Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

APPLICATION NOTE

Handling of Open-Circuit I/O Port Pins

Introduction

Demonstrates the handling of open-circuit I/O port pins.

Target Device

H8/300H Tiny Series H8/3664

Contents

1.	Specifications	3
2.	Description of Functions	3
3.	Description of Operation	5
4.	Description of Software	7
4.1	Module	7
4.2	Module	7
4.3	Internal Registers Used	7
5.	Description of RAM Usage	9
6.	Flowchart	10
7	Drogram Listing	1 1

Feb. 2003

Cautions

Feb. 2003

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.

- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Copyright © Hitachi, Ltd., 2003. All rights reserved.

ADE-502-130 16-bit / H8/300H Tiny

1. Specifications

- 1. Demonstrates the handling of open-circuit I/O port pins.
- 2. Open-circuit I/O port pins for use as I/O pins are set as outputs.
- 3. Open-circuit I/O port pins for use as input pins are pulled up or down.
- 4. Open-drain-type output pins are placed in the electric-potential state where the transistor is turned on.

2. Description of Functions

- 1. In this sample task, processing to handle open-circuit I/O ports is applied. The general ports of the H8/3664 are as follows:
- Input/output ports: Ports 2, 7, and 8;
- Input port: Port B; and
- Input/output ports with pull-up MOSFETs: Ports 1 and 5 Processing methods for each pin are:
- Input/output ports: Set as output ports;
- Input port: Set as pulled-down port; and
- $\bullet \quad \text{Input/output ports with pull-up MOSFETs: The pull-up MOSFETs are turned on.} \\$

Figure 2.1 shows examples of the states of representative ports.

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 3 of 14 http://www.renesas.com/

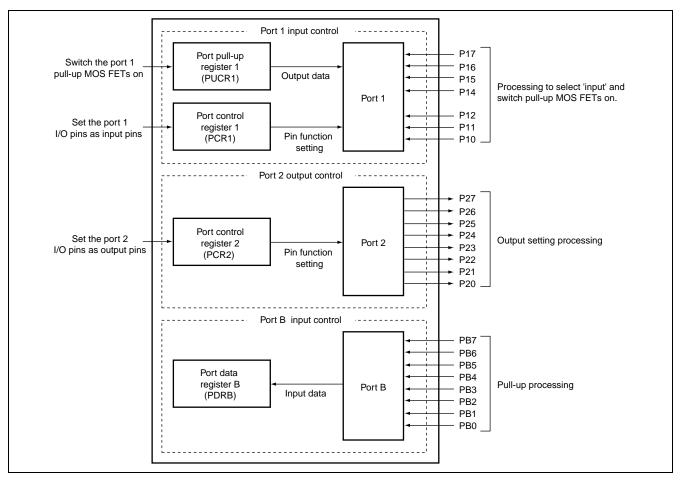


Figure 2.1 Settings for Open Pins on Ports 1, 2, and B

2. Table 2.1 lists the function assignments of this task example. Eight-bit parallel input to port B is performed by assigning functions as shown in table 2.1.

Table 2.1 Function Assignments

Function	Assigned Function	
PMR1 Function switching (between I/O and IRQ etc.) for some pins of ports 1 and 2.		
PCR1	Each bit selects input/output for the corresponding pin of general I/O port 1.	
PUCR1	Pin-by-pin control of the pull-up MOSFETs for each port-1 pin which is set as an input.	
PCR2	Each bit selects input/output for the corresponding pin of general I/O port 2.	
PMR5	Function switching (between I/O and other functions) for some pins of port 5	
PCR5	Each bit selects input/output for the corresponding pin of general I/O port 5.	
PUCR5	Pin-by-pin control of the pull-up MOSFETs for each port-5 pin which is set as an input.	
PCR7	Each bit selects input/output for the corresponding pin of general I/O port 7.	
PCR8 Each bit selects input/output for the corresponding pin of general I/O port 8.		

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 4 of 14 http://www.renesas.com/

3. Description of Operation

1. Operation of this sample task is described in figures 3.1 to 3.3. Through software/hardware processing as shown in the figures, processing for the open-circuit pins of ports with pull-up MOSFETs (e.g. port 1), general I/O ports (e.g. port 2), and input ports (e.g. port B) is applied.

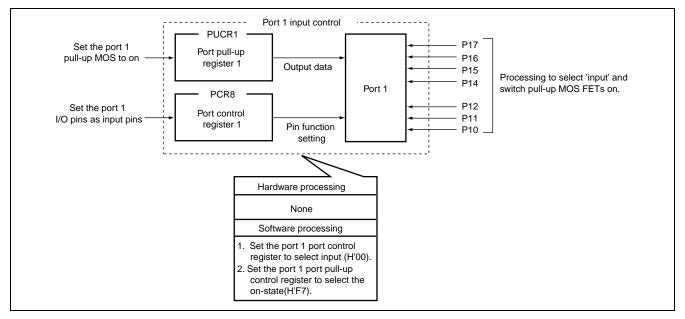


Figure 3.1 Processing for Open-Circuit Pins of Ports with Pull-Up MOSFETs (e.g. Port 1)

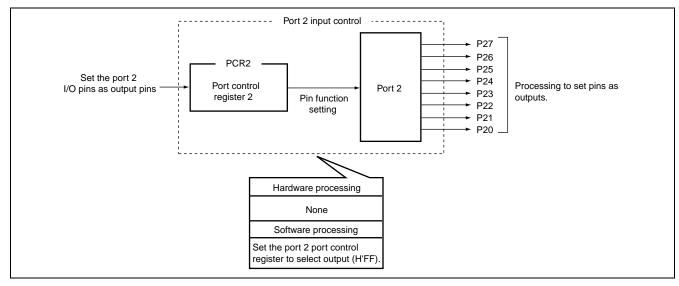


Figure 3.2 Processing for Open-Circuit Pins of General I/O Ports (e.g. Port 2)

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 5 of 14 http://www.renesas.com/

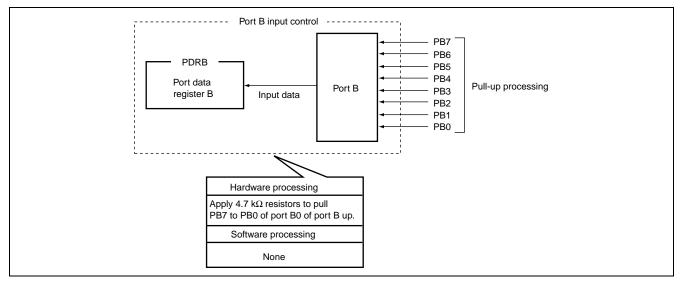


Figure 3.3 Processing for Open-Circuit Pins of Input Ports (e.g. Port B)

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 6 of 14 http://www.renesas.com/

4. Description of Software

4.1 Module

Table 4.1 lists the single module of this sample task.

Table 4.1 Description of Module

Module Name	Label Name	Function
Main routine	main	Performs I/O port settings

4.2 Arguments

No arguments are used in this task.

4.3 Internal Registers Used

Table 4.2 lists the usage of internal registers in this sample task.

Table 4.2 Internal Registers Used

Register Name		Function	Address	Setting
PMR1	IRQ3	0: P17 is used as a general I/O pin.	H'FFE0	0
		1: P17 is used as the IRQ3/TRGV input pin.		
Port mode	IRQ2	0: P16 is used as a general I/O pin.		0
register 1		1: P16 is used as the IRQ2 input pin.		
	IRQ1	0: P15 is used as a general I/O pin.		0
		1: P15 is used as the IRQ1 input pin.		
	IRQ0	0: P14 is used as a general I/O pin.		0
		1: P14 is used as the IRQ0 input pin.		
	TXD	0: P22 is used as a general I/O pin.		0
		1: P22 is used as the TXD output pin.		
	TMOW	0: P10 is used as a general I/O pin.		0
		1: P10 is used as the TMOW output pin.		
PCR1	PCR17	0: P17 is used as an input pin.	H'FFE4	0
		1: P17 is used as an output pin.		
Port control	PCR16	0: P16 is used as an input pin.		0
register 1		1: P16 is used as an output pin.		
	PCR15	0: P15 is used as an input pin.		0
		1: P15 is used as an output pin.		
	PCR14	0: P14 is used as an input pin.		0
		1: P14 is used as an output pin.		

Feb. 2003	
ADE-502-130	16-bit / H8/300H Tiny

Page 7 of 14 http://www.renesas.com/

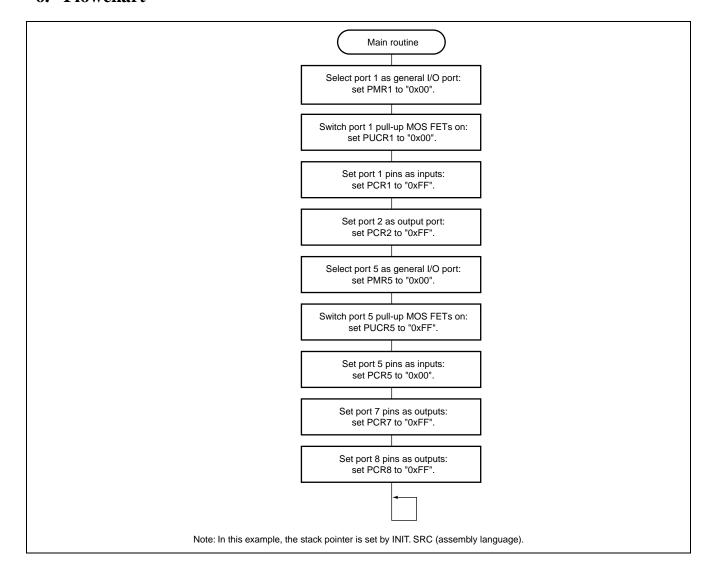
Table 4.2 Internal Registers Used (cont)

Register Name		Function	Address	Setting
PCR1	PCR12	0: P12 is used as an input pin.	H'FFE4	0
		1: P12 is used as an output pin.		
Port control	PCR11	0: P11 is used as an input pin.		0
register 1		1: P11 is used as an output pin.		
(cont)	PCR10	0: P10 is used as an input pin.		0
		1: P10 is used as an output pin.		
PUCR1	PUCR17	0: P17 pull-up MOSFET is off.	H'FFD0	1
		1: P17 pull-up MOSFET is on.		
Port	PUCR16	0: P16 pull-up MOSFET is off.		1
pull-up control		1: P16 pull-up MOSFET is on.		
register 1	PUCR15	0: P15 pull-up MOSFET is off.		1
_		1: P15 pull-up MOSFET is on.		
	PUCR14	0: P14 pull-up MOSFET is off.		1
		1: P14 pull-up MOSFET is on.		
	PUCR12	0: P12 pull-up MOSFET is off.		1
		1: P12 pull-up MOSFET is on.		
	PUCR11	0: P11 pull-up MOSFET is off.		1
		1: P11 pull-up MOSFET is on.		
	PUCR10	0: P10 pull-up MOSFET is off.		1
		1: P10 pull-up MOSFET is on.		
PCR2		When PCR27 to PCR20 = H'00, P27–P20 I/O pins function as input pins.	H'FFE5	H'FF
Port control register 2		When PCR27 to PCR20 = H'FF, P27–P20 I/O pins function as output pins.		
PMR5	WKP5	0: this is a general I/O pin.	H'FFE1	0
		1: this is the WKP5 input pin/ADTRG input pin.		
Port mode	WKP4	0: this is a general I/O pin.		0
register 5:		1: this is the WKP4 input pin.		
	WKP3	0: this is a general I/O pin.		0
		1: this is the WKP3 input pin.		
	WKP2	0: this is a general I/O pin.		0
		1: this is the WKP2 input pin.		
	WKP1	0: this is a general I/O pin.		0
		1: this is the WKP1 input pin.		
	WKP0	0: this is a general I/O pin.		0
		1: this is the WKP0 input pin.		

Feb. 2003
ADE-502-130

Table 4.2 Internal Registers Used (cont)

Register Name		Function	Address	Setting
PCR5 Port control		When PCR57 to PCR50 = H'00, P57–P50 I/O pins are input pins.	H'FFE8	H'00
register 5		When PCR57 to PCR50 = H'FF, P57–P50 I/O pins are output pins.		
PUCR5	PUCR55	0: P55 pull-up MOSFET is on.	H'FFD1	1
		1: P55 pull-up MOSFET is off.		
Port	PUCR54	0: P54 pull-up MOSFET is on.	_	1
pull-up control		1: P54 pull-up MOSFET is off.		
register 5	PUCR53	0: P53 pull-up MOSFET is on.	_	1
		1: P53 pull-up MOSFET is off.		
	PUCR52	0: P52 pull-up MOSFET is on.	_	1
		1: P52 pull-up MOSFET is off.	_	
	PUCR51	0: P51 pull-up MOSFET is on.	_	1
		1: P51 pull-up MOSFET is off.	_	
	PUCR50	0: P50 pull-up MOSFET is on.	_	1
		1: P50 pull-up MOSFET is off.		
PCR7		When PCR77 to PCR70 = H'00, P77–P70 I/O pins function as input pins.	H'FFEA	H'FF
Port control register 7		When PCR77 to PCR70 = H'FF, P77–P70 I/O pins function as output pins.		
PCR8		When PCR87 to PCR80 = H'00, P87–P80 I/O pins function as input pins.	H'FFEB	H'FF
Port control register 8		When PCR87 to PCR80 = H'FF, P87–P80 I/O pins function as output pins.		


5. Description of RAM Usage

No RAM is used by this sample task.

Feb. 2003 ADE-502-130

16-bit / H8/300H Tiny

6. Flowchart

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 10 of 14 http://www.renesas.com/

7. Program Listing

INIT. SRC (program listing)

```
.EXPORT _INIT
.IMPORT _main
;
.SECTION P,CODE
_INIT:

MOV.W #H'FF80,R7

LDC.B #B'10000000,CCR

JMP @_main
;
.END
```

#include <C:\ch38\include\machine.h>

Feb. 2003 ADE-502-130 16-bit / H8/300H Tiny

Page 11 of 14 http://www.renesas.com/

```
/* Symbol Defnition
* /
#define PMR1
                                            /* Port Mode Register 1
               *(volatile unsigned char *)0xFFE0
#define PCR1
               *(volatile unsigned char *)0xFFE4
                                            /* Port Control Register 1
                                                                      * /
#define PUCR1
               *(volatile unsigned char *)0xFFD0
                                           /* Port Pull-Up Control Register 1 */
               *(volatile unsigned char *)0xFFE5
                                            /* Port Control Register 2
                                                                      * /
#define PCR2
#define PMR5
               *(volatile unsigned char *)0xFFE1
                                            /* Port Mode Register 5
                                                                      * /
#define PCR5
              *(volatile unsigned char *)0xFFE8
                                            /* Port Control Register 5
                                                                      * /
#define PUCR5
               *(volatile unsigned char *)0xFFD1
                                            /* Port Pull-Up Control Register 5 */
               *(volatile unsigned char *)0xFFEA
                                                                      * /
#define PCR7
                                            /* Port Control Register 7
#define
      PCR8
               *(volatile unsigned char *)0xFFE1
                                            /* Port Control Register 8
                                                                      * /
/* Function Definition
extern void INIT( void );
                                            /* SP Set
                                                                       */
void main (void);
/* Vector Address
#pragma section V1
                                            /* VECTOR SETTING SECTION
void (*const VEC_TBL1[])(void) = {
/* 0x00 - 0x0f */
   INIT
                                            /* 00 Reset
};
#pragma section
                                            /* P
```

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 12 of 14 http://www.renesas.com/

```
/* Main Program
void main ( void )
  PMR1 = 0x00;
                                           /* Port Mode Register 1
                                           /* Port Control Register 1 */
  PCR1 = 0x00;
  PUCR1 = 0xFF;
                                           /* Port Pull-Up Control Register 1 */
  PCR2 = 0xFF;
                                           /* Port Control Register 2 */
  PMR5 = 0x00;
                                           /* Port Mode Register 5 */
  PCR5 = 0x00;
                                           /* Port Control Register 5
  PCR7 = 0xFF;
                                           /* Port Control Register 7
  PCR8 = 0xFF;
                                           /* Port Control Register 8 */
  while(1){
  }
```

Link-address specification:

Feb. 2003

Section Name	Address	
CV1	H'0000	
Р	H'0100	
В	H'FB80	

ADE-502-130 16-bit / H8/300H Tiny

Page 13 of 14 http://www.renesas.com/

Feb. 2003

ADE-502-130 16-bit / H8/300H Tiny

Page 14 of 14 http://www.renesas.com/