To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

>
e
j=2
=
Q
=
o
)
Z
)
—t
D

H8S/2218
USB Function Module
USB Serial Conversion

Application Note

Renesas 16-Bit Single-Chip
Microcomputer
H8S Family / H8S/2200 Series

Renesas Electronics Rev.1.00 2003.10

www.renesas.com

Rev. 1.00, 10/03, page ii of vi
RENESAS

Cautions

Keep safety first in your circuit designs!

1.

Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1.

These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for
the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss
resulting from the information contained herein.

Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product
distributor when considering the use of a product contained herein for any specific purposes,
such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or
undersea repeater use.

The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 1.00, 10/03, page iii of vi
:(ENESAS

Preface

This application note describes the USB serial conversion firmware which uses the USB Function
Module that incorporates the H8S/2218. They are provided to be used as a reference when the user
creates USB Function Module firmware.

This application note and the described software are application examples of the USB Function
Module, and their contents and operation are not guaranteed.

In addition to this application note, the manuals listed below are also available for reference when
developing applications.

[Related manuals]

Universal Serial Bus Specification Revision 1.1

H8S/2218 Group, H8S5/2212 Group Hardware Manual

H8S/2218 Solution Engine CPU Board (MS2218CP01) Instruction Manual
HS8S Family E10A Emulator User’s Manual

[Caution]

[Trademark]

The sample programs described in these application notes do not include firmware
related to interrupt transfer, which is a USB transport type. When using this transfer
type (see section 14.1 in the H8S/2218 Group, H8S/2212 Group Hardware Manual),
the user needs to create the program for it.

Also, the hardware specifications of the H8S/2218 and H8S/2218 CPU board, which
will be necessary when developing the system described above, are described in
these application notes, but more detailed information is available in the H8S/2218
Group, H8S/2212 Group Hardware Manual and the H8S/2218 CPU Board
Instruction Manual.

Microsoft Windows® 95, Microsoft Windows® 98, Microsoft Windows® Me,
Microsoft Windows® 2000, and Microsoft Windows® XP are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Rev. 1.00, 10/03, page iv of vi

RENESAS

Contents

SECION 1 OVEIVIEWiiiiiiiiiiiieiieceeee ettt 1
Lol OVEIVIBW .ottt ettt ettt st st et a et sae e 1
1.2 Purpose of this SYSIEIMcceeiiiiiiiiiiriiiieieeieeee ettt 3
Section 2 Development Environmentccoeeveeeeieeniiieeniieeeniee e eeee e 7
2.1 Hardware ENVIFONMENTcc.coiiiiriiiiiiiiiiiiine ettt e 8
2.2 Software ENVIIONIMENTcc.oouiiiiiiiiiiieieieiinine ettt st 10
2.2.1 Sample Program.........coccooeeriiiiiiiiiinienieieeieeeee sttt 10
2.2.2 Compiling and LinKingcocceoviiiiiniiiiiiieiieieee e e 10
2.2.3 USB Serial Conversion DIIVETcc.eovieiiiiiniiinieinieenieeeiee et 11
2.3 Loading and Executing the Program...........c...c.cccociiiiniiniiiiniiiciccececeeees 12
2.3.1 Loading and Executing the Program............cccccoeerviiiiiiiiininiinenninenicneeneee 12
2.4 Method of Communication between PCs...........ccccceviiiiiiiiiiniinininicicceeeceeeee 13
2.4.1 Setting Up the USB HOSt PCcc.coiiiiiiiiiiiiiiiieccceteeceeeee e 13
2.4.2 Setting Up the Serially-Connected PC...........cccoconiiiiiiiiiiniiiiceccceeeee, 20
2.4.3 Communication betWeen PCScoociiiiiiiiiiniiiiiiceceeeeec e 20
Section 3 Overview of Sample Program...............ccooveiviiiiniiiininiieiieeee, 21
3.1 State Transition DIagrammc..cooeereiriiiiiiiinienceieetteeeetest ettt st st een 22
3.2 Overview of Communication between PCsccccccoecieiiiniiinininiiiiicieeseeceeee 24
3.3 FALE SHIUCTUTE.....eeiiieiiiie ettt ettt ettt e st e sat e e sabeesbt e e sabeenbeeesaneenane 25
3.4 Purposes Of FUNCHIONSc..cooiiiiiiiiiiiiiiiieiiecccc e e 26
Section 4 Sample Program Operation...........ccceecueeeriueeeniiieenieennieeseeesieeeeieenn 31
4.1 M LOOD. ettt ettt sttt et st st 31
4.2 Types Of INTEITUPLS c...eouveriiiiiiiieieite ettt sttt et sttt e et sbtesbeesbeenaee e 33
4.2.1 Branching to Transfer FUNCtionc...coccooiiiiiiiiiiiiiniieececcee e 36
4.3 Interrupt by Detection of USB Operating Clock Stabilization............c.ccccceeviriiniinienncnns 39
4.4 Interrupt by Cable Connection (BRST, VBUS)coiiiiiiiiiiiceeececeee 40
4.5 Control TranSTErsc..coiiiiiiiiiiieii et 41
451 SELUP STAZE .eonveeneeiniieiieiieeteett ettt ettt ettt ettt st st st ae ettt eae 42
452 DaAta STAZE . .eoouieiiiiieieeeeeet ettt st sttt ettt st 44
453 SHATUS STAZE ..c.evieeiniieiieieeeeee ettt st 46
4.6 BUIK TranSTers.....coocueiiiiieiieieeeee ettt st ettt 48
4.6.1 BUlK-Out TTansferscceecuieriieriieiieeiie ettt ettt st s 49
4.6.2 Bulk-in Transferscococevieiiieiiiniiniicieeecteese e e 50
4.7 Serial TIaNSTI......cciiuieiiiieieicee et 51
4.7.1 Serial-Out TTanSTerccoceviiiiiiiiiiiiiceeceee e e 51
4.77.2 Serial-In TranSfer........covieiiiiiiiiiiee e 53

4.8 Vendor COMMANG.........ceeeiiiiiiiiiiiieieee e e e eeeete et eeeeeetereeeeeeeeeeaaareeseeseeesarrereeeeeas 55

4.8.1 SetLiNE@COAING ...cc.eeruiiriiiiiiiieiiei ettt e 55
4.8.2 GetLINECOMING......eeoiiriiiiiiiieit ettt et 56
4.8.3 SetControlLINESTALEeeviiiiieeiiiieeee ettt e eeectee e e e eeeetre e e e e e e eeeerarreeeeeeeennns 57
4.8.4 SeNABIEAK.....cccuviiiieiiii it et et e e e e traeeeaaes 57
Section 5 Analyzer Data........ccoocveiiiiiiiiiiiiieeecee e 59
5.1 Control Transfer when Device is Connectedoeeeeeeeiiuiiieeeeiieiiiiieeeeeeeeeccireeeeeeeeeeaens 59
5.2 Control Transfer when Vendor Command is Transmitted..............cccovveeeeeeeieiiinneeeeeeeennnn. 65

Rev. 1.00, 10/03, page vi of vi
RENESAS

Section 1 Overview

11 Overview

These application notes describe how to use the USB Function Module that is built into the
HS8S/2218, and examples of firmware programs.

The features of the USB Function Module contained in the H8S/2218 are listed below.

e USB standard version 1.1 compliant
e Bus-powered mode or self-powered mode is selectable via the USB specific pin (UBPM)
e Full speed mode (12 Mbps) supported

e On-chip PLL circuit to generate the USB operating clock (24 MHz x 2 = 48 MHz or
16 MHz x 3 =48 MHz)

e On-chip bus transceiver
e Standard commands are processed automatically by hardware

Only Set_Descriptor, Get_Descriptor, Class/VendorCommand, and SynchFrame commands
should be processed by software

e Current Configuration value can be checked by Set_Configuration interrupt
e Three transfer modes supported (Control, Bulk, Interrupt)
e 16 kinds of interrupts

— Suspend/resume interrupt source can be assigned for IRQ6

— Each interrupt source except the suspend/resume interrupt source can be assigned for
EXIRQO or EXIRQ1 via registers

e DMA transfer interface
DMA transfer is enabled for the Bulk transfer data of EP1 and EP2

Endpoint Configurations

Max. Packet FIFO Buffer DMA

Endpoint Name Name Transfer Type Size Capacity Transfer
Endpoint 0 EPOs Setup 8 bytes 8 bytes —

EPOi Control In 64 bytes 64 bytes —

EPOo Control Out 64 bytes 64 bytes —
Endpoint 1 EP1 Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
Endpoint 2 EP2 Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
Endpoint 3 EP3 Interrupt (in) 64 bytes 64 bytes (variable) —

Figure 1.1 shows an example of a system configuration.

Rev. 1.00, 10/03, page 1 of 70
:{ENESAS

USB cable

USB host PC

Serially-connected PC *Windows® 2000

*USB serial conversion driver
(manufactured by Hitachi ULSI Systems
Co., Ltd.)

H8S/2218 solution engine

Figurel.l System Configuration Example

This system is configured of the H8S/2218 CPU board manufactured by Hitachi ULSI Systems
Co., Ltd. (hereafter referred to as the MS2218CP) on which the H8S/2218 is mounted, a serially-
connected PC, and a USB host PC (Windows® 2000) containing the USB serial conversion
driver*' (manufactured by Hitachi ULSI Systems Co., Ltd.).

In this system, the MS2218CP can receive the USB packet data transmitted from the USB host PC
and transmit it to the serially-connected PC after converting it into serial data. Also, its reverse is
possible, that is, the MS2218CP can receive serial data from the serially-connected PC and
transmit it to the USB host PC after converting it into USB packet data.

This system offers the following features.

1. The sample program can be used to evaluate the USB module of the H8S/2218 quickly.
2. The sample program supports USB control transfer and bulk transfer.

3. An E10A (card emulator) can be used, enabling efficient debugging.
4

. Additional programs can be created to support interrupt transfer.*’

Notes: 1. For inquiries on this system (sample program and USB serial conversion driver),
contact your Renesas Technology sales agency.
The USB serial conversion driver operates only with a vendor ID of 045B
manufactured by Renesas Technology Corp. To use the USB serial conversion driver
in your product, a contract concerning the USB serial conversion driver must be
separately made with Hitachi ULSI Systems Co., Ltd.

2. Interrupt transfer programs are not provided, and will need to be created by the user.

Rev. 1.00, 10/03, page 2 of 70
:{ENESAS

12 Purpose of this System

The price reduction of PCs has been accelerated in recent days, and at the same time, the legacy-
free PCs (equipped only with new standard ports compliant to Plug & Play such as USB
(Universal Serial Bus), but not with old standard ports such as a serial port) have started to arrive
on the market in large numbers. With this market trend, it may become impossible for the existing
serial devices to be connected with PCs and many existing serial devices to be used. In order to
solve this problem, a device which converts the existing serial line into the USB is required.

These application notes aim at providing an example of realizing the USB serial conversion
function to solve this problem.

In this system, the USB does not exist when seen from the existing serial application. This is
realized by providing the serial API when the existing serial devices are replaced by the new USB
devices. This allows the application program to be used without changes.

Figure 1.2 shows the hardware and software configurations when the PC and serial devices are
connected via the existing serial line. Figure 1.3 shows the hardware and software configurations
when the PC and serial devices are connected via the USB serial conversion device.

As shown in figure 1.2 (a), the serial devices are connected to the PC via the serial cable in the
existing system. However, as shown in figure 1.3 (a), the USB serial conversion device is
required between the PC and serial devices when the existing serial devices are connected to the
PC via the USB. The USB serial conversion device has a function to convert USB signals and
serial signals mutually. The PC and USB serial conversion device are connected by the USB
cable, and the USB serial conversion device and serial devices are connected via the serial cable.
This makes it possible for the PC and serial applications to communicate with each other.

Figure 1.2 (b) and 1.3 (b) show the software configuration expressed in hierarchical structure. The
connection indicated by a dotted line shows the image of logical connection.

Rev. 1.00, 10/03, page 3 of 70
:{ENESAS

Serial cable

L]

Serial devices

, measuring device, TA, etc.
PC (a) Hardware configuration
Serial Serial
applicaon [~ CTTTTTTToTTToTTTTTTTOT application
| Serial port driver |‘ """""""""""" I Serial port firmware |
| |

| Hardware [| Hardware |

Serial Serial

(b) Software configuration

Figure 1.2 Example of Connecting PC and Serial Devicesvia Existing Serial Line

USB serial conversion chip (H8S/2218)

LUSB B connector Serjal connector

=]

USB cable Serial cable

L]

USB serial conversion device (MS2218CP) Serial devices
PC (PC, measuring device, TA, etc)
(a) Hardware configuration

Existing sefial | Existing serial
emgtion MCIation
| Virtual serial port driver I ----- | Serial port firmware } .- Serial port
| USB :jri\/er I ----- | USB fir:nware | firmV\;are
I I
| Hardware |_| Hardware | Hardware |—| Hardware
uUsSB USB Serial Serial

(b) Software configuration

Figure 1.3 Example of Connecting PC and Serial Devicesvia USB

In figure 1.2 (b), transmit data from the serial application in the PC is sent to the serial port driver,
which then sends the data to the serial hardware of the PC. The serial hardware sends this data to
the serial hardware of the other end via a serial line. The serial port firmware of the serial device
extracts the data from the hardware that received the data and sends it to the serial application.
Herewith the data can be exchanged between serial applications.

Rev. 1.00, 10/03, page 4 of 70
:{ENESAS

As in figure 1.3 (b), the transmit data from the serial application in the PC is sent to the virtual
serial port driver. This virtual serial port driver has the same application interface as the existing
serial port driver. This allows the USB to not be recognized from the existing serial application,
thus enabling data communication without having to change the existing serial application. The
virtual serial port driver passes the data from the application to the lower USB driver. The USB
driver then passes the data to the USB hardware in the PC. The USB hardware transmits the data
through the USB bus to the USB hardware in the USB serial conversion device. The USB serial
conversion device converts the received USB data into serial data and transmits it to the serial
devices. The communication between the USB serial conversion device and serial devices has the
same configuration as in figure 1.2. This makes it possible for the existing serial applications to
exchange data with each other.

These application notes give an example for realizing the firmware operating on the MS2218CP,
which is equivalent to the firmware in the USB serial conversion device in figure 1.3 (b).

Rev. 1.00, 10/03, page 5 of 70
:{ENESAS

Rev. 1.00, 10/03, page 6 of 70
:{ENESAS

Section 2 Development Environment

This section describes the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

H8S/2218 CPU board (type number: MS2218CP01) manufactured by Hitachi ULSI Systems
Co., Ltd.

E10A Card Emulator manufactured by Renesas Technology Corp.

PC (Windows® 95/Windows® 98/Windows® Me/Windows® 2000/Windows® XP) equipped
with an PCI (or PCMCIA/USB) slot

PC (Windows® 2000/Windows® XP) to serve as the USB host

USB serial conversion driver manufactured by Hitachi ULSI Systems Co., Ltd.
Serially-connected PC

USB cable

Serial cable (cross cable)

Debugging Interface (hereafter called HDI) manufactured by Renesas Technology Corp.

High-performance Embedded Workshop (hereafter called HEW) manufactured by Renesas
Technology Corp.

Rev. 1.00, 10/03, page 7 of 70
RENESAS

2.1 Hardware Environment

Figure 2.1 shows device connections.

USB host PC
Windows® 2000/ Windows® XP

USB cable

AC adapter

Windows® 95/Windows® 98/Windows®
Me/Windows® 2000/Windows® XP

H8S/2218 solution engine

Figure 2.1 Device Connections

Rev. 1.00, 10/03, page 8 of 70
RENESAS

1.

MS2218CP

The DIP switche and jumper settings on the MS2218CP board shown in table 2.1 must be
changed from that at shipment. Before turning on the power, ensure that the switches and
jumpers are set as shown in table 2.1. There is no need to change any other DIP switches and
jumpers.

Table 2.1 Switch and Jumper Settings

At Shipment After Change Function

SW1-1 Off SW1-1 On Selects operation mode 6

SW1-2 Off SW1-2 Off

SW1-3 Off SW1-3 Off

SW1-5 Off SW1-5 On Selects the E10A emulator mode
J-3 Closed J-3 Open Selects the USB self-powered mode
J-9 Closed J-9 Open Selects the big endian mode.

2. USB host PC

A PC with Windows® 2000 installed, and with a USB port, is used as the USB host. A USB
serial conversion driver (manufactured by Hitachi ULSI Systems Co., Ltd.) should be installed
in this PC.

Serially-connected PC
A PC with a serial port is used for transferring serial data.
E10A PC

The E10A should be inserted into a PC card slot and connected to the MS2218CP via an
interface cable. After connection, start the HDI and perform emulation.

Rev. 1.00, 10/03, page 9 of 70
RENESAS

2.2

Software Environment

A sample program, the compiler and linker used, and the USB serial conversion driver are

explained.

2.2.1 Sample Program

Files required for the sample program are all stored in the H8S2218 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 2.2.

| H8S2218 |

CatProType.h CatTypedef.h SetMacro.h SetSystemSwitch.h
SetUsblnfo.h H8S2218.h SysMemMap.h

DoBulk.c DoControl.c DoRequest.c DoSerial.c
StartUp.c UsbMain.c DoReqgestVenderCommand.c sct.src
debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf(folder)
BuildOfHew.bat InkSet1.sub

Figure 2.2 Files Included in H8S2218 Folder

2.2.2 Compiling and Linking
The sample program is compiled and linked using the following software.

High-performance Embedded Workshop Version 1.0 (release 9) (hereafter called HEW)

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling (figure
2.3).

C:¥
¥Hew
¥Tmp

Figure 2.3 Creating a Working Folder

Rev. 1.00, 10/03, page 10 of 70
RENESAS

Next, the folder in which the sample program is stored (H8S2218) should be copied to any
location. In addition to the sample program, this folder contains a batch file named
BuildOfHew.bat. This batch file sets the path, specifies compile options, specifies a log file
indicating the compile and linking results, and performs other operations. When BuildOfHew.bat
is executed, compiling and linking are performed. As a result, a Motorola S-type format file
named debugger. MOT, which is an executable file, is created within the folder. At the same time,
a map file named debugger. MAP and a log file named log.txt are created. The map file indicates
the program size and variable addresses. The compile results (whether there are any errors, etc.)
are recorded in the log file.

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and settings
for environment variables used by the compiler in BuildOfHew.bat, as well as the library
settings in InkSet1.sub, must be changed. Here the compiler path setting should be
changed to the path of ch38.exe, and the setting for the environment variable ch38 used
by the compiler should be set to the folder of machine.h and the setting of ch38 tmp
should specify the working folder for the compiler. The library setting should specify the

path of c¢8s26a.lib.
/I H8S/221 SI \
Batch file Execution result
BuildOfHew.bat —> debugger.ABS
Execution debugger.MOT
debugger.MAP
log.txt

Figure 2.4 Compile Results

2.2.3 USB Serial Conversion Driver

Files required for the USB serial conversion driver are all stored in the UST-03 folder.

| UST-03 |

C UST-03.inf UST-03.sys)

Figure 2.5 Files Included in UST-03 Folder

Rev. 1.00, 10/03, page 11 of 70
RENESAS

2.3 Loading and Executing the Program

Figure 2.6 shows the memory map for the sample program.

MS2218CP

0000 0000

0000 01BF

Vector area

0000 0200

00FF 1CA9

P, C, and D areas*!

Empty area

00FF CO050

00FF C14F
00FF C150

00FF C24F
00FF C250

00FF EC40
00FF EC40

00FF EE2E
00FF EECO

Bulk-out transfer data are

Bulk-in transfer data area

Stack area*?2

R and B areas*!

Empty area

448 bytes

6825 bytes

256 bytes

256 bytes

494 bytes

Notes: 1. The memory map differs according to the compiler version,

compiling conditions, firmware upgrade, etc.
2. The stack does not occupy the whole area.

Figure 2.6 Memory Map

As shown in figure 2.6, this sample program allocates areas P, C, and D to on-chip flash memory,
and areas R and B to the on-chip RAM area. These memory allocations are specified by the

InkSet1.sub file in the H8S2218 folder.

2.3.1 Loading and Executing the Program

In order to load the sample program, the following procedure is used.

e Insert the E10A into the EI0A PC in which the HDI has been installed.
e Connect the E10A to the MS2218CP via an E10A cable.
e Connect the PC for serial connection to the MS2218CP via a serial cable.

e Turn on the power to the E10A PC, serially-connected PC, and USB host PC for start up.

e Turn on the power to the MS2218CP.

e Execute debugger.hds in the H8§S2218 folder.
e Start the HDI for E10A H8S2218F (for details, refer to the H8§S/2218 E10A Emulator User's

Manual).

Rev. 1.00, 10/03, page 12 of 70

RENESAS

e Select LoadProgram from the File menu on the menu bar to load debugger.ABS.
Through the above procedure, the sample program can be loaded into the MS2218CP.

Select Register Window from the View menu to open the Registers window. Double-click the
value area for the target register (PC) in the window to open a dialog box, which allows the user to
modify the register value. Modify the PC value to H'0000 0200.

After making the above settings, select Go from the Run menu to execute the program.

2.4 Method of Communication between PCs

24.1 Setting Up the USB Host PC

Found New Hardware Wizard

¢ Welcome to the Found New
. Hardware Wizard
This wizard helps you install a device diver for a

hardware device.

To continue, click Mext.

< Back Cancel |

e Following the procedures in section 2.3.1, execute the sample program. When the sample
program is activated properly, the 8-bit LED on the MS2218CP displays O0xAA.

e Insert a series B connector of the USB cable to the MS2218CP, and connect a series A
connector on the opposite side to the USB host PC.

e The dialog box is displayed on the screen as below, and click “Next”.

Rev. 1.00, 10/03, page 13 of 70
RENESAS

e Select “Search for a suitable driver for my devide (recommended)”, and then click “Next”.

Found New Hardware Wizard

Install Hardware Device Drivers
2 device driver iz a software program that enables a hardware device ta work, with
ah operating spstem.

This wizard will complete the installation for this device:

@ UUSE Device

A device driver iz a zoftware program that makes a hardware device work. ‘Windows
needs driver files far pour new device. Ta locate driver files and complete the
installation click Mext.

‘what do you want the wizard to do?

(e Bearch for a suitable diver for my device [recommendedk

" Display alist of the known drivers far this device go that | can chaose a specific
driver

< Back I Nest » I Cancel

e Select “Floppy disk drives”, and then click “Next”.

Found New Hardware Wizard

Locate Driver Files
Wwhere do you want Windows to search for driver files?

Search for driver files for the following hardware device:

@ LUSE Device

The wizard zearches for suitable drivers in itz driver databasze on your computer and in
any of the following optional search locations that you specify.

To start the gearch, click Mest. If you are searching on a floppy disk or CD-ROM drive,
inzert the floppy dizk or CD before clicking Mext.

Optional gearch locations:

[CD-ROM drives
[~ Specify a lacation
I | Mizrossfti/indows adate

< Back I Mest » I Cancel

Rev. 1.00, 10/03, page 14 of 70
RENESAS

e Make sure “UST-03.inf” is to be installed, and then click “Next”.

Found New Hardware Wizard

Driver Files Search Results
The wizard haz finished searching for driver files for your hardware device.

The wizard found a driver for the following device:

@ 1USE Device

Windows found a driver for this device. Ta install the driver Windows found, click Mext.

ﬂ ahust-O3hust 03.inf

< Back Cancel |

e C(Click “Finish”.

Found New Hardware Wizard

e Completing the Found New
. Hardware Wizard
_\> USE Serial Port Driver

Windows has finished ingtaling the software for this device,

To close this wizard, click Finish,

o e

The installment of the driver has thus been completed and the MS2218CP is recognized as the
serial COM port by the USB host PC.

Next, a hyper terminal, a communication software which is a standard attachment of WindowsOS,
is initiated.

e Press the Windows key and select “Start — Program — Accessory (or under Communicaton)”
to activate the hyper terminal.

Rev. 1.00, 10/03, page 15 of 70
RENESAS

e Input the file name (It can be random. USB-Serial has been input in the following screen.) and
click “OK”.

Connection Description ﬂ ﬂ

Enter a name and choosze an icon for the connection:

Marme:
USE-Serial

lcon;

Carcel |

e Select “COMS3” for connection and click “OK”.

comect o G|

4 USB-Serial

Enter detailz for the phone number that you want ta dial:

Countiy/region: IUnited States of America (1] j

Area code; ID

Phone number: I

Coprect usig. | EEERE - |
ak I Cancel |

Rev. 1.00, 10/03, page 16 of 70
RENESAS

e The serial port is set within the range shown in table 2.2. The figure below is an example with
the default values of this program entered. After the setting, click “OK”.

comect o G|

& USE-Serial

Enter detailz for the phone number that you want ta dial:

Countiy/region: IUnited States of America (1]

Area code;

—

]

Phone number: I

Coprect sing [EEZETE - |

o]

Cancel |

The hyper terminal has thus been initiated. If a value other than those shown in table 2.2 is
entered, the 8-bit LED of the MS2218CP displays 0x30, and the default values of this program
shown in table 2.2 are entered. If a value within the range is entered, the 8-bit LED keeps

displaying OxAA.

Table 2.2 Range of Possible Serial Port Settings

Item Default Setting of This Program Possible Settings

Bit/s [bps] 38400 9600, 19200, 38400*

Data bits 8 8or7

Parity None None, odd number, even number
Stop bit 1 1or2

Flow control Xon/Xoff Only Xon/Xoff

RENESAS

Rev. 1.00, 10/03, page 17 of 70

Note: * Since this sample program operates the CPU at 16/24 MHz, the error with a setting of
57600 bps or 115200 bps is too large, and may cause erroneous operation. Though a
setting of 57600 bps or 115200 bps is possible in this sample program, the operation for
such kind of a setting is not guaranteed.

COM3 Properties

Rev. 1.00, 10/03, page 18 of 70
RENESAS

USB-Serial Properties

Connect To ~ Settings I

— Function, armow, and chil keps act as
0 Windows keys

— Backspace key sends
& ChlsH ¢ Del ¢ Chl+H, Space, Ctil+H

Emulation:

Auto detect j Temina Setup.. |

Telnet terminal ID:]

Backscrall buffer lines: |EDD ﬁ

[Play sound when connecting or disconnecting

Input Tranzlation... | ASCH Setup... |

After the hyper terminal has been initiated, and before the communication begins, select “File
Menu — Property — Setting” and click “ASCII Setup...”.

QK I Cancel |

Check the box for “Send line ends with line feeds” in ASCII Sending and then click “OK”.

— A5CI Sending

Iv t Send line ends with line feeds

" Eche twped characters lacally

Line delay: IEI millizeconds.

Character delay: IEI millizeconds.

— ASCI Receiving
[Append line feeds o incoming line ends
" Force incoming data ta 7-bit ASCI

[‘wrap lines that exceed terminal width

i]:4 I Cancel

RENESAS

Rev. 1.00, 10/03, page 19 of 70

24.2 Setting Up the Serially-Connected PC

The hyper terminal is initiated similarly as with the USB host PC. Make sure to enter the same
values as the USB host PC to set the serial communication (bit/s, data bits, parity, stop bit, and
flow control).

243 Communication between PCs

Once the hyper terminals for both the USB host PC and serially-connected PC are initiated, the
characters input from the keyboard, text files, and binary files can be exchanged between the two
PCs.

The characters input from the keyboard of the USB host PC side are transferred to the serially-
connected PC. Also, the characters input from the keyboard of the serially-connected PC side are
transferred to the USB host PC.

The text files can be transmitted to the other by selecting “Transfer — Transfer of text file”.

After selecting “Transfer — Reception of file - ZMODEM” in the receiving PC to make the
receiving PC wait for file reception, the text files and binary files can be transmitted to the
receiving PC by selecting “Transfer — Transmission of file - ZMODEM?” in the transmitting PC.

Note: These application notes use a hyper terminal as a serial application to run on the PC.
When using other serial applications, whether operation is correct must be confirmed
separately.

This sample program performs flow control (Xon/Xoff). Therefore, a protocol supporting
flow control (Xon/Xoff), e.g. ZMODEM, must be selected for file transmission.

Rev. 1.00, 10/03, page 20 of 70
RENESAS

Section 3 Overview of Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the MS2218CP, and initiates USB transfers by means of interrupts from the USB
function module or branches from the main loop. In addition, it initiates serial transfer by means
of interrupts from the SCIO or branches from the main loop. Of the interrupts from the on-chip
modules in the H8S/2218, there are three interrupts related to the USB function module: EXIRQO,
EXIRQ1, and IRQ6. However, this sample program uses only the EXIRQO. Even though there are
four interrupts related to the SCIO0 module: ERIO (reception error), RXIO (receive data full), TXIO
(transmit data empty), and TEIO (transmit end), this sample program uses two interrupts: ERIO and
RXIO.

Features of this sample program are as follows.

e Control transfer can be performed.

e Bulk-out transfer can be used to receive data from the host controller.
e Bulk-in transfer can be used to send data to the host controller.

e Serial data can be received from the serially-connected PC.

e Serial data can be sent to the serially-connected PC.

e Serial transfer can be used to send data received by bulk-out transfer.

e Bulk-in transfer can be used to send data received serially.

Rev. 1.00, 10/03, page 21 of 70
RENESAS

3.1 State Transition Diagram

Figure 3.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 3.1, there are transitions between four states.

Reset State

Upon power-on reset and manual reset, this state is entered. In this reset state, the H8S/2218
mainly performs initial settings.

Stationary State

When initial settings are completed, a stationary state is entered in the main loop. In this
stationary state, the data from the USB host PC and the serially-connected PC are monitored
all the time, and if a data is detected, it is output to each of the other end PC. In other words,
input data to the MS2218CP is monitored constantly, and if a data is detected, it is output to
each of the other end PC.

USB Communication State

In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according the
type of interrupt. The interrupt sources used in this sample program are indicated by the
interrupt flag registers 0 to 3 (UIFRO to UIFR3), and there are five interrupt sources in all.
When an interrupt source occurs, the corresponding bits in UIFRO to UIFR3 are set to 1.
Serial Communication State

In the stationary state, when an interrupt from the SCI0 module occurs, this state is entered.
The interrupt sources used in this sample program are indicated by the serial status register
(SSRO), and there are two interrupt sources in all: ERIO and RXIO.

Rev. 1.00, 10/03, page 22 of 70

RENESAS

Initial setting
completed

StartUp.c
DoSerial.c
DoBulk.c

(EXIRQO)

USBMain.c
DoControl.c
DoBulk.c

S

*~+ USB interrupt priority: 6

N

Reset state

Stationary state

Serial output state
Bulk-in transfer
state

communication state

Serial output state

USB

Serial communication
completed

Interrupt generated USB communication;
completed

Interrupt generated (RXIO, ERIO)

DoSerial.c

Serial
‘communication staté

Serial output
state

L Ry e a—

Figure3.1 State Transition Diagram

In this sample program, the interrupt priority of the USB is set to 6 and that of the SCIO to 7. This
setting does not accept the USB interrupt during the SCIO interrupt processing and prevents the

serial receive processing from being delayed by the USB interrupt.

RENESAS

Rev. 1.00, 10/03, page 23 of 70

3.2 Overview of Communication between PCs

Figure 3.2 shows the overview of the communication between PCs. In this sample program, there
are roughly two kinds of communication modes; USB communication and serial communication.
Considering the data transmission and reception, the USB communication can be categorized by
bulk-in and bulk-out transfer, and the serial communication can be categorized by serial input and
serial output. Therefore there are a total of four communication modes in this sample program.

The data flow in this sample program can be categorized by two directions; from bulk-out transfer
to serial output, and from serial input to bulk-in transfer, each of which is given 256-byte buffer.
The input to the buffer of each direction handles interrupt operation and the output from the buffer
controls the output on branching from the main loop. In the main loop, the RAM area for bulk-
in/bulk-out transfers, which is a buffer for both directions, is monitored consistantly and, if any
data exist, it is output from the buffer.

USB host PC MS2218CP Serially-connected PC

RAM area for bulk-out
transfer 256 bytes

Serial

Serial output

RAM area for bulk-in Serial

transfer 256 bytes Serial input

Figure 3.2 Communication between PCs

Rev. 1.00, 10/03, page 24 of 70
RENESAS

3.3 File Structure

This sample program consists of seven source files and seven header files. The overall file
structure is shown in table 3.1. Each function is arranged in one file by transfer method or function

type.

Table3.1 File Structure

File Name Principle Role
StartUp.c Vectc_;r tat_)le settings, microcomputer initial setttings, and
clearing ring buffer
. Executing serial transmission/reception., and controlling SCIO
DoSerial.c
module
UsbMain.c Determination of interrupt sources, and sending and receiving

packets

DoRequest.c

Processing setup command issued by the host

DoControl.c

Executing control transfer

DoBulk.c

Executing bulk transfer

DoRequestVenderCommand.c

Processing vendor command

SysMemMap.h

Defining MS2218CP memory map addresses

SetUsblinfo.h

Defining USB structure

SetMacro.h Defining macros
SetSystemSwitch.h System operation settings
H8S2218.h Defining H8S/2218 registers
CatTypedef.h Defining structures

CatProType.h

Prototype declarations

Rev. 1.00, 10/03, page 25 of 70
RENESAS

34 Pur poses of Functions

Table 3.2 to 3.8 shows functions contained in each file and their purposes.

Table3.2 UsbMain.c

File in Which
Stored Function Name Purpose
BranchOfint Determlnatlop of interrupt sources, and call function
according to interrupt
GetPacket Write data transferred from the host controller to RAM
Write data for transfer to the host controller to the USB
PutPacket
module
UsbMain.c SetControlOutContents Overwrite data sent from the host
BE2ByteRead Convert 2-byte data to big endian
LE2ByteRead Convert 2-byte data to little endian
ActBusReset Clear buffer, flag, and FIFO on receiving bus reset
SetUsbModule Initial setting of USB module
USBclear Clear ring buffer and flag

In UsbMain.c, interrupt sources are determined by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are sent and received between the host

controller and function modules.

Table3.3 StartUp.c

File in Which
Stored Function Name Purpose
SetPowerOnSection BS_C settln_gs, module and memory initialization, and
shift to main loop
INITSCT Copies variables that have initial settings to the RAM
work area
InitMemory Clears RAM area used in bulk communicatuion
StartUp.c InitSystem Pull-up control of the USB bus
Error Shifts CPU to sleep mode when error occurs
Scilnit SCIO initialization
Set_SMR Initial setting of SMR of SCI0
ActBusVcc Processing when VBUS is received

Rev. 1.00, 10/03, page 26 of 70

RENESAS

When a power-on reset or manual reset is carried out, SetPowerOnSection of the StartUp.c file is
called. At this point, the RAM area used for the H8§S/2218 initial settings, control transfer, and

bulk transfer is cleared.

Table3.4 DoSerial.c

File in Which
Stored Function Name Purpose
. Data is read from the read pointer and passed to
ActSerialOut ExSerialOut by 1 byte as parameter
) . Write serially-input data to the area for bulk-in

DoSerial.c ActSerialln transfers
WriteBulkinArea Write data to the area for bulk-in transfers
ExSerialOut 1-byte data is serially output from SCIO

In DoSerial.c, serial transmission and reception are executed as well as SCI0 module control.

Table3.5 DoRequest.c

File in Which
Stored Function Name

Purpose

DoRequest.c DecStandardCommands

Decode command issued by host controller, and
process those which are standard commands

During control transfer, commands sent from the host controller are decoded, and commands are
processed. In this sample program, a vendor ID of 045B (vendor: Renesas Technology Corp.) is
used. When the customer develops a product, the customer should obtain a vendor ID at the USB

Implementers’ Forum.

Table3.6 DoControl.c

File in Which
Stored Function Name Purpose
ActControl Carries out the setup stage of control transfer
Carries out the data stage and status stage of control
ActControlin IN transfer (transfer in which the data stage is in the
IN direction)
DoControl.c Carries out the data stage and status stage of control

ActControlOut

OUT transfer (transfer in which the data stage is in
the OUT direction)

ActControlinOut

Sorts the data stage and status stage of control
transfers and direct them to ActControlln and
ActControlOut.

Rev. 1.00, 10/03, page 27 of 70

RENESAS

When control transfer interrupt SETUP TS is generated, ActControl obtains the command, and
decoding is carried out by DecStandardCommands to determine the transfer direction. Next, when
control transfer interrupt EPOo TS, EPOi TR, or EPOi TS is generated, ActControllnOut calls either
ActControlIn or ActControlOut depending on the transfer direction, and the data stage and status
stage are carried out by the called function.

Table3.7 DoBulk.c

File in Which
Stored Function Name Purpose

ActBulkOut Controls bulk-out-transfer
DoBulk.c

ActBulkin Controls bulk-in transfer

These functions carry out processing involving bulk transfer as well as sending and receiving the
data, and controlling the flow.

Table 3.8 DoRequestVender Command.c

File in Which

Stored Function Name Purpose

DoRequestVender DecVenderCommands Responds to vendor commands
Command.c

These functions carry out processing according to the vendor commands. In this sample program,
processing is executed for the four vendor commands supported by the USB serial conversion
driver manufactured by Hitachi ULSI Systems Co., Ltd. For details, refer to section 4.8, Vendor
Command.

Figure 3.3 shows the interrelations between the functions explained in table 3.2 to 3.8. The upper-
side functions call the lower-side functions. Also, multiple functions may call the same function.
In the stationary state, SetPowerOnSection calls other functions, and in the case of a transition to
the USB communication state which occurs on an interrupt, BranchOfInt calls other functions. In
the SCIO interrupt, ActSerialln is called. Figure 3.3 shows the hierarchical relation of functions;
there is no order for function calling. For information on the order in which functions are called,
refer to the flowcharts in section 4, Sample Program Operation.

Rev. 1.00, 10/03, page 28 of 70
RENESAS

SetPowerOnSection

ActSerialOut ActBulkin InitSystem InitMemory Sctlnit
| | |
ExSerialOut PutPacket SetUsbModule INITSCT Set_SMR
EXIRQO interrupt input ERIO or RIXO0 interrupt input
BranchOfInt ActSerialln

ActBulkinArea

ActControl ActBulkOut ActControllnOut
DecStandardCommands ActControlOut ActControlln
LE2ByteRead DecVenderCommands GetPacket PutPacket

Figure3.3 Interrelationship between Functions

Rev. 1.00, 10/03, page 29 of 70
RENESAS

Rev. 1.00, 10/03, page 30 of 70
RENESAS

Section 4 Sample Program Operation

In this section, the operation of the sample program is explained, relating it to the operation of the
USB function module.

4.1 Main L oop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of
internal peripheral modules are initialized. Next, the function SetPowerOnSection in StartUp.c is
called, and the CPU is initialized. Figure 4.1 is a flow chart for the SetPowerOnSection.

Rev. 1.00, 10/03, page 31 of 70
:{ENESAS

N

Initialize microcomputer

A4

Initialize SCI0

A4

RAM cleared

A4

Initialize variables

A

Select USB clock (tripled
16 MHz/48-MHz input)

»

Y

Data
detected in RAM area
for bulk-in transfer

Output to USB host PC
(bulk-in transfer)

detected in RAM area
for bulk-out transfer?

Output to PC connected
with serial interface
(serial transmission)

StartUp.c <SetPowerOnSection>

After initialization, this program is entered in the main
loop. In the main loop, whether or not data to be
output is in the RAM area is monitored constantly.

If any data is detected, the data is output to the PC
by bulk-in or serial-out transfer.

A clock generated by tripling 16-MHz clock is
selected as a USB operating clock.

An SCIO0 interrupt notifies the data reception and the
data received with the SCI0 module is stored in the
RAM area for bulk-in transfer.

If any data detected in this area, it is transferred to
the USB-host PC using bulk-in pipe.

An USB interrupt notifies the data reception and the
data received using bulk-out transfer for the USB
module is stored in the RAM area for bulk-out
transfer.

If any data is detected in this area, it is transmitted
to the PC connected with serial interface.

Rev. 1.00, 10/03, page 32 of 70

Figure4.1 Main Loop

RENESAS

4.2 Typesof Interrupts

As explained in section 3.1, the interrupts used in this sample program are indicated by the USB
interrupt flag registers (UIFRO to UIFR3) and serial status register (SSRO0); there are five types of
USB interrupts and two type of serial interrupts.

When a USB interrupt occurs, the corresponding bit in the interrupt flag register is set to 1 and an
EXIRQO interrupt request is sent to the CPU. In the sample program, when the interrupt occurs,
the CPU reads the interrupt flag register to perform the corresponding USB communication.
Figure 4.2 shows correspondence between the interrupt flag registers and USB communications.

Bulk-in transfer is supported in this sample program. It, however, is enabled not by an interrupt
operation, but by branching from the main routine. Therefore, bulk-in interrupt should be disabled
and monitoring the EP1 EMPTY flag activates bulk-in transfer. The EP1 TR bit is not be used.

Rev. 1.00, 10/03, page 33 of 70
:{ENESAS

USB interrupt flag register 0 (UIFR0)

Bit: 7 6 5 4 3 2 1 0
)] er3 | EP3 | EP0o | EPOI | EPOi |SETUP
Bit name: | BRSI TR | 15| 1| TR| TS| T8

Cable connection Not used Control transfer
(bus reset)
USB interrupt flag register 1 (UIFR1)
Bit: 7 6 5 4 S 2 1 0
. EP1 ALL| EP2 EP1 EP1
Bit name: EMPTY |READY| TR |EMPTY

aan

Notused Bulk-outtransfer Notused Bulk-in transfer

USB interrupt flag register 3 (UIFR3)

Bit: 7 6 5 4 3 2 1 0
i - [.SK48 | soF | sETC SPRSs | SPRsi |vBUSS | VBUSI
Bit name: |geapy
USB clock stabilization Not used Not used Cable connection (VBUS)

detection interrupt

Note: This sample program does not support interrupt and isochronous transfers.

Figure4.2 Typesof USB Interrupt Flags

When a serial interrupt occurs, the corresponding bit in the serial status register is set to 1 and an
interrupt request is sent to the CPU. In this sample program, the transmit data empty and receive
data full, that is, serial transmission and serial reception functions are supported. However, since
the serial transmission is executed not by an interrupt operation, but by branching from the main

loop, it is used only as a flag and the interrupt function is not used.

Rev. 1.00, 10/03, page 34 of 70
:{ENESAS

Serial status register (SSR0)

Bit: 7 6 5 4 3 2 1 0

Bit name: | TORE | RDRF | ORER | FER | PER | TEND | MPB | MPBT

Transmit FIFO data empty Receive data FIFO full Receive error
(overrun, framing, parity)

Figure4.3 Typesof Serial Interrupt Flags

Rev. 1.00, 10/03, page 35 of 70
:{ENESAS

421 Branching to Transfer Function

In this sample program, the transfer type is determined by method of calling each transfer
function. The calling methods are a branch from the main loop and an interrupt from the USB
function or SCIO module. Table 4.1 shows correspondence between transfer types and methods of
calling each transfer function.

When branching from the main loop, the function is directly called. This method corresponds to
serial-out transfer (ActSerialOut) and bulk-in transfer (ActBulkIn). When branching by a USB
interrupt, the branch is carried out by the BranchOfInt in UsbMain.c. This method corresponds to
detection of USB operating clock stabilization (SetUsbModule), cable connection (ActBusReset,
ActBusVcc), control transfer (ActControl) and bulk-out transfer (ActBulkOut). When branching
by an SCIO interrupt, the function is directly called because transfer functions are determined by
interrupt sources in the SCI0 module, such as ERI0, RXIO0 and TXIO. This method corresponds to
serial-in transfer (ActSerialln).

Table4.1 Transfer Typeand Method of Calling Function

Module Transfer type Method of calling
USB Detection of USB operating clock USB interrupt

stabilization time

Cable connection (bus reset) USB interrupt

Cable connection (BusVcc) USB interrupt

Control transfer USB interrupt

Bulk-out transfer USB interrupt

Bulk-in transfer Branch from main loop
SCI0 Serial-in transfer SCIO interrupt

Serial-out transfer Branch from main loop

Table 4.2 shows the correspondence between the USB interrupt types and the function called by
BranchOfInt.

Rev. 1.00, 10/03, page 36 of 70
:{ENESAS

Table4.2

USB Interrupt Typesand Called Functions

Register Name Bit Bit Name Name of Function Called
UIFRO 7 BRST ActBusReset

6 N J—

5 EP3 TR —

4 EP3 TS —

3 EPOo TS ActControlInOut

2 EPOi TR ActControllnOut

1 EP0Oi TS ActControlInOut

0 SETUP TS ActControl
UIFR1 7 — —

6 — _

5 — —_

4 — —

3 EP1 ALL EMPTY —

2 EP2 READY ActBulkOut

1 EP1TR —

0 EP1 EMPTY ActBulkin
UIFR3 7 CK48 READY SetUSBModule

6 SOF ActldleCount

5 SETC —

4 — —

3 SPRSs —

2 SPRSi —

1 VBUSs —

0 VBUSI ActBusVce

The EPOi TS and EPOo Ts interrupts are used both for control-in and control-out transfers. Hence
in order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For more details, refer to section 4.5, Control Transfers.

Table 4.3 shows SCIO interrupt types and called functions.

Rev. 1.00, 10/03, page 37 of 70

RENESAS

Table4.3 SCIOInterrupt Typesand Called Functions

Register Name Bit Bit Name Name of Function Called
SSRO 7 TDRE — (branch from main loop)

6 RDRF ActSerialOut

5 ORER ActSerialOut

4 FER ActSerialOut

3 PER ActSerialOut

2 TEND —

1 MPB —

0 MPBT —

From the next section, details of application-side firmware are explained for each USB and SCI0
transfer type.

Rev. 1.00, 10/03, page 38 of 70
:{ENESAS

4.3 Interrupt by Detection of USB Operating Clock Stabilization

This interrupt is generated when the 48-MHz USB operating clock stabilization time is
automatically counted after USB module stop mode is canceled. After receiving the interrupt, the
sample program makes necessary interrupt settings and waits for USB cable connection.

USB function module Sample program

USB operating clock selected
UCTLR/UCKS3 to UCKO write

v

USB module stop cancelled
MSTPCRB/MSTPB cleared

| USB cable connected |

v

|USB operating clock startedl

USB operating clock
stabilization wait

USB operating
clock stabilzation time wait
completed?

|

> USB interface reset cancelled
UCTLR/UIFRST cleared

v

UIFR3/CK48READY cleared

| Interrupts specified I{—‘— Interrupts specified

USB cable wait

EXIRQO interrupt
USB operating clock generated
stabilization time detection .
interrupt generated

v

USB interface operation
checked

Figure4.4 Interrupt at Detection of USB Operating Clock Stabilization

Rev. 1.00, 10/03, page 39 of 70
:{ENESAS

4.4 Interrupt by Cable Connection (BRST, VBUYS)

This interrupt occurs when a USB cable is connected to the host controller. After completion of
initializing the microcomputer, the application side pulls up the USB data bus D+ using general-
purpose output port. By means of this pull-up, the host controller detects that the device has been
connected (figure 4.5).

USB function module Sample program

—I I ActBusVcce I Settings for USB

|
|
|
h

|:| | Initializing Port (P36) specified as |
USB cable connected ' microcomputer | outout
|
b EXIRQO interrupt ¢ X
| VBUS interrupt generated]__generated | Waiting for VBUS flag USB interrupt priority level
| : to be determined specified to 6

1 (UIFR3/VBUSI)
h
. VBUS flag cleared
A (UIFR3/VBUSI)
i
' SB cable in
. connected state? Ne
! (indicated
i by VBUS flag)
| v
' YES
. 4 UDC core reset |
' All FIFOs cleared
i
| I
! D+ pulled up by | D+ pull-up disabled |
1 ort (P36
A
' UDC core reset cancelled
! UCTLR/UDCRST cleared
|
|

| USB modie initialization |4/'/
completed

o ||

UDC core reset EXIRQO interrupt :
cancelled generated Buffer and flags in
' firmware cleared
Bus reset interrupt +
| generated g Bus reset flag cleared
(UIFRO/BRST)

Wait for setup command
receive completion interrupt

All FIFOs cleared

UDC core reset

Waiting for USB
cable connection

Figure4.5 Interrupt by Cable Connection

Rev. 1.00, 10/03, page 40 of 70
:{ENESAS

45 Control Transfers

Control transfers are performed using bits O to 3 of the interrupt flag registers. Control transfers
are divided into two types according to the direction of data in the data stage (see figure 4.6). In
the data stage, data transfer from the host controller to the USB function module is control-out
transfer and transfer in the opposite direction is control-in transfers.

Control-out transfer

Host controller ———> | usE function module

Data | (Data stage)

Control-in transfer

Host controller <E:| USB function module

(Data stage)

Figure4.6 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (see figure
4.7). Furthermore, a data stage consists of multiple bus transactions.

In control transfers, stage changes are detected by inverting the data direction. Hence the same
interrupt flag for either control-in or control out transfer is used to call a function (see table 4.1).
For this reason, the firmware must manage the control transfer type currently being performed,
control-in or control-out transfer, in each state (see figure 4.7) and must call the appropriate
function. States in the data stage (TRANS_IN, TRANS_OUT) are determined by commands
received in the setup stage.

Rev. 1.00, 10/03, page 41 of 70
:{ENESAS

E Setup stage E Data stage E Status stage

Control-in | SETUP (0) || IN (1) | | IN (0) | | IN (0/1) || OuT (1) |
| DATAO | DATAf DATAO DATAOA | DATAI
Firmware state il WAIT |§| TRANS_IN |:_-_;/S"_;l-|_:_—'
Control-out [seTup () || o) || out@ | -~ [ourm || NG |
DATAO DATAT DATAO DATAO/ DATAT
Firmware state il WAIT |i| TRANS_OUT |:.-.;’9'.;‘1-1.:.—'
Nodata || SETUP) IN (1)
| DATAO | ' DATA1
Firmware state El WAIT |E| TRANS_OUT E- ;/\-IAI-'I:—E

Figure4.7 Stagesin Control Transfers

451 Setup Stage

In the setup stage, commands are transferred between the host controller and USB function
module. The firmware is entered in the WAIT state on both control-in and control-out transfers.
Whether control-in transfer or control-out transfer is performed is determined by the type of the
issued command and the state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is
also determined.

e Commands for control-in transfer: GetDescriptor (TRANS_IN) standard command
GetLineCoding (TRANS_IN) vendor command
e Commands for control-in transfer: SetLineCoding (TRANS_OUT) vendor command

SetControlLineState (TRANS_OUT) vendor command
SendBreak (TRANS_OUT) vendor command

Figure 4.8 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

Rev. 1.00, 10/03, page 42 of 70
:{ENESAS

USB function module Sample program

»|| BranchOfint
ActControl
5 |

SETUP TS flag cleared
EPOi TR flag cleared
EP0o and EPOi FIFO cleared

v

| State changed to WAIT |

v

Read pointer and write pointer
for command buffer initialized

¢ : | GetPacket | I

Data read
from EPOs FIFO

v

EPOs read complete flag set to 1
(UTRG/EPOs RDFN = 1)

Setup token received

y

8-byte command data
received at EPOs

Application processing NO

command?
YES

Automatic
processing by
USB module

EXIRQO interrupt
genarated

Setup command receive
complete flag set
(UIFRO/SETUP TS =1)

Data stage

I IDecStandardCommandsI |_

A4
YES o Vendor command? >
v NG
DecVender
NO
Supported standard
command to be processed?
h4
upported command?
pporiec commanc” | -
YES Get and Set Descriptor
State changed processing prepared
to STALL
T
YES ¢
STALLstate? >
NO
IN direction? NG
v YES l
State changed State changed
to TRANS_IN to TRANS_OUT
]]
y y 2
EPOi and EPO0 Interrupt enable bit set to 1 Interrupt enable bit set to 1
interrupts masked for control-in transfer for control-out transfer

v

EPO STALL bit set Data written
to 1 to FIFO

[rurece]

I N[
“

I To data stage I

Figure4.8 Setup Stage

Rev. 1.00, 10/03, page 43 of 70
:{ENESAS

452 Data Stage

In the data stage, data is transferred between the host controller and USB function module. The
firmware is entered in the TRANS_IN state for control-in transfer or in the TRANS_OUT state for
control-out transfer according to the result of decoding the command in the setup stage. Figures
4.9 and 4.10 show the operation of the sample program in the data stage on control transfers.

USB function module

In-token received

Sample program

BranchOfint
| ActControlnOut |

UTRGO/EPOs RDFN
setto 1?

Y

Firmware in y| Control-out transfer
TRANS_OUT state? YES d (figure 4.10)
NO

Valid data in
EPOi FIFO?

ActControlln I
v

When data direction changes,
data stage is terminated and
status stage is entered.

YES

y
| Status stage I

eceive complete interrupt?
(UIFRO/EPOO TS)

EXIRQQ interrupt generated UIFRO/EPOI TS

interrupt flag cleared

EPOi transmit flag set
(UIFRO/EPQI TS = 1)

PutPacket I

A4

Data write to
UEDRQOi data register

v

EPOi packet enable bit set to 1
(UTRGO/EPOi PKTE = 1)

Figure4.9 Data Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 44 of 70
:{ENESAS

USB function module

Out-token received

Sample program

:
BranchOfint | | \when firmware is in TRANS_OUT state
ocomomon]

Firmware in
TRANS_OUT state?

Any space

L) Control-in transfer
in EPo FIFO?

(figure 4.9)

»IVES YES

ActControlOut I
v

When data direction changes,
data stage is completed and
status stage is entered.

y
|Data received from hostl
+ O

[EPOO receive complete flag set| _interrupt generated
(UIFRO/EPOO TS = 1)

Receive complete
interrupt?
UIFRO/EPQo TS,

Status stage

EPOo receive complete
flag cleared
(UIFRO/EP0O0 TS = 0)

GetPacket I

v

Data read from EPOo receive
data size register (UESZ00)

v

Data read from EPOo
data register (UEDROo)

v

EPOo read complete bit set to 1
(UTRGO/EPOo RDFN = 1)

Any space
in EPo FIFO?

Figure4.10 Data Stage (Control-Out Transfer)

Rev. 1.00, 10/03, page 45 of 70
:{ENESAS

453 Status Stage

The status stage is started by a token with the opposite direction of the data stage, that is, the status
stage is started by an out-token from the host controller on control-in transfer and is started by an
in-token from the host controller on control-out transfer.

USB function module

| Out-token received |

y

BranchOfInt

|O byte receiv

ed from hostl

N

<y

EPOo receive complete flag set
(UIFRO/EPOO TS = 1)

Firmware in

EXIRQO interrupt

N

y

generated NO

ActControllnOut I

TRANS_OUT state?

Sample program

When firmware is
in TRANS_IN state

Control-out transfer
(figure 4.12)

Control transfer end

(UIFRO/EPQ0 TS)

Receive complete interrupt?

! | ActControlin | I_

NO

y

flag cleared

EPOQo-related interrupt | Data stage I
flags excluding SETUP g

Firmware state

changed to WAIT

v

EPOo receive complete flag set to 1
(UTRGO/EPOo RDFN = 1)

v

| Control-in transfer end |

Figure4.11 Status Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 46 of 70

RENESAS

USB function module

Out-token received

EValid data in

EXIRQO interrupt

generated
—>| | BranchOfint | I

Firmware in
TRANS_OUT state?

EPOi FIFO?

YES

Sample program

When firmware is
in TRANS_OUT state

Control-in transfer
(figure 4.11)

Receive complete
interrupt?

EPOi transmit complete flag
set (UIFRO/EPOI TS = 1)

UIFRO/EPO0 TS

Control transfer end

ransmit complete

YES

NO

VL
| Data stage |

interrupt?
UIFRO/EPOI TS! =

EPOi packet enable bit set to 1
(UTRGO/EPQI PKTE = 1)

v

Transfer request
interrupts masked
(IERO/EPQi TR = 0)

Set_Line_Coding
command?

NO

<&

y

EPOi transmit complete flag
cleared (UIFRO/EPQi TS = 0)

l

Firmware state
changed to WAIT

||

<
h 4

EPOi transfer request flag
cleared to 0
(UIFRO/EPQi TR = 0)

Figure4.12 Status Stage (Control-Out Transfer)

RENESAS

Rev. 1.00, 10/03, page 47 of 70

4.6 Bulk Transfers

Bulk transfers are performed using bits O to 2 of the interrupt flag register 1 (bits 0 and 1 are not
used because a bulk-in transfer is not enabled by an interrupt in this program). Bulk transfers are
also be divided into two types according to the direction of data transfer (figure 4.13).

Data transfer from the host controller to the USB function module is bulk-out transfer and data
transfer in the opposite direction is bulk-in transfer.

Bulk-out transfers

Host controller USB function module

Bulk-in transfers

Host controller USB function module

Data

)/t

Figure4.13 Bulk Transfers

Rev. 1.00, 10/03, page 48 of 70
:{ENESAS

4.6.1 Bulk-Out Transfers

Figure 4.14 shows the operations of the sample program when bulk-out transfer is carried out.

USB function module

Out-token received

Sample program
EXIRQO interrupt occurred

—-—>| | BranchOfint | |

UIFR1/EP2 READY

ActBulkout ||
v

Any space
in RAM area for bulk-out
transfer?

Any space in EP2 FIFO?

EP2 READY interrupt disabled
(UIFR1/EP2 READY = 0)

YES
ooraoar ||

EXIRQO h 4
EP2 FIFO full status set interrupt generated Data read from EP2
(UIFR1/EP2 READY = 1) A receive data size register
(UESZ2)

v

Data read from EP2
data register (UEPDR2)
is stored in RAM area
for bulk-out transfer

|

Any space
in both EP2 FIFOs?

N

EP2 read complete bit set to 1
(UTRGO/EP2 RDFN = 1)

EP2 FIFO full status cleared
(UIFR1/EP2 READY = 0)

Figure4.14 Bulk-Out Transfers

Rev. 1.00, 10/03, page 49 of 70
:{ENESAS

4.6.2 Bulk-in Transfers

Figure 4.15 shows the operation of the sample program when bulk-in transfer is carried out.
Unlike bulk-out transfer, bulk-in transfer is not started by an interrupt and is started by a branch
from the main loop.

Data stored in the RAM area for bulk-in transfer is written to the EP1 data register. When there is
no space in the RAM area and the serial-in transfer is disabled, whether or not the RAM area is
made available by this write operation to the UEDRI1 data register is checked. When the RAM
area is made available, serial-in transfer can be enabled.

USB function module

In-token received

Sample program

Data
in RAM area for bulk-in
transfer?

Valid data in EP1 FIFO? NO

ActBukin ||

Any space
in EP1 FIFO?
(UIFR1/EP1

NO

EMPTY =1
YES
PutPacket I
Any space EP1 empty status set S/
in EP1 FIFO? (UIFR1/EP1 EMPTY =1) Data write to EP1 data register

(UEDR1)

v

EP1 packet enable bit set to 1
(UTRGO/EP1 PKTE = 1)

EP1 empty status cleared
(UIFR1/EP1 EMPTY =0)

Serial-in disabled?

Data
in RAM area for bulk-in
transfer?

Serial-in enabled (Xon transferred
by serial-out transfer)

%

Figure4.15 Bulk-In Transfer

Rev. 1.00, 10/03, page 50 of 70
:{ENESAS

4.7 Serial Transfer

The SCIO module is used for serial transfer. Serial-out transfer is performed by branching from the
main loop and serial-in transfer is performed by an interrupt. The RDRF flag of the serial status
register (SSRO) is used on serial-in transfer.

47.1 Serial-Out Transfer

Figure 4.16 shows the operation of the sample program on serial-out transfer. When any data is in
the RAM area for bulk-out transfer, the ActSerialOut function is called to branch from the main
loop and the SCIO module is used to transfer the data. When data is not in the RAM area for bulk-
out transfer and the bulk-out transfer is disabled, whether or not the RAM area is made available
by this serial-out transfer can be checked. When the RAM area is made available, bulk-out transfer
can be enabled.

Rev. 1.00, 10/03, page 51 of 70
:{ENESAS

Data for serial-out
transfer?

YES

ActSerialOut I

N

Calculate byte size
of transfer data

ExSerialOut I

A

SSRO TDRE = 1?

Transmssion Data write
to TDRO

v

SSRO TDFE/TEND
cleared

Bulk-out disabled?

Any space
in RAM area for bulk-out
transfer?

NO

EP2 READY interrupt enabled
(UIER1/EP2 READY = 1)

13

<

Figure4.16 Serial-Out Transfer

Rev. 1.00, 10/03, page 52 of 70
:{ENESAS

472 Serial-In Transfer

Figures 4.17 and 4.18 show the operation of the sample program on serial-in transfer. When ERIO
or RXIO reception interrupt occur, the ActSerialln function is called.

ERIO or RXIO interrupt occurred

¢ ActSerialln I

YES

Receive error
data interrupt?

¢NO

Received data read from RDRO

v

SSRO RDRF cleared

orerc 17 ES | [SSRo ORER/PER/FER

cleared

NO

d
<

Received data stored in
RAM area for bulk-in transfer

Any space
in RAM area for bulk-in
transfer?

YES

Serial-in disabled (Xoff
transferred by serial-out transfer)

v

| Serial-in transfer end I

Figure4.17 Serial-In Transfer (Receive Data Processing)

When an ERIO interrupt which is caused by an overrun error (ORER) occurs, data is read from
RDRO in the same way as an RXIO interrupt occurs. When an ERIO interrupt which is not caused
by an overrun error occurs, data in RDRO is read to be discarded and the error flag is cleared. At
this time, when a break interrupt is also received, serial reception is disabled to exit the function
without clearing the FER flag. In this case, since the FER flag hold the value 1, consecutive
interrupts occur and the ActSerialln function continues to be called until a break interrupt is
stopped. During these conditions, the interrupt priorities for the USB function and SCI0 modules
are switched in order to enabling reception of USB interrupts.

Rev. 1.00, 10/03, page 53 of 70
:{ENESAS

When an overrun error occurs or data is successfully received, the data is read from RDRO and is
stored in the RAM area for bulk-in transfer. After this, the size of which the RAM area is not used
is checked. When there is no area left to use, Xoff is sent to the host PC connected with serial
interface in order to avoid data missing. Sending Xoff disables serial-in transfer.

ActSerialln I

ORER =0 and
PER =17

| Dummy read from RDR |

v

| PER flag cleared |

&
<
y

ORER =0 and
FER=1?

To flow in figure 4.17

Dummy read from RDR |

Break input?

(RxD1 = 0?) Serial transfer disabled |

v

Interrupt priority level changed
| USB: 6to 7, SCIO0: 7 to 6

Serial transfer enabled
¢ Serial-in transfer end
Interrupt priority level changed

USB: 7 to 6, SCI0: 6 to 7

v

| FER flag cleared |

Serial-in transfer end

Figure4.18 Serial-In Transfer (Error Processing)

Rev. 1.00, 10/03, page 54 of 70
:{ENESAS

4.8 Vendor Command

In this sample program, four vendor commands, supported by USB serial conversion driver
manufactured by Hitachi ULSI Systems Co., Ltd., are decoded.

Table 4.4 shows the four vendor commands that are supported by the USB serial conversion
driver.

Table 4.4(a) Vendor Request

bmRequestType bRequest wValue windex wLength Data

01000001b SET_LINE_CODING Zero Interface 8 Line Coding
Structure

11000001b GET_LINE_CODING Zero Interface 8 Line Coding
Structure

01000001b SET_CONTROL_LINE Control Signal Interface Zero None

_STATE Bitmap
01000001b SEND_BREAK Duration of Break Interface Zero None

Table 4.4(b) Vendor Request Code

bRequest Value
SET_LINE_CODING 0
GET_LINE_CODING
SET_CONTROL_LINE_STATE
SEND_BREAK

W=

More details of each command are explained in the following sections.

481 SetL ineCoding
This request specifies parameters which are used for asynchronous data transfer.

bmRequestType bRequest wValue windex wLength Data

01000001b SET_LINE_CODING Zero Interface 8 Line Coding Structure

Table 4.5 shows the definition of Line Coding Structure.

In this sample program, SCIO is restarted with the settings of received Line Coding Structure on
reception of this command.

Rev. 1.00, 10/03, page 55 of 70
:{ENESAS

Table4.5 LineCoding Structure

Offset Field Size Value Description

0 DwDTERate 4 Number Data terminal speed (bps)

4 BcharFormat 1 Number Stop bit
0: 1 stop bit
1: 1.5 stop bits
2: 2 stop bits

5 BparityType 1 Number Parity
0: None
1: Odd
2: Even
3: Mask
4: Space

BdataBits 1 Number Data bits (5, 6, 7, 8)

—_

BflowType Number Flow control
0: Software or none

1: Hardware

482 GetLineCoding

This request is for the host to check out the current parameter of the device. When this sample
program receives this command, it returns the initial values shown in table 4.6 to the host.

bmRequestType bRequest wValue windex wLength Data
11000001b GET_LINE_ Zero Interface 8 Line Coding
CODING Structure

Table4.6 Initial Valuesof Line Coding Structure

Offset Field Size Value Description

0 DwDTERate 4 0x1C200 Data terminal speed (115200 bps)
4 BcharFormat 1 0x0 Stop bit (1 stop bit)

5 BparityType 1 0x0 Parity (None)

6 BdataBits 1 0x8 Data bit (8)

7 BflowType 1 0x0 Flow control (Software or none)

Rev. 1.00, 10/03, page 56 of 70
:{ENESAS

4.8.3 SetControlLineState

This request sets the control signal.

bmRequestType bRrequest wValue windex wLength Data
01000001b SET_CONTROL_ Control Signal Interface Zero None
LINE_STATE Bitmap

Table4.7 Control Signal Bitmap

Bit Position Description
D15 to D2 Reserved (initialized to 0)
D1 Controls transmit function of DCE
0: RTS off
1: RTS on
DO Monitors whether or not DTE is in ready state
0: DTR off
1: DTR on

Since the H8S/2218 does not have RTS and DTR signals, only decode is carried out for this
request and the DCE is not controlled.

In this sample program, it is recognized that setting the hyper terminal on the USB host PC side
for communication is completed by detecting D1 = 1 and DO = 1. At this time, a pointer that
indicates the data area for bulk-in and bulk-out transfers and an internal flag in this sample
program are initialized.

48.4 SendBreak

This request generates the break signal in device.

bmRequestType bRequest wValue windex wLength Data
01000001b SEND_BREAK Duration of Interface Zero None
Break

The break signal transmission time (msec) is written to the wValue field. When wValue is
OxFFFF, the device continues to output the break signal until receiving the SendBreak request
with wValue of 0x0000.

In this sample program, this request is decoded. A break signal, however, is not output.

Rev. 1.00, 10/03, page 57 of 70
:{ENESAS

Rev. 1.00, 10/03, page 58 of 70
:{ENESAS

Section 5 Analyzer Data

In this section, we look at how measurement is carried out with the USB Advisor, a USB protocol
analyzer manufactured by CATC (http://www.catc.com), using the USB function module in the
HS8S/2218, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and control transfer when the
vendor command is transmitted as examples.

Note: The Packet # found in front of each packet is the packet number used when measuring.
The Idle found at the end of each packet indicates the idle between packets.

5.1 Control Transfer when Device is Connected

Figure 5.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state
(device is ready for being used).

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

mw < Reset signal. A transition is made from power-on
10.866 ms 995.957 ps state to default state.

Frame # [BASA] Frame

00000001 OxAS 1515 | Ox13 [|996.553 s <_SOF paCket (1)
ms

00000001 OxAS 1515 | 0=00 [|996.553 ps
Only SOF packets continue in this
0000C001 DS 1527 | 000 || 505467 ps

SETUF | Aok [ENE LI« Setup token packet

39 00000004 04 [0 [oaa (default address used)

[Faset |[TSWE [©aTen Idle Setup

| a0 || oooofod1 | oxc3 |80 06 00 01 00 00 4 00 [0xBE20 |[460 ns| stage

[Fadet |[[Ewe] Ack | « ACK Data packe.t 8 bytes?

[& J[oooocoo1 | mae || 2217 ps| handshake packet (Get_Descriptor (Device) comand)

P:tﬂ 00000004 006 [o [0 F In-token packet
—~ e
> (default address used)
8 K
5 a3 0000coo 1 [EitaT 2667 p=
<)
S
=3 Data Frame
2 stage
8 a6 (in)
5 e
0] &7 00000001 002 0: 12 01 10 01 00 00 00 40 5B 04 04 00 00 0L 00 00[0x7A30
5 [15: 00 o1f T Data packet (18 bytes)
"g [Pacet |[&me] ack | (device descriptor information)
© [a8 || oooooood [owdE || 1933 ps
&
E
35 [Packet [Sme [ouT ENDF] | re= ~
= | 59 |[ooooooot | meer [0 [ox0s |[100 ns| « Out-token packet
5 oete. BHEIS] (default address used) Status
o b ata B
a0 00000001 0xDZ o000 |[416 ns [« Data packet (0 bytes) stage
[Pasket [Eme [Ack | *
[al |[ooooooot | owam |[284.200 ps

Continued on next naae

Rev. 1.00, 10/03, page 59 of 70
RENESAS

Control transfer (Set_Address)

| ptor(Device))

Get_Descri

Control transfer (

Frame
(1ms)

| Packet |[Gune SOF
a2 |[ooooooo4 1528 | 16 || 128467 ps
[Facet |
10,866 ms 000 467 ps Reset signal is input again.
Packet |[[Syne S0F
| a4 |[poooooo4 1540 | OB |[996 267 ps

Only SOF packets continue in this period.
|

[Packet |[[Syne | s0OF A
[111 || ooooooot [owas 1557 | 003 |(527.883 ps
ADDR <Setup token packet *
112 (default address used)
[Packet |[[Swne | DATAD Idle Setup
[93 |[ooooooot | w63 |00 05 01 00 00 00 00 00]0xb7A4|[400 ne| é| stage
Data packet (8 bytes)
[Pacet [Swme | Atk | .
[1a || ooooooot | owdB || 3483 s (Set_Address (Address:1) Frame
ADDR « In-token packet (1ms)
115 00000001 006 0 0 | 008 |[333 ne default address used)
T (detau Status
16 « Data packet (0 bytes) stage
| Facket || Syni | |
[117 || ooooooot | medm |[444.417 ps handshake packet
[Packet |[[Syne | s0OF
[118 || ooooooot [oxes 1868 | 0x01 ||906.867 p=z v

Only SOF packets continue in this period. Transits to address state, hereafter.

[Pasket |[[Sme [s0F A
[157 |[ooooooot | owes 1507 [0:AC |[511.783 p=

« Setup token packet *
(Address:1)
[Packet |[[Syme | DATAD “:‘M Setup
[158 [[ooooooor | ox63 (80 06 0O 0L 00 00 12 O0[0x072F {416 ns él stage
[Fammt [AR Data packet (8 bytes) +
[&0 || ooooooot | oweE | 3267 ps (Get_Descriptor (Device) command)

<« In-token packet

A6 00000001 005 1 a 017 | (323 n=
(default address used)

62

Only IN and NAK packtes continue in this period.

In-tok et Data Frame
< In-token packe
P - ms)

205 (Address:1) stage (in)

206 : 466 ns

[ELIERY T Data packet (18 bytes)
[Facket | Sme | Ack | (device descriptor information)
| zor || voooooot [owdm [1817 ps
[Padet |[T&me] out ME”DN [[EE < Out-token packet +
[208 |[ooooooot | o 1 0 [0:17 | (66 ns] (Address:1)
Status

209 00000001 002 o-0000 | [44a n=| < Data packet (0 bytes) stage
[Faget |[Swme] Atk] +
[210 |[ooooocot | owae |[172.767 ps
[Packet |[[Swne [sOF
[211 |[boooooot | oxes 1598 | Ox1E || 87.650 ps V

Continued on next page

Rev. 1.00, 10/03, page 60 of 70

RENESAS

iptor(Config))

Get_Descri

Control transfer (

Control transfer (Get_Descriptor(Config))

[Swnc | ADDR: < Setup token packet
21z Q0000001 0xBg 1 Q D17 || & (AddreSS1)
|

o e o —— T < Setup
[=5 |[ooooooot | oxc3 |0 05 00 02 00 00 09 00057520 Data packet (8 bytes) stage
Facket 3 ACK .
I ;1: H oou;;;m I — I S0 s (Get_Descriptor (Config) command) *
215 00000001 5 017 | 350 ns| < IN-token packet
o (Address:1)
[NAK
216 Q0000001 S A 2583 ps
Dat Frame
. Lo . ata
Only IN and NAK packtes continue in this period. stage 1ms)
ADDR <« In-token packet (in)
=48 00000001 [1 0 [oxt7[[380ms| (Address:1)
«— Data packet (9 bytes)
e —] (configuration descriptor information)
adkz e
[251 |[ooooooo1 [owas][1760 ps
[Padet |[Swmen] out ENDRTE] « Out-token packet
| zs2 || oooooood | oemT 1 0 [ox17 |[100 ns
(Address:1)
“Data |EREE Status
253 00000001 002 o000 || 450 ns| < Data packet (0 bytes) stage
[Padet |[[Swme | Ack |
[254 |[ooooooot | owdB |[F42.67 ps v
[Packet |[Swne [SOF A
[255 |[ooooooot [owxes 1509 | 001 [[194.300 ps

[[o] A0DR A Setup token packet
256 00000001
(Address:1)

f

[Padet |[[Syne | CATAD él Setup
[257 || ooooooot [oxc3 |50 06 00 02 00 00 FF 00]0x8725)[416 ns stage
‘ I ‘ Data packet (8 bytes)
Packet Sync ACK .

[zs || ooooooot | owem || 3607 s (Get_Descriptor (Config) command) *
TN N ADDR « In-token packet

250 00000001 [1 o [ox7 |[3500s] (address:1)
NAK

260 00000001 [T 2.523 ps

Only IN and NAK packtes continue in this period. Frame
Data (1ms)

« In-token packet stage (in)

25 00000001 (Address:‘])

326 0000000 0: 09 0z 27 00 01 01 00 CO 10 09 04 00 00 03 FF FF|0:0017 |

lg: FF 00 07 05 81 02 40 00 00 07 05 02 02 40 00 00
32: 07 05 83 03 08 00 04[] T Data packet (39 bytes)
[Facket | Byne | Atk | (configuration descriptor information)
[227 || ooooooot | ow4B][2047 ps
[Packet |[[8me] ouT mENDPl <« Out-token packet *
[328 || ooooooot [owe7 1 0 [maz][4 (Address:1)
Status

329 00000001 050000 | 400 ns| < Data packet (0 bytes) stage
[Packet | Swne | AcK | j
[330 |[ooooooot [o.4m {40782 ps v
[Packet |[[Syne | s0OF
[331 || ooooooot [oxes 1600 | 0x1D |[996 867 p=z Continued on next page

Only SOF packets continue in this period.

Rev. 1.00, 10/03, page 61 of 70

RENESAS

Control transfer (Get_Descriptor(Config))

Control transfer (Get_Descriptor(Device))

Syne

SOF

| Facket |
617 |

00000001

i)

1886 | 0x01 |[343.17 ps

00000001

[Fake | e
618

0B

L] ENCP « Setup token packet
o 017 || 100 ns (Address 1

T o “qm Setup
619 00000004 003 80 05 00 02 00 00 00 04)0-85E9 (|46

l | [o = Data packet (8 bytes) stage
Fadet B ACHK

I ;2; H DDD;‘SSM I — | S5m0 e (Get_Descriptor (Config) command) +

« In-token packet

(Address:1)

Q0000001

Q0000001 o 017 |[316 n= (Address‘1)
Syne NAK
622 00000001 554 2,500 ps
Only IN and NAK packtes continue in this period. Data
« In-token packet stage (in)
(Address:1)
0: 09 02 27 00 01 01 00 CO 10 09 04 00 00 03 FF FF
16: FF 00 07 05 81 02 40 00 00 07 05 02 02 40 00 00
32: 07 05 83 03 05 00 0] T Data packet (39 bytes)
[Facet |[Swme | Atk | (configuration descriptor information)
| &7z |[ooooooot | owdE [2017 s v
[Packet |[[8me | ouT ENDF | | « Out-token packet
[673 || ooooooot [owe7 1 0 [o:7 |
Status

stage

v

Frame
(1ms)

| Packet |[[Byne [Ack |
675 || 00000001 [0x4B |[826.050 ps
Packet |[[Syne | SOF
676 |[ooooooot [owas 1888 | D18 ||782.267 p=

« Setup token packet

/H

*

o D17 | (300 ns (AddreSS:1)

000001
Syne NAK
681 00000001 054 2807 p=

717

Only IN and NAK packtes continue in this period.

<« In-token packet

[Panet | |SHEN]

(Address:1)

00000001 017][00 n:| (A ddress:1)
[Facket |[[Byme | DATAD él Setup
| &7s || ooooodd1 | owc2 |80 06 00 01 00 00 12 00|0x072F |[4966 ns stage
[Facket |[[Swe] ACK Data packet (8 bytes) *
[eve][ooooooot [oedm | A87 ps (Get_Descriptor (Config) command)
<« In-token packet A

Data
stage

(in)

718 00000001 0: 1z 01 10 01 00 00 00 40 5B 04 04 00 00 01 00 00|0:7A35 |[433 ns
[16: o0 01f T Data packet (18 bytes)
[Facket |[[Swne] ACK | (device descriptor information)
[710 || oooocoot [oxam][1767 ps v
[Packet |[[Syme [aur ENDP | I
l 720 || ooooooo1 [o7 1 0 a7 | « Out-token packet

\ 4
A

Frame
(1ms)

\ 4

“Data |JEREAE] (Address:1) Status
721 00000001 %02 00000 <« Data packet (0 bytes) stage
\ [Packet [Ewme] Ack |
l 722 || ooooooo1 [oxd4e |[96E.867 ps
[Packet |[Swne [SOF
[723 |[ooooooo1 [oxas 1200 | 005 |[140 067 ps

Only SOF packets continue in this period.

Rev. 1.00, 10/03, page 62 of 70

RENESAS

Continued on next page

Control transfer (Get_Descriptor(Device))

Control transfer (Get_Descriptor(Config))

/ SSUEI ADCR « Setup token packet

Taq 00000001 0B

(Address:1)

e v TR [T <)

725 00000001 03 G0 06 00 01 00 00 12 00|0«072F ||450
‘ I [o =l Data packet (8 bytes)
\ I [
\ i \

Setup
stage

00000001 086 1 o 017 |[366 ns (AddreSSS‘l)

T8 00000001 D5 2.550 p=

Fadket Syne Ack | (Get_Descriptor (Device) command) *
T26 00000001 DB | 2217 ps ™
N ~oor EIEE « In-token packet

(Address:1)
ootz I « Data packet (0 bytes)

775 00000001

Frame
Only IN and NAK packtes continue in this period. Data (1ms)
« In-token packet stage
771 00000001 0506 1 0 [o7 |[382 ns| (Address:1) (in)
in
EE 00000001 0xD2 0: 12 01 10 01 00 00 00 40 56 04 04 00 00 01 00 00]0x7A35 | 466 ns
16: 00 01 T Data packet (18 bytes)
[Paket |[DGgme] ACK | (device descriptor information)
| 772 || ooooooot [owam || 1833 s
[Padet |[[&me] ouT ENDF | | « Out-token packet
| 774 || ooooooo1 [owe7 1 0 [07 {100 ns
Status

stage

\ [Paket |[[Ewe | ACK +
| 776 || ooooooot [owdB ||E7E.0ET ps v
\ Packet |[Syne | SOF A
TT7 || ooooooo1 [oxas 18091 Dt || 73,833 ps

[m IETEI | sETur | A <~"Setup token packet
00000001 OxBd a QA7 |00 ns (AddreSS 1)

*

(Address:1)

N
ez Q0000004 [T 2.567 ps

[Fawer | S _oRra0 mﬂm Setup
778 00000001 OxC3 G0 06 00 02 00 00 00 04)0-85E9
l I [o«] pata packet (8 bytes) stage
[Padet |GG AcKk | (Set_Address (Address:1) command) *
| 7e0 || oocoooot | owdm [3233 s
[Sync] ADDR « In-token packet
781 00000001 005 1 o 017 || 266 ns

Only IN and NAK packtes continue in this period. Data Frame
1ms
<« In-token packet stage ()
547 (Address:1) (in)
245 0: 09 02 27 00 01 OL 00 CO 10 09 04 00 00 03 FF FF|0s0017 |
16: FF 00 07 05 81 02 40 00 00 07 05 02 02 40 00 00
32: 07 05 §3 03 05 00 04
T Data packet (39 bytes)
[Paet [y [ACK
[a0 || vocoooot | owam || 22604 (configuration descriptor information)
I Facket H Syne I ouT MENDPI I I « Out-token packet
280 Q0000001 27 1 a D17
Address:1
() Status
Saono0] « Data packet (0 bytes) stage
\| Paget |[[Syne | ACK *
[252 |[ooooooot | owae|[15.650 ps v
[Paket |[[Syme [s0OF
[263 |[oooooooa | oxes 1802 | 0:04 || 80750 ps
Continued on next page
Rev. 1.00, 10/03, page 63 of 70

RENESAS

= ApOR IS « Setup token packet $
o 254 00000001 0xB<4 1 o D17 | [100 ns .
= Address: 1
[[Fadet |[[Eme | vaTAD Setup
= « Data packet (8 bytes)
k=) [855 || ooooooor | oxc3 |00 09 0L 00 00 00 00 00[0xE4A4][448 ns) : stage
= (Set_Configuration command)
o [Paet [Swme [ACk |
ol [es6 |[oooooood [oedB][3233 ps Frame
© T (1ms)
& [Sme | ADDR [E3 < intoken packet
o 257 00000001 0206 1 o D17 | [260 ne (Add 1)
@ ress:
% TN oATAT fosts [BREIB) Status
@ 555 00000001 0%DZ o0000 || 453 ns| < Data packet (0 bytes) stage
£
5 [Paket [Ewme [Ack |
£ [=58 |[oooooood [Oe4B |[B91.383 ps
o)
] [Packet |[[Syne [SOF
[es0 || ooooooot [Owas 1803 |01 |[006.883 ps \ 4

Transits to configuration state, hereafter.

The stationary state continues until a control transfer (vendor command) is performed.

Figure 5.1 Control Transfer when Device is Connected

Rev. 1.00, 10/03, page 64 of 70
RENESAS

Control transfer (Get_Line_Coding)

Control transfer (Get_Line_Coding)

5.2 Control Transfer when Vendor Command is Transmitted

Figure 5.2 shows the measurement results when the vendor command is transmitted by control
transfer between the host controller and this device. (For the vendor command, refer to section

4.7)

[IETETA Frame # [GRES]
00000004 OxAd 452 017 || 321,933 ps
SETUFT ADDR I « Setup token packet $

084 (Address:1)
[Pasket] Syne [DaTan Setup
[_2ees][ooooooot [oxc2 [C1 01 00 00 00 00 08 00[oxe818|[4e3 ns|<— Data packet (8 bytes) st
stage
[Padet [Ewme] AcK (Set_Line_Coding command (vendor command))
[2se0][oooooood [oxde | 2200 ps *
[T Erice « In-token packet A
2631 00000001 0:06 1 o 017 (] 316
< (Address:1)
NAK
2632 00000001 Oy 3050 ps
. o . Frame
Only IN and NAK packtes continue in this period. Data (1ms)
« In-token packet stage (in)
2665 (Address:1)
[Fadet | Swne] ldle
2868 « Data packet (8 bytes)
[Pasket [Swne | Ack |
[=7 || ooooooot [oxam | 2000 ps v
[Facet | IRNSURGRNN cuT mE"DH |EIE « Out-token packet
2668 00000001 a7 1 IEIEE
[i ‘ [ma17 |23 ns] (Address:1)
14 Status
2669 00000001 02 00000 « Data packet (0 bvtes) stage
[Packet [Sune [Aok] i
[=570 || oooooood [owdm|[502.800 ps v
[Packet [Swne | SOF A
[zam1 [oooooood | owes 453 | 005 |[191.883 ps
SETUPIN ~00R « Setup token packet f
(Address:1)
[Padet |[[Swne. | DATAD ldle Setup
[2oz || oooooent | o |cl OL 00 00 00 00 Og 0p|oweats] [as0 ne|<— Data packet (8 bytes) stage
T - (Set_Line_Coding command (vendor command))
[=574 [ooooooot | owae || &7 s
« In-token packet A
2675 00000001 008 [
(Address:1)
Hak
267 00000001 a5 2617 ps
) Lo } Frame
Only IN and NAK packtes continue in this period. Data (1ms)
) ms
TP < In-token packet stage (in)
EEIT] [400ns] (Address:1)
T o= pats [oReis | e
PR 00000001 | 0xb2 |00 96 00 00 00 00 08 00 |0w72BE « Data packet (8 bytes)
[Pamet |[[Swme | Atk |
[2711 [ooooooor | msa || 1833 v
[Facket | Ewme] oUT MENDP‘ |IEE « Out-token packet
[z7az || oooooood | meeT 1 o [ox17][22 ns| (Address:1) ol
‘pat: |ERGIG]| awus
2713 00000001 [5H 0000 Me Data packet (0 bytes) stage
[Pamet |[[&WRe | Ack |
[z71a [oooooood | mssbe |[635.883 ps v
[Pasket] Syne | SOF
[2715 |[ocooooood | owes 454 | DDA || 207767 s

Continued on next page

Rev. 1.00, 10/03, page 65 of 70

RENESAS

g)

Get_Line_Codin

Control transfer (

9)

Get_Line_Codin

Control transfer (

« Setup token packet

*

0 -MZBC a5 ne < Data packet (8 bytes)

2716 Q0000001 0x=Bg] 17 83 ns (Address 1
[Fasket |[[Syne | DATAD ldle Setup
[2717 || oooodoot | @xc3 |Cl 01 00 00 00 00 08 00|0xA516)[468 nsk— Data packet (8 bytes) stage
[Facet |[EREI] AcK (Set_Line_Coding command (vendor command))
[2zriz [ooooooot | mwdE | 54332 ps
[syme] « In-token packet A
770 00000001 06 1 o [ox7[[52 ne] (Agdress:1)
[Syme]
2720 00000001 054 2850 p=
Only IN and NAK packtes continue in this period Data
Y « In-token packet stage (in)
2753 00000001 [1 0 [ox17 |[333 ns (Address:1)
[swe |

(Address:1)

« Data packet (0 bytes)

2754 00000001 00 96 00 00 00 00 08 0
[Packet [Syne | acK
[27ss || oooooood | owdB | 1833 s v
[Paset |[[&wne] ouT =7 cRes | « Out-token packet
[27s6 [oooooood | o7 1 0 [ow7 |

Status
stage

Frame
(1ms)

757 00000001 040000 || 416 ns
[Packet |[Swne | ACK $
[2vse [oooooood | owdB |[531.580ps v
[Packet |[[Syne | sOF A
[2vae || oooooood | OwxAs 455 | 015 |[227.960 ps

« Setup token packet

Setp

Idle
270 00000001 1 0 22 ns| (Address:1)
[Packet [Eyme | DATAD
[zve1][ooooooo1 [k€3 [C1 01 00 00 00 00 08 00[0xA515] 46 « Data packet (8 bytes) stage
[Fae [Ae] (Set_Line_Coding command (vendor command))
[zrez [ooooooot | owdB || 5233 ps

<« In-token packet

A

Frame
(1ms)

2763 00000001 0 |ox17 |[356 ns (Address:1)
Packet Sync
2754 00000001 035 2 567 ps
Only IN and NAK packtes continue in this period. Data
stage
A0DR [T REs <« In-token packet (in)
7e7 (Address:1)
Padet
[Swme] « Data packet (8 bytes)
[Paet [Syne [ACK
| zras [ooooooot1 | AR || 1817 us v
[Padet [Sme | ouT ENDF] « Out-token packet
[zsoo][ooooooot [0w 1 0 [o:7 | (Address:1)
Data packet (0 byt Status
2801 00000001 D2 040000 F ata packet (0 bytes) stage
[Packet [Syne [ack
[zsoz][ooooooot | ox4B |[601.060 ps
[Paket |[Swme [SOF
[zaoz][ooooooot | owss A5G | 005 || 456 247 ps

Continued on next page

Rev. 1.00, 10/03, page 66 of 70

RENESAS

—> <

Control transfer (Get_Line_Coding)

Control transfer (Get_Line_Coding)

« Setup token packet *
(Address:1)

0B

[Facet | [DDNSWRE] DATAD Setup
[Ze0s || 00000004 | oxCE|C1 0L 00 OO0 00 00 08 00[0xAB16 s| < Data packet (8 bytes) stage
[oot R AR (Set_Line_Coding command (vendor command)) $
[zsos [_ooooo1 | medB || 5233 ps
T <in-token packet A
2807 00000001 [1 o o7 [[358ns] (Agdress:q)
HAK
2E08 00000001 3% 2583 p=
. o . Frame
Only IN and NAK packtes continue in this period. Data (1ms)
e « In-token packet stage
254 00000001 [1 0 [ox7 |[383 =] (Address:1) (in)
;
za4z 00000001 =02 |00 96 0D 0D 00 00 DA 00|erzBC |4 ne| < Data packet (8 bytes)
[Padet [Ewme | Atk |
[284 |[oooooood | ow4B][1833 s v
[Packet |[T8&me] ouT ME“DP\ |[EE « Out-token packet
[zeaa || ooooooot | me? 1 0 [07 |82 ns] (Address:1) st
VAT ‘pata [EREAE] atus
2845 00000001 D2 00000 |48 ns| < Data packet (0 bytes) stage
[Packet |[Swne | AcK |
[zeas || ooooooot | mwdm |[671.733 ps v
[Packet |[[Syne | sOF A
[2847 |[oooooood | owaAs a57 | mxta |[291.767 ps
! « Setup token packet f
(Address:1)

[Packet |[[Gwne | DATAD Setup
| 2sa |[oo000001 | oxC2 |CL 01 00 00 00 00 03 00 |0wa6i16 « Data packet (8 bytes) stage
[I [
[i |

Facket Syne ALK | (Set_Line_Coding command (vendor command))
2850 Q0000001 048 | 5117 p=
[&me] < In-token packet A
2851 00000001 086 1 o D17 || 383 ns
(Address:1)
28562 00000001 i1 2633 ps
Only IN and NAK packtes continue in this period. Data
« In-token packet stage
2885 (Address:1) (in)
=23 ne| < Data packet (8 bytes)
[Paket [Swne] Ack |
| zesr || _ooooo1 | mdB || 1817 us \
[Pacet |[h&wme] out m ENDF [« Out-token packet
[zsss |[ooooooot | oeT 1 0 [ox7 | (Address:1) Sl
DATAT atus
« Data packet (0 bytes) stage

Sync ack |
00000001 me4B | [537.160 ps

| I |

| I |

[Packet |[Swne [SOF

[zem |[oooooont [oxas 455 | xS || 200200 ps

Continued on next page

\4
f

Rev. 1.00, 10/03, page 67 of 70

RENESAS

_ 9)

Set_Line_Codin

Control transfer (

)

Set_Control_Line_State

Control transfer (

SETUP « Setup token packet
EEH 000001 (Address:1)
[Paet |[Syne | DATAD Setup
[zeez || ooooooot | oxce |4l 00 00 00 00 00 08 00]0x8E13 {480 ns| < Data packet (8 bytes) stage
[Fadet |[Eme] AKX (Set_Line_Coding command (vendor command)) *
[2894 |[ooodooot [owdm | 6.217 ps
[Facket | Sgme | oot ENDF] |IEE] < Out-token packet
[zess || ooooooot | oesd 1 0 [0x17 |[83 ns] (Address:1)
2808 00000001 D2 |00 96 00 0D 00 00 08 00 |0w728C|[460 ns| < Data packet (8 bytes)
Sne Dat Frame
2207 00000004 4067 ps ata (1 ms)
stage
Only OUT, DATA1, and NAK packtes continue in this period. (out)
[Pacet |[&wme] oot ENDF | | « Out-token packet
[2e07 || oooooood | okET 1 0 [0:7 [[230s] (Address:1)
Za08 moooooot | Ox02 |00 96 00 00 00 00 08 00|mzac] 468 ns| <~ Data packet (8 bytes)
[Packet [Ewne | Ack
[zeos [ooooooot | owdE || 3200 ps v
[S] N : « In-token packet A
Z810 00000001 Ol 1 0 | Owl7 |[383 ns

00000001

[Pt | S
2911

(Address:1)

an0o000q

Only IN and NAK

[Paset | S
2854

<« In-token packet
1 a 017 || 316 ns (Address:1)

Status
stage

HPacket ‘pata [ERGIEI

2055 00000001 002 o-0000 || 450 e | < Data packet (0 bytes)
[Pasket |[Swme | ACK \

[zess || ooooooot [owdm 510983 ps

[Paket |[[Swne | SOF

[zes7 || oooooood [owes 181,633 ps

« Setup token packet

Setup
Al 0z 0Z O0 00 00 00 00|ox454]|[450 ns| <— Data packet (8 bytes) stage

(Set_Line_Coding command (vendor command)) +

2058 00000001 0B 0 | osd7 |[400 ns (Address:1)
[Pasket |[Swne | DaATAD
[zesa || ooooooot [owca
[Pasket |[Swme | ACK
[zeso || ooooooot [owds \ 5583 ps
[Sme] < In-token packet
2061 00000001 0 Joar|[sa] (Address:1)
Evne
2062 00000001 2 567 ps

005

Only IN and NAK packtes continue in this period.

« In-token packet

1] 017 | (400 ns (AddreSS:1)

A

Frame
(1ms)

Status
stage

DATAT ' Data [EREAE|
2000 00000001 002 00000 | |44 nz | < Data packet (0 bytes)
[Pasket |[Egne [Aok |
[mo01 || ooooooot [owdB ||E46.117 ps v
[Pasket |[Syne [sOF
[sooz || ooooooo1 [oxas 460 | 0x19 || 158633 ps

Rev. 1.00, 10/03, page 68 of 70

RENESAS

Continued on next page

Control transfer (Set_Control_Line_State)

_ 9)

Set_Line_Codin

Control transfer (

SETUF

ELTY EHCFE « Setup token packet

DB (Address:1) f
[Faket |[[Gwme] CATAD Setup
[mona || ooooooot | owcs |41 02 03 00 00 00 00 00[m@sof |43z ns| < Data packet (8 bytes) stage
T (Set_Line_Coding command (vendor command))
[zoos || ooooooot [onde][5083 ps +
<« In-token packet
(Address:1)
3007
Frame
Only IN and NAK packtes continue in this period. Status (1ms)
« In-token packet stage
3046 (Address:1)
3047 000001 0xD2 o000 ||456 0| <— Data packet (0 bytes)
[Packet [Sme [ACK
[@04 || ooooooot | owdB |[6G2.283 s \ 4
[Paket | Syne [SOF A
EEE T 461 | 006 || 156560 ps
[sme] < Setup token packet
3050 00000001 (Address:1)
[FPacket [Swme | DATAD Setup
[=851 |[ooooooot [oxC3 [4l 00 00 00 00 00 05 00[0xBE13][433 ns| < Data packet (8 bytes) stage
[Fewet |[IEREI] AR (Set_Line_Coding command (vendor command))
| sosz || oooooood | ow4B | 5.160 ps *
[Pasket |[[Swne [our mENDPl | « Out-token packet A
| 3083 || oooooood | owE7 1 0 [047 |[100 ns (Address:1)
3054 0000001 | 0xb2 |00 96 00 00 00 00 0 00|oxrzbc]|460 ns|¢<— Data packet (8 bytes)

2055 00000004 D5 A 3733 p= Data

stage
Only OUT, DATA1, and NAK packtes continue in this period. (in) Frame
[Packet [S¥me | ouT ENDF] I « Out-token packet (1ms)
[zoes |[ooooooot [me? 1 0 [0:7 |[83 ns] (Address:1)
Data CRSS |
B 00000001 00 96 00 00 00 00 08 00|o26C ||des ns| < Data packet (8 bytes)
[Paset [[Ewne | Ack
[soe7 || ooooooot | owae][367 ps) 4
« In-token packet A
3068 017|363 ns (Address:1)
3060 00000001
Status
T « In-token packet stage
3112 00000001 (Address:1)
3113 00000001 002 o000 || 4a6 n= | <— Data packet (0 bytes)
[Paet [Spme] Ack |
| z11a [ooooooot | owdB |[564033 s v v
[Packet |[[Sne | sOF
[3115 |[ooooooot | owes 462 | 004 |[289700 pz

Continued on next page

Rev. 1.00, 10/03, page 69 of 70
RENESAS

_ 9)

Set_Line_Codin

Control transfer (

anon000q

0B

(Address:1)

Q0000001

002 00 96 00 00 00 00 0§ 00|0xF2BC || 450 ns

(Address:1)

3121

Syne
0000000

{1
D5 A 3733 ps

Only OUT, DATA1, and NAK packtes continue in this period.

« Out-token packet

« Data packet (8 bytes)

[Paet | Swne | DATAD Setup
[=117 |[ooooooos | oxc3 |41 DO 00 00 00 0D 08 00|0«BE13|[450 ns| <— Data packet (8 bytes) stage
[ot | S < (Set_Line_Coding command (vendor command)) $
[@11s || ooooooot [owsm | 5433 p=

[Padet [Swme | ouT EHGF | |[Em < Out-token packet A
[s11e || ooooooot [oes7 1 0 [0x17 |83 ns]

Data
stage
(out)

[Pasket |[TEWme [ouT ENDP| | aie
[@11 || ooooooot [ow? 1 0 [oa17][22 ns] (Address:1)
3132 DoDD0D01 | 0x02 |00 96 D0 0O 00 00 08 00|oerzec]|4es ns| < Data packet (8 bytes)
[Packet | Sy | ACK |
| =133 || ooooooot [owaE [217 s A
[< In-token packet A
2124 00000001 006 1] Q17 -383 ns
(Address:1)
Sync NAK
3135 00000001 088 2533 p=

Frame
(1ms)

The stationary state continues until a bulk transfer is performed.

Only IN and NAK packtes continue in this period. Status

00k [N ERES) < In-token packet stage

3172 00000001 [o o722 0] (Address:1)
T

3178 00000001 | kD2 0000 || 416 nz| < Data packet (0 bytes)
[Packet [[Syne [ACK |
[3180 || 00000001 | owdB |[436.233 ps v
[Pasket |[Syne | sOF
[3181 |[00000001 | oweE 483 | 0x1B |[863.660 ps

Figure 5.2 Control Transfer when Vendor Command is Transmitted

Rev. 1.00, 10/03, page 70 of 70

RENESAS

H8S/2218 USB Function USB Serial Conversion
Application Note

Publication Date: Rev.1.00, October 20, 2003

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Technical Documentation & Information Department
Renesas Kodaira Semiconductor Co., Ltd.

©2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

RenesasTech nOIOgy Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

http://www.renesas.com

RENESANS
Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1>(408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Colophon 1.0

H8S/2218 USB Function Module
USB Serial Conversion

Application Note

LENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO6B0214-0100Z

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1	Overview
	1.2	Purpose of this System

	Section 2 Development Environment
	2.1	Hardware Environment
	2.2	Software Environment
	2.2.1	Sample Program
	2.2.2	Compiling and Linking
	2.2.3	USB Serial Conversion Driver

	2.3	Loading and Executing the Program
	2.3.1	Loading and Executing the Program

	2.4	Method of Communication between PCs
	2.4.1	Setting Up the USB Host PC
	2.4.2	Setting Up the Serially-Connected PC
	2.4.3	Communication between PCs

	Section 3 Overview of Sample Program
	3.1	State Transition Diagram
	3.2	Overview of Communication between PCs
	3.3	File Structure
	3.4	Purposes of Functions

	Section 4 Sample Program Operation
	4.1	Main Loop
	4.2	Types of Interrupts
	4.2.1	Branching to Transfer Function

	4.3	Interrupt by Detection of USB Operating Clock Stabilization
	4.4	Interrupt by Cable Connection (BRST, VBUS)
	4.5	Control Transfers
	4.5.1	Setup Stage
	4.5.2	Data Stage
	4.5.3	Status Stage

	4.6	Bulk Transfers
	4.6.1	Bulk-Out Transfers
	4.6.2	Bulk-in Transfers

	4.7	Serial Transfer
	4.7.1	Serial-Out Transfer
	4.7.2	Serial-In Transfer

	4.8	Vendor Command
	4.8.1	SetLineCoding
	4.8.2	GetLineCoding
	4.8.3	SetControlLineState
	4.8.4	SendBreak

	Section 5 Analyzer Data
	5.1	Control Transfer when Device is Connected
	5.2	Control Transfer when Vendor Command is Transmitted

	Colophon
	Address List
	Back Cover

