? The current definitions of the following items relevant to
tasks are displayed.
e Linkage with kernel library enabled/disabled
e Task ID/task name
e Status after creation
e Task start address
o Initial task priority
e Stack size/area
e Description language
e Coprocessor attribute
e Extended information
e Task exception processing routine definitions
— Start address of task exception processing routine

— Coprocessor attribute of task exception processing
routine

— Description language of task exception processing
routine

Notes: 1. To modify the task information, click the [Modify] button to open the [Modification of
Task Information] dialog box.

2. To modify [List of Static Stacks] or [List of Tasks], open the pop-up menu (displayed by
right-clicking).

[Task Information] in the Task View is modified as shown below.

Rev. 3.00 Jan. 12, 2005 Page 188 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

hModification of Task Information

Max Task D [CFG_MAXTSKID] olTs

[Butomatically sets the Max. ID of Task

Max. D 1023 b

Mazx. Static Stack Task 1D [CFG_STSTEID]

hax. 1D 0 A

Max. Task Priotity [CFG_MAXTSKPRI]

Cancel

=

Mz, Priority 284 A

Total Size of Dynamic Stack Area [CFG_TSKETESL]

[Adtomatically sets the Reguired Size of Task

Total Size 00010000

Ox000000ec

Figure3.6 Modification of Task Information

Rev. 3.00 Jan. 12,2005 Page 189 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Table3.6 Contentsof Task |nformation M odification

No. Item

Displayed Contents

1 Max. Task ID

Maximum value of tasks registered in the system
Setting methods:

e Select [Automatically sets the Max. ID of Task].
The setting of the [Max. ID] box is ignored and the
minimum value is automatically calculated in answer to
the tasks created by the configurator.

e Select from the pull-down menu of the [Max. ID] box.

2 Max. Static Stack Task ID

Maximum task ID among the tasks using the static stack
Setting method:
Select from the pull-down menu of the [Max. ID] box.

Note: If the [OK] button is clicked with a value other than 0
specified, the [Definition of Stack Area] dialog box is
opened.

3 Max. Task Priority

Maximum value of priorities assigned for the tasks
registered in the system

Setting method:
Select from the pull-down menu of the [Max. Priority] box.

4 Total Size of Dynamic Stack
Area

Total size of dynamic stack area
Setting methods:

e Select [Automatically sets the Required Size of Task].
The setting of the [Total Size] box is ignored and the
minimum value is automatically calculated in answer to
the tasks created by the configurator.

e Input the total size of the dynamic stack area in the
[Total Size] box.

Note: The size displayed below the [Total Size] box is

the value calculated from the size used by the
tasks currently registered.

The [Definition of Stack Areg] dialog box is described next.

When setting [Max. Static Stack Task D], if the [OK] button is clicked with a value other
than 0 specified, the [Definition of Stack Area] dialog box in figure 3.7 is opened.

Rev. 3.00 Jan. 12, 2005 Page 190 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

Defintion of Stack Area

Define a ztack area.lf pou want to change a ztack area, click [Edit]. If
wou want o definedzcancel a stack area, click [Define][Cancel].

Lizt of Stack Areas

Stack Mame | Stack Size | EfifE...
_kemel_stetk 000 (00000400
_kemel_ststk 0002 (=00000400 Cancel

Edit

il

< Hack I Hewt » I Cancel |

Figure3.7 Definition of Stack Area

Clicking a stack displayed below [Stack Name] and then clicking the [Edit] button allows
the stack size to be modified. The window for modification is shown in figure 3.8.

Defintion of Stack Area K E |
Stack Mame _kernel_ststk000)74
Stack Size Cancel

Figure3.8 Madification of Static Stack Size

After entering the necessary size for the static stack areain [Stack Size], click the [OK]
button for the modification to take effect.

On completing to set each static stack size, click the [Next >] button to define the task ID
that uses each static stack. The [Task Registration] dialog box where thetask ID isto be
defined is shown in figure 3.9.

Rev. 3.00 Jan. 12,2005 Page 191 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Task Registration

Register a tazk using stack arealf pou want to regizter a tazk, zelect
a task from the list of tagks after a stack area iz chosen and then click
[<< JIF pou want to cancel the registered task, select the tazk and
then click [> 1.

Stack Areas

kernel ststk0007

Begistered Taszks Lizt of T azks

<<|12
>>|

| < Back I et Cancel

Figure3.9 Registration of Task ID to Use Static Stack

Setting Procedure;

1. Select adtatic stack whosetask ID isto be defined from the [Stack Areas] pull-down
menu.

2. Select thetask ID that uses the static stack selected in [Stack Areas] from [List of
Tasks] and click the [<<] button to register it.
Note: Registration can be cleared by selecting atask ID displayed in [Registered

Tasks] and clicking the [>>] button.

3. When using the shared stack function, definition is done by registering more than one
task 1D to use the static stack selected in [Stack Areas].

After registration of the task 1Ds has finished for all static stacks, click the [Next >] button.

Thewindow in figure 3.10 is displayed to complete making settings relevant to static

stacks.

Rev. 3.00 Jan. 12, 2005 Page 192 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Completion of Static Stack Information Definition

Completed the definition of ztatic stack infarmation

< Back

Cancel |

Figure3.10 Completion of Static Stack Information Definition

Clicking the [Finish] button reflects the contents defined in [List of Static Stacks] in the
Task View.

Modifying [List of Tasks] in the Task View is described next.
Modification is performed by selecting an item from the pop-up menu displayed by right-
clicking in [List of Tasks]. The pop-up menu is shown in figure 3.11.

Rev. 3.00 Jan. 12,2005 Page 193 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

B HIF PR aConlgusalion i
Eamel Exacifion Ca
Eamel Exdartion Fun
Time Maneg=meni F
Diabaaygirg Funcion
Sorace Calk Ealact
ImempyCF Excep
Trap Excaption Han
Fredesch Fufciian
Inibiabrenion Routing
Task,

Semaphons

Ewenl Flag

Cimia Queus

Pl bico:

[ET1H

MiaEsage Bular
Fread-ize Memary F
Vermhle-sice Memo
CyehcHander
Al Handkar
Creamun Hencler
Extended Serdioe Cx

Figure3.11 Pop-up Menu

Rev. 3.00 Jan. 12, 2005 Page 194 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Table3.7 Pop-up Menu Contents

No. Menu ltem Contents
1 Create Opens the [Creation of Task] dialog box to define the contents for task
creation.
Delete Deletes the task creation information at the selected location.
Modify Opens the [Modification of Task Information] dialog box to modify the
creation information for the selected task.
4 Up Selection moves up by one task.*
5 Down Selection moves down by one task.*

Note: Since creation and initiation is processed in the display order, this is used for changing the
creation order or initiation order at system activation.

When [Create] in the pop-up menu is selected, the [Creation of Task] dialog box is
displayed. Settingsin the [Creation of Task] dialog box are shown in table 3.8.

Rev. 3.00 Jan. 12,2005 Page 195 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Creation of Task

TaskID

O nurser R

D Mame can be specified when Auto is

selected in the D Humber.

Address

Address

Aftribute

[V Start Task after Creation(TA_ACT)
W Uses FRUBankOTA_COP1)

[Uses FRU{Bank!TA_COPZ)

Stack
Stack Size |Dxnnnnn4nn
Dx0000ffd4
Stack Areas |

ID Mame

r

Task Initiation Priority

Priority |1 =|

Description Language

* High-Level Language(Ta_HLMNG)

" Assembly Language(TA_ASh

Extended Information

Information

Define Task Exception Processing... |

Create Cancel |

Figure3.12 [Creation of Task] Dialog Box

Rev. 3.00 Jan. 12, 2005 Page 196 of 362
REJ05B0364-0300

RENESAS

Section 3 Configuration

Table3.8 [Creation of Task] Dialog Box Contents
No. Item Contents
1 ID Number Specify the ID number of the created task.
Setting method:
¢ When automatic ID assignment is specified, the
configurator automatically assigns an unused ID when
creating configuration files.
e Select from the pull-down menu.
2 ID Name When automatic ID assignment is specified, input the ID
name of the created task.
3 Link with Kernel Library*' Select the check box when the created task is to be linked

with the kernel library.

Address

Input the start address of the created task as a symbol or
numeric value.

Priority

Specify the priority when the created task is initiated.

Attribute*®

Specify the task state at creation.
Setting method:

When the task is to be created in the executable state,
select the [Start Task after Creation (TA_ACT)] check box.

Description Language

Specify the description language for the created task.

e Select [High-Level Language (TA_HLNG)] when the
task is written in a high-level language.

e Select [Assembly Language (TA_ASM)] when the task
is written in assembly language.

Stack Size

Input the stack size the created task uses.

Note: The size displayed below the [Stack Size] box is the
specifiable size that was calculated from the
remaining size of the dynamic stack area.

Stack Areas*®

The stack area used by the created task is displayed.

Extended Information

Input the extended information as a symbol or numeric
value.

Notes: 1.

box.

Cannot be defined when automatic ID assignment is not selected in the [ID Number]

2. An item for defining the coprocessor attribute is also available. For details, refer to the
online help of the configurator.

3. Displayed only when a task ID using the static stack has been specified in the [ID

Number] box.

Rev. 3.00 Jan. 12,2005 Page 197 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

After making all settingsin the [Creation of Task] dialog box, click the [Create] button to
define them.

On completing definition for the task to be registered, click the [Cancel] button to finish
definition.

To define atask exception processing routine for the created task, click the [Define Task
Exception Processing...] button to display the [Definition of Task Exception Processing
Routine] dialog box.

Settings in the [Definition of Task Exception Processing Routine] dialog box are shown in
table 3.9.

Definition of Task Exception Frocessing Routine

— Task Exception Processing Routine Address —— Ok
Address ||
Cancel
— Aftribute

¥ Uses FPU (Bank0)(TA_COP1)

[T Uses FPU (Bank1)(T&_COPZ)

—Description Language
& High-Level LanguageiTA_HLMG)

O Assembly LanguageiTA_ASh)

Figure3.13 [Definition of Task Exception Processing Routing] Dialog Box

Rev. 3.00 Jan. 12, 2005 Page 198 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Table3.9 [Definition of Task Exception Processing Routineg] Dialog Box Contents

No. Item Contents
1 Address Input the address of the task exception processing routine
to be defined as a symbol or numeric value.
Attribute* Select the coprocessor attribute to be used.
Description Language Specify the description language for the created task.
e Select [High-Level Language (TA_HLNG)] when the
task is written in a high-level language.
e Select [Assembly Language (TA_ASM)] when the task
is written in assembly language.
Note: For details of the item relevant to defining the coprocessor attribute, refer to the online help

of the configurator.
After making all settingsin the [Definition of Task Exception Processing Routine] dialog
box, click the [OK] button to define them.

The necessary information for the configurator is defined in this manner.

Next, each configuration information view of the configurator is described.

Rev. 3.00 Jan. 12,2005 Page 199 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(2) Configuration information views of configurator
Theinitiation window is shown in figures 3.14 to 3.16.

Earvicia Cals Sencon
iU Eacophion Hand s
 inalhaton Fouie

Tark

Earisapbiia

Eremrr Flsg

Diava Csaa

b beces

(LT

Ifmerngm Curier
- Fmd-aa o Marman Fool
 Waniahbe-ips Wenoey Poal
Cyohic Hard ke
Almrm Handie:
- Cremimi p Randher
Estendsd Saname Call

Figure3.14 Configurator Initiation (HI7000/4)

Rev. 3.00 Jan. 12, 2005 Page 200 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Serace Cally Selwcian
It s pfCOFL Exncipion Handler
Trap Exception Handkes
Freteich Farcion

frakafrahen Foskns

Task

Semaphom

EvantFiag

P L T

Lol Tl

Mutpe

ol it Suflai

| Fispd-aba Mesany Foal
‘Warshls-mz e Wempsy Pool
Dy Handllan

dabaivn Hasd ke
Cramen Hendier
Evanded Saracs Call

Figure3.15 Configurator Initiation (HI7700/4 and HI7750/4)

Rev. 3.00 Jan. 12, 2005 Page 201 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Fartiial Exiaoshid Comditasn
Timn Menagemant Funchion
Diomiggeng Fenclion

s L) Excepbon Hasdler
ikl 2 oo Faoutine

Task

Camaphors

Eveent Flag

Digta Cuses

et oo

Llfas

Famd sl o bamany Pocl
Wiariskdira s ey Pl
Cychic Hemd ki

Figure3.16 Configurator Initiation (HI11000/4)

The configurator consists of a configuration information view list window (on the left side),
and a configuration information input window (on the right side).

Rev. 3.00 Jan. 12, 2005 Page 202 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(a) Kernel Execution Condition View
The initiation window is shared with the Kernel Execution Condition View.
Theitems to be set in the Kernel Execution Condition View are shown in table 3.10.

Table3.10 Setting Itemsin Kernel Execution Condition View

No. Menu ltem Contents Target OS

1 Kernel Interrupt Define the mask level for masking HI17000/4, HI7700/4, HI7750/4,
Mask Level interrupts inside the kernel. and HI1000/4

2 Interrupt Nest Count Define [Interrupt nest count with a HI7000/4 and HI1000/4

level higher than the kernel interrupt

mask level] and [Interrupt nest count

with a level equal to or lower than the
kernel interrupt mask level].

3 CPU Operation Select the CPU operating mode. HI1000/4
Mode

4 Interrupt Control Select the interrupt control mode. HI1000/4
Mode

Set the items by pressing the Z] button prepared for each item to make a selection from the
displayed pull-down menu.

Rev. 3.00 Jan. 12,2005 Page 203 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(b) Kernel Extension Function View
The Kernel Extension Function View is shown in figures 3.17 and 3.18.

Earvice Cals Seacinn
iU Eacophion Hand s
 inalhaton Fouie
| Tazk
- Earapbonm
Enemrri Flag
Data Osave
b beces
(LT
Ifmerngm Curier
- Fmd-aa o Marman Fool
-~ varizh be-gipe Menory Poaol
Cyohic Hard ke
Alrm Handles
- Cremimi p Randher
Estendsd Saname Call

Figure3.17 Kernel Extension Function View (H17000/4)

Rev. 3.00 Jan. 12, 2005 Page 204 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Fie Yew Geremi= Help
& [o u
] Can Cail [e 1] Fialp

HITTID o g sl n e sl o =

Lo Lepciinn Conckiip Paimmalai Ol P uniian

. 2ms Edtertion Funciord

—y e g ¥4 pIETEEL ChECE RrCTon 15 DElaled, pUETiEE G Wil be
i WS SSemel Fu e 1 o i 1 i 1 G e H Bk

Cipbisgoinag Furcton

Y mrvicn Cally Sl poknn I jashairite Parameder © s Furcion |CFO_PRRALHK]

i@ rapFL Eoce paon Pancie

Tiap Excepbion Hardked

~1Eimich FarcRon

ull i pasheen Pl DEF Fuscien

Tash ¥ DA L T RIE 0 BOROSHT 7 28 @k whi h s DoSF B In 33, o s afec] T
GEmaEphioie F i by [ee

Evart Fing

F Ui [P Funisan jOF o Bar

Dhais Ol

il g e

Ll

o Rt Bullei

Fiepd-iia Meman Pog Cariw Lack Funcion

b b e bl s e

Tche Hanur ¥ 474 LS TR e R 0nGEH T 718 piry which fan CLOCanh Lack b n GF,

i Hasdber s Lk R] B £8 gk i

ramrin Hsnd e

Extendsd Sarace Call F L Cares Lot Fuschon CFG_CACLOC]

il I l|—|

For Help. oo Pl P

Figure3.18 Kernel Extension Function View (HI7700/4 and H17750/4)

The HI1000/4 configurator does not have the Kernel Extension Function View.
Theitemsto be set in the Kerngl Extension Function View are shown in table 3.11.

Table3.11 Setting Iltemsin Kernel Extension Function View

No. Setting Item Contents Target OS
1 Parameter Check Select when installing the parameter HI7000/4, HI7700/4, and
Function check function. HI7750/4
DSP Function* Select when using the DSP function. HI7700/4
Cache Lock Function* Select when using the cache lock HI7700/4
function.

Note: Must be set when using a processor that has the DSP function or cache lock function.

Rev. 3.00 Jan. 12,2005 Page 205 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Each setting is made by selecting the check box for each item.

(c) Time Management Function View
The Time Management Function View is shown in figures 3.19 and 3.20.

Earvicia Cals Sencon
iU Eacophion Hand s
 inalhaton Fouie

Tark

Earisapbiia

Eremrr Flsg

Diava Csaa

b beces

(LT

I nrngm Bufer
- Fmd-aa o Marman Fool
 Waniahbe-ips Wenoey Poal
Cyohic Hard ke
Almrm Handie:
- Cremimi p Randher
Estendsd Saname Call

Figure3.19 Time Management Function View (H17000/4, HI7700/4, and HI7750/4)

Rev. 3.00 Jan. 12, 2005 Page 206 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

= HIDIOM Configirmen informmion
Fartiial Exiaorhid Conditacd
[Tima Menageman Fuschon|
[imemiggereg Funciion
s TP) Excepbon Hasdl
ksl anon Foune

Figure3.20 Time Management Function View (H11000/4)

The items to be set in the Time Management Function View are shown in table 3.12.

Rev. 3.00 Jan. 12, 2005 Page 207 of 362
REJ05B0364-0300

RENESAS

Section 3 Configuration

Table3.12 Setting Itemsin Time Management Function View

No. Setting Item Contents Target OS
1 Time Management Select when installing the time HI7000/4, HI7700/4,
Functions management function. HI7750/4, and HI1000/4
2 Timer Interrupt Define the timer interrupt vector HI7000/4, HI7700/4,
Number number (or INTEVT code). HI7750/4, and HI1000/4
3 Timer Interrupt Level Define the interrupt level of the timer HI7000/4, HI7700/4,
interrupt. HI7750/4, and HI1000/4
4 Time Event Handler Define the stack size used by the time HI7000/4, HI7700/4, and
Stack Size event handler HI7750/4
Timer Interrupt Define the stack size used by the HI11000/4
Handler Stack Size timer interrupt handler
5 Time Tick Cycle Define when changing the precision HI7000/4, HI7700/4,
of the time tick supply cycle. HI7750/4, and HI1000/4
6 Use Time Out Select when using a service call with HI1000/4
Function the timeout function

Note: In the time tick cycle specification, either the numerator or denominator must be 1.

Set the items by pressing the =] button prepared for each item to make a selection from the
displayed pull-down menu, or by directly entering a value for each item.

Rev. 3.00 Jan. 12, 2005 Page 208 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(d) Debugging Function View
The Debugging Function View is shown in figures 3.21 and 3.22.

Figure3.21 Debugging Function View (H17000/4, H17700/4, and HI7750/4)

Rev. 3.00 Jan. 12, 2005 Page 209 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

| # HIOS Comparmicr-HI 000 -yt H=EH|
Fim Wissw [enmwss Heip

L] fr] =l T L1
_Mhem Open Saes | Ganeisls Help

= HIGE0M Coanficuintan inlom o
Fartin | Exaoursie Conaditaon Cinwsck W prepejlyfion Funcion
Timg Menagomant Fuachon

|®

i] B bt e vl s e 0 e (1L Taa k] o 0l Bward F lag] olijis
manipuistiar Anrion i e debey pong adenainre

e nuplis P Escspbon Heedisr

bl 2 anion Fourine ™ el | ver Qb el Marepupsiae £ uncion JEFG_ACTION]

TEsk

Cammphons

Even! Fing Gersio e Cafl Tracs £ inidan

Digta Ciserii

bt s F i DEe R nac B | L i i PEIary Of Bevvcs Call will B pavid wivll (Te oyilim
Ll soe UESg w8 e il cen b ool 2 by vhing O elieggn g e ik s
Famd-nip= baman, ool

Fariakd e he b eors ool ™ el Barmy s Coall Trass Funesen jOF 0_TReCE]

Cyeche Hand ks

i ¥ | .'.!:I

Fer Hislp, pimas Fl MLlkA

Figure3.22 Debugging Function View (H11000/4)
Theitemsto be set in the Debugging Function View are shown in table 3.13.

Table3.13 Setting Itemsin Debugging Function View

No. Setting Item Contents Target OS
1 Object Manipulation Select when using the object HI7000/4, HI7700/4,
Function manipulation function, such as [Start HI7750/4, and HI1000/4

Task] and [Set Event Flag], in the
debugging extensions.

2 Service Call Trace Select when installing the service call HI7000/4, HI7700/4,
Function trace function. HI7750/4, and HI1000/4

Rev. 3.00 Jan. 12, 2005 Page 210 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Set the items by pressing the Z] button prepared for each item to make a selection from the

displayed pull-down menu, by selecting check boxes or radio boxes, or by directly entering
avalue for the necessary items.

(e) Service Calls Selection View
The Service Calls Selection View is shown in figure 3.23.

El-n e] Hdp

| L 1= | Lo
Hisw Opm Eave Carerme | Halp
HIT0 DO parl o s b1 o ol T ATy)
i eme Fx=omon Coesdicn Epduc] porop oadn sy oo W, 08 POdREeD O PPl Dl B o B DR Ol Enng, pe il rsiae Tre
Epenpd Extesrion Funcion TR SR R TR S (S LA R | R e R T S TR T S
Tiann Mrebgynien Fiynciess ik of i [Cedianks] BuBon o Bpd s & GSR bal Of VB GO ETed fardion
Diptcasggii g Fancaon # el o & s e orpd e el serece Salls 8 CEc OF & [Flardaesd] 50l niciporeie &
safiE Ll lhehided n he DafiiEgisls
Imama TR Earnphon Hand s
Inikalinslon R Ligi of Sereoe CHiE
Tank
= ITEIH FU | T i o BT e e POl O S e T
Enem ey wt T pecglion procees Fereiinng
Dats Ouiud oF S P D
(A A Ewvend Flaag
g i FEEET]
b wne Flrer wr| T
Flmd-s2n karan Fool i zu. YR =
s bs-gipm 8 mmiony Fonl
Do Hard g Cearnglian
Ao Fande Mim s Binchan of mahapep e sl of sk
LR TR L LT o]
Exlirchid Sinca Cal Cow il pre'eied el of lnnke, aluriieoresi] =i i e | rRarging priedy, s @ crrdsieml
1515 [wadn |
=i | Tt Bt |
Fea Hale e F TEY]

Figure3.23 Service Calls Selection View (HI7000/4, H17700/4, and H17750/4)

The HI1000/4 configurator does not have the Service Calls Selection View.

In the Service Calls Selection View, the service calls to be embedded or removed can be
selected in function units from the [List of Service Callg] dialog.

To select service callsin service call units, click the [Details...] button in the [Description]
frame.

Rev. 3.00 Jan. 12, 2005 Page 211 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Clicking the [All] button embeds all service calls. Clicking the [Standard] button embeds
only the service calls supported with the standard profile.

(f) Interrupt/CPU Exception Handler View
The Interrupt/CPU Exception Handler View is shown in figures 3.24 to 3.26.

Fis ‘Wi Qeidesis Help
[- 1= | L4
e’ Opion Eava Craivaiiie Healp
H TV DOy ol g st o and oo st i =
¥eme Fxsomon Consden il T - —
Foenii Exvtperion Funcion s Vaitnr P errig) [T _MBCTR)] My |
Time Warageme Fuscor ¥
D] DOF1 03
Piebisgaing Fanclri il Hanmha Sk Sz [CF | ROETAR ek
ENAAEN CIRE S N U D] bzl i WA GHILY
Vil v P Pusdnn b face dsfeianinfsrrslan of ke R}
T ek
S iaa g ki
. Lt I TOpC i Tran B e Hardiors
Diarn Qi vl -
P T var Mumber | Addewn BRPapIie Vi Cannplion L,un.-m:I
[i
(LTI

I nrnm Ehrer
Flmd-an banany Food
#mrinh be-uipe Menory Feal

Dol Hard kv
Sl FApnce
Crwmmmmi i Fharadbed

Extendsd Serdrs Cal

o Hl paena Fl

L | . | _Frﬂ

FAR P B 00D |n R Y ek e I e] noiTRaae, T o s lon of MkeseiC R
B i s Harekid il Rk mal iy WEAmd) |0 | faiodos B W00, 17§ ROV Coripariie 00 T Dalid fia
Pimae] 500 j (O i S B0k e O TLESE, Bl el == HOTUBE

Figure3.24

I nterrupt/CPU Exception Handler View (HI7000/4)

Rev. 3.00 Jan. 12, 2005 Page 212 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

| L N
= HITI4Corbgwalon néo msl on
Eeme Eapcubon Concdips
¥emed Edmninn Funcinn

T kansgemant Fuiais
Dbirgging Furchion
Serace Cally Sslecinn

Trap Excepton Hardker
Freteich Farcion
trakmirshen Foskes
Task

Semaphom

EvantFing

P L T

Lol Tl

Mutpe

ol it Suflai
Flapd-iba Mesan Foal
‘Warshls-mz e Wempsy Pool
Dy Hanclian

dabaivn Hasd ke
Cramen Hendier
Evanded Saracs Call

Figure3.25 Interrupt/CPU Exception Handler View (H17700/4 and HI7750/4)

Rev. 3.00 Jan. 12, 2005 Page 213 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Eie Sew Geee tep
I] =] i L

= Dipan Sme | Oaremsls Help
= HIGE0M Coanficuintan inlom o =
Fartianl Exg pulioa Condion iy indgrmrersan
Tima Memagomarnt Function e i Wbl FIE P R ETHES T E—
Dl ggereg Fencion -
h ‘vchoe Tabla Ferma CF G_WCTRNT) |l Warily
il 2 anon Fodtiie A
Task
[— LT 1 b b P Bt B P sl
Bt F
b VechtNunmer | Addwas | Dwscroden Larguege | vechs Tabis B
1] _FERMEL _H_CF
Wil oo I
LA 1
Famd -aite Mamony Pool 3
Wikl e § L b iy Poscl i
Cyech Hand kai 5
(]
|
a
1]
id
13
2 =l
Limi ol Glavk
Sleck Andina ok B
-
5| S PN _ | =

Fir Hulp. pians Fl S T

Figure3.26 Interrupt/CPU Exception Handler View (H11000/4)

Theitemsto be set in the Interrupt/CPU Exception Handler View are shown in table 3.14.

Rev. 3.00 Jan. 12, 2005 Page 214 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Table3.14 Setting Itemsin Interrupt/CPU Exception Handler View

No. Setting Item Contents Target OS
1 Interrupt Information Define information relevant to HI7000/4, HI7700/4,
the interrupt handler. HI7750/4, and HI1000/4
Interrupt information: HI17000/4
Maximum vector number, total size of interrupt handler
stacks, whether direct interrupt handler is enabled or not, and
whether interrupt handler dynamically created is embedded
or not
Interrupt information: HI7700/4 and HI7750/4
Maximum exception code and total size of interrupt handler
stacks
Interrupt information: HI1000/4
Maximum vector number and vector table format
2 List of Interrupt/CPU/Trap Define the handler initiated by ~ HI7000/4
Exception Handlers each vector source.
List of Interrupt/CPU Define the handler initiated by ~ HI7700/4 and HI7750/4
Exception Handlers each exception source.
List of Interrupt/CPU Define the handler initiated by ~ HI1000/4
Exception Handlers each vector source.
3 List of Stack Define information for the stack HI1000/4

used by the interrupt handler.

The procedure for registering a handler, such as the interrupt handler or CPU exception

handler, is described below.

Handler Registering Procedure:
1. Select avector number (or exception code) for registering a handler.

2. Select [Defing] from the sub-menu displayed by right-clicking.

3. Set the necessary data in the displayed definition window and complete registration by

pressing the [OK] button.

Rev. 3.00 Jan. 12,2005 Page 215 of 362

RENESAS

REJ05B0364-0300

Section 3 Configuration

(g) Trap Exception Handler View

The Trap Exception

Handler View is shown in figure 3.27.

E.

[[

b rlrlir Help .

0] il

P Opan Emw | Canersio Felp

H7

T o g uelia n e sl o

Tina kanssemenl &
Dipbisgoinag Furcton
SErace Cally Selpcinn

riarap R Eocapuon Fancie

=1eimich Farcion

ull i pasheen Pl
Task

J B IR noie

EvaniFlag

Dhais Ol

il g e

RITT

i e S ulan
Flsnd-iba Memsary Foa
b b e bl s e
Oyl Handl o

alsivn Hasd ke

remmin Handler
Evendsd Sarace Call

For Help. oo Pl

T inferivaRan
M Tram Mernber [CFG_MBNTIRPRO|

Liwl il Trag Exveplirs Hendlare

uml

¥ | Trms Mgmber Addresy GF Fwginie Vake

Cescrimien Largysg i'

) af

LI

VR wctd b (i aid bkl i Bl Cal Selaclion, e dalivkih of Trap Eakepah tanidlai
TRy e, 1] ol & e budd e Present sebng cond@ons s wislip==

| of

PR

Figure3.27 Trap Exception Handler View (H17700/4 and HI7750/4)

The HI7000/4 and HI1000/4 configurators do not have the Trap Exception Handler View.
Theitemsto be set in the Trap Exception Handler View are shown in table 3.15.

Table3.15 SettingItemsin Trap Exception Handler View

No. Setting Item Contents Target OS
Trap Information Define the maximum trap number. HI7700/4 and HI7750/4
2 List of Trap Define the handler initiated by the trap HI7700/4 and HI7750/4

Exception Handlers

exception source.

Rev. 3.00 Jan. 12, 2005 Page 216 of 362
REJ05B0364-0300

RENESAS

Section 3 Configuration

The procedure for registering a trap exception handler is described below.

Trap Exception Handler Registering Procedure:

1. Select atrap number for registering a handler.

2. Select [Define] from the sub-menu displayed by right-clicking.

3. Set the necessary datain the displayed definition window and complete registration by
pressing the [OK] button.

(h) Prefetch Function View
The Prefetch Function View is shown in figure 3.28.

Fie Yew Geremi= Help
) = - 0]
P i opan = (TSI Flaln
HITTIO o g wedio n afo il o
g Eescuinn Concdiip ittt Prefuich Fyrekon
Norral Eslanhion Fundios
¥ | Addresn S5pa

Tine kiansgemen Faision
Dmboigo ta Furcion

Erace Cslly Saipchnn

i@ rap R Eoce peon Fancie

Tieg Exoceention Henidked

rabairsheen Floskns
Tagk

SEmaphom

Evart Fing

Dhais Ol

il g e

Ll

o Rt Bullei

Finpd-i e M emon Poc
b b e bl s e
[* iz ol

Al Hasd ke

ramrin Hsnd e

Evendsd Sarace Call

d | o

For Help. oo Pl

Figure3.28 Prefetch Function View (HI7700/4 and HI7750/4)

The HI7000/4 and H11000/4 configurators do not have the Prefetch Function View.
The item to be set in the Prefetch Function View is shown in table 3.16.

Rev. 3.00 Jan. 12, 2005 Page 217 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Table3.16 Settingltem in Prefetch Function View

No. Setting Item Contents Target OS
1 List of Prefetch Define the start address of the area to be HI7700/4 and HI7750/4
Function prefetched when the kernel is idle.

The procedure for setting the prefetch functions is described below.

Prefetch Function Setting Procedure:

1. Select [Register] from the sub-menu displayed by right-clicking in [List of Prefetch
Function].

2. Set the necessary data in the displayed registration window and complete registration
by pressing the [Register] button.

3. Sinceregistration can be performed continuously, after pressing the [OK] button, the
next prefetch function can be registered.
On completing all registrations, click the [Cancel] button to finish registration.

Rev. 3.00 Jan. 12, 2005 Page 218 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(i) Initialization Routine View
The Initialization Routine View is shown in figure 3.29.

El-n e] Hﬂp

I L= = | L
Hl s Dpon Sava Caaveaiie Healp

M0 DO el s sk n ol oo ki n 1
Keme Ex=omon Coesdicn Lisil i il i an Nes s i
Kpenipd Exipsrion Funcion
Time karsgemen | Fusciar T eIHEEE S1ais Boa CMCCINTIn Linduigl Eaired il imdmimien

Dipinasgging Fenchon
Cwrvici Calls Selechaos
imEmmiT R Earpphon Fland s

T ank

S iaa g ki

v Pl

Dats Owiua

md e

L T

im o rew B

F -l:-.l-:-'n:-l-‘a:m-.l' i |
#mrih be-gipe M enpey Poal
ks Hand oy 1 |
Al Apncde

Crwm e i haradbed
Extendsd Serdrs Cal

: : |
o Hhik pawaa Fl L W
Figure3.29 Initialization Routine View
The item to be set in the Initialization Routine View is shown in table 3.17.
Table3.17 Setting Item in Initialization Routine View
No. Setting Item Contents Target OS
1 List of Initialization ~ Define the initialization routine called HI7000/4, HI7700/4,
Routines from the kernel initialization processing. HI7750/4, and HI1000/4

Rev. 3.00 Jan. 12,2005 Page 219 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

The procedure for registering an initialization routine is described below.

Initialization Routine Registering Procedure:

1. Select [Register] from the sub-menu displayed by right-clicking in [List of Initialization
Routines].

2. Set the necessary data in the displayed registration window and complete registration
by pressing the [Register] button.

3. Sinceregistration can be performed continuously, after pressing the [OK] button, the
next initialization routine can be registered.
On completing all registrations, click the [Cancel] button to finish registration.

(j) Task View

The Task View is shown in figures 3.30 and 3.31.

. e Dn-au
I L=

Mg Opion Eava Deaivorme | Holp

M0 DO el s sk n ol oo ki n

Hag
= | L

Kems Exsamon Conddicn
Epenpd Extestion Funcion
Time Warageme Fuscor
Dipinasgging Fenchon
Earviti Calls Swlnchns

imam TP Esrmpton Mand s

Ik ali el o P ulie

= iiaa g ki

v Pl

Dats Owiua

Hmdboo

(LT

I nrnm Ehrer

Flmd-an banany Food
#mrih be-gipe M enpey Poal

Caschic Hiard kai
Sl FApnce
Crwmmmmi i Fharadbed

Extendsd Serdrs Cal

o Hl paena Fl

Tiahi waprTvadie B
W Targh BD)G FG_MANTRID] ez
Wan Bk Bk Tagk D JCRD_BTETREN 1
M Tash Fraodi jOF _MaxTEPRY 188
Chyrmarrv Ml A i [C1'0_THESTRED pEL gl rdh |
Lint of Giak Esmacin
ik 4 e Hiars Bom Tk i whach e Ty riwck
L i Tasks
" OTlame Mt wfls craakm Admmun ailll] | Hlazk Be
wl |]

e cre_tnlersnn_iaioces_tew prearh selaied m Geraps Cal Gelaraasmsran ol Bel =
B b Be o of ExCasrBan Progageirg ME Snpied e hese sre g ola ubesd o el
e Fragent seing condbons a8 ore_Skesl3E wr_mieslBE oof_imes9E

T

Figure3.30 Task View (HI7000/4, H17700/4, and HI7750/4)

Rev. 3.00 Jan. 12, 2005 Page 220 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

= HNENM Canficunian idamrom
Fartiial Exiaorhid Corditacd
Tima Menagomarni Fusction
Diomiggeng Fenclion

_bevrel_shel00 ‘H]'I:l]l[l]

Figure3.31 Task View (H11000/4)

Theitemsto be set in the Task View are shown in table 3.18.

Rev. 3.00 Jan. 12, 2005 Page 221 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Table3.18 Setting Itemsin Task View

No. Setting Item Contents Target OS
1 Max. Task ID Define the maximum task ID to be HI7000/4, HI7700/4,
registered in the kernel. HI7750/4, and HI1000/4
2 Max. Static Stack Define the maximum task ID using the HI7000/4, HI7700/4, and
Task ID static stack HI7750/4
3 Max. Task Priority Define the maximum task priority to HI17000/4, HI7700/4,
be registered in the kernel. HI7750/4, and HI1000/4
4 Dynamic Stack Area Define the total used size of the HI17000/4, HI7700/4, and
Size dynamic stack HI7750/4
Number of Task Stack Number of stacks HI1000/4
List of Static Stacks Registered static stack information HI17000/4, HI7700/4, and
HI7750/4
7 List of Tasks Registered task information H17000/4, HI7700/4,
HI7750/4, and HI1000/4
8 List of Stacks Registered task stack information HI1000/4

The procedure for registering atask is described below.

Task Registering Procedure:

1. Select [Create] from the sub-menu displayed by right-clicking in [List of Tasks].

2. Set the necessary data in the displayed creation window and compl ete registration by
pressing the [Create] button.

3. Sinceregistration can be performed continuously, after pressing the [Create] button, the
next task can be registered.

On completing all registrations, click the [Cancel] button to finish registration.

Rev. 3.00 Jan. 12, 2005 Page 222 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(k) Views for objects other than a task
For the view of each object, such as the Semaphore View and Event Flag View, the
structure and setting items are the same, except for those for the Task View. Therefore, the
view of each object other than atask is described with the Semaphore View as an example.
The Semaphore View is shown in figure 3.32.

Do Viw DOaaiss Hp
[L 1= =l L4
e Opon Eswa Deresr | Hedp

HITO DO porl g sk o o T ST

Kemel Exscomon Conditien Exemaphyiie infatrealon
Kool Extrsrion Funchon Man Gemaahons I R G WMAMEE WD 1013 Mewt |
Time karsg e e Fuscar T

Diptnasggin g Fencaon

Carvici Calls S sla chins

i TP Eacnpiion Hande
Inik ksl o R i Ligi of Gemarnhase

L aek ¥ Otine W Courl Iefia Caurd Vi Cumm

E v F Ly

Diats Olwiua

el e

(LT

b e Chorier

F u:._|-:-_'|:.|.1r_m;_r ool
sanmhbs-gips M enory Poal
Cyche Fard kv

Alorm A

Cremmir ararbo
Estendst Serdcs Cal

F e, B e Eelecied 15 Seves Call Feinchon, e ceaien 6 chpeci 18 prame
Fesce, o iea Y mukgutied 11 B Bulic By P resma] sefinp mncrians we e _wen = LEE

T Fake s FI M

Figure3.32 Semaphore View

Theitems to be set in the Semaphore View are shown in table 3.19.

Rev. 3.00 Jan. 12,2005 Page 223 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Table3.19 Setting Itemsin Semaphore View

No. Setting Item Contents Target OS
1 Max. Semaphore ID Define the maximum semaphore ID to HI7000/4, HI7700/4,

be registered in the kernel. HI7750/4, and HI1000/4
2 List of Semaphores Registered semaphore information HI17000/4, HI7700/4,

HI7750/4, and HI1000/4

Refer to views of the objects, except for the Task View, with the above setting items
replaced with each object name (e.g. event flag or mailbox).

The procedure for registering an object is described below with a semaphore as an

example.

Semaphore Registering Procedure:

1. Select [Create] from the sub-menu displayed by right-clicking in [List of Semaphores].

2. Set the necessary data in the displayed creation window and compl ete registration by
pressing the [Create] button.

3. Sinceregistration can be performed continuously, after pressing the [Create] button, the
next semaphore can be registered.

On completing all registrations, click the [Cancel] button to finish registration.

Rev. 3.00 Jan. 12, 2005 Page 224 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

322 FAQ about Configurator

This section answers a question about the configurator which is frequently asked by users of the
HI series OS.

FAQ Contents:

(1) Multiple Interrupt Setting by the ConfigUIatorcceveieieiesie e 226

Rev. 3.00 Jan. 12,2005 Page 225 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(1) MultipleInterrupt Setting by the Configurator

Classification: Configuration, kernel environment definition, and configurator

Question HI17000/4 HI7700/4 HI7750/4 HI1000/4

When multiple interrupts are enabled, what items should be specified by the configurator?

What descriptions are necessary for the defined interrupt handlers to implement multiple
interrupts?

Answer

In the Interrupt/CPU Exception Handler View of the configurator, specify the contents of the
exception code of each interrupt to be used. For each exception code, specify an addressand a
value to be set to SR. Asthis SR setting is used as the SR value when the corresponding interrupt
handler isinitiated, specify appropriate values according to the interrupt level. Multiple interrupts
are implemented by simply specifying these SR values.

Rev. 3.00 Jan. 12, 2005 Page 226 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

323 Definition by Setup Table (HI12000/3)
In the HI2000/3, the kernel environment is defined with the setup table.
The setup table consists of the definition fields listed in table 3.20.

Table3.20 Setup Table Structure

Definition Field Name Defined Contents

Constant definition field Defines information required for the kernel functions
(synchronization and communication function, time management
function, etc.).

Task registration field Defines information required for task execution.

Fixed-length memory pool Defines information required for fixed-length memory pools.
registration field

Variable-length memory pool Defines information required for variable-length memory pools.
registration field

Cyclic handler registration field Defines information required for cyclic handlers.

System call trace function Defines information required for system call trace functions.
registration field

Extended information Defines information required for extended information for tasks,
registration field event flags, semaphores, mailboxes, fixed-length and variable-

length memory pools, and cyclic handlers.

All of the above setting items must be set regardless of whether the item is registered or not or
used or not. If not, an undefined error will occur at system linkage.

Rev. 3.00 Jan. 12, 2005 Page 227 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(1) Constant definition field
Thisfield defines information required for the kernel functions (such as synchronization-and-
communication and time-management functions). The constant definition field of the setup
tableis shown in figure 3.33.

;%% %0 %6 %o %o %o %o %o Yo

1%%% VALUE define section % %%

;%0 % %o %6 %0 %o Yo Vo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo

jmmm—-n Usage

;LABEL VALUE ;[RANGE] ;:COMMENT

CPUINTM: .assign 3 2[0.......3] ;: CPU interrupt mode (1)
IMASK: .assign 6 :[0.......8] ;- Max interrupt level (2
MAXPRI: .assign 31 ;7[0......31] ;- Max low priority «~(3)
FLGCNT: .assign 4 i1[0.....255] ;: Eventflag definition count «(4)
SEMCNT: .assign 4 ;2[0.....255] ;: Semaphore definition count «(5)
MBXCNT: .assign 4 :2[0.....255] ;: Mailbox definition count «(6)
OSSTKSIZ: .equ 18+(10*2)+(6*1)+8 ;:[18..] ;: OS stack size «~(7)
TIMSTKSIZ: .equ 40+(10%1)+(6*1)+8 ;:[0, 40...] ;: Timer stack size «(8)
TRCSTKSIZ: .equ 26+(6*1)+8 :1[0, 26...] ;: Trace stack size «(9)
TTMOUT: .assign USE ;:;[USE / NOTUSE] ;: Time-out Function define «(10)

Figure3.33 Constant Definition Field of Setup Table

(1) CPUINTM (Interrupt control mode)

Specifies the interrupt control mode used.
(2) IMASK (Kernel interrupt mask level)

Specifies the mask level for masking interrupts inside the kernel.
(3) MASKPRI (Maximum task priority)

Specifies the lowest task priority.
(4) FLGCNT (Number of event flags registered)

Specifies the maximum event flag ID to be registered in the kernel.
(5) SEMCNT (Number of semaphores registered)

Specifies the maximum semaphore ID to be registered in the kernel.
(6) MBXCNT (Number of mailboxes registered)

Specifies the maximum mailbox 1D to be registered in the kernel.
(7) OSSTKSIZ (Kernel stack size)

Specifies the stack size used by the kernel (OS).
(8) TIMSTKSIZ (Timer interrupt handler stack size)

Specifies the stack size used by the timer interrupt handler.

Rev. 3.00 Jan. 12, 2005 Page 228 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(9) TRCSTKSIZ (System call trace function stack size)
Specifies the stack size used for processing when the system call trace function is used.
(10) TTMOUT (Timeout function enabled/disabled)
Specifies whether a system call with timeout can be used.
Note: Do not modify or delete symbols used in the constant definition field.

For the calculation methods of OSSTKSIZ, TIMSTKSIZ, and TRCSTKSIZ, refer to the
H12000/3 User's Manual.

(2) Task registration field
Thisfield defines various information for registering tasks. The task registration field of the
setup table is shown in figure 3.34.

Rev. 3.00 Jan. 12,2005 Page 229 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

;%% %0 %o %o Yo %o %o Yo Yo Yo Yo %o Yo

1%%% TASK define section %% %
3 %0%0 %0 %o %o Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo %o Yo
jmmmes Usage
; TASK_TOP_LABEL ;: COMMENT
.import _TASKA ;2 TASK.C
.import _TASKB ;i TASK.C (1)
jmmmes Usage
; .res.b SIZE + TSKSTKSIZ ;[RANGE] ;: COMMENT
;TSK?_SP_LABEL: .equ $;: COMMENT
TSKSTKSIZ: .equ 50+(10*2)+(6*1)+6+8; [50...] ;: Task minimum stack size
.section h2sstack, stack, align = 2
.res.b (36) +TSKSTKSIZ ;[50...] ;- tskid1 stack area
TSK1_SP: equ $ o —— (3)
.res.b 8
.res.b (36) +TSKSTKSIZ ;[50...] ;- tskid2 stack area
TSK2_SP: equ $
.res.b 8
res.b (32) +TSKSTKSIZ ;[50...] ;- tskid3 stack area (2
TSK3_SP: equ $
.res.b 8
.res.b (32) +TSKSTKSIZ ;[50...] ;- tskid4 stack area
TSK4_SP: equ $
.res.b 8
.section h2ssetup, code, align = 2
_HI_H8S: res.b 10 ;: System Area
jm-mm-- Usage
;LABEL .data.b IMOD, ITSKPRI ;: COMMENT
; .data.l ITSKADR, ITSKSP ;: COMMENT
NOEXS: .assign 0 ;- initial mode = NO EXIST
RDY: .assign 1 ;- initial mode = READY
DMT: .assign (-1) ;- initial mode = DORMANT
TDTLEN: .assign 10;<- Not Change ! ;: TDT Length
.section h2ssetup, code, align =2
_HI_TDT: .equ $-TDTLEN ;- Task define table
TDT TOP: equ $ i
tdt_id1: .data.b DMT, 1 ;- init. mode, init. priority) (5)
.data.l _TASKA, TSK1_SP ;: top address, stack pointer
tdt_id2: .data.b DMT, 2 ;- init. mode, init. priority
.data.l _TASKB, TSK2_SP ;: top address, stack pointer @)
tdt_id3: .data.b NOEXS, 3 ;2 init. mode, init. priority
.data.l 0, TSK3_SP ;: top address, stack pointer
tdt_id4: .data.b NOEXS, 4 ;- init. mode, init. priority
.data.l 0, TSK4_SP ;- top address, stack pointer
tdt_id5: .data.b NOEXS, 5 ;- init. mode, init. priority
.data.l 0, TSK4_SP ;: top address, stack pointer
TDT_BTM:
TSKCNT: .equ (TDT_BTM-TDT_TOP)/TDTLEN
;:[0...255] ;: Task definition count

Figure3.34 Task Registration Field of Setup Table

Rev. 3.00 Jan. 12, 2005 Page 230 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(1) Declares the start address of the task to be used as an external reference symbol.
(2) Task stack definition field
Allocates the stack area used by each task.
(3) Definition of task stack area
Defines the stack areafor each task.
(4) Task definition field
Defines the tasks to be registered in the kernel.
(5) Definition of task
Defines information for each task to be registered in the kernel.

Note: Do not modify or delete symbols TDTLEN, HI_TDT, TDT_TOP, TDT_BTM, and
TSKCNT, which are used in the task registration field.
Do not modify or delete the line where TSKCNT is defined.

The details of defining atask stack areaare as follows:

Linel: Definesthe stack size used.
Line2: Definesthe stack label (task stack bottom).

Line3: Definesthe shared-stack-management area. (If the shared stack function is not used,
this area need not be defined.)

The details of defining atask are asfollows:

[Format] LABEL: .data.b |MOD, |TSKPRI
.data.l |TSKADR, | TSKSP

— LABEL: Can befreely defined (can be omitted).

— IMOD (task initial state): Defines each task'sinitial state at task registration and system
initiation as follows:
(2) NOEXS (= 0): Unregistered
(2) RDY (=1): READY state when initiated
(3) DMT (= -1): DORMANT state when initiated

— ITSKPRI (task initial priority): Defines each task's initial priority.

— ITSKADR (task start address): Defines the start address of the task. (Defines the start
address to be defined as an external reference symbol.)

— ITSKSP (task stack pointer): Defines the stack pointer to be used at task initiation (stack
label defined in the task stack area definition field).

When adding atask to be registered, insert the definition databefore TDT_BTM.

Rev. 3.00 Jan. 12,2005 Page 231 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(3) Fixed-length memory pool registration field
Thisfield defines various information for registering fixed-length memory pools. The fixed-
length memory pool registration field of the setup table is shown in figure 3.35.

;%% %o %o % Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo
;%%% FIXED-SIZE MEMORYPOOL define section %% %
;%% %o %o % Yo %o %o Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo
jmmmmnn Usage

;MB?_CNT_LABEL: .assign VALUE ;[RANGE] ;: COMMENT
;MB?_LEN_LABEL: .assign VALUE ;[RANGE] ;: COMMENT
MB1_CNT: .assign 14 ;:[0...65535] ;- memory block count ;| @
MB1_LEN: .assign 12 ;:[2...65530] ;: memory block length
MB2_CNT: .assign 14 ;:[0...65535] ;> memory block count
MB2_LEN: .assign 12 ;:[2...65530] ;: memory block length
MB3_CNT: .assign 14 :1[0...65535] - memory block count U]
MB3_LEN: .assign 12 ;:[2...65530] ;- memory block length
MB4_CNT: .assign 14 ;:[0...65535] ;> memory block count
MB4_LEN: .assign 12 ;:[2...65530] ;: memory block length
j-mme- Usage
;MPF?_TOP_LABEL:.res.o. MEMORYPOOL_SIZE ;: COMMENT
.section h2smpf, data, align = 2
MPF1_TOP: .res.b MB1_CNT * (MB1_LEN + 4) ;: mpfid1 memorypool area
MPF2_TOP: .res.b MB2_CNT * (MB2_LEN + 4) ;: mpfid2 memorypool area @)
MPF3_TOP: .res.b MB3_CNT * (MB3_LEN + 4) ;: mpfid3 memorypool area
MPF4_TOP: .res.b MB4_CNT * (MB4_LEN + 4) ;: mpfid4 memorypool area
jmmmme- Usage
;LABEL .data.w BLFCNT, BLFLEN ;: COMMENT
; .data.l MPF_TOP_ADDRESS ;: COMMENT
MPFDTLEN: .assign 8;<- Not Change ! ;: MPFDT Length
.section h2ssetup, code, align = 2

_HI_MPFDT: .equ $-MPFDTLEN ;: Fixed-size MemoryPool define table
MPFDT_TOP: equ $ 5
mpfdt_id1: .data.w MB1_CNT, MB1_LEN ;- blf count, blf length Ql])—— (5)

.data.| MPF1_TOP ;: mpf top address T
mpfdt_id2: .data.w MB2_CNT, MB2_LEN ;- blf count, blf length

.data.]l MPF2_TOP ;: mpf top address)
mpfdt_id3: .data.w MB3_CNT, MB3_LEN ;- blf count, blf length

.data.l MPF3_TOP ;: mpf top address
mpfdt_id4: .data.w MB4_CNT, MB4_LEN ;: bIf count, blf length

.data.l MPF4_TOP ;: mpf top address
MPFDT_BTM:
MPFCNT: .equ (MPFDT_BTM-MPFDT_TOP) / MPFDTLEN

;:[0...255]

;: Fixed-size Memorypool definition count

Figure3.35 Fixed-Length Memory Pool Registration Field of Setup Table

Rev. 3.00 Jan. 12, 2005 Page 232 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

(2) Definition field for memory block size and number of memory blocks
Defines the memory block size and number of memory blocks which are used by the fixed-
length memory pools to be registered in the kernel. (The symbols used here are used in the
subsequent area allocation and definition table information.)
(2) Definition of memory block size and number of memory blocks
Defines the memory block size and number of memory blocks which are used by the fixed-
length memory pools.
(3) Allocation of fixed-length memory pool areas
Allocates each fixed-length memory pool area based on the memory block size and number
of memory blocks.
(4) Fixed-length memory pool definition field
Defines the fixed-length memory pools to be registered in the kernel.
(5) Definition of fixed-length memory pool
Defines information for each fixed-length memory pool to be registered in the kernel.
Note: Do not modify or delete symbols MB?_CNT, MB?_SIZ, MPF?_TOP, MPFDTLEN,
MPFDT_TOP, and MPFDT_BTM, which are used in the fixed-length memory pool
registration field.
Do not modify or delete the line where MPFCNT is defined.

The details of defining afixed-length memory pool are as follows:

[Format] LABEL: .data.w BLFCNT, BLFLEN
.data.| MPF_TOP_ADDRESS

— LABEL: Can be freely defined (can be omitted).

— BLFCNT (number of blocks): Defines the number of memory blocksin the fixed-length
memory pool.

— BLFLEN (block size): Defines the memory block size of the fixed-length memory pool.

— MPF_TOP_ADDRESS (fixed-length memory pool address): Defines the start address of
the fixed-length memory pool.

When adding a fixed-length memory pool to be registered, insert the definition data before
MPFDT_BTM.

Rev. 3.00 Jan. 12,2005 Page 233 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(4) Variable-length memory pool registration field

Thisfield defines various information for registering variable-length memory pools. The
variable-length memory pool registration field of the setup table is shown in figure 3.36.

3% %% %6 % %0 %o %o %0 Yo %o Vo %o %o Vo %o %o Yo Yo Vo Yo Yo Vo %o Yo Yo %o Vo Yo Yo Yo %o Vo Yo Yo Yo %o Yo Yo Yo Yo Yo

;%%% VARIABLE-SIZE MEMORYPOOL define section %% %

1% %% %6 %o %o %o %o %o Yo %o Yo Yo %o Yo %o Yo Yo
jmmm=-n Usage

;MPL?_SIZ_LABEL: .assign VALUE ;[RANGE] ;: COMMENT

MPL1_SIZ: .assign 380 ;[18.....] ;- memorypool size
MPL2_SIZ: .assign 380 ;[18.....] ;: memorypool size
MPL3_SIZ: .assign 380 [18.....] ;: memorypool size (1)
MPL4_SIZ: .assign 380 ;[18.....] ;: memorypool size

; g
;MPL?_TOP_LABEL:.res.b VARIABLE_MEMORYPOOL_SIZE ;: COMMENT

.section h2smpl, data, align = 2
MPL1_TOP: res.b MPL1_SIZ ;> mplid1 memorypool area
MPL2_TOP: .res.b MPL2_SIZ ;- mplid2 memorypool area @
MPL3_TOP: .res.o MPL3_SIZ ;- mplid3 memorypool area
MPL4_TOP: .res.b MPL4_SIZ ;- mplid4 memorypool area
jmm Usage
;LABEL .data.| BLKSIZ ;: COMMENT
; .data.] VARIABLE_MEMORYPOOL_TOP ;: COMMENT
MPLDTLEN: .assign 8;<- Not Change ! ; MPLDT Length
.section h2ssetup, code, align = 2
_HI_MPLDT: .equ $-MPLDTLEN ;: Variable-size MemoryPool define table
MPLDT_TOP: equ $;
mpldt_id1: .data.l MPL1_SIZ ;- mpl size =& j—-1 (4)
.data.| MPL1_TOP ;- mpl top address
mpldt_id2: .data.l MPL2_SIZ ;- mpl size
.data.| MPL2_TOP ;- mpl top address 3)
mpldt_id3: .data.| MPL3_SIZ ;- mpl size
.data.l MPL3_TOP ;- mpl top address
mpldt_id4: .data.l MPL4_SIZ ;- mpl size
.data.| MPL4_TOP ;- mpl top address
MPLDT_BTM:
MPLCNT: .equ (MPLDT_BTM-MPLDT_TOP) / MPLDTLEN

;:[0...255] ;- Variable-size Memorypool definition count

Figure3.36 Variable-Length Memory Pool Registration Field of Setup Table

(1) Memory pool size definition field

Defines the memory pool sizes that are used by the variable-length memory poolsto be
registered in the kernel. (The symbols used here are used in the subsequent area allocation
and definition table information.)

(2) Allocation of variable-length memory pool areas
Allocates each variable-length memory pool area based on the memory pool size.

Rev. 3.00 Jan. 12, 2005 Page 234 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(3) Variable-length memory pool definition field
Defines the variable-length memory pools to be registered in the kernel.
(4) Definition of variable-length memory pool
Definesinformation for each variable-length memory pool to be registered in the kernel.

Note: Do not modify or delete symbols MPL? _SIZ, MPL? TOP, MPLDTLEN,
MPLDT_TOP, and MPLDT_BTM, which are used in the variable-length memory pool
registration field.

Do not modify or delete the line where MPLCNT is defined.

The details of defining a variable-length memory pool are as follows:

[Format] LABEL: .data.l MPL?_SIZ
.data.l MPL?_TOP

— LABEL: Can be freely defined (can be omitted).

— BLKSIZ (block size): Defines the size of the variable-length memory pool.

— VARIABLE_MEMORY POOL_TOP (variable-length memory pool address): Defines the
start address of the variable-length memory pool.

When adding a variable-length memory pool to be registered, insert the definition data before
MPLDT_BTM.

Rev. 3.00 Jan. 12,2005 Page 235 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(5) Cyclic handler registration field

Thisfield defines various information for registering cyclic handlers. The cyclic handler
registration field of the setup table is shown in figure 3.37.

350 %% %6 % %0 %o %o %0 Yo %o Vo %o %o Yo %o Yo Yo Yo Vo Yo Yo Yo %o Yo Yo %o Vo Yo Yo Yo Yo Vo Yo Yo Yo %o Yo Yo Yo Yo Yo

;%%% cyclic handler define section % %%
;%% Yo %o %o %o %o Yo %o Yo
jmmm—- Usage
; .import CYCHDR_TOP_LABEL ;: COMMENT } (1)
jmm— Usage
;LABEL: .data.w CYC_ACTIVATE ;: COMMENT
; .data.| CYC_TIME, CYCHDR_TOP ;: COMMENT
CYHOFF .assign 0 ;initial cycact data = OFF
CYHON .assign 1 ;initial cycact data = ON
CYHDTLEN .assign 10;<-Dont't Change! ;:CYHDT length
_HI_CYHDT: .equ $-CYHDTLEN ;2 cyclic handler define table
CYHDT_TOP: .equ $;
cyhdt_nof: .data.w CYHOFF ;- init. cycact data “& —t—o(3)
.data.l 0, NADR ;: cyctim, top address
cyhdt_no2: .data.w CYHOFF ;2 init. cycact data
.data.l 0, NADR ;. cyctim, top address
cyhdt_no3: .data.w CYHOFF ;- init. cycact data
.data.l 0, NADR ;: cyctim, top address @
cyhdt_no4: .data.w CYHOFF ;-init. cycact data
.data.l 0, NADR ;- cyctim, top address
.aifdef DX
cyhdt_no5: .data.w CYHON ;-init. cycact data [E— /)
.data.l 5, H_DEAMON_MAIN ;: cyctim, top address
.aendi
CYHDT_BTM:
CYHCNT: .equ (CYHDT_BTM-CYHDT_TOP)/CYHDTLEN
;:[0...255] ;: cyclic handler definition count

Figure3.37 Cyclic Handler Registration Field of Setup Table

(1) Declares the start address of the cyclic handler to be used as an external reference symbol.
(2) Cyclic handler definition field
Defines the cyclic handlers to be registered in the kernel.
(3) Definition of cyclic handler
Definesinformation for each cyclic handler to be registered in the kernel.
(4) When the debugging extension is used, the debug daemon handler is registered as acyclic
handler.
Note: Do not modify or delete symbols_HI_CYHDT, CYHDTLEN, CYHDT_TORP, and
CYHDT_BTM, which are used in the cyclic handler registration field.
Do not modify or delete the line where CYHCNT is defined.

Rev. 3.00 Jan. 12, 2005 Page 236 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

The details of defining acyclic handler are asfollows:

[Format] LABEL: .data.w CYC ACTIVATE
.data.l CYC_TIME, CYCHDR TOP

— LABEL: Can befreely defined (can be omitted).
— CYC_ACTIVATE (cyclic handler activation state): Defines the cyclic handler activation
state as follows:
(1) CYCOFF (= 0): Not initiated (not activated)
(2) CYCON (= 1): Initiated (activated)
— CYC_TIME (cyclic timeinterval): Defines the cycle time to initiate the cyclic handler.
— CYCHDR_TORP (cyclic handler address): Defines the start address of the cyclic handler.

When adding a cyclic handler to be registered, insert the definition data before CYHDT_BTM.

(6) System call trace function registration field
Thisfield defines various information for registering system call trace functions. The system
call trace function registration field of the setup table is shown in figure 3.38.

1%0% %0 %% %0 %o %o Vo %o %0 Vo %o Yo Yo %o Vo %o Yo Yo %o Vo Yo %o Yo %o Vo Yo %o Vo Yo Yo Yo Yo Vo Yo Yo Vo %o Yo

1%%% SVC trace define section %%%
3% %% Yo %0 %o Yo %o Yo Yo %o Yo %o %o Yo %o Yo Yoo Yo %o Yo Yo %o Yo Yo %o Yo %o Yo Yo Yo Yo %o Yo Yo %o Yo %o Yo
jmmm- Usage
;TRC_CNT:.assign TRACE COUNT ;: COMMENT
;TRC_BUF:.assign TRACE BUFFER ADDRESS ;: COMMENT
.section h2strc, data, align = 2
TRC_CNT: .assign 4 ;: trace count <« (1)
TRC_BUF: .resb 16 + (TRC_CNT*28) ;- trace buffer address <« (2)
jmm==e- Usage
;INITRC .data.l TRACE BUFFER ADDRESS ;: COMMENT
; .data.w TRACE COUNT ;: COMMENT
.section h2ssetup, code, align = 2
INITRC: .equ $:
.data.l TRC_BUF ; trace buffer address <« (3)
.data.w TRC_CNT ;. trace count

Figure3.38 System Call Trace Function Registration Field of Setup Table

Rev. 3.00 Jan. 12,2005 Page 237 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(1) TRC_CNT (maximum amount of trace information)
Defines the maximum amount of trace information that can be acquired by the system call
trace function.

(2) TRC_BUF (allocation of trace buffer area)
Allocates the area for storing trace information that can be acquired by the system call trace
function.

(3) Definition of system call trace function
Definesinformation for the system call trace function.

Note: Do not modify or delete symbols used in the system call trace function registration

field.

The details of defining the system call trace function are as follows:

[Format] INITRC. .data.l TRACE BUFFER ADDRESS
.data.|l TRACE_COUNT

— INITRC: Symbol for defining system call trace function information

— TRACE BUFFER ADDRESS (trace buffer address for system call trace function): Defines
the start address of the trace information acquisition area used by the system call trace
function.

— TRACE_COUNT (amount of trace information for system call trace function): Defines the
amount of trace information acquired by the system call trace function.

Rev. 3.00 Jan. 12, 2005 Page 238 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(7) Extended information registration fields
These fields define various information for registering extended information. The extended
information registration fields of the setup table are shown in figures 3.39 to 3.45.

;%% % %0 % %0 %0 %0 % %o %0 %Yo %0 %o Yo %o Vo %o Yo Vo %o Yo Yo Yo Vo %o Yo Yo %o Vo %o Yo Yo %o Yo %o Yo Vo %o

;%%% Task Extended Information define section %% %
;%% %o %o % Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo
jmm——- Usage
;LABEL .data.] TSK?_EXINF ;: COMMENT
.section h2ssetup, code, align = 2
_HI_TSKEXINF: .equ $-EXLEN ;- TSK exinf define area
TSKE_TOP: equ $;0
tsk1_exinf: .data.l 00000000 ;- tskid = 1 exinf
tsk2_exinf: .data.l 00000000 ;2 tskid = 2 exinf
tsk3_exinf: .data.l 00000000 ;- tskid = 3 exinf (1)
tsk4_exinf: .data.l 00000000 ;- tskid = 4 exinf
tsk5_exinf: .data.l 00000000 ;- tskid = 5 exinf
TSKE_BTM:
TSKECNT: .equ (TSKE_BTM-TSKE_TOP) / EXLEN

;:[0...255] ;: tsk exinf count

Figure3.39 Task Extended Information Registration Field of Setup Table

;%% %0 %0 %0 %o %o Yo Yo %o Yo %o Yo

;%%% Event Flag Extended Information define section % %%
;%% %0 Yo %o %o Yo %o %o Yo %o Yo Yo %o Yo %o Yo Yo %o Yo Yo %o Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo %o Yo Yo
jmmmme- Usage
;LABEL .data.l FLG?_EXINF ;: COMMENT
.section h2ssetup, code, align = 2
_HI_FLGEXINF: .equ $-EXLEN ;- FLG exinf define area
FLGE_TOP: equ $:
flg1_exinf: .data.l 00000000 ;- flgid = 1 exinf
flg2_exinf: .data.l 00000000 ;: flgid = 2 exinf
flga_exinf: .data.l 00000000 ::figid = 3 exinf M
flg4_exinf: .data.l 00000000 ;- flgid = 4 exinf
FLGE_BTM:
FLGECNT: .equ (FLGE_BTM-FLGE_TOP) / EXLEN

;:[0...255] ;: flg exinf count

Figure3.40 Event Flag Extended Information Registration Field of Setup Table

Rev. 3.00 Jan. 12,2005 Page 239 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

;%% %% % %0 %0 %o Vo %o %o Yo %o Vo %o %o Yo %o Yo Yo Yo Vo %o Yo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo Yo %o Yo Yo Yo Yo %o Yo

;%%% Semaphore Extended Information define section %% %
;%% %o %o % Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo
jmmmn Usage

;LABEL .data.]| SEM?_EXINF ;: COMMENT

.section h2ssetup, code, align = 2
HI_SEMEXINF: .equ $-EXLEN ;: SEM exinf define area

SEME_TOP: equ $;

sem1_exinf: .data.l 00000000 ;o semid = 1 exinf

sem2_exinf: .data.l 00000000 ;- semid = 2 exinf 1)
sem3_exinf: .data.l 00000000 ;- semid = 3 exinf

sem4_exinf: .data.l 00000000 ;- semid = 4 exinf

SEME_BTM:

SEMECNT: .equ (SEME_BTM-SEME_TOP) / EXLEN

;:[0...255] ;: sem exinf count

Figure3.41 Semaphore Extended I nformation Registration Field of Setup Table

;%% %0 %0 %0 Yo %o Yo Yo %o Yo %o Yo

1%%% Mailbox Extended Information define section % %%
;%% %o %0 %0 Yo %o Yo
jmmmme- Usage

;LABEL .data.] MBX?_EXINF ;: COMMENT

.section h2ssetup, code, align = 2
_HI_MBXEXINF: .equ $-EXLEN ;- MBX exinf define area

MBXE_TOP: equ $ i

mbx1_exinf: .data.l 00000000 ;> mbxid = 1 exinf

mbx2_exinf: .data.l 00000000 ;> mbxid = 2 exinf)
mbx3_exinf: .data.] 00000000 ;- mbxid = 3 exinf

mbx4_exinf: .data.l 00000000 ;- mbxid = 4 exinf

MBXE_BTM:

MBXECNT: .equ (MBXE_BTM-MBXE_TOP) / EXLEN

;:[0...255] ;: mbx exinf count

Figure3.42 Mailbox Extended Information Registration Field of Setup Table

Rev. 3.00 Jan. 12, 2005 Page 240 of 362

REJ05B0364-0300 RENESAS

Section 3 Configuration

;%% %o %o %o Yo %o Yo
;%%% Fixed-size MemoryPool Extended Information define section % %%
;%% %o %0 %0 Yo %o Yo

jmm——- Usage
;LABEL .data.]l MPF?_EXINF ;: COMMENT

.section h2ssetup, code, align = 2
_HI_MPFEXINF: .equ $-EXLEN ;: MPF exinf define area
MPFE_TOP: equ $ 5
mpf1_exinf: .data.l 00000000 ;- mpfid = 1 exinf
mpf2_exinf: .data.l 00000000 ;:» mpfid = 2 exinf
mpf3_exinf: .data.l 00000000 : mpfid = 3 exinf Q)
mpf4_exinf: .data.l 00000000 ;- mpfid = 4 exinf
MPFE_BTM:
MPFECNT: .equ (MPFE_BTM-MPFE_TOP) / EXLEN

;:[0...255] ;: mpf exinf count

Figure 3.43

Fixed-Length Memory Pool Extended | nfor mation Registration Field of Setup
Table

;%% %0 %o %o %o %o %o Yo Yo %o Yo Yo %o Yo
;%%% Variable-size MemoryPool Extended Information define section %% %
;%% % %o %o %o Yo %o %o Yo %o Yo %o Yo Yo
jmmm-e- Usage
;LABEL

.data.l MPL?_EXINF ;: COMMENT

.section h2ssetup, code, align = 2
_HI_MPLEXINF: .equ $-EXLEN ;- MPL exinf define area
MPLE_TOP: equ $ 5
mpl1_exinf: .data.l 00000000 ;o mplid = 1 exinf
mpl2_exinf: .data.l 00000000 ;- mplid = 2 exinf
mpl3_exinf: .data.l 00000000 ;- mplid = 3 exinf
mpl4_exinf: .data.l 00000000 ;> mplid = 4 exinf
MPLE_BTM:
MPLECNT:

O]

(MPLE_BTM-MPLE_TOP) / EXLEN
;:[0...255] ;: mpl exinf count

.equ

Figure3.44 Variable-Length Memory Pool Extended Information Registration Field of

Setup Table

Rev. 3.00 Jan. 12,2005 Page 241 of 362

RENESAS REJ05B0364-0300

Section 3 Configuration

;%% %% % %0 %0 %o Vo %o %o Yo %o Vo %o Yo Yo %o Yo %o Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo

;%%% Cyclic Handler Extended Information define section % %%
;%% %o %0 %o Yo Yo Yo Yo %o Yo Yo Yo Vo Yo
jmm——- Usage
;LABEL .data.l CYH?_EXINF ;: COMMENT
.section h2ssetup, code, align = 2
_HI_CYCEXINF: .equ $-EXLEN ;: CYH exinf define area
CYHE_TOP: equ $ 5
cyh1_exinf: .data.l 00000000 ;:cyhno = 1 exinf
cyh2_exinf: .data.| 00000000 ;:cyhno = 2 exinf
cyh3_exinf: .data.l 00000000 :: cyhno = 3 exinf M
cyh4_exinf: .data.l 00000000 ;- cyhno = 4 exinf
.aifdef DX
cyh5_exinf: .data.l 00000000 ;:cyhno = 5 exinf G e (2)
.aendi
CYHE_BTM:
CYHECNT: .equ (CYHE_BTM-CYHE_TOP) / EXLEN

;:[0...255] ;: cyh exinf count

Figure3.45 Cyclic Handler Extended Information Registration Field of Setup Table

(1) Definition of extended information
Defines extended information to be registered in each object.
(2) When the debugging extension is used, defines extended information to be registered in the
debug daemon cyclic handler.
Note: Do not modify or delete symbols used in the extended information registration fields.
When adding extended information to be registered, insert the definition data before
each 7?2E_ BTM.

Rev. 3.00 Jan. 12, 2005 Page 242 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

324 FAQ about Setup Table

This section answers a question about the setup table which is frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Optimizing SEtUP TabIEcveiee e s sr e resre s 244

Rev. 3.00 Jan. 12,2005 Page 243 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(1) Optimizing Setup Table

Classification: Configuration, kernel environment definition, and setup table

Question HI12000/3

When the system is created by using the files generated when the OS is installed without change,
an error occurs and a correct system is not created. What causes this problem?

Answer
An error occurs because the setup table is specified for optimization.
Do not specify the setup table for optimization.

The setup table creates information (data table) required for the kernel according to the defined
contents, as well as allocation of the memory area used by the kernel according to the defined
value (such as calculation of stack size used by the kernel). Since no code (program) is described,
the setup table does not affect the code size or speed (performance) even if it is specified for
optimization. If assembly is performed with the setup table specified for optimization, an error
occurs during optimization.

Rev. 3.00 Jan. 12, 2005 Page 244 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

3.3 Stack Size Calculation

Calculate the task or interrupt handler stack size using the following procedures.

1. Cdculate the stack size for each function in atask or interrupt handler

2. Cadlculate the stack size considering program nesting

331 Stack Size Calculation from Stack Frame Size

A Cfunction allocates a stack frame in the stack areawhen the function is initiated.

The stack frame is used as alocal variable areafor the function or as a parameter areafor a
function call.

The stack frame size can be determined from the frame size in the compile listing output by the C
compiler.

Asthe C compiler cannot determine the stack size when service calls of the HI series OS are used,
such extra stack size must be added to the frame size in the compile listing.

332 Stack Size Calculation by CallWalker
The stack size can be calculated using the "CallWalker", atool supplied with the C compiler.
A calculation example of the task stack size using the CallWalker is shown below.

The following calculation example uses the HI7750/4, SuperH™ RISC engine Series C/C++
Compiler Package Ver. 8.0.01, and SH7770 whole linkage project (7770_mix) as the sub-project
of the HEW workspace.

Rev. 3.00 Jan. 12,2005 Page 245 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(1) Starting HEW
Initiate the HEW, open "\kernel\for_shc8\hios\hios.hws' in the HI 7750/4 install folder, and
select 7770_mix asthe current project.

_- -1-. _I T y 27k s

||cnﬂ=nn|r|nn—l-|1 "'-“||]“E"|l’:|+h ‘-::-rll‘“‘ihr: --]||nﬂ—
i Hif| SR s = | BT
”r‘-‘i.-.:.I.I.EHEH]N-HPII‘L“&NHP#T .- R R A

FTR_cig
A dsl
T ra
7l clg
TIT0_ded
TIP0_min
I Al oo S
a1l T opsan b
TTT papwssd v
£ TTI ke me
= i L smace s
;ﬂ T cpumc
lﬂ' TT70_mchan =
& T brwdres
& kel cipe
2| kel e 1
ol LabL

R _'Iﬂ

= H-H- -8

Clalehpmigog i nfioheen s e

Figure3.46 HEW Startup

Rev. 3.00 Jan. 12, 2005 Page 246 of 362

REJ05B0364-0300 RENESAS

Section 3 Configuration

In the window after setting the current project, select [SuperH RISC engine Standard
Toolchain...] from [Options] in the header menu to display the HEW option setting menu.

el
e _re
Tl clg
TTT_ded
TIPD_min
= Il Gl i
&l TTTU_opdasim
; TTT papweeri. i
£l TTH e o
= il L emscwiie
'g T cpammc
3 TT70_mychernz
| T ke
o kel _clpe
& e el
- LR

_.ici "ﬂ-

= H-fH-f -

| - -

Figure3.47 Menu Selection

Rev. 3.00 Jan. 12, 2005 Page 247 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

superH RISC engine Standard Toolchain HE |
Canfiguration : C/C++ |.-’-'-.ssem|:|l_l,l| Linka"LiI:urar_l,II Standard LiI:urar_l,II CRU A I *I
||:||:||_|:||g j Categon : ISDurce j
E‘@ %L;?ag;d I;'n:uiects Show entries for ;
@ ??Eﬂ_zegfl IIr‘u:qu:Ie file directories j
e 7760 i $(wORKSPDIR Mhikead
: Add...
% 7770 cig $w/ORKSPDIR Shisys _add. |
FI0_def FrORESPDIR Mhiuzersh? 770
Ell@ FEe0_mis e |
-] C source file
D C++ zource file ﬂl
-] Assembly source file
-7 Linkage symbal file tl ovE D |
= |
Optiong CAC++
-cpu=zhda fpu=zingle ﬂ
-include="$+0RKSPDIR])\hihead " $w0RESPDIR Mhis
a ILI vz "FwWORESPDIR Mhivzershy 770" LI
] I Cancel |

Figure 3.48 HEW Option Selection

Rev. 3.00 Jan. 12, 2005 Page 248 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Select "Other" for [Category] in the [Link/Library] tab and select [Stack information output].

superH RISC engine Standard Toolchain EHE |
Configuratiarn ; E.-"E++| &ssembly Link/Library | Standard LiI:urar_l,lI CPU LI_’I
[abi_big [Catean_ | Ot ~]
E‘@ %L?D?aggd I:'n:nieu:ts Mizcellaneous optians :
I@ 7760 def .-'f-.lwa tt eu:ur at the end
@ ??ED_IT"H Ayl |_|II-.||_|r||_|.-|.|:||J.
I@ 7770_clq anpress ebug ::r|1 u:frme;.u:ukn
I@ 7770 def [CJLow memary uze during linkage
Ell@ FTT0_mix
D C source file Uzer defined options : I.-'l'-.l:usculute.-"Fielu:u:atal:ule.-"LiI:urar_l,l j
|:| C++ zource file
-0 Assembly source file =

I:I Linkage symbal file

|

Optionz LinkLibrar ;

-entiy=_hi_cpuazm -define=__kermel_pon_sp=04C100000 -
-define=__kermel_man_zp=04C100000 -noprelink, -zdebug

4 | ILI -nomessage -

Figure3.49 HEW Option Settings

Click the [OK] button to finish setting and execute build.

Rev. 3.00 Jan. 12,2005 Page 249 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(2) Starting CallWalker

Select [Program] -> [Renesas High-performance Embedded Workshop] -> [CallWalker] to
initiate the CallWalker.

Bk Edt ¥ow Took Hojp
O Bl oo St " Py o [5RF
Sl Lbsarp Varson §| Sarced vy SH VE]

L N i

Acichresze | e | e | Souce

FarHalp. prass F1 [Find: Shack siza

Figure3.50 CallWalker Startup

Rev. 3.00 Jan. 12, 2005 Page 250 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Select [Import Stack File...] from [Fil€e] in the header menu of the startup window to open the
created stack information file.

B Lnitad | Pl
Fie Edt Mow Took Halp
Bdas =k M| PR
e Cil+0 -
S owem [t I :
e i A | Acidrese | Siee | Sec . | Souce
Chripart Liet Clal
Exit
kmpo Erack fla [Find : Siack siza &

Figure3.51 File Reading

Rev. 3.00 Jan. 12,2005 Page 251 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Stack File

Look in: I =3 ob{_big

File name: | | Open I
Filez of type: IStau:k Filez [*.zni] or Profiles [*.pra] j Cancel |

[T Merge specified file

&

Figure3.52 Read File Selection

Rev. 3.00 Jan. 12, 2005 Page 252 of 362

REJ05B0364-0300 RENESAS

Section 3 Configuration

(3) Calculation example of task stack size
In this example, the system consists of the application programs listed in table 3.21.

Table3.21 Configuration of Sample System

Function Name Application Type Remarks
_hi_cpuini CPU initialization routine
_kernel_reset (Calls vsta_knl) Stack size is calculated as 0
_inithdr1 Initialization routine
_MainTask Task
_texrtn1 Task exception processing routine for
_MainTask
_sub1 Function called from _MainTask
_Task7 Task
_svchdr1 Extended service call handler Called from _MainTask
_inthdr_levell Interrupt handler (interrupt level 1)
_inthdr_level5 Interrupt handler (interrupt level 5)
_kernel_tmrini Timer driver (timer initialization routine) Initialization routine
_kernel_tmrint Timer driver (timer interrupt routine) Interrupt handler
_cychdr1 Cyclic handler
_kernel_sysdwn System down

In the above application, the static stack and coprocessor are assumed not to be used and the
CFG_TRACE check disabled.

An example of stack size display by the CallWalker for the above application is shown in
figure 3.53.

Rev. 3.00 Jan. 12,2005 Page 253 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

B 10T sl = Coll Walkey
De [Yem To Seb
lFdFa % LA N T ey T
] T pacal (Mee 81 | Sretes [Mhiab hiaei f | s e | S
=l g 4] L] b per e e A 1 TV o i
e st 0] i F|_proict Tt] M ey ok
i vl LA {i], reersl T 5 16 worklabi
| e {7 st %: (1B ;3 16wl iy
= il [[TT] gl] B H wan ds
| - (¥ w b TItmrdasti
. -:f_-;'l“'[_f ' [T Jroer evet (s [T kb etk
TH heekel (35 [T b rurin [ocbimocte ® | T rmvdrasty
p B i I bk v L] E twliok
TH _bowmed povini 11§} I ManTasl (bl Wl o twhob
T okt sl 420 1 [TF_bevee! roaen [L X I T prdmabi
= I} i el A 5 T b el
ﬂ' owrel papr CH |
i_‘_rh: 151
B i
=-4H ManTeh (6
& o
2 [it 31
1] G0y
Al el praden (10
TH bl al [
M o
Fir Hulp, gri Y L] Frd: Shack i

Figure3.53 Stack Size Display Example by CallWalker

The stack sizeis calculated from the displayed information. The stack size displayed by the
CallWalker isthe stack size which atask or interrupt handler can use independently. The stack
size can be obtained by adding the necessary size of the kernel to this displayed size. Each
stack sizeis calculated below based on the displayed stack size example by the CallWalker.

The stack size of the"_MainTask" task is calculated as an example.

_MainTask calls the following function and service call. It aso defines atask exception
processing routine.

— _subl
— Extended service call routine (_svcrtnl)
— Task exception processing routine (_texrtnl)

Rev. 3.00 Jan. 12, 2005 Page 254 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

_MainTask

Y

_sub1

/ ras_tex
\ Z‘ _texrtn1

_svcrint

|

Figure3.54 Overview of Sample Task Processing

The Cal Information View of the CallWalker indicatesthat MainTask callsthe subl
function. However, information for the other calls (e.g. service call) is not available. Since the
CallWalker cannot display information for the other two calls, calculation must be performed
manually.

The stack sizesof _MainTask and _subl can be obtained from the Call Information View and
Symbol Detail View, respectively. Add manually the stack sizes of the other extended service
call routine and task exception processing routine to these stack sizes.

The stack size of the" MainTask" task alone becomes as shown in table 3.22.

Table3.22 Stack Sizeof _MainTask | tself

No. Function Name Stack Size

1 _MainTask 44 bytes

2 _sub1 24 bytes

3 _svertni 16 bytes

4 _texrtn1 24 + 152 bytes*
Total 260 bytes

Note: Added size (necessary size) of call routine and handler. For details, refer to the HI7000/4
Series User's Manual.

Rev. 3.00 Jan. 12,2005 Page 255 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

The value determined here is the stack size of the" MainTask" task itself.

Substitute this value into item 1 in table C.5, Task Stack Size, in the HI7000/4 Series User's
Manual. The stack size of the" MainTask" task is determined as shown in table 3.23.

Table3.23 Task Stack Size Calculation

No. Item Stack Size
1 Obtained size 260 bytes
2 Necessary size 196 bytes
3 Tasks TA_COPO attribute —

4 TA_COP1 attribute —

5 TA_COP2 attribute —

6 Static stack usage —

7 Checks CFG_TRACE —

8 Addition considering nested interrupts —

Total 456 bytes

(4) Calculation example of interrupt handler stack size
In this example, there are two interrupt handlers.
— inthdr_levell
— inthdr_level5
In addition, atimer isused. The stack size of each interrupt handler needs to be determined
because these interrupt handlers have different interrupt levels. Accordingly, nesting does not
need to be considered for these interrupts.
Substitute each stack sizeinto item 1 in table C.6, Interrupt Handler Stack Size, in the
H17000/4 Series User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 256 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Table3.24 Interrupt Handler Stack Size Calculation

Stack Size
No. Item _inthdr_levell _inthdr_level5 _kernel_tmrint
1 Obtained size 32 bytes 20 bytes 4 bytes
2 Calls service call from the 192 bytes 192 bytes 192 bytes
interrupt handlers
Checks CFG_TRACE — — —
Addition considering nested — — —
interrupts
Total 224 bytes 212 bytes 196 bytes

Theinterrupt handler stack size to be specified is determined from these values.
Substitute these values into the following formula provided in the HI7000/4 Series User's
Manual to obtain the interrupt handler stack size.

CFG_IRQSTKSZ = 3 (The stack area of the handler that uses the largest stack area) + 28 +
(stack size used by the NMI interrupt handler calculated as shown in
appendixes C.4 and C.5 + 48) x NMI nest count

Theresult is asfollows:
CFG_IRQSTKSZ = 224+ 212+ 196 + 28 + 0 (no NMI nesting)
= 660 bytes

(5) Calculation example of time event handler stack size
In this example, only one cyclic handler (_cychdrl) isused.
Substitute this value into item 1 in table C.7, Time Event Handler Stack Size, in the HI7000/4
Series User's Manual.

Rev. 3.00 Jan. 12,2005 Page 257 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Table3.25 TimeEvent Handler Stack Size Calculation

No. Item Stack Size
1 Obtained size 20 bytes

2 Necessary size 192 bytes
3 Calls service call from the time event handlers 144 bytes
4 Checks CFG_TRACE —

5 Addition considering nested interrupts —

6 Addition when the NMI is used —

Total 356 bytes

Only one cyclic handler is used as the time event handler in this example. When more than one
time event handler is used, calculate the stack size using the maximum size of al time event
handlers that use the stack.

(6) Calculation example of initialization routine stack size
In this example, oneinitialization routine (inithdrl) is used.

However, since atimer driver is used, the timer initialization handler “_kernel_tmrini” of the
timer driver is actually used, resulting in atotal of two initialization routines being used.

Therefore, use the greater stack size among these two for calculating the initialization routine
stack size.

Table 3.26 Initialization Routine Stack Size Calculation

No. Item Stack Size
1 Obtained size 16 bytes

2 Necessary size 192 bytes
3 Checks CFG_TRACE —

4 Addition when the NMI is used —

Total 208 bytes

Rev. 3.00 Jan. 12, 2005 Page 258 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

(7) Notes on using CallWalker
The notes when using the CallWalker are listed below.
— [Rea Time OS Option...] in the Tools menu of the CallWalker is currently not supported.

— Assembly-language functions will not be calculated by the CallWalker, so they need to be
calculated manually.

— Thefollowing functions will also not be calculated by the CallWalker, so they need to be
calculated manually.

Recursive function
Circular function

Function having an unclear source symbol
e Function having an address still not referenced

Note that when the function at the beginning of an application program, such as the starting
function of atask or task exception processing routine is written in the assembly language, it
may not be displayed in the Call Information View of the CallWalker.

Rev. 3.00 Jan. 12,2005 Page 259 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

34 System Configuration Procedure

A system using the HI series OSis configured using the HEW (High-performance Embedded

Workshop).

The overview of system configuration is shown in figure 3.55.

Application

programs

Kernel information
definition file

Kernel function

library file

HEW
(High-performance
Embedded Workshop)

—

Load module

Figure3.55 System Configuration Procedure

Each HI series OS has aHEW configuration file (HEW workspace) for the supplied standard

sample programs.

The configuration procedure using the supplied standard HEW configuration file is described

below.

Rev. 3.00 Jan. 12, 2005 Page 260 of 362
REJ05B0364-0300

RENESAS

Section 3 Configuration

34.1 H17000/4

For the configuration procedure of the HI17000/4, the SuperH™ RISC engine Series C/C++
Compiler Package Ver. 6.0AR2, SH7612 HEW configuration file (referred to asHEW
workspace), and Configuration Guide using whole linkage are provided. These can be downloaded
from the website of Renesas Technology Corp.

34.2 HI17700/4

For the configuration procedure of the H17700/4, the SuperH™ RISC engine Series C/C++
Compiler Package Ver. 6.0AR2, SH7729 HEW configuration file (referred to as HEW
workspace), and Configuration Guide using whole linkage are provided. These can be downloaded
from the website of Renesas Technology Corp.

34.3 HI17750/4

For the configuration procedure of the H17750/4, the SuperH™ RISC engine Series C/C++
Compiler Package Ver. 6.0AR2, SH7750 HEW configuration file (referred to asHEW
workspace), and Configuration Guide using whole linkage are provided. These can be downloaded
from the website of Renesas Technology Corp.

344 H12000/3
The configuration procedure using the HEW is shown below.
In this example, the H8S, H8/300 Series C/C++ Compiler Package Ver. 4.0AR2 is used.

Double-clicking the sample workspace file "product.hws" in the HI2000/3 installation folder
"product” launches the HEW for configuring the HI2000/3. The HEW startup window is shown in
figure 3.56.

Rev. 3.00 Jan. 12,2005 Page 261 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Eu Edn Eroject Optiors Buld Teoks Widow Hala
(N R, R - 1 - B =QEmE
| OF % |W||B6 ¢ fdE|

=l

[]
hitfa
E-3 Prowct Fiss

|!'| o 2 T
] ERGadnc
N FFisaga
.!l s 1
s

] sk

T Hevajects [Ineigation |

tdd JFied in Fime , WersEon Conbo |
FarHelp. press 1 I S NE | UM

Figure3.56 HEW Startup

Sampl e projects corresponding to each device are aready registered in the workspace file
"product.hws".

There are four sample projects corresponding to the CPU and operating modes as shown in table
3.27.

Select a project that matches the user environment (CPU and operating mode) and change the
settings with reference to the subsequent descriptions.

Rev. 3.00 Jan. 12, 2005 Page 262 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Table3.27 Standard Sample Projects

No. Project Name Configuration File* Contents

1 hi26a hi26a Project to create a load module for the
H8S/2600 CPU in advanced mode
(already registered for H8S/2655)

2 hi26n hi26n Project to create a load module for the
H8S/2600 CPU in normal mode
(already registered for H8S/2655)

3 hi20a hi20a Project to create a load module for the
H8S/2000 CPU in advanced mode
(already registered for H8S/2655)

4 hi20n hi20n Project to create a load module for the
H8S/2000 CPU in normal mode
(already registered for H8S/2655)

Note: A setting is made to create a load module in the configuration file.

Rev. 3.00 Jan. 12,2005 Page 263 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

To select asample project, select a project from the HEW workspace window and select [Set as
Current Project] from the pop-up menu.

Bla Edn Brosct Opiors Buld Took Widow Halp
(DR | T s ey | T [JaEmE
2L SRR E)
1
5 —
3 [0 =g S
ha

T [EHH A

Hupidd EEM n EH#A Wersion Conbol

i HE | MUM

Figure3.57 Project Selection from Pop-up Menu
Note that projects for unused environments can be del eted.

When using a device other than the H8S/2655 or H8S/2245, after selecting a project, change the
system configuration file already registered to that for the CPU used.

Define (add) the application programs created in section 2, Application Program Creation, in the
project file. The procedure for adding files is shown below.

Rev. 3.00 Jan. 12, 2005 Page 264 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Select [Add Files...] from [Project] in the header menu in the window after setting the current
project, and add the created application program files to the project file.

Ble Edn | Projec Optiors Buld Tocks Widow Hal
|DEu || 8 o [eI M
Eisnceaa File: .

| File Exfmnzions. = & a|a|

|y e e
Ry [

Sel Cunend Project
Iragit Frogect..
De=penden Projacts_.

M EFisepune
N] 55l nc

'ﬂm«u-:-:
'!l:‘EEEl.nl:lr:
] A5fewen mn

ash i
& ,E h:fhlﬂ I

gy

T Feraects [niwigann |

| = = NE | MUM -

Figure3.58 File Addition Menu

Rev. 3.00 Jan. 12, 2005 Page 265 of 362

RENESAS REJ05B0364-0300

Section 3 Configuration

Add File(s)

Loak i I = product

cif Clsample
hi2la

hi2ln

hiZba

hiZhn

hilika

File name: || Add

Filez aof type: IF'n:uieu:t Filez j Cancel |
4

Figure3.59 Additional File Selection

In the additional file selection window, more than one file can be selected simultaneously by
moving to the folder containing the files to be added and then selecting the files with the Shift key

pressed down.

Define the section information of the added files.

Rev. 3.00 Jan. 12, 2005 Page 266 of 362

REJ05B0364-0300 RENESAS

Section 3 Configuration

Select [OptLinker...] from [Options] in the header menu, select the [Section] tab of the [OptLinker
options (hi26a)] dialog box, and make settings to add the section information.

|| Bl Edit Brosmct [Options Bl Tecks Sindow Habe

HEE HECHN GiCer Library dararstor. i25a = =] ’J
O - e -E:s:-_” EHE M

Bl - [y —
Edét optins Tor phesse OpriLinker I e L

Figure3.60 OptLinker Selection Menu

Rev. 3.00 Jan. 12, 2005 Page 267 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

OptLinker optionsthi2ta)

Input | Output | Optimize Section |‘-.-‘erif;-.f | Other |

Felocatable gection start address :

| Address Section - fdd...
[HOOOOOZ00 | his 2=

hZzzetup Madify... |

hesu=er

hZzilint Mew Civerlay |
] Bemove |

E iy
hZz=tack b
hZzmpt *l +
hZzmpl 1 Diown
hZzusr ram ;I = =
Generate external svmbol file :
Add.

[T Uze external subcommand file (] .4 I Cancel I

Figure3.61 Section Information Addition

How to add a section is described next. Adding program section "P_section™ of the added
application fileis shown as an example.

Select [Ptask] and press the [Add...] button.

Rev. 3.00 Jan. 12, 2005 Page 268 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

#dd zection

Section name :

|F‘_seu:t iar| LI

Figure3.62 Additional Section Information Input

Input "P_section” in [Section name :] in the [Add section] dialog box and press the [OK] button.
The added "P_section” section will be displayed below the "Ptask" section.

Optlinker options hi2Ga)

Input | Citput I Optimize =ection |Uerif;-.= I Oither I

Relocatable section start address :

i ot | =
HOO000Z00 | hig 2=

hezzetup Madify... |

hZzuzer

hZzilint MHew Civer lay |

hisc

— Remove |
zection

HOOFFECOD | hig_2=_ram |
hZszztack * +
hZzmpf L Do
hZzmol == =

Generate external svmbal file :
fdd

[T Use external subcommand file K I Cancel I

Figure 3.63 Added Section Information Confirmation

To reflect the updated section information, press the [OK] button.

Rev. 3.00 Jan. 12,2005 Page 269 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Next, select [Build] from [Build] in the header menu to configure (build) the system.

| Fia Edt Broject Optioes |Buld Took Wrdow Hels

[DEH@S L8y e 1 7 [HEm T

| e Buisd

Uptate &1 Depancercas

- ": e (ansrate Makehils
g ki & E 34

3 i3 _PM:I Febici FT R Lt o
N EEEscpurc
N s
[T PR
N Aiffieanic
.ﬂ Mhencarc

a N sk
23 hixn

] Wil i Fird m Pz, Wrsion Coniel |1
Burkd il of s v prsjenc ard e o b Sepevedan| prepcts = = e M

Figure3.64 Build Execution

The above operations create an executable file.

Note that the result of compile, assemble, and linkageis displayed in the lowest part of the
window. If an error occurs, after correcting the corresponding source program, re-execute build.

The executable file (extension of abs) is created in the folder (folder with the relevant project

name under the [product] folder) specified by the configuration file selected in the relevant
project.

Rev. 3.00 Jan. 12, 2005 Page 270 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Build by standard configuration uses akernel library in which the parameter check function and
shared-stack function are enabled.

After the application program has been debugged and it has reached alevel to be embedded in a
product, the parameter check executed at the beginning of the system call becomes a useless
routine. Accordingly, this parameter check function can be removed in the HI2000/3.

For details on the how to remove the parameter check function, refer to section 1.3.2, Installation
in H12000/3 and HI11000/4.

345 H11000/4
The configuration procedure using the HEW is shown below.
In this example, the H8S, H8/300 Series C/C++ Compiler Package Ver. 6.0.00 is used.

Double-clicking the sample workspace file "product.hws" in the HI1000/4 installation folder
"product” launches the HEW for configuring the HI1000/4. The HEW startup window is shown in
figure 3.65.

Rev. 3.00 Jan. 12, 2005 Page 271 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

)
78
||
=
E
il
= [lI
E
a
f’
M
;—
_|
=
]
|

rrltrms Esrneg e e I
[,/ G ""J||’-'-7*-'i| o 1 gy l—_ljm e

[--':.IH.E]JE]]]I'_-:-.II PSR m R

.E

1L
BlSlsemy
= =y Ao (oo e
5 1650 _gni oc
A 1B
A 1T
al Ve e
b T
il boane e aT
'ﬂ' [EEEE
£} benal_vacionz
= i C omarcw bis
& ke
—d Coperederems
B bond i
X kil _api
I e reaoit ine

gL |

e et Five i Fes A, Version Gomm | = S

Figure3.65 HEW Startup

Sampl e projects corresponding to each device are aready registered in the workspace file
"product.hws". There are two sample projects corresponding to the CPU and operating modes as
shown below. Select a project that matches the user environment (CPU and operating mode) and
change the settings with reference to the subsequent descriptions.

e 1650asmp: Project to create aload module for the H8SX/1650 CPU in advanced mode
e 1525asmp: Project to create aload module for the H8SX/1525 CPU in advanced mode

To select asample project, select a project from the HEW workspace window and select [Set as
Current Project] from the pop-up menu.

Rev. 3.00 Jan. 12, 2005 Page 272 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

W

]_usn:u.”- S| s S P L

o s [[[e Jm_-w C e e L e e e
|l e e

= ,Eh-
5 jEE ‘\amion Comral
T Cartgue e

| - = N[MM

Figure3.66 Project Selection from Pop-up Menu
Note that projects for unused environments can be deleted.

Define (add) the application programs created in section 2, Application Program Creation, in the
project file. The procedure for adding files is shown below.

Rev. 3.00 Jan. 12, 2005 Page 273 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

Select [Add Files...] from [Project] in the header menu in the window after setting the current
project, and add the created application program files to the project file.

| =BG Pl Basoroer =m
lﬂ' Mh i # [] [Cotmiren =X

AP B e e o R[] R R A

| — = & [rm |

Figure3.67 File Addition Menu

Rev. 3.00 Jan. 12, 2005 Page 274 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

Add File(s)

Look in: | 2 sample =l

_11526asmp | task.c
|_11650asmp

| 1c_sample

_1hihead

1 obj_adw

] setup.inc

File name: I

Filez of tpe: IF'n:.ie.:t Filez j Cancel |

[Felative Path

&dd

&

Figure3.68 Additional File Selection

In the additional file selection window, more than one file can be selected simultaneously by
moving to the folder containing the files to be added and then selecting the files with the Shift key

pressed down.

Define the section information of the added files.

Rev. 3.00 Jan. 12,2005 Page 275 of 362

RENESAS

REJ05B0364-0300

Section 3 Configuration

Select [H8S, H8/300 Standard Toolchain...] from [Options] in the header menu, select the
[Link/Library] tab of the [H8S, H8/300 Standard Toolchain] dialog box, and make settings to add
the section information.

DR [
1

[e [

| = = ks [|

Figure3.69 HB8S, H8/300 Standard Toolchain Selection Menu

Rev. 3.00 Jan. 12, 2005 Page 276 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

=.H3,/300 Standard Toolchain BHE |
Cotfiguratiorn : CAC++ | Assembly Link Library |Standard LiI:urar_l,II CRU A I *I
I obl_ady j Category: | Input j

= =1 Al Loaded Projects . Imput
@ Show entries for | Output

B- @ 1650azmp - -
-] C source file |L|I:urar_l,l fles lE:SttimiZE
|7 G+ source file WORKSPDIR Add

I:l Azzembly source file Werify
-7 Linkage symbal file Other] et

Subcaommand file —
Hemove |
2|+

1| | J W M

W' Use entry point - Prelinker contral :
[_KERNEL_H_CPUINI [t =l

O ptiong Link/Libran ;

-entiy=_KERMEL_H_CPUIMNI -roprelink, -nomeszage ﬂ
zt="$[COMFIGDIREPROJECT HAME]. map"

4] | LI -show=zprbol -nooptimize ;I

Figure3.70 Section Setting Menu

Rev. 3.00 Jan. 12, 2005 Page 277 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

=.H8/300 Standard Toolchain
Canfiguration :
I obi_adv j

E'@ 1650azmp

=3 All Loaded Frajects

-] C source file
[:I C++ gource file
I:I Agzembly zource file
-2 Linkage symbal file

| 2]

HE|
C/C++ | Assembly Link/Library |Standard Library | cPU <] ¥]

Categon : I Section j
Show entries for : |Secti|:|n j
Address Section - Add. I

0=00000000| C_hivct
0=00000400) P_hicpuini

todify... |

P_hiknl
C_hisetup Mew Ouwerlap |
P_hitrardrs
5 R |
P_higpzd... ISfEmiE
= e
|rnport E=port | Up Down

O ptiong Link/Libran ;
-entiy=_KERMEL_H_CPUIMNI -roprelink, -nomeszage ﬂ

zt="$[COMFIGDIREPROJECT HAME]. map"
-show=symbol -nooptimize

Figure3.71 Section Information Addition

How to add a section is described next. Adding program section "P_section™ of the added
application fileis shown as an example.

Select [P_hiidle] and pressthe [Add...] button.

Rev. 3.00 Jan. 12, 2005 Page 278 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

Add section

Section name :

IF'_sectiDn j

Figure3.72 Additional Section Information Input

Input "P_section” in [Section name :] in the [Add section] dialog box and press the [OK] button.
The added "P_section” section will be displayed below the "P_hiidl€" section.

HE/300 Standard Toolchain

Configuratiarn ;

I obi_ady j

El--@ &)l Loaded Projects
E@ 1650azmp
I:I C zource file
[:l C++ zource file
CI Azzembly zource file
|:| Linkage syrmbal file

Cateqgory : ISEDtiDr‘l j
Show entries for ; ISectiDn J
Address Section J I
P_hizpzd...
P_hidle Modily... |
FI
C I e I:Iverla_l,ll
Bemove |
MEES
Irnpart | Expart | 1 Diown

C/C++ | Assembly Link/Library | Standard Library | CPU 4| ¥ |

Optionz LinkLibrar ;
-entiy=_K.ERMEL_H_CPUIMI -noprelink, -nomeszage EI

lizt="$[COMNFIGDIRNPROJECT MAME] map”
-ghow=zymbol -nooptimize

Figure3.73 Added Section Information Confirmation

Rev. 3.00 Jan. 12,2005 Page 279 of 362

RENESAS

REJ05B0364-0300

Section 3 Configuration

To reflect the updated section information, press the [OK] button.

Next, select [Build] from [Build] in the header menu to configure (build) the system.

F IIIJ-rerummmIl

j]r.- w68 AH ijljjjl ; '.l::_‘:*u S—

B o ot ke v prasect e ard oet ol dak depesdur projoctties | = = N

Figure3.74 Build Execution
The above operations create an executable file.

Note that the result of compile, assemble, and linkage is displayed in the lowest part of the
window. If an error occurs, after correcting the corresponding source program, re-execute build.

The executable file (extension of abs) is created in the folder ("obj_adv" folder under the [product]
folder) specified by the relevant project.

Build by standard configuration uses a kernel library in which the parameter check function and
shared-stack function are enabled.

Rev. 3.00 Jan. 12, 2005 Page 280 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

After the application program has been debugged and it has reached alevel to be embedded in a
product, the parameter check executed at the beginning of the system call becomes a useless
routine. Accordingly, this parameter check function can be removed in the HI 1000/4.

For details on the how to remove the parameter check function, refer to section 1.3.2, Installation
in H12000/3 and HI11000/4.

Rev. 3.00 Jan. 12,2005 Page 281 of 362

RENESAS REJ05B0364-0300

Section 3 Configuration

34.6 FAQs about System Configuration

This section answers questions about system configuration which are frequently asked by users of
the HI series OS.

FAQ Contents:

(1) Stack Size Used for SErviCe CallS......cuviimieieie e 283
(2) Calculation Of OS SEACK SIZE.....c.ciuiiririiiririeerieree e 284
(3) Definitionsfor Separate LiNKAgEcccveiveieieie i ctieeceetesees e et e e s enas 285
(4) Caeculation of Interrupt Nesting LEVEccooiiiiiinierer s 287
SIS = v 1T T 104 1= 1 o] o IS 288

Rev. 3.00 Jan. 12, 2005 Page 282 of 362
REJ05B0364-0300 RENESAS

Section 3 Configuration

(1) Stack Size Used for Service Calls

Classification: Configuration

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

Does the necessary size in stack size calculation described in the HI7000/4 Series User's Manual
include the stack used for service calls?

Answer

The necessary size in stack size calculation described in the HI7000/4 Series User's Manual does
include the stack used for service cdls.

Note that some service callsinvolve task switching, and some do not. The stack size for a service
call which involvestask switching isincluded in the necessary stack size for calculation described
in the HI7000/4 Series User's Manual. On the other hand, as the latter type of service calls do not
involve task switching, they are executed at a high speed without switching task stacks. This
processing is possible because thereis no task switching. In this case too, the stack size isincluded
in the necessary stack size for calculation.

Rev. 3.00 Jan. 12,2005 Page 283 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(2) Calculation of OS Stack Size

Classification: Configuration

Question

HI17000/4

HI7700/4

HI7750/4

HI12000/3

HI11000/4

When calculating the OS stack size, should the calls of arun-time library from another run-time
library be counted as the interrupt nesting level ?

Answer

Interrupt nesting does not mean nesting of function calls.

Only an interrupt that occurs in the same interrupt processing should be counted as the nesting

level.

Rev. 3.00 Jan. 12, 2005 Page 284 of 362

REJ05B0364-0300

RENESAS

Section 3 Configuration

(3) Déefinitionsfor Separate Linkage

Classification: Configuration

Question HI17000/4 HI7700/4 HI7750/4

We are considering using separate linkage for system creation.

Though updating the load modules will change the addresses of the application programs unless
they are intentionally managed, do such programs operate correctly even after the addresses have
changed? In addition, what should be kept in mind when separate linkage is used for task creation?

Answer

Though the addresses of the application programs will be changed by updating the load modules,
the application programs are operated without problems.

The points that should be kept in mind when separate linkage is used for task creation are shown
below.

When the application programs are not saved in ROM, objects must be created dynamically by
service cals. Therefore, include the service calls needed to dynamically create objects by the
configurator.

If service callsto dynamically create objects are not included by the configurator, note the
following when separate linkage is used.

(1) The programs must be linked to the kernel side.

(2) While the [Link with Kernel Library] check box is selected in the configurator, handlers cannot
be defined.

When separate linkage is used, note the following for task creation.

e When creating tasks that use the static stack by the configurator, always select the [Link with
Kernel Library] check box.

e When automatic task 1D assignment is specified in the configurator, never select the [Link
with Kernel Library] check box.

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 285 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(Continued from previous page)

Answer

For separate linkage, when each load module is created, one symbol of the other load module must
be referenced.

When the kernel environment load module is created, the address of __kernel _cnfgtbl (service call
interface information: start address of the C_hibase section) must be defined. This defined address

must be the same as the address where the C_hibase section is all ocated.

When the kernel load module is created, the address of _kernel_sysmt (kernel environment

information; start address of the C_hisysmt section) must be defined. This defined address must be

the same as the address where the C_hisysmt section is allocated.

As described above, the OS does not require that the start address of the C_hibase section be the

same as that of the C_hisysmt section. Please see the following table for a summary of this

information.

Kernel Side

Kernel Environment Side

C_hibase section

<Actual description>

Service call interface information is
allocated.

Symbol _kernel_cnfgtbl is forcibly defined
to the start address of the C_hibase
section.

<Reference>

Issues service calls according to the
address of symbol _kernel_cnfgtbl.

Symbol _kernel_sysmt is forcibly defined
to the start address of the C_hisysmt
section.

<Reference>

Refers to the kernel information at the
address of symbol _kernel_sysmt.

C_hisysmt section

<Actual description>

Kernel environment information is
allocated.

Rev. 3.00 Jan. 12, 2005 Page 286 of 362
REJ05B0364-0300

RENESAS

Section 3 Configuration

(4) Calculation of Interrupt Nesting Level

Classification: Configuration

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

How many levels are interrupts to be nested in the following case? (The specified interrupt levels
are not sequential values).

[Interrupt source level]

o Interrupt_IRQO: Interrupt level 15
e Interrupt_IRQ1: Interrupt level 14
o Interrupt_IRQ2: Interrupt level 12
e Interrupt_IRQ3: Interrupt level 10
e DMAC DEIO: Interrupt level 10
e CMT: Interrupt level 08

o Kernd interrupt mask level: Interrupt mask level 12

How should the number of the following interrupts be determined? Should it be determined by
simply counting the nesting level, or by calculating the difference between the highest interrupt
level and mask level and the difference between the lowest interrupt level and mask level?

1. Interrupts higher than the kernel interrupt mask level
2. Interrupts equal to or lower than the kernel interrupt mask level

Answer

It can be determined by simply counting the nesting level. It does not depend on whether the
interrupt level settings are sequential values.

See the following for the above example.

e Interrupts higher than the kernel interrupt mask level: 2
¢ Interrupts equal to or lower than the kernel interrupt mask level: 3

Rev. 3.00 Jan. 12,2005 Page 287 of 362
RENESAS REJ05B0364-0300

Section 3 Configuration

(5) Section Information

Classification: Configuration

Question HI17000/4 HI7700/4 HI7750/4 HI12000/3 HI11000/4

When arbitrary functions are created and the system is configured, sections P, C, D, and B are not
generated. Is it necessary to prepare these sections in addition to the sections defined in advance
by the 0OS?

Answer
The sections of the user-created programs can be freely allocated by the user.

User programs do not need to be added to the OS section names. The OS does not provide the
function to add them to the OS section names.

User programs can be allocated with arbitrary section names.

Rev. 3.00 Jan. 12, 2005 Page 288 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

Section 4 Device-Dependent Specifications

4.1 FAQs about Device-Dependent Specifications

This section answers questions frequently asked by users of the HI series OS about device-
dependent specifications.

FAQ Contents:

411 Cache Enabling SEttiNG ...ccecvivereiiieiereee e eeesae e e e e see e sne e 290
I O o SN U 1 o L= PUURPRRN 292
4.1.3 Restrictions on Write-Back Mode (1)cccveeeveerereresesecreeeeeereesee e 295
414 Restrictions on Write-Back MOde (2)coceeeeeeeiiieiiiene e 297
0 TS @ =35 U o oo o S 299
41.6 X/IY MEMOIY USBEeeveiueeuieiieieie ettt sttt et e b b sae s e e e eeseesaesae e 300
0 T A S ¥ o] oo 4 o 1Y/ S 301
I T 1101 g 4 A= USRS URPRRN 302
4.1.9 Control of Timer Used by OSc.ocoiviiiiiecire e snea 304
4.1.10 CPU Initiaization Routine Written in C LangUage..........cooeruererererieeneeseseesieseeaens 305
4.1.11 Location of Interrupt Entry/EXit Processing ROULINE..........cccccceveeeveererenesesesnenens 306
4.1.12 Initialization of EXternal MEMOIYccccoiiiririieieriese et s 307
4113 Transition to POWEr-DOWN MOCE.........cccirireiririeirie et 308

Rev. 3.00 Jan. 12,2005 Page 289 of 362
RENESAS REJ05B0364-0300

Section 4

Device-Dependent Specifications

411

Cache Enabling Setting

Classification: Device-dependent specifications

Question

HI7700/4 HI7750/4

What settings are needed to enable the cache?

Answer

The cache should be enabled (initialized) in the CPU initialization process.

The OS provides a service call specialized for cache initialization (vini_cac service call), which
must be added to the CPU initialization processing.

A coding

example using the HI7700/4 CPU initialization routine for the SH7708 is shown below.

Rk kKKK ok ok k KKKk k kKKK ok ok ok kKK ok ok kKK ok ok ok ok k ok ok ok kR k kK ko k ok

/* NAME = hi_cpuini */
/* FUNCTION = CPU initialize routine */

AR KKK K KRR KK kKKK KK kKRR KKKk KRR Kk kR Kk kKKK kR kA KKKk ok [

#pragma noregsave(hi_cpuini)

void hi_cpuini(void)

{

/¥** |nitialize Hardware Environment ***/
set_gbr((VP)IOBASE); /* set I/O base address to GBR */
[vini_cac(9, 128, 4); /* CACHE disable */ | (1)

[¥** |nitialize Software Environment ***/
/* _INITSCT(); */ /* Call section-initialize routine */

vsta_knl(); /* Start kernel */

}

Figure4.1 CPU Initialization Routine When Using Cache (SH7708)

The following table shows examples of the vini_cac service call specification ((1) shown in the
above figure) for each CPU type.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 290 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer

Table4.1 vini_cac Specification Example for Each CPU

CPU Type Description

SH7708 vini_cac (9, 128, 4); Internal RAM mode is not used, writing

series mode for PO, UO, and P3 areas is copy-
back mode, number of entries is 128,
and number of ways is 4

vini_cac (Ox2E, 128, 2); Internal RAM mode is used, writing

mode for PO, UQ, and P3 areas is write-
through mode, number of entries is
128, and number of ways is 2

SH7709 vini_cac (0OxF, 128, 4); Internal RAM mode is not used, writing
mode for PO, UQ, and P3 areas is write-
through mode, number of entries is
128, and number of ways is 4

SH77086, vini_cac (0xB, 256, 4); Writing mode for PO, U0, and P3 areas

SH7709S, is write-through mode, writing mode for

SH7727, P1 area is copy-back mode, number of

SH7641, entries is 256, and number of ways is 4

SH7660

SH7290, vini_cac (0OxF, 512, 4); Writing mode for PO, U0, and P3 areas

SH7294, is write-through mode, writing mode for

SH7300, P1 area is copy-back mode, number of

SH7705, entries is 512, and number of ways is 4

SH7710

vini_cac (OxF, 256, 4);

Writing mode for PO, U0, and P3 areas
is write-through mode, writing mode for
P1 area is copy-back mode, number of
entries is 256, and number of ways is 4

For notes on using cache, refer to the HI7000/4 Series User's Manual.

RENESAS

Rev. 3.00 Jan. 12,2005 Page 291 of 362
REJ05B0364-0300

Section 4 Device-Dependent Specifications

412 Cache Usage

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

What should be kept in mind when using the cache?

Answer

e Separating the areas in which datawill be cached or not cached

To separate the areas in which datawill be cached or not cached, allocate programs and data at
linkage as follows.

— Programs and data that should be cached: PO, P1, or P3 area
— Programs and data that should not be cached: P2 area
Note that datain the P2 areawill not be cached even when the cache is enabled.

To enable or disable the cache dynamically, use the following examples of procedures for
H17700/4 and HI7750/4.

e HI7700/4
(1) To disable the cache

/* Setting SR.BL = 1 is recommended for interrupt masking. */

old_sr = get_cr();

set_cr(old_sr|0x10000000); /* SetBL = 1. */
vini_cac(0, entnum, waynum); /* Disable the cache and clear the CF bitto 0. */
vfls_cac(0, 0x1bfffff); /* Write the necessary area back to the actual memory. */
/* At this point, all cache entries can be safely destroyed. */
vini_cac(8, entnum, waynum); /* Disable the cache and set the CF bit to 1. */
/* This step invalidates all cache entries. */

set_cr(old_sr);

Figure4.2 Coding Examplefor Disabling Cache (HI7700/4)

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 292 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer
(2) To enable the cache
vini_cac(9, entnum, waynum); /* SetCE=1and CF =1 */
/* CF =0 is allowable, but CF = 1 is safer. */

Figure4.3 Coding Examplefor Enabling Cache (H17700/4)

— Noteon vfls cac

The address specified by vfls _cac must bein aphysical address range from H'0 to
H'1BFFFFFF (the upper three bits of the address must be 0).

For details, refer to the HI7000/4 Series User's Manual.

— Notesonvini_cac
The entnum and waynum parameters of vini_cac must be specified as follows.
(1) When the 16-kbyte cache is provided in the device such as SH7709S or SH7729
entnum = 256 and waynum = 4
(2) When the 32-kbyte mode is used for adevice such as SH7705 or SH7290

After selecting the 32-kbyte mode with the CCR3 register, set entnum =512 and
waynum = 4, and issue avini_cac service call.

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 293 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer
o HI7750/4
(1) To disable the cache
/* Setting SR.BL = 1 is recommended for interrupt masking. */
old_sr = get_cr();
set_cr(old_sr|0x10000000); /* SetBL = 1. */
vini_cac(0x00000000); /* Set ICE = off and OCE = off. */
vfls_cac(0x80000000, 0x9bffffff);
/* Write the necessary area back to the actual memory. */
/* At this point, all cache entries can be safely destroyed. */
vini_cac(0x00000808); /* Set ICE = off, OCE = off, ICI =1, and OCI = 1. */
/* This step invalidates all cache entries. */
set_cr(old_sr);
Figure4.4 Coding Examplefor Disabling Cache (HI7750/4)
(2) To enable the cache

vini_cac(0x0000090d); /* Set ICI =1, ICE=1,0OCl=1,CB =1, and OCE = 1. */
/* ICl = 0 and OCI = 0 are allowable, but ICI = 1 and OCI = 1 are safer. */

Figure4.5 Coding Examplefor Enabling Cache (HI7750/4)

— Noteon vfls cac

The address specified by vfls_cac must be in aphysical address range from H'80000000 to
H'9BFFFFFF.

For details, refer to the HI7000/4 Series User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 294 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

413 Restrictionson Write-Back Mode (1)

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

What should be kept in mind when setting the cache to the write-back mode? Is there any
restriction on cache settings for the HI7000/4?

Answer
There is nothing that needs special care, except for the coherency.

For example, when writing data through the program and then transferring the data through the
DMAC, use either of the following procedures.

(1) Allocate the address where data is to be written through the program to a cache through area
(write data by bypassing the cache).

(2) Create afunction to write the cache contents back to the memory, call the function after datais
written, and then perform DMA transfer.

When transferring data through the DMAC and then reading the data through the program, use
either of the following procedures.

(1) Read data from an address all ocated to a cache through area (read data by bypassing the
cache).

(2) Create afunction to invalidate the cache contents, call the function, and then read the data
transferred by the DMAC from an address all ocated to a cache through area.

The overview of write-back mode is shown in figure 4.6.

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 295 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer

Cache area Cache area

i Tz 7 !

/

S

Z e Z Y

\

Actual memory area Actual memory area

Note: When write-back (flushing data from cache) occurs, the
cache area data is reflected into the actual memory area.

Figure4.6 Overview of Write-Back Mode

Rev. 3.00 Jan. 12, 2005 Page 296 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

414 Restrictionson Write-Back Mode (2)

Classification: Device-dependent specifications

Question HI7750/4

When datais transferred through the DMA after the cache is disabled in an acquired variable-
length memory block (vinv_cac service call), the data at the beginning of the variable-length
memory block becomes invalid. What causes this problem?

Answer

This problem occurs when the memory block contents are stored in the cache. It occurs only in the
SH-4 which uses 32-byte cache lines, and does not occur in the SH-3 which uses 16-bytes cache
lines.

When variable-length memory blocks are allocated, 16-byte management areas are al so allocated
in the memory pool as shown in the following figure.

Start address of
memory block A

Kernel management area A } 16 bytes

Memory block A

Start address of Kernel management area B } 16 bytes

memory block B e el
Memory block B

Memory pool area

Figure4.7 Configuration of Variable-Length Memory Blocks

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 297 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer

If the cache line size is 32 bytes and acquired memory block A isallocated to address 32n + 16 (n
isan integer), the first 16 bytes of memory block A is stored in the cache when the kernel accesses
management area A. The following shows an example of storing memory block contentsin the

cache.

Kernel management area A

Address 32n + 16 =———Pf == =================q]
Memory block A

Kernel management area B

Memory block B

Memory pool area

The contents of the cache line
size are stored in the cache.

Figure4.8 Exampleof Storing Variable-Length M

1. When the kernel accesses management area A before DMA transfer, the data before DMA

transfer is stored in the cache.

2. When the cache is flushed after DMA transfer, the first 16 bytes of memory block A is

emory Block Contentsin Cache

overwritten with the cache data and the contents are | ost.

To prevent this problem, the start address of the memory block to be acquired must always be set

to 32n as shown below.

o Specify the variable-length memory block size to be acquired to (actual required size) + 28.

e When accessing an acquired memory block, round up the start address passed from the kernel
to 32n (round up to a higher address) and use the result as the start address of the memory

block.

Rev. 3.00 Jan. 12, 2005 Page 298 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

415 Cache Support

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

When using cache-support service calls which manipulate the CCR, what should be kept in mind
about memory allocation?

Answer

The cache-support service calls access the CCR or address-mapped cache array. During this
access, the kerndl internally corrects the program counter (PC) value to point to the P2 area (non-
cacheable).

Rev. 3.00 Jan. 12,2005 Page 299 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

416 XY Memory Usage

Classification: Device-dependent specifications

Question HI7700/4

What should be kept in mind when using the X/Y memory of the SH7729R?

Answer

The following addresses must be accessed by a program (the section addresses to be specified at
linkage).

In P2/Uxy,

e X-RAM: H'A5007000 to H'AS008FFF
e Y-RAM: H'A5017000 to H'A5018FFF

When the following addresses are used,

e X-RAM: H'05007000 to H'05008FFF
e Y-RAM: H'05017000 to H'05018FFF

note the restriction on X/Y memory usage that 2-cycle accesses must always be ensured when the
cacheis enabled.

Rev. 3.00 Jan. 12, 2005 Page 300 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

417 Support of MM U

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

Is there any restriction on MMU usage?

Answer

The HI series OS does not assume that the MMU is enabled, but it can be used under the
following restrictions.

(2) Allocation of the kernel sections to areas where addresses are not to be trandated (P1 or P2)
During kernel processing, some areas are accessed with SR.BL = 1. If aTLB miss occurs
while SR.BL =1, the CPU execution movesto the reset vector. Such areas must be allocated
to areas where addresses are not to be trandated (P1 or P2). This restriction is applied to the
following sections.

P_hiknl, P_hireset,

C _hivct, C_hitrp, C_hibase, C_hisysmt, C_hicfg,

B_hitrcbuf, B_hitrceml, B_hiwrk, B_hidystk, B_histstk,

B_hiirgstk, P_hisysdwn, P_hiintdwn

(2) Address of the service call parameters to be passed through the pointer (such as pk_xxx)
The kernel accesses the parameter address specified by a service call with the SR.BL bit in the
same state as when the service call isissued (0). If a TLB miss might occur at this point, no
service call should beissued in the TLB miss handler. If it can be ensured that no TLB miss
occurs at this point, the TLB miss handler can issue service calls. Note that in the HI 7700/4
specifications, no service call should be issued while SR.BL = 1.

(3) Privileged/user mode
In the HI7700/4 specifications, all programs such as tasks and handlers are initiated in the
privileged mode. The application program cannot move the state to the user mode.

(4) Write aprogram to the location of symbol __kernel_tlb_ent in TLB miss handler
nnnn_expent.src.

Rev. 3.00 Jan. 12,2005 Page 301 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

4.1.8 Timer Driver

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4 HI12000/3 HI1000/4

To obtain a hardware timer cycle of 1 mswhen the crystal resonator on the board generates
33.333 MHz, is 33.333 the correct value to use for calculation?

Answer
Use 33.333 x 10° for calculation instead of 33.333.
If 33.333 isused, it will not affect task switching but will affect time management by the OS.

[Reference] Timer driver cycle time calculation
A calculation example of a 1-mstimer cycle time using the SH7604 in the HI7000/4 is shown
below.

The hardware timer cycle time (T) is determined by the counter clock cycle time (t) and counter
value (n) asfollows:

T={tx(n+ 1}

t is determined by the counter clock (¢/8, ¢/32, or ¢/128) selected by the timer control register
(TCR).
When ¢ (CPU clock) is 28.6364 MHz, t becomes asfollows:

e Counter clock = ¢/8:t =279 ns
e Counter clock = ¢/32: t=1.11 us
e Counter clock = ¢$/128: t = 4.46 pus

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 302 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer

n is determined by setting a value from 0x0000 to OxFFFF in output compare match register A
(OCRA).
When ¢ (CPU clock) is 28.6364 MHz, T is between the following ranges:

e Counter clock = ¢/8: t =279 nsto 18.2 ms
e Counter clock = ¢/32: t =1.11 pusto 72.7 ms
e Counter clock = ¢/128: t = 4.46 pusto 292 ms

Cdlculation of 1-mscycle:
Output compare match register A (OCRA) = Timer cycletime(s) x n—1

In the above formula, timer cycletime (s) = 1 x 10~ to specify a 1-mstimer cycle time.
If ¢/8 is selected as the counter clock, when ¢ = 28.6364 MHz, n = 28.6364 x 10° + 8.

Accordingly, output compare match register A (OCRA) becomes as follows:

Output compare match register A (OCRA) Timer cycletime () xn—-1
(1x107°) x (28.6364 x 10°+ 8) — 1

3578.55 (OXODFA)

To obtain a 1-mstimer cycle time (s) with ¢ (CPU clock) set to 28.6364 MHz, the value set to
output compare match register A (OCRA) should be 3578.55 (OxODFA).

Rev. 3.00 Jan. 12,2005 Page 303 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

419 Control of Timer Used by OS

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4

How should the timer be controlled?

Answer

How to control the timer is described below with using the SH7751 in the HI7750/4 as an
example.

Open the 7751_tmrdef.h file in the supplied SH7751 folder.

Change the “Peripheral clock” value on line 19 to the value used in the actual environment,
reconfigure the system, and then check the result.

Only the corresponding file can be used to control the timer in the OS.

Rk ok kKKK ok kKKK Rk k kKKK k kKKK ok k ok kKK ko kKK ok k ok ko kR k kR k ok ok ok

/* HI7750/4 header file for timer driver */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI141SR) V1.0 */

R KKKk kKKK Kk ok k KKKk k kKKK Rk ok kKKK ok k kKK kR kR KRk kR kK kR ko kR k ok ok ok

/**/

/* FILE = 7751_tmrdefh ; */
/% CPU type = SH7751 */
/* Module =TMU */
* INTC */

KR KA KKK KKK KA KK KA KAKFHA KA KFRH KA KA KK IA KA KFAA KA K IRA KR K RA KA K I A AR [

R KKK KKK KKK K KKK KA K KKK KKK KKK KK KA KK AKKIAK KA K IR AK KA K I RA KKK KK RA KKK KKK KA [

/* TMU, IPR setting data */
/* Condition:

/* (1) Peripheral clock: 42MHz
/¥ (2) Timer interrupt level: 13

/*-k********-k**************************

#define PCLOCK 41666667""[2” /* Peripheral clock (Hz) */

*/
*/

*********************************/

Figure4.9 7751_tmrdef.h File

Change the part of (1) in figure 4.9 to match the operating frequency of the device used.

Rev. 3.00 Jan. 12, 2005 Page 304 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

41.10 CPU Initialization Routine Written in C Language

Classification: Device-dependent specifications

Question HI12000/3 HI1000/4

How should a CPU initidization routine be written in C?

Answer
The CPU initialization routine can be written in the C language.

However, a C program accesses the stack (memory). A CPU exception may occur if the stack area
is accessed before the necessary settings for stack access are completed. (A CPU exception causes
system termination.) Accordingly, the CPU initialization routine must be written in the assembly
language until the stack settings are completed.

After the necessary settings for stack access have been completed, a CPU initialization routine
written in the C language may be executed.

For the method of changing the provided sample CPU initialization routine (written in the
assembly language) to enable execution of a CPU initialization routine written in the C language,
refer to section 2, Application Program Creation.

Rev. 3.00 Jan. 12,2005 Page 305 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

4111 Location of Interrupt Entry/Exit Processing Routine

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4

Which address should the interrupt entry/exit processing routine (P_hiexpent section) be allocated
to? (Which addressisthe initial value when the kernel initializes the VBR?)

Answer

The interrupt entry/exit processing routine (P_hiexpent section) can be allocated to any address;
the user can choose the address.

When the kernel initializes the VBR, H'100 should be subtracted from the address where P_expent
islocated (kernel initialization processing automatically calculatesit).

For the contents of the sample, refer to the description of exception processing in the user's manual
of the device. The description includes the exception processing vector addresses.

Table4.2 Interrupt or Exception Entry/Exit Processing

Symbol Name Allocation Address Processing Contents

__kernel_exp_ent P_hiexpent section VBR + H'100 is the general
exception vector address

__kernel_tlb_ent P_hiexpent section + H'300 VBR + H'400 is the TLB miss

exception vector address

__kernel_int_ent P_hiexpent section + H'500 VBR + H'600 is the interrupt
vector address

If ageneral exception occurs, processing starts from VBR + H'100, so necessary processing must
be located at the corresponding address.

Therefore, the above settings are necessary.

Rev. 3.00 Jan. 12, 2005 Page 306 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

41.12 Initialization of External Memory

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4 HI12000/3 HI1000/4

When the stack area of atask is allocated to the external area, why can the task not be woken up?

Answer
When using the external RAM area, the 1/0 ports must be set (initialized).

Before starting the OS, initialize the 1/0 ports. After areset, the kernel initialization processing
accesses external addressesto initialize the task stack area.

An example using the H8S microcomputer is shown below.

For example, in mode 6, ports A, B, and C work as input ports immediately after areset. They
must be set to address output pins by setting PFCR1 (pin function control register 1) for ports A
and B to 1 and DDR (data direction register) for port C to 1.

Rev. 3.00 Jan. 12,2005 Page 307 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

4.1.13

Transition to Power-Down M ode

Classification: Device-dependent specifications

Question

HI7000/4 HI7700/4 HI7750/4

Does any problem arise when the software standby mode is entered while the system timer is
operating? What should be kept in mind when entering the software standby mode?

Answer

When the software standby mode is entered, the timer device used for the OS system timer stops.
Accordingly, the following errors will occur.

Time tick supplied —> Time

Standby not specified

Standby specified

In standby mode ‘s é §
ll.llllllllll

I-——H [kA

2.

1) Error in the system time.

2) Error in the hardware timer intervals

Figure4.10 Errorsin System Timein Standby Mode

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 308 of 362
REJ05B0364-0300 RENESAS

Section 4 Device-Dependent Specifications

(Continued from previous page)

Answer

Note the following when aregister of the timer device used for the OS system timer isinitialized
in software standby mode.

1. Stop the system time in software standby mode and resume it when the software standby mode
is canceled.
For example, if 0.6 ms has passed before the software standby mode is entered since the last
timer interrupt, the following processing should be done to generate atimer interrupt 0.4 ms
after the software standby mode is cancelled (when the time tick cycleis 1 ms).
— Save the value of the timer counter, which is aregister in the timer device, when the
software standby modeis entered.

— Restore the timer counter to the saved value when the software standby mode is canceled.

2. Stop the system time in software standby mode and initialize the timer counter value when the
software standby modeis canceled.

For example, even if 0.6 ms has passed before the software standby mode is entered since the

last timer interrupt, the following processing should be done to generate atimer interrupt 1 ms

after the software standby mode is cancelled (when thetimetick cycleis 1 ms).

— Initiaize the timer device registers (call timer initiaization routine _kernel_tmrini()) when
the software standby mode is canceled.

Rev. 3.00 Jan. 12,2005 Page 309 of 362
RENESAS REJ05B0364-0300

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 310 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

Section5 Debugging

51 Overview of Debugging

In a system incorporating the HI series OS, the system down routine is initiated when the kernel
finds an abnormal state such as an error in an object that was initially defined through the
configurator or an undefined interrupt or exception. The system down routine can also be initiated
through the application program when necessary.

This section describes how to debug the system using the system down routine and how to analyze
the cause of an error when the system down routine isinitiated.

When an abnormal state is found in the system, perform the following steps to solve the problem.

System goes down.

A 4 The cause of the error
is determined.

Analyze the cause
of the abnormal state.

A 4

Determine the
error location.

A 4

Check the
source program.

The cause of the error
is determined. v

A

Correct the error.

A 4

Problem solved

Figure5.1 Procedurefor Debugging Abnormal Statein the System

Rev. 3.00 Jan. 12,2005 Page 311 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

Note: The system down routine is aterm used in the HI7000/4 series and HI1000/4. The
equivalent routine is called the system termination routine in the HI2000/3. In this section,
both are collectively called the system down routine.

52 HI17000/4 Series

521 Preparation for Debugging
(1) Enabling Parameter Check Function

During debugging, the function for checking service call parameters should be enabled. For details
on the function, refer to section 1.3, Service Call Parameter Check.

(2) Adding Debugging Code

Add acode for calling the system down routine to the application program so that the system
down routineis called if aservice call returns afatal error code, such as a parameter error, and the
processing cannot be continued. As this debugging code is unnecessary in the final version of the
system, it is efficient to generate the code only when necessary through a macro and compiler's
preprocessor directives.

The following shows the interface for calling the system down routine and a coding example.

void vsys_dwn (W type, ER ercd, VW inf1, VW inf2);

| L System down information 2

System down information 1

Error code

Error type

Figure5.2 System Down Routine Calling Interface (HI7000/4 Series)

Rev. 3.00 Jan. 12, 2005 Page 312 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

#define _DEBUG
‘#ifdef _DEBUG T
-#deflne CHK_SYSDWN(cd) if(cd) vsys_ dwn((W)1,.ercd (VW)__FILE__, (VW)__LINE_)

'#else
-#defme CHK_SYSDWN(cd) \ The error type must be 1 or a larger

w#endif N value when the system down routine

is called from the application program.
For the other parameters, any values
can be selected by the user.

ER ercd;

(Processing omitted)

ercd = set_flg((ID)flgid, gFLGPTN)setptn) /* Set the event flag */
\CHK_SYSDWN(ercd != E_OK); e
TTTTTTTTTTTTTTTTTTTTTT \ This example generates the
(Processing omitted) debugging code only when
the _DEBUG symbol is valid.

Figure5.3 Debugging Code Example (HI7000/4 Series)

Rev. 3.00 Jan. 12,2005 Page 313 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(3) Setting a Breakpoint

Set a breakpoint at the line shown in each example below through an emulator or an ICE and
execute the application program.

A KKK KKK A KK KRR A KK KRR A KK KRR A KKK AA KKK IR A KKK KAk

/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/*************'k******************'k******************************/
void _kernel_sysdwn(type, ercd, inf1, inf2)

W type; /* system down type */

/* type >= 1 : system down of user program */
/* type == 0 :initial information error */
/* type == -1 : context error of ext_tsk */
/* type == -2 : context error of exd_tsk */
/* type == -16: undefined interrupt/exception */
ER ercd; /* error code */

/* type >= 0 : error code of user program */
/* type == 0 : error code of initial information */
/* type == -1 : error code of ext_tsk */
/* type == -2 : error code of exd_tsk */
/* type == -16: interrupt vector number */

VW inf1; /* information-1 */
/* type >= 0 : information of user program */
/* type == 0 : indicator of initial information error */
/* type == -1 : address of ext_tsk call */
/* type == -2 : address of exd_tsk call */
/* type == -16: address of interrupt occurrence */

VW inf2; /* information-2 */
/* type >= 0 : information of user program */
/* type == 0 : number of error initial information */
/* type == -16: SR of interrupt occurrence */
SR_IMS15); /* mask allinterrupt ¥
while(TRUE);”_/* endless loop L) */

Set a breakpoint at this line.

Figure5.4 Example of Setting a Breakpoint (H17000/4)

Rev. 3.00 Jan. 12, 2005 Page 314 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

AR KKK KA K KKK KKK KKK KA KK KKK A A K KRR AH KR KA KKK IAAAK KR A A, [

/* NAME = _kernel_sysdwn ;
/* FUNCTION = System down routine ;

*/
*/

AR KKK kKKK K kR KKK KKk R KA KKKk KKK KKKk KA KKK IR KA KKK I R XA KKK I Ak, [

void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /* system down type */
/* type >= 1 : system down of user program
/* type == 0 : initial information error
/* type == -1 : context error of ext_tsk
/* type == -2 : context error of exd_tsk
/* type == -16: undefined interrupt/exception
ER ercd; /* error code */
/* type >= 0 : error code of user program
/* type == 0 : error code of initial information
/* type == -1 : error code of ext_tsk
/* type == -2 : error code of exd_tsk
/* type == -16: interrupt vector number
VW inf1; /* information-1 */
/* type >= 0 : information of user program
/* type == 0 : indicator of initial information error
/* type == -1 : address of ext_tsk call
/* type == -2 : address of exd_tsk call
/* type == -16: address of interrupt occurrence
VW inf2; /* information-2 */
/* type >= 0 : information of user program
/* type == 0 : number of error initial information
/* type == -16: SR of interrupt occurrence

o _.

while(TRUE);
}

/* endless loop &

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

Set a breakpoint at this line.

Figure5.5 Example of Setting a Breakpoint (H17700/4, HI 7750/4)

RENESAS

Rev. 3.00 Jan. 12,2005 Page 315 of 362
REJ05B0364-0300

Section 5 Debugging

522 System Going Down

When the system goes down, the program execution stops at the breakpoint set as described in
section 5.2.1 (3), Setting a Breakpoint. In the HI7000/4 series, the error information obtained
when the system went down is passed through registers.

The error information parameters are stored in the following format.

31 0
R4 Error type
(type)
Error code
(ercd)
System down information 1
(inf1)
System down information 2
R7 (inf2)

R5

R6

Figure5.6 System Down Information Parameter Format (HI7000/4 Series)

523 Types of System Down Causes
The HI7000/4 series system goes down due to the following types of causes.

Table5.1 Typesof System Down Causes (H17000/4 Series)

No. Error Type (R4) Description

1 0 Initially defined object error

2 H'FFFFFFFF (-1) Context error (ext_tsk service call)
3 H'FFFFFFFE (-2) Context error (exd_tsk service call)
4 H'FFFFFFFO (-16) Undefined interrupt or exception

5 1 or larger (selectable by the user) *' vsys_dwn or ivsys_dwn service call

Note: *1 The error type value depends on the value specified by the application program.

The error information for each error cause is described below.

Rev. 3.00 Jan. 12, 2005 Page 316 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(1) Initially Defined Object Error

This error isfound in the information about an object initially defined by the configurator. The
following values are returned as error information.

Table5.2 List of Error Information (Initially Defined Object Error)

Register for Storing

Item Information Description

Error type (type) R4 H'0

Error code (ercd) R5 Code for the generated error

System down information 1 (inf1) R6 0 (kernel side) or 1 (kernel
environment side)

System down information 2 (inf2) R7 Number for the initially defined

object that has generated the error

The error code (ercd) indicates the code for the generated error (service call error code).

For system down information 1 (inf1), O is passed when the error occurred during object definition
in the kernel side, or 1 when the error occurred during object definition in the kernel environment
side. For the difference between the kernel side and the kernel environment side, see the following
table.

Table5.3 Difference between Kernel Side and Kernel Environment Side

Item Description

Kernel side An object which is included in the kernel load module and for which the
“Link with Kernel Library" check box has been selected in the object
generating dialog box of the configurator.

Kernel environment side An object which is included in the kernel environment load module and
for which the "Link with Kernel Library" check box has not been
selected in the object generating dialog box of the configurator.

System down information 2 (inf2) indicates the ordinal number of the error object in definition
processing. Note that the kernel sideis processed first and the kernel environment side isthen
processed.

Rev. 3.00 Jan. 12,2005 Page 317 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

The following shows examples of values for system down information 1 and 2.

Initial Definitions in the Kernel
Side

Initial Definitions in the Kernel
Environment Side

e Task A
o Cyclic handler A
» Extended service call A

e Task B
e Task C
e Semaphore A

e Event flag A

1) When an error occurred during initial definition of task Acccccoreeine inf1 =0, inf2=1
2) When an error occurred during initial definition of cyclic handler A infl =0,inf2=2
3) When an error occurred during initial definition of extended service call Ainf1 = 0, inf2 =3
4) When an error occurred during initial definition of task Bccccccvviiiinns infl =1,inf2=1
5) When an error occurred during initial definition of task C infl=1,inf2=2
6) When an error occurred during initial definition of semaphore A ... infl =1,inf2=3
7) When an error occurred during initial definition of eventflag A infl =1,inf2=4

Figure5.7 Examplesof System Down Information 1 and 2
Check the definitions using the configurator according to the ordinal number of the error object.
For details on processing for each object, refer to the HI7000/4 Series User's Manual.
(2) Context Error (ext_tsk Service Call)

This error occurs when anon-task context issues an ext_tsk service call. The following values are
passed as the error information.

Table5.4 List of Error Information (Context Error)
Register for Storing
Item Information Description
Error type (type) R4 H'FFFFFFFF (-1)
Error code (ercd) R5 H'FFFFFFE7 (-25)

System down information 1 (inf1) R6 Address where ext_tsk was called

System down information 2 (inf2) R7 Undetermined

Check the application program line corresponding to the address passed as system down
information 1, and correct the program so that the ext_tsk service call isissued from atask
context.

For how to determine the program module corresponding to the error address, refer to section 5.5,
Determining System Down Location.

Rev. 3.00 Jan. 12, 2005 Page 318 of 362

REJ05B0364-0300 RENESAS

Section 5 Debugging

(3) Context Error (exd_tsk Service Call)

This error occurs when anon-task context issues an exd_tsk service call. The following values are

passed as the error information.

Table55 List of Error Information

(Context Error)

Register for Storing

Item Information Description
Error type (type) R4 H'FFFFFFFE (-2)
Error code (ercd) R5 H'FFFFFFE7 (-25)

System down information 1 (inf1) R6

Address where exd_tsk was called

System down information 2 (inf2) R7

Undetermined

Check the application program line corresponding to the address passed as system down
information 1, and correct the program so that the exd_tsk service call isissued from atask

context.

For how to determine the program module corresponding to the error address, refer to section 5.5,

Determining System Down Location.

RENESAS

Rev. 3.00 Jan. 12,2005 Page 319 of 362
REJ05B0364-0300

Section 5 Debugging

(4) Undefined Interrupt or Exception

This error occurs when an undefined interrupt or undefined general exception is generated. The
following values are passed as the error information.

Table5.6 List of Error Information (Undefined Interrupt or Exception)

Register for Storing Description
Item Information H17000/4 HI7700/4, HI7750/4
Error type (type) R4 H'FFFFFFFO (-16)
Error code (ercd) R5 Vector number Exception code
System down information 1 R6 PC information when the interrupt or
(inf1) exception occurred "*?
System down information2 R7 SR information when the interrupt or
(inf2) exception occurred™

Note: *1 For a slot illegal instruction exception, the address of the undefined code or delayed
branch instruction placed in a delay slot is passed as the PC information (or the
address of the next instruction is passed only for the HI7000/4).

*2 For a trap instruction exception, the address of the next instruction after the TRAPA
instruction is passed.

*3 For a CPU address error or DMAC address error in the HI7000/4, if the stack pointer
(SP) value is not a multiple of four, undetermined values are passed as the PC and SR
information.

The error code (ercd) indicates the vector number of the generated undefined interrupt or
exception in the HI7000/4, or the generated exception code in the HI7700/4 or HI7750/4.
Determine the generated interrupt or exception according to the error code (ercd). For details on
the vector number or exception code, refer to the hardware manual of the target microcomputer.

Rev. 3.00 Jan. 12, 2005 Page 320 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(@ When an Undefined Interrupt Occurred

If the generated interrupt is necessary, create and register an interrupt handler for it. If it is not an
intended interrupt, determine the cause, and correct the program so that the interrupt will not
occur.

An unintended interrupt may occur due to the following reasons.

o A register is set up incorrectly in the interrupt source (an external device or an on-chip
peripheral module in the microcomputer).

e ThelRQ or IRL modeis set up incorrectly in the interrupt controller.

e Theinterrupt priority is set up incorrectly in the interrupt controller and an incorrect-level
interrupt is detected.

e A noiseismisinterpreted as an interrupt request signal.
e A failure or incorrect setting in the hardware circuit.

(b) When an Undefined General Exception Occurred

If the generated exception is necessary, create and register a CPU exception handler or atrap
exception handler for it. If it is not an intended exception, determine the error location according
to the PC value passed as system down information 1 (inf1), and analyze the cause.

According to the SR value passed as system down information 2 (inf2), the CPU operating mode
or interrupt mask level when the exception occurred can be determined.

For how to determine the program module corresponding to the PC address passed as system
down information 1 (inf1), refer to section 5.5, Determining System Down Location.

For how to check the cause of an undefined exception , refer to section 5.6, Examples and
Solutions of CPU Exception.

Rev. 3.00 Jan. 12,2005 Page 321 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(5) vsys dwn or ivsys dwn Service Call

This error occurs when the application program issues avsys dwn or ivsys dwn service call. The
passed error information indicates the parameters for the issued vsys dwn or ivsys dwn service
call.

The debugging code shown in section 5.2.1 (2), Adding Debugging Code, passes the following
values as error information.

Table5.7 List of Error Information (vsys dwn or ivsys dwn Service Call)

Register for Storing

Item Information Description

Error type (type) R4 1

Error code (ercd) R5 Error code for the issued service call
System down information 1 (inf1) R6 Address of the path to the source

program file where the error occurred

System down information 2 (inf2) R7 Line number of the source program
where the error occurred

Determine the error cause according to the error information, and correct the application program.

For the error code for the service call, refer to the HI 7000/4 Series User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 322 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

5.3 H12000/3

531 Preparation for Debugging
(1) Enabling Parameter Check Function

During debugging, the function for checking service call parameters should be enabled. For details
on the function, refer to section 1.3, Service Call Parameter Check.

(2) Adding Debugging Code

Add acode for calling the system down routine to the application program so that the system
down routineis caled if aservice call returns afatal error code, such as a parameter error, and the
processing cannot be continued. As this debugging code is unnecessary in the final version of the
system, it is efficient to generate the code only when necessary through a macro and compiler's
preprocessor directives.

The following shows the interface for calling the system down routine and a coding example.

void HIPRG_ABNOML (void);

Figure5.8 Example of System Down Routine Calling I nterface (H12000/3)

extern void HIPRG_ABNOML (void);

#define _DEBUG

'#ifdef _DEBUG i
1#define CHK_SYSDWN(cd) if(cd) HIPRG_ABNOML()
#else |
#define CHK_SYSDWN(cd) '
#endif RN

ER ercd;

(Processing omitted)

ercd = set_flg((ID)flgid, (UINT)setptn); /* Set the event flag */
{CHK_SYSDWN(ercd 1= E_OK);
| This example generates the
(Processing omitted) debugging code only when
the _DEBUG symbol is valid.

Figure5.9 Debugging Code Example (HI12000/3)

Rev. 3.00 Jan. 12,2005 Page 323 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(3) Setting a Breakpoint

Set a breakpoint at the line shown in each example below through an emulator or an ICE and
execute the application program.

B T T T Y
’

;*specifications ; *
*name =_HIPRG_ABNOML : abnormal quit handler ; *
;*function = ; *
;*notes = ; *
;*date = 99/02/22 ; *
;*author = Hitachi, Ltd. ; *
;*attribute = public ; *
;*class = system ; *
*linkage = ; *
¥input = H *
JFoutput = ; *
;*end of specifications ; *

kK k kR kh kR kh kR kk kR kh kA khhkkhhkkhhkkhkkkkhkkhkkkhkkkkhkkkkkkkkkk
s

_HIPRG_ABNOML:

rorc __#HIDEF_IMASK_CCR:8,ccr _;: interrupt mask for CCR register _ » |
orc
bra §$

#HIDEF_IMASK_EXR:8,exr ;:interrupt mask for EXR register
;: forever loop

Set a breakpoint at this line.

Figure5.10 Example of Setting a Breakpoint (H12000/3)

Rev. 3.00 Jan. 12, 2005 Page 324 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

532 System Going Down

When the system goes down, the program execution stops at the breakpoint set as described in
section 5.3.1 (3), Setting a Breakpoint. In the HI2000/3, the error information obtained when the
system went down is passed through the stack.

The error information parameters are stored in the following format.

7 0 7 0 7 0
> Vector number > Vector number) Vector number
sP (vctno) sP (vetno) SP (vctno)
1 Task ID 1 Task ID 1 Task ID
* (tskid) * (tskid) * (tskid)
i i EXR information
+2 Error code +2 CCR information +2 i i
ercd T
+3 (ered) +3 +3 (Reserved)
[~ PC information o . .
~ +4 (24 bits) +4 CCR information
+5 +5
""" PC information
~— +6 (24 bits)
+7
\/_\
Other than undefined interrupt Undefined interrupt Undefined interrupt

(interrupt control mode 0 or 1) (interrupt control mode 2 or 3)

Figure5.11 System Down Information Parameter Format (HI2000/3)

Rev. 3.00 Jan. 12,2005 Page 325 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

533 Types of System Down Causes
The HI2000/3 system goes down due to the following types of causes.

Table5.8 Typesof System Down Causes (H12000/3)

Error Type
No. Vector Number (SP + 0) Error Code (SP +2,SP +3) Description
1 0 H'0 to H'OFFF Setup information error
H'FOED Unsupported timer
H'FFEB Context error
(ext_tsk service call)
4 H'FFBB Context error
(ret_int service call)
5 0 or larger — Undefined interrupt
—! —! Call from the application

program

Note: *1 The error type value depends on the value specified by the application program. For
details, refer to section 5.3.3 (6), Call from the Application Program.

The error information for each error cause is described below.
(1) Setup Information Error
This error isfound in the setup table. The following values are passed as the error information.

Table5.9 List of Error Information (Setup Information Error)

Item Stack for Storing Information Description

Vector number (vecno) SP+0 0

Task ID (tskid) SP +1 0

Error code (ercd) SP +2 Setup information error code
SP+3 (H'0 to H'OFFF)

The error code (ercd) indicates the code (H'0000 to H'OFFF) for the invalid setting in the setup
table. Check the setup table setting corresponding to the error code. For details on the error code,
refer to the HI2000/3 User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 326 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(2) Unsupported Timer

This error occurs when an attempt is made to use the timeout function while the timeout function
is disabled in the setup table. The following values are passed as the error information.

Table5.10 List of Error Information (Unsupported Timer)

Item Stack for Storing Information Description

Vector number (vecno) SP+0 0

Task ID (tskid) SP +1 0

Error code (ercd) SP +2 H'FOED
SP+3

Specify "USE" for the timeout function in the setup table or correct the application program so
that the timeout function is not specified for service calls.

(3) Context Error (ext_tsk Service Call)

This error occurs when anon-task context issues an ext_tsk service call. The following values are
passed as the error information.

Table5.11 List of Error Information (Context Error)

Item Stack for Storing Information Description

Vector number (vecno) SP+0 0

Task ID (tskid) SP +1 0

Error code (ercd) SP +2 H'FFEB
SP+3

Check the application program line where ext_tsk is used, and correct the program so that the
ext_tsk service call is alwaysissued from atask context.

Rev. 3.00 Jan. 12,2005 Page 327 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(4) Context Error (ret_int Service Call)

This error occurs when aret_int service call isissued in task execution state or CPU-locked state.
The following values are passed as the error information.

Table5.12 List of Error Information (Context Error)

Item Stack for Storing Information Description

Vector number (vecno) SP+0 0

Task ID (tskid) SP +1 0

Error code (ercd) SP +2 H'FFBB
SP+3

Check the application program line whereret_int is used, and correct the program so that the
ret_int service call is always issued from an interrupt handler.

(5) Undefined Interrupt

This error occurs when an undefined interrupt is generated. The following values are passed as the
error information.

Table5.13 List of Error Information (Undefined I nterrupt)

Stack for Storing Information

Item Interrupt Mode O or 1 Interrupt Mode 2 or 3 Description
Vector number (vecno) SP +0 SP+0 Vector number
Task ID (tskid) SP +1 SP +1 Task ID or 0
EXR — SP +2 EXR information when
the interrupt occurred
CCR SP +2 SP +4 CCR information when
the interrupt occurred
PC (SP + 3)*! (SP + 5)*! PC information when
SP+4 SP+6 the interrupt occurred
SP+5 SP+7

Note: *1 This value is only valid in advanced mode; it has no means in normal mode (only the
lower 16 bits of the PC are valid).

The vector number (vecno) indicates the vector number for the generated interrupt. Determine the
generated interrupt according to the vector number. For details on the vector number, refer to the
hardware manual of the target microcomputer.

Rev. 3.00 Jan. 12, 2005 Page 328 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

If the generated interrupt is necessary, create and register an interrupt handler for it. If it is not an
intended interrupt, determine the cause, and correct the program so that the interrupt will not
occur.

An unintended interrupt may occur due to the following reasons.

A register is set up incorrectly in the interrupt source (an external device or an on-chip
peripheral module in the microcomputer).

The IRQ or IRL modeis set up incorrectly in the interrupt controller.

Theinterrupt priority is set up incorrectly in the interrupt controller and an incorrect-level
interrupt is detected.

A noiseis misinterpreted as an interrupt request signal.
A failure or incorrect setting in the hardware circuit.

The EXR and CCR information indicates the interrupt mask level when the interrupt occurred.

If an undefined interrupt occurred in atask context, the task 1D (tskid) indicates the ID of the task
being executed when the interrupt occurred.

For how to determine the program module corresponding to the PC information, refer to section
5.5, Determining System Down Location.

Rev. 3.00 Jan. 12,2005 Page 329 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(6) Call from the Application Program

When the system down routine (_HIPRG_ABNOML) provided as a sample is called from an
application program written in the C language, the return address is stored in the stack and error
information cannot be passed through the stack.

When calling the sample system down routine from the application program, the user must
analyze the cause of the error.

To pass error information through the stack in the same way as when other system down causes
are generated, modify the system down routine and change the symbol name called from the
application program (any name can be selected by the user; HIPRG_ABNOML_CSUB inthe
following example) as shown below.

=S
*——_ | Add these lines to enable

/ calls from a C program.
i_HIPRG_ABNOML_CSUB: "%

. pop.l _____er2 /sl—————— | Aqd these lines to adjust the
stack pointer.

_HIPRG_ABNOML:
orc #HIDEF_IMASK_CCR:8,ccr ;:interrupt mask for CCR register
orc #HIDEF_IMASK_EXR:8,exr ;:interrupt mask for EXR register
bra $;.forever loop

Figure5.12 Example of System Down Routine M odification (H12000/3)

The following shows an example of debugging code for the system down routine modified as
shown above.

void HIPRG_ABNOML_CSUB(VW inf1, VW inf2, UB vctno, UB tskid, ER ercd);
| L Error code
Task ID

Vector number

System down information 2

System down information 1

Figure5.13 Example of System Down Routine Calling I nterface (H12000/3)

Rev. 3.00 Jan. 12, 2005 Page 330 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

extern void __regparam2 HIPRG_ABNOML_CSUB(VW inf1, VW inf2, UB vctno, UB tskid, ER ercd);

#define_DEBUG
Wifdef _DEBUG

#define CHK_SYSDWN(cd) if(cd) HIPRG_ABNOML_CSUB(__FILE__, __LINE__,;255, 255, ercd) .

#else

#define CHK_SYSDWN(cd)

:n#endif § vctno and tskid must be 255 when B
the system down routine is called

ER ercd; from the application program. For

(Processing omitted)

ercd = set_flg((ID)flgid, (FLGPTN)setptn);

\CHK_SYSDWN(ercd = E_OK); <5

U\ This example generates the

(Processing omitted)

the other parameters, any values can
be selected by the user.

/* Set the event flag */

debugging code only when the
_DEBUG symbol is valid.

Figure5.14 Debugging Code Example (H12000/3)

When the system down routine is called from the application program after the above debugging
code is added, the following values are passed as the error information.

Table5.14 List of Error Information (Call from the Application Program)

Stack or Register for

Item Storing Information Description

Vector number (vecno) SP+0 H'FF (255)

Task ID (tskid) SP +1 H'FF (255)

Error code (ercd) SP+2 Error code for the issued service call
SP+3

System down information 1 ERO Address of the path to the source

program file where the error occurred
System down information 2 ER1 Line number of the source program

where the error occurred

When the system goes down due to a call from the application program, determine the error cause
according to the error information, and correct the application program.

For the error code for the service call, refer to the HI2000/3 User's Manual.

Rev. 3.00 Jan. 12,2005 Page 331 of 362

RENESAS REJ05B0364-0300

Section 5 Debugging

54 H11000/4

54.1 Preparation for Debugging
(1) Enabling Parameter Check Function

During debugging, the function for checking service call parameters should be enabled. For details
on the function, refer to section 1.3, Service Call Parameter Check.

(2) Adding Debugging Code

Add acode for calling the system down routine to the application program so that the system
down routine is called if aservice call returns afatal error code, such as a parameter error, and the
processing cannot be continued. As this debugging code is unnecessary in the final version of the
system, it is efficient to generate the code only when necessary through amacro and compiler's
preprocessor directives.

The following shows the interface for calling the system down routine and a coding example.

void vsys_dwn(H type, H inf1, B inf2, B inf3, H inf4, UW inf5);
| I .)
‘ | System down information 5

System down information 4

System down information 3

System down information 2

System down information 1

Error type

Figure5.15 Example of System Down Routine Calling I nterface (H11000/4)

Rev. 3.00 Jan. 12, 2005 Page 332 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

extern void __regparam3 vsys_dwn(H type, H inf1, B inf2, B inf3, H inf4, UW inf5);
1 #define _DEBUG

1#ifdef _DEBUG
1, ercd, 0,0, __LINE__, FILE_)

=

Eiglesf?ne CHK_SYSDWN(cd) AN The error type must be 1 or a larger

value when the system down
routine is called from the
application program. For the other
parameters, any values can be
selected by the user.

ER ercd;

(Processing omitted)

ercd = set_flg((ID)flgid, (FLGPTN)setptn); /* Set the event flag */

This example generates the
. . debugging code only when
(Processing omitted) the _DEBUG symbol is valid.

Figure5.16 Debugging Code Example (H11000/4)

(3) Setting a Breakpoint

Set a breakpoint at the line shown in each example below through an emulator or an | CE and

execute the application program.

B T
s

;* NAME = vsys_dwn

;* FILE = vsys_dwn.src

;* FUNC = System down routine
;* NOTE =

;* INPU = none

;* OUTP = none

B T
s s

Fh TR -

ey

.section P_hisysdwn, code, align = 2
.export _vsys_dwn
.export _ivsys_dwn
_vsys_dwn:
_ivsys_dwn:
[e “vsys_dwn:i8 e p— . -
[T ?éa vsys_dwn:8_ == Set a breakpoint at this line.

.end; of vsys_dwn.src

Figure5.17 Example of Setting a Breakpoint (H11000/4)

Rev. 3.00 Jan. 12,2005 Page 333 of 362

RENESAS

REJ05B0364-0300

Section 5 Debugging

54.2 System Going Down

When the system goes down, the program execution stops at the breakpoint set as described in
section 5.4.1 (3), Setting a Breakpoint. In the HI1000/4, the error information obtained when the
system went down is passed through registers.

The error information parameters are stored in the following format.

15 07 07 0

System down information 1 Error type
ER (inf1) (type)

System down information 4 System down System down
ER inf4) information 3 information 2

(in (inf3) (inf2)
System down information 5

ER (inf5)

Figure5.18 System Down Information Parameter Format (HI1000/4)

54.3 Types of System Down Causes
The HI1000/4 system goes down due to the following types of causes.

Table5.15 Typesof System Down Causes (H11000/4)

No. Error Type (RO) Description

1 H'FFFB (-5) Initially defined object error

2 H'FFFD (-3) Context error 1

3 H'FFFE (-2) Context error 2

4 H'FFFF (-1) Undefined interrupt or exception

5 1 or larger (selectable by the user) vsys_dwn or ivsys_dwn service call

The error information for each error type is described below.

Rev. 3.00 Jan. 12, 2005 Page 334 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(1) Initially Defined Object Error

This error is found in the information defined by the configurator. The following values are passed
asthe error information.

Table5.16 List of Error Information (Initially Defined Object Error)

Register for Storing

Item Information Description

Error type (type) RO H'FFFB

System down information 1 (inf1) EO Error number (H'0000 to H'OFFF)
System down information 2 (inf2) R1L 0

System down information 3 (inf3) R1H 0

System down information 4 (inf4) E1 0

System down information 5 (inf5) ER2 0

System down information 1 (inf1) indicates the error number (H'0000 to H'OFFF) corresponding
to the invalid setting in the setup information. Check the setting in the setup information
corresponding to the error number using the configurator. For details on the error number, refer to
the H11000/4 User's Manual.

(2) Context Error 1

This error occurs when the kernel finds a context error in a service call (ext_tsk). The following
values are passed as the error information.

Table5.17 List of Error Information (Context Error 1)

Register for Storing

Item Information Description

Error type (type) RO H'FFFD

System down information 1 (inf1) EO H'FFE7

System down information 2 (inf2) R1L CCR information when the error
occurred

System down information 3 (inf3) R1H EXR information when the error
occurred

System down information 4 (inf4) E1 0

System down information 5 (inf5) ER2 PC information when the error
occurred

Rev. 3.00 Jan. 12,2005 Page 335 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

Check the application program line corresponding to the address where the error occurred, and
correct the program so that the ext_tsk service call is always issued from atask context.

For how to determine the program module corresponding to the PC value passed through system
down information 5 (inf5), refer to section 5.5, Determining System Down Location.

(3) Context Error 2

This error occurs when the kernel finds a context error in aret_int routine call. The following
values are passed as the error information.

Table5.18 List of Error Information (Context Error 2)

Register for Storing

Item Information Description
Error type (type) RO H'FFFE
System down information 1 (inf1) EO 0

System down information 2 (inf2) R1L Task ID
System down information 3 (inf3) R1H 0

System down information 4 (inf4) E1 0

System down information 5 (inf5) ER2 0

Check the application program line where the ret_int routine is used, and correct the program so
that theret_int routine is always called from an interrupt handler or an exception handler.

(4) Undefined Interrupt or Exception

This error occurs when an undefined interrupt or exception is generated. The following values are
passed as the error information.

Rev. 3.00 Jan. 12, 2005 Page 336 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

Table5.19 List of Error Information (Undefined Interrupt or Exception)

Register for Storing

Item Information Description

Error type (type) RO H'FFFF

System down information 1 (inf1) EO Interrupt vector number

System down information 2 (inf2) R1L CCR information when the
interrupt occurred

System down information 3 (inf3) R1H EXR information when the
interrupt occurred

System down information 4 (inf4) E1 Task ID or 0

System down information 5 (inf5) ER2 PC information when the

interrupt occurred

System down information 1 (inf1) indicates the vector number for the generated interrupt or
exception. Determine the generated interrupt or exception according to the vector number. For
details on the vector number, refer to the hardware manual of the target microcomputer.

(8 When an Undefined Interrupt Occurred

If the generated interrupt is necessary, create and register an interrupt handler for it. If it is not an
intended interrupt, determine the cause, and correct the program so that the interrupt will not
occur.

An unintended interrupt may occur due to the following reasons.

o A register is set up incorrectly in the interrupt source (an external device or an on-chip
peripheral module in the microcomputer).
e ThelRQ or IRL modeis set up incorrectly in the interrupt controller.

e Theinterrupt priority is set up incorrectly in the interrupt controller and an incorrect-level
interrupt is detected.

e A noiseismisinterpreted as an interrupt request signal.
e A failure or incorrect setting in the hardware circuit.

(b) When an Undefined General Exception Occurred

If the generated exception is necessary, create and register a CPU exception handler or atrap
exception handler for it. If it is not an intended exception, determine the error location according
to the PC value passed as system down information 5 (inf5), and analyze the cause.

Rev. 3.00 Jan. 12,2005 Page 337 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

Theinterrupt mask level can be determined according to system down information 2 (inf2) and
system down information 3 (inf3).

If an undefined exception occurred in atask context, system down information 4 (inf4) indicates
the ID of the task being executed when the exception occurred.

For how to determine the program module corresponding to the PC information passed as system
down information 5 (inf5), refer to section 5.5, Determining System Down Location.

For how to check the cause of an undefined exception, refer to section 5.6, Examples and
Solutions of CPU Exception.

(5) vsys dwn or ivsys dwn Service Call

This error occurs when the application program issues avsys dwn or ivsys dwn service call. The
passed error information indicates the parameters for the issued service call.

The debugging code shown in section 5.4.1 (2), Adding Debugging Code, passes the following
values as the error information.

Table5.20 List of Error Information (vsys dwn, ivsys dwn Service Call)

Register for Storing

Item Information Description

Error type (type) RO H'1

System down information 1 (inf1) EO Error code for the issued service
call

System down information 2 (inf2) R1L 0

System down information 3 (inf3) R1H 0

System down information 4 (inf4) E1 Line number of the source
program where the error
occurred

System down information 5 (inf5) ER2 Address of the path to the

source program file where the
error occurred

Determine the error cause according to the error information, and correct the application program.

For the error code for the service call, refer to the HI1000/4 User's Manual.

Rev. 3.00 Jan. 12, 2005 Page 338 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

55 Deter mining System Down L ocation

The PC information is passed as system down information. To determine the system down
location in a program according to the PC information, use the source-level debugging function of
an emulator or an ICE, or check the map file output from the linker to determine the approximate
location.

55.1 Determining the L ocation of a Program M odule through Mapview

This section describes how to determine the location of a program module according to the PC
information using the Mapview, an accessory tool of the C compiler. In the following example,
HI7700/4, SuperH™ RISC engine series C/C++ compiler package Ver. 8.0.01, and the SH7641
whole linkage project (7641 _mix) as a subproject in the HEW workspace are used.

When the Mapview is used, amap file including symbol information must be output through the
linkage editor. Specify output of a map file including the symbol information through the
optimizing linkage editor option setting window of the HEW.

Rev. 3.00 Jan. 12,2005 Page 339 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

superH RISC engine Standard Toolchain EHE |
Configuration ; E.-"E++I Azzembly LinkdLibrary |Standard LiI:urar_l,II CPU LI_’I
I':'bi—l:E' j Categony : IList j
E‘?% LeriECtS enerate lizt file
PR — Contents :

-] C source file
-0 C++ source file

-1 Assembly source file |:|h'2' ference Enable al

[#1-(_ Linkage symbal file -
@ & = [15how zection Disable al

O ptiong Link/Libran ;

-entry=_hi_cpuasm -define=__keme|_pon_sp=04C100000
-define=__kermel_man_sp=04C100000 -noprelink, -zdebug —
a| |] -Nomessage hd|

Figure5.19 List Output Setting for Optimizing Linkage Editor

Rev. 3.00 Jan. 12, 2005 Page 340 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(1) [Initiating the Mapview

Select [Program (P)] -> [Renesas High-performance Embedded Workshop] -> [Mapview] from
the Start menu to initiate the Mapview.

& Mopiew MEEHE|
Eile weew Help
@ o e

Far Help, pre=zs F1 |_|ﬁ|_ |

Figure5.20 Initiated Mapview Window

Rev. 3.00 Jan. 12, 2005 Page 341 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

Select [File] -> [Open...] from the header menu in the initiated window and open the map file
output from the linkage editor.

IEIE Woew Help

1 CAHIPP00-4, \7641_mixmap
Exit

[mmmaﬂaﬁngdummm I_lﬁl 4]

Figure5.21 Window for Reading a File

Rev. 3.00 Jan. 12, 2005 Page 342 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(2) Searchingfor an Address

Clicking a section name displays alist of symbols used in the clicked section in the symbol
information view. Check the displayed addresses and sizes and search for the symbol where the
PC value isincluded and determine the system down location in the program.

@ Ele Edr Yiew \indow Help =181 |

GF| &=
= (M) CHAITT00-Secenci 21 | Symibel | Address | Sire | Amibuie | Cownts | Optimize |=
& F_hieomem M Tk ENNNcESN BE [[TEL =3 L)
L C_hbais _baakr ENNDckdl B0 Tus . -
B P hiresct __kemel_n#s_acre_alm_p_h SN0DEEZE 0 neneg *
I T ket _kemel_n#c_acre_cwc p v S00DcC3E D noneg
] it _kemel_ntc_ace_dig_p ¥ S000ccdE 0 noneg *
(& P_hiknd __kemel_mntc_acre_ig_p b E000cBE D nonegq *
@ C hicksd __kemel_n#c_acre_mbi_p_h E0DcBE 0 noneg =
& l_'-"ls-.-:n'l __kemel_nfc_acre_mbx_p_t S000cc?E D none.g *
[,:'_“__lq —kemel_ntc_acre_mpl_p v S000ccBB 0 nongg ¢
o P'._._:_ chrt __keamel_nbfc_acm_mpl_p_b Bl0hocHE o none g -
P I_:I.L | __kaimel _inbc_scie_rite_p_br S00bccad O none g -
okl F'-:'"' m kamel e _acie_sam @ i SO000cchd O nciE g -
) F_titredry kemel_nbc_acre_tsk_p ¥ E00DcccE O nong.g *
& C_hredrs kil _inkc_ac_isk_p_¥ S0N0ccEd 0 ncgg *
=l _ kemel_nfc_oal_seg | Nhcced 0 ngie g -
E] B_fhretk = _ kemel_inf:_pal_goas_ i EN0Ncced N noneg ¢
Ll—l L Eemel nfc pal ses E0lcced N nonea * .;l
"8k Dplete Symbols @6 &
EYREDL SIZE IEFD
#dd Yarfahle Acceamible with Rhad v
EWBIIAL 5ITE CBUNTE OFTIMIEE -
i |]
FarHalp, prass Fi | |

Figure5.22 Window for Listing Symbols

Rev. 3.00 Jan. 12, 2005 Page 343 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

5.6 Examples and Solutions of CPU Exception

This section describes examples of how the system goes down due to a CPU exception and how
the problem should be solved. The following shows the main causes of CPU exceptions. Note that
it isassumed in this section that neither the memory management unit (MMU) nor the user break
controller (UBC) is used and there is no trap instruction.

Rev. 3.00 Jan. 12, 2005 Page 344 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

Table5.21 Main Error Causes

Exception
Cause Exception Location Probable Cause
General illegal ~ User program Direct ¢ Incorrect CPU option setting through the
instruction, slot cause compiler (5.6.2)
illegal instruction
g e Damaged program area (5.6.3)
e Failure in hardware (5.6.1)
Indirect e Stack overflow (5.6.2)
cause
Kernel Direct e Damaged program area (5.6.3)
cause e Failure in hardware (5.6.1)
Indirect e Damaged kernel management area (5.6.3)
cause e Stack overflow (5.6.2)
Other location, Indirect e Incorrect function call using a pointer
outside the program cause variable (5.6.3)
area
e Stack overflow (5.6.2)
CPU address User program Direct e Access violation at a data boundary (5.6.3)
error, cause P .
DMAC or DTC e Access violation in the physical address
address error space (5.6.3)
e Incorrect DMAC or DTC register setting
e Failure in hardware (5.6.1)
Indirect e Incorrect section information setting
cause through the linkage editor (5.6.2)
e Stack overflow (5.6.2)
Kernel Direct e Failure in hardware (5.6.1)
cause
Indirect o Damaged kernel management area (5.6.3)
cause

Incorrect section information setting
through the linkage editor (5.6.2)

Stack overflow (5.6.2)

Other location, outside Indirect

the program area

cause

Incorrect function call using a pointer
variable (5.6.3)

Stack overflow (5.6.2)

Direct cause: Directly causes the system to go down.
Indirect cause: Causes malfunction of the program, which results in system going down.
Note: The number in parenthesis shows the reference section in this application note.

Rev. 3.00 Jan. 12,2005 Page 345 of 362

RENESAS REJ05B0364-0300

Section 5 Debugging

56.1 Failurein Hardware
(1) Failurein Memory Initialization

When using external memory devices (such as SDRAM or SRAM), check that the bus state
controller (BSC) is correctly set up and all areas in the memory to be used can be correctly
accessed (read and written to). When using emulation memory, check that the emulator is
correctly set up.

Hardware must be initialized before the kernel initialization processing is called. For details, refer
to section 2.2, Overview of CPU Initialization Routine.

5.6.2 Incorrect Configuration
(1) Incorrect CPU Option Setting through the Compiler

Check that the CPU options (CPU type or endian) set through the compiler matches the target
hardware specifications. In particular, check whether the target hardware uses big endian or little
endian in the SH-2, SH-3, SH-3DSP, and SH-4 series microcomputers. The following shows the
window for specifying the CPU options in the compiler.

Rev. 3.00 Jan. 12, 2005 Page 346 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

superH RISC engine Standard Toolchain BHE |
Configuration ; .-’-'-.sseml:ul_l,ll Lir'lk.-"LitlrElf_lrll Standard Library CPLI |DE|:ILII 1 I *I
| obi_big =]
— CPU:|5H3-DSP =]
=43 Al Loaded Projects
Ell@ TE41_ i Qi'-.-'isicnn:IEF'Ll j
I:I C source file
Cl C++ zource file -
I:l Azzembly source file
-7 Linkage symbal file BRI :ISingIe j
Biourid e Izeru j

10 enommalized number allower az a result
[1Pasition independent code [FIC]

[1Treat double az float

[1Bit field's members are allacated from the lower bit
[Pack struct, union and clazs

[Usge ty, throw and catch of C++

[1Enable/dizable runtime infarmation

1] | 2]

Q. I Cancel

Figure5.23 Window for Specifying CPU Options
(2) Incorrect Section Information Setting through the Linkage Editor

Check that the work spaces (such as B_hixxxx, B, and R sections) used by the HI series OS and
the application program are allocated in the available RAM area and they do not exceed the RAM

capacity.

To check that the sections do not exceed the available RAM area, use the map file output from the
linkage editor. For output of amap file, refer to the user's manual of the compiler used.

Rev. 3.00 Jan. 12,2005 Page 347 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

The following shows an example of amap file output from the SuperH™ RISC engine series
C/C++ compiler package Ver. 8.0.01.

Optimizing Linkage Editor (Ver. 8.0.02.000) 03-Sep-2004 10:35:31
(Processing omitted)

*** Mapping List ***

SECTION START END SIZE ALIGN
P_hiexpent
80000100 800007df 6e0 4
C_hibase
80001000 80001363 364 4
P_hireset
80001364 80001530 1cd 4
C_hivet
80001534 80001933 400 4
C_hitrp
80001934 80002133 800 4
P_hiknl
80002134 8000c7a7 a674 4
C_hidef
8000c7a8 8000c7ef 48 4
C_hisysmt
8000c7f0 8000c9c3 1d4 4
C_hicfg
8000c9c4 8000ca2f 6C 4
P_hisysdwn
8000ca30 8000ca4f 20 4
P_hiintdwn
8000ca50 8000cab3 64 4
P_hitmrdrv
8000cab4 8000cb4b 98 4
C_hitmrdrv
8000cb4c 8000cb4d 2 4
P
oo ____.___8000cb50__8000d6cf ___ b80____ 4 .
' B_hiwrk !
! 8c000000 8c009ddb 9ddc 4 ,
! B_himpl |
, 8c009ddc 8c021ddb 18000 4 ,
| B_hidystk &)
. 8c021ddc 8c025ddb 4000 4 | I~
"B histstk ' | Check that the work
! 8c025ddc 8c026ddb 1000 4 1 | spaces of the OS and
! B_hiirgstk E application program do
8c026ddc 8c027fdb 1200 4 1 | not exceed the available
' B_hitrcbuf . RAM area.
oo __._._8c027fdc _8c037fdb ____10000___4______ i
P_hicpuasm
20000000 a000002f 30 4
P_hicpuini
a0000030 a0000057 28 4

Figure5.24 Mapping Listin aMap File

Rev. 3.00 Jan. 12, 2005 Page 348 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(3) Stack Overflow

Check that there is enough stack size for each task, interrupt handler, initialization routine, and
time event handler.

For calculation of each stack size, refer to section 3.3, Stack Size Calculation.

For the stack, the specified areais used from the highest address in descending order. If the stack
runs out of space, the contents of the lower addresses (nearer to address 0) will be damaged. The
following shows an example of an exception caused by a stack overflow.

Address 0 T Lower address
\/\
B_himpl
Memory pool area
B_hidystk
Stack for task A
Stack for task B Dynamic
stack
(4) '
! B_histstk

(6)

Static
System Stack for task X ‘|J> staclk
goes down B_hiirgstk
Stack for

interrupt handler

\/\

Higher address

Note: The order of section allocation in memory depends
on the order of section settings through the linkage
editor options.

Figure5.25 Exampleof Task Operation and Stack Allocation

(1) When task A is executed, the stack for task A is used.
(2) When tasks are switched and task B is executed, the stack for task B is used.

(3) If the stack for task B runs out of space, the stack areafor task A, which is allocated to lower
addresses, is damaged.

(4) When tasks are switched and task A is resumed, task A uses the contents of the stack. In this
case, the stack contents have been overwritten and a malfunction occurs in the program.

(5) The mafunction in the program causes a CPU exception or a hang-up.

Rev. 3.00 Jan. 12,2005 Page 349 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

The area to be damaged depends on the section allocated to lower addresses than the stack; for
example, another program area or amemory pool area may be damaged. Depending on the
damaged area, the type of malfunction differs.

56.3 Error in Program Description
(1) Damaged Kernel Management Area

Check if the kernel management areais damaged due to an error in program description. When
either of the following functionsis used, special care must be taken so that the kernel management
areais not damaged.

e Mailbox
e Variable-length memory pool

The following shows a bad coding example using a mailbox.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

. T_MSG t_msg; !
| B data[10]; !
1} USER_MSG; i

(1) Declare the user message type.

(Processing omitted)

/* Processing to store the user message */

if(ercd = E_OK){
/* Error processing */

}

return;

Figure5.26 Bad Coding Examplefor Sending a M essage

If the priority of the task sending a message is higher than that of the task receiving the message,
the areafor local variable "message" becomes invalid when execution returns from the

Rev. 3.00 Jan. 12, 2005 Page 350 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

Task _sub_sndmsg function. When the kernel accesses the management area in the message after
that, a malfunction occurs in the program and the system goes down.

Write a program so that the contents of the message data area for amailbox is retained until it is
received; for example, allocate the message data area in the memory pool area.

(2) Damaged Program Area

When the program area (including the user program and OS) is allocated in the RAM, it may be
overwritten due to an error in user program description or afailure in hardware, and the system
may go down.

The following shows an example for determining the cause of the damage in the program area.

(1) Verify the program area contents in the RAM with the loaded executable file to determine
whether the program area has been overwritten.

(2) Specify ahardware break so that a break occurs when awrite access is made to the overwritten
location.

(3) Load the program and reexecute it.

(4) If program execution stops due to a hardware break, it is confirmed that the program area has
been overwritten by the program execution. Check the program code where execution stops.

(5) If program execution does not stop due to a hardware break but the same location is damaged,
there may be afailure in hardware.

(3) AccessViolation at a Data Boundary

When memory is manipulated through pointer variables in the SH-2, SH-3, SH-3DSP, or SH-4
series microcomputer, check if the program contains either of the following descriptions.

e Word dataread or write at an address other than a word boundary (address 2n+1)

e Longword data read or write at an address other than alongword boundary (address 4n+1,
4n+2, or 4n+3)

When either of the above program code is executed, the system may go down (a CPU address
error). The following shows abad coding example.

Rev. 3.00 Jan. 12,2005 Page 351 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

(-

1 UB buf[16]; =]—— (1) Allocate a 16-byte area (buf) for a global variable.

void Task_sub1(void)
UW *ptr;
int i;

ptr = (UW *)&buf; & —— (2) Set pointer variable ptr to the start address of buf.

(Processing omitted)

Figure5.27 Bad Coding Example Causing System-Down

If the buf areais allocated to address 4n through the linkage editor, the program is correctly
executed. If it is allocated to an odd-valued address or address 2n, the system goes down at
location 3) in the above example.

To solve this problem, modify statement 1) in the example to "UW buf[4]", then the buf areais
always alocated at alongword boundary and the system-down problem can be avoided.

(4) AccessViolation in the Physical Address Space

When memory is manipulated through pointer variables, check if the program contains the
following description.

e Access to an unintended area due to an attempt to use an uninitialized global or local variable
When the above program code is executed, the system goes down (a CPU address error).

When the uninitialized data area (B section) for global or static variables should be cleared to 0,
the section must be initialized by the CPU initialization routine. For the CPU initialization routine,
refer to section 2.2, Overview of CPU Initialization Routine.

Use the information message output from the compiler to check whether uninitialized local
variables are used. Note that, in some cases, this cannot be checked through the information
message depending on the coding method. In this case, the user must check it through other
means.

The following shows the window for specifying information message output when the HEW is
used.

Rev. 3.00 Jan. 12, 2005 Page 352 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

superH RISC engine Standard Toolchain EHE |
Canfiguration : C/C++ |.-’-'-.ssem|:|l_l,l| Linka"LiI:urar_l,II Standard LiI:urar_l,II CRU A I *I
Ic'l:'l—l:|IE| j Cateqory : ISDU[CE j

=3 All Loaded Frajects

Ell@ B4 _mix
T N -
-] C source file Sieages
[“_‘| C++ zource file _ @JiSpla_u information level meszages
-] Assembly source file
-7 Linkage symbal file

Show entries for

[](1] 0005 Precision last N
[1[11 0008 Canwversian in argurment

[1[11 0008 Corverzian in return

1017 0010 Elimination of needless expression
(1) 0011 Used before set symbal: variable name"
i (110012 Unused vanable "variable name"'

110015 Ma returk value -
T, L I LI_I

Optiong CAC++

-cpu=sh3dsp ﬂ
-nclude="${'0RESPDIR hihead"” "$w/0RKSFPDIR his
a ILI v "R ORKSPD IR hivsersh7E41" ;I

] I Cancel |

Figure5.28 Window for Specifying Output of Compiler Information M essages
(5) Incorrect Function Call Using a Pointer Variable

When a pointer variable value becomes illegal during afunction call through the pointer variable,
the program execution address in the called function becomesillegal and the system may go down
or may be reset. When afunction should be called through a pointer variable, be sure to confirm
that the source code is correct.

If the system-down cause is outside the program area and the caller of the target function cannot
be determined, use the trace function of an ICE or an emulator to check the program execution
flow.

The following shows an example of afunction call through an illegal pointer variable.

Rev. 3.00 Jan. 12,2005 Page 353 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

—_— An interrupt occurs.
| CPU initialization | | P
routine 4 (4)

E Create initially-defined o ©) v
1) objects. t Set p_callback to the

i T o address of call-back

i — [routine A. Interrupt handler.
! 5 Initiate the o T
:()| initialization routine. | !]
' T . Task processing
' Interrupt processing

5 Initiate the task. | 1_! ‘ |
5 ! @ . Call the routine

\ ! I specified fo
e e p_callback.

Kernel processing /System
goes down.
Nax: ‘
Call-back routine A

Call-back routine
processing

Figure5.29 Exampleof a Function Call through an Illegal Pointer Variable

(1) Define an interrupt handler during initial definition.

(2) Enable hardware interrupts through the initialization routine.

(3) If no interrupt is generated, the pointer variable (p_callback) is set to the call-back address
valuein the task context.

(4) If aninterrupt is generated before the pointer variable is set to the call-back routine address, a
call ismadeto anillegal address, that is, the execution addressisillegal and the system goes
down.

In the above case, take appropriate measures so that the call-back routine is not called until the
call-back routine address is determined or no interrupt is generated before the pointer variable
(p_callback) is set up.

Rev. 3.00 Jan. 12, 2005 Page 354 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

5.7 FAQs about Debugging

This section answers questions about debugging which are frequently asked by users of the HI
series OS.

FAQ Contents:
571 Saving aProgram iNn ROMcccceoieieiinieie e eeeee e se st sre e e e e sae e e sne s 356
57.2 System-Down When Memory POOI iSUSE.........ccooririnrineneseee e 361

Rev. 3.00 Jan. 12,2005 Page 355 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

571 Saving a Program in ROM

Classification: Debugging

Question HI7000/4 HI7700/4 HI7750/4 HI12000/3 HI1000/4

My program correctly runs on an | CE but cannot run correctly after it is stored in ROM.

What causes this problem?

Answer
The sections must be initialized when program execution is started.

Theinitialized data area (D section) in a program written in the C language must be copied from
ROM to RAM when program execution is started. Therefore, the initialized data area must be
allocated to both ROM and RAM. This allocation can be done by using the ROM support function
of the linkage editor. For the ROM support function, refer to the user's manual of the cross
compiler used.

The sections must beinitialized by the CPU initiaization routine.

The following shows how to initialize the sections, using the CPU initialization routine provided
together with each HI series OS as an example.

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 356 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(Continued from previous page)

Answer

JEREF KR K KA KK E KKK FHF KA KKRKFHHKIA KKK IR AKIA KRR FA AR A KRR KR A Kk

/* FILE =7604_cpuini.c; */
/* CPU type = SH7604 */
/'k***/
#include <machine.h>

#include ‘“itron.h"

#include "kernel.h"

i/* extern void _INITSCT(void); */ /* section-initialize routine */

S

=Y
#pragma section _hicpuini
#pragma noregsave(hi_cpuini) Delete the comment

characters (/* */) to call the

void hi_cpuini(void) section initialization

{ processing.

/*** Initialize Hardware Environ

/*** Initialize SoftwareEfvironment ***/

/*JNITSCT()(@’[‘/ /* Call section-initialize routine */
vsta_knl(); /* Start kernel */

Figure5.30 Example of CPU Initialization Routine (H17000/4 Series)

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 357 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(Continued from previous page)

Answer

KK KKKk kKKK ok k kKKK ok k KKKk k KKK kK k KK kKK ok ok kKKK Rk kR KKk k kR Rk Kk [

/* FILE = 7604 _initsct.c ; */
/**'k**~k***************************/
#include <machine.h>

#include ‘"itron.h"

extern int *B_BGN, *B_END, *D_BGN, *D_END, *D_ROM;
extern void _INITSCT(void);

#pragma section _hicpuini

/***/
/* NAME = _INITSCT; */
/* FUNCTION = Section Initialize routine ; */

R KA Kk kKKK kKKK Kk kKKK ok ok KKk ok KKKk kKKK Kk kKK Kk kR KKKk ok k kKK Kk ok [

void _INITSCT(void)

{
register int *p, *q;
for(p=B_BGN; p<B_END; p++) /* 0 clear B-section */
*p=0;
for(p=D_BGN,q=D_ROM; p<D_END; p++, g++) /* Copy D-section -> R-section */
*p="q;

Figure5.31 Example of Section Initialization Processing (H17000/4 Series)

(Continued on next page)

Rev. 3.00 Jan. 12, 2005 Page 358 of 362
REJ05B0364-0300 RENESAS

Section 5 Debugging

(Continued from previous page)

Answer

_H_2S_CPUINI:

mov.l #CPUINI_SP:32,sp ;: get CPUINI_SP

mov.b @SYSCR:32,r0L ;- get SYSCR

and.b #low~(INTMO|INTM1):8,rOL ;: clear interrupt mode bit

orb #low (INTMO|INTM1):8,rOL ;: set interrupt mode = 3

mov.b rOL,@SYSCR:32 ;- set SYSCR

mov.b @MSTPCRH:32,r0L ;- get MSTPCRH

and.b #low TPU:8,rOL ;- set TPU bit off

mov.b rOL,@ MSTPCRH:32 ;: set MSTPCRH
’ .aifdef DX

jsr @_HI_DEAMON_INI ;- call to init deamon code

.aendi

@_h:éﬁhini_c ------ i caII"t.c')"C-Ianguage initialize routine

T ‘g\} """""""""""""""""""""""""

jimp @_H_2S_INIT ;- goto HI2000/3 initialize module

Add a call to the CPU
initialization routine written in C.

Note: In this example, h_cpuini_c is assumed as the CPU initialization routine written in C.

Figure5.32 Example of CPU Initialization Routine (H12000/3)

void h_cpuini_c(void)

{

/*** Initialize Hardware Environment ***/

Add the following as necessary.
o Initialization of the bus state controller

/¥** |nitialize Hardware Environment ***/

o Initialization of the external memory

(SDRAM)

CUINITSCT();

/* Call section-initialize routine */

Call the section initialization processing
in the standard library to clear
uninitialized data to 0 and to copy the
uninitialized data from ROM to RAM.

Figure5.33 Example of a Call to Section Initialization Processing (HI2000/3)

(Continued on next page)

RENESAS

Rev. 3.00 Jan. 12,2005 Page 359 of 362
REJ05B0364-0300

Section 5 Debugging

(Continued from previous page)

Answer

_KERNEL_H_CPUINI:

mov.|
mov.|
Idc.|
mov.|
Idc.1

; mov.w
; mov.w
; mov.w
; mov.w

mov.b
mov.b

mov.w
and.w
mov.w

KERNEL_HI_OS_SP:32,sp
#VBR_ADR,er0

er0,vbr

#h'ffffff00,er0

er0,sbr

#h'00ff, @ ABWCR:32

#h'0000, @ASTCR:32
#h'0000, @ WTCRA:32
#h'0000, @ WTCRB:32

#INTM1,rOL
rOL, @INTCR:32

@MSTPCRA:32,r0
#MSTPAO0:16,r0
r0, @MSTPCRA:32

;: SP <- OS stack

;- set VBR address
;rinitial SBR
;- initial SBR

;- set ABWCR
;:set ASTCR

;:set WTCRA
;:set WTCRB

;- set interrupt mode 2
;:set INTCR

;- get MSTPCRA
: set TPU bit off
;- set MSTPCRA

Add a call to the CPU
initialization routine written in C.

Note: In this example, h_cpuini_c is assumed as the CPU initialization routine written in C.

Figure5.34 Example of CPU Initialization Routine (HI1000/4)

void h_cpuini_c(void)

{

/*** Initialize Hardware Environment ***/

/*** |nitialize Hardware Environment ***/

Add the following as necessary.

« Initialization of the bus state controller

o Initialization of the external memory
(SDRAM)

_INITSCT;

« /* Call section-initialize routine */

vsta_knl();

N

/* Start kernel */

Call the section initialization processing
in the standard library to clear
uninitialized data to 0 and to copy the
uninitialized data from ROM to RAM.

Figure5.35 Example of a Call to Section Initialization Processing (HI1000/4)

Rev. 3.00 Jan. 12, 2005 Page 360 of 362
REJ05B0364-0300

RENESAS

Section 5 Debugging

572 System-Down When Memory Pool is Used

Classification: Debugging

Question HI7000/4 HI7700/4 HI7750/4 HI12000/3 HI1000/4

When amemory block is acquired and released in a variable-length memory pool, the system goes
down. What causes this problem?

Answer

The user program seems to use memory beyond the memory block acquired from a variable-length
memory pool.

In avariable-length memory pool, when amemory block is acquired, a 16-byte kernel
management area is allocated in the memory pool. The following shows the configuration of the
variable-length memory blocks in amemory pool.

Start address of
memory block A

Kernel management area A } 16 bytes

Memory block A

Start address of 5| Kemel management area B }16bytes

memory block B " block B
emory bloc

g
A\

Memory pool area

Figure5.36 Configuration of Variable-Length Memory Blocks

(Continued on next page)

Rev. 3.00 Jan. 12,2005 Page 361 of 362
RENESAS REJ05B0364-0300

Section 5 Debugging

(Continued from previous page)

Answer

If the kernel management areais accidentally overwritten with the user program, the system goes
down or hangs up when the kernel accesses the kernel management area to rel ease a memory
block.

Use an ICE or an emulator in the following procedure to check whether the user program uses
memory beyond the acquired memory block.

(1) Specify the required size + 4 as the memory block size when acquiring a memory block.

(2) Set ahardware break at the end address of the acquired memory block (start address + required
size + 1) so that a break occurs when this addressis read or written to.

(3) Execute the program.

If program execution stops due to the specified hardware break, the user program has attempted to
use memory beyond the available memory block range.

Rev. 3.00 Jan. 12, 2005 Page 362 of 362
REJ05B0364-0300 RENESAS

HI Series OS Application Note

Publication Date: Rev.1.00, Dec 19, 2003
Rev.3.00, Jan 12, 2005

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Technical Documentation & Information Department
Renesas Kodaira Semiconductor Co., Ltd.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

RenesaSTeChnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS

RENESAS SALES OFFICES http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Colophon 2.0

HI SeriesOS
Application Note

LENESAS

Renesas Electronics Corporation
1758, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO5B0364-0300

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	Preface
	Contents
	Figures
	Section 1 Functions of the HI Series OS
	1.1 System State
	1.1.1 FAQs about System State

	1.2 Objects
	1.2.1 What Is an Object?
	1.2.2 ID Assignment
	1.2.3 FAQs about Objects

	1.3 Service Call Parameter Check
	1.3.1 Installation in HI7000/4 Series
	1.3.2 Installation in HI2000/3 and HI1000/4
	1.3.3 FAQ about Service Call Parameter Check

	1.4 Tasks
	1.4.1 Tasks and Functions
	1.4.2 Task Initiation
	1.4.3 Task Stacks
	1.4.4 CPU Allocation to Tasks
	1.4.5 Polling
	1.4.6 FAQs about Tasks

	1.5 Interrupts
	1.5.1 Processing before Handler Initiation after Interrupt Occurrence
	1.5.2 Kernel Interrupt Mask Level
	1.5.3 Notes When Using an H8S or H8SX Family Microcomputer
	1.5.4 Notes on Interrupt Handler Creation
	1.5.5 FAQs about Interrupts

	1.6 Event Flags
	1.6.1 Specification of Event Flag Clearing
	1.6.2 FAQ about Event Flags

	1.7 Semaphore
	1.7.1 Task Deadlock by Using Semaphore

	1.8 Mutex
	1.8.1 Priority Inversion
	1.8.2 Overview of Mutex Processing

	1.9 Mailbox
	1.9.1 Overview of Mailbox Processing
	1.9.2 Overview of Sending a Message Using Mailbox
	1.9.3 Overview of Receiving a Message Using Mailbox
	1.9.4 FAQ about Mailbox

	1.10 Message Buffer
	1.10.1 Overview of Message Buffer Processing
	1.10.2 Overview of Sending a Message Using Message Buffer
	1.10.3 Overview of Receiving a Message Using Message Buffer

	1.11 Data Queue
	1.11.1 Overview of Data Queue Processing
	1.11.2 Overview of Sending a Message Using Data Queue
	1.11.3 Overview of Receiving a Message Using Data Queue

	1.12 Memory Pool
	1.12.1 Fragmentation
	1.12.2 FAQ about Memory Pool

	1.13 Time Management
	1.13.1 Concept of Time Management
	1.13.2 Modification of Hardware Timer Cycle Unit
	1.13.3 Cyclic Handler
	1.13.4 Overview of Timer Management Processing

	Section 2 Application Program Creation
	2.1 Overview of Processing from Reset to Task Initiation
	2.2 Overview of CPU Initialization Routine
	2.2.1 FAQs about CPU Initialization Routine

	2.3 Overview of Kernel Initialization Processing
	2.3.1 Initialization Routine
	2.3.2 Shifting to Multitask Environment
	2.3.3 FAQ about Kernel Initialization Processing

	2.4 Overview of System Idling Processing
	2.4.1 System Idling Processing Using SLEEP Instruction
	2.4.2 FAQs about System Idling Processing

	2.5 Overview of System Termination Processing
	2.5.1 Sample System Termination Processing
	2.5.2 FAQ about System Termination Processing

	2.6 Application Program Types
	2.6.1 Task Creation Example
	2.6.2 Interrupt Handler Creation Example
	2.6.3 CPU Initialization Routine Creation Example
	2.6.4 System Termination Processing Creation Example
	2.6.5 System Idling Routine Creation Example
	2.6.6 Initialization Routine Creation Example
	2.6.7 Timer Interrupt Routine Creation Example
	2.6.8 Task Exception Processing Routine Creation Example
	2.6.9 Extended Service Call Routine Creation Example
	2.6.10 CPU Exception Handler Creation Example
	2.6.11 Time Event Handler Creation Example

	2.7 Development Procedures for Application Programs

	Section 3 Configuration
	3.1 Configuration Procedure Outline
	3.2 Defining Kernel Environment
	3.2.1 Definition by Configurator (HI7000/4 Series and HI1000/4)
	3.2.2 FAQ about Configurator
	3.2.3 Definition by Setup Table (HI2000/3)
	3.2.4 FAQ about Setup Table

	3.3 Stack Size Calculation
	3.3.1 Stack Size Calculation from Stack Frame Size
	3.3.2 Stack Size Calculation by CallWalker

	3.4 System Configuration Procedure
	3.4.1 HI7000/4
	3.4.2 HI7700/4
	3.4.3 HI7750/4
	3.4.4 HI2000/3
	3.4.5 HI1000/4
	3.4.6 FAQs about System Configuration

	Section 4 Device-Dependent Specifications
	4.1 FAQs about Device-Dependent Specifications
	4.1.1 Cache Enabling Setting
	4.1.2 Cache Usage
	4.1.3 Restrictions on Write-Back Mode (1)
	4.1.4 Restrictions on Write-Back Mode (2)
	4.1.5 Cache Support
	4.1.6 X/Y Memory Usage
	4.1.7 Support of MMU
	4.1.8 Timer Driver
	4.1.9 Control of Timer Used by OS
	4.1.10 CPU Initialization Routine Written in C Language
	4.1.11 Location of Interrupt Entry/Exit Processing Routine
	4.1.12 Initialization of External Memory
	4.1.13 Transition to Power-Down Mode

	Section 5 Debugging
	5.1 Overview of Debugging
	5.2 HI7000/4 Series
	5.2.1 Preparation for Debugging
	5.2.2 System Going Down
	5.2.3 Types of System Down Causes

	5.3 HI2000/3
	5.3.1 Preparation for Debugging
	5.3.2 System Going Down
	5.3.3 Types of System Down Causes

	5.4 HI1000/4
	5.4.1 Preparation for Debugging
	5.4.2 System Going Down
	5.4.3 Types of System Down Causes

	5.5 Determining System Down Location
	5.5.1 Determining the Location of a Program Module through Mapview

	5.6 Examples and Solutions of CPU Exception
	5.6.1 Failure in Hardware
	5.6.2 Incorrect Configuration
	5.6.3 Error in Program Description

	5.7 FAQs about Debugging
	5.7.1 Saving a Program in ROM
	5.7.2 System-Down When Memory Pool is Used

	Colophon
	Address List
	Back Cover

