

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

H8S/2218 USB Function Module
Mass Storage Class
(Bulk-Only Transport)
Application Note

16

A
pplication N

ote

Rev.1.00 2003.10

Renesas 16-Bit Single-Chip
Microcomputer
H8S Family / H8S/2200 Series

Rev. 1.00, 10/03, page ii of vi

Rev. 1.00, 10/03, page iii of vi

Cautions

Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the

Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for
the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss
resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product
distributor when considering the use of a product contained herein for any specific purposes,
such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or
undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 1.00, 10/03, page iv of vi

Preface

These application notes describe the Mass Storage Class (Bulk-Only Transport) firmware that uses
the USB Function Module in the H8S/2218. They are provided to be used as a reference when the
user creates USB Function Module firmware.

These application notes describe a system configuration example based on the USB Function
Module, and do not guarantee the contents of the configuration.

In addition to these application notes, the manuals listed below are also available for reference
when developing applications.

[Related manuals]

• Universal Serial Bus Specification Revision 1.1

• Universal Serial Bus Mass Storage Class Specification Overview Revision 1.1

• Universal Serial Bus Mass Storage Class(Bulk-Only Transport) Revision 1.0

• H8S/2218 Group, H8S/2212 Group Hardware Manual

• H8S/2218 Solution Engine CPU Board (MS2218CP01) Instruction Manual

• H8S Family E10A Emulator User’s Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer, which is a USB transfer type. When using this transfer
type (see section 14.1 of the H8S/2218 Group, H8S/2212 Group Hardware Manual),
the user needs to create the programs for it.

Also, the hardware specifications of the H8S/2218 and H8S/2218 Solution Engine,
which will be necessary when developing the system described above, are described
in these application notes, but more detailed information is available in the
H8S/2218 Group, H8S/2212 Group Hardware Manual and the H8S/2218 Solution
Engine Instruction Manual.

[Trademark] Microsoft Windows 95, Microsoft Windows 98, Microsoft Windows Me,
Microsoft Windows 2000, and Microsoft Windows XP are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Mac OS is a trademark of Apple Computer, Inc.

Rev. 1.00, 10/03, page iii of vi

Contents

Section 1 Overview... 1

Section 2 Overview of the USB Mass Storage Class (Bulk-Only Transport) .. 3
2.1 USB Mass Storage Class...3
2.2 Sub-Class Code ...4
2.3 Bulk-Only Transport ...4

2.3.1 Command Transport ..5
2.3.2 Status Transport ...6
2.3.3 Data Transport ...7
2.3.4 Class Commands..8

2.4 SCSI Transparent Command Set Sub-Class Code ..9

Section 3 Development Environment ... 11
3.1 Hardware Environment ...11
3.2 Software Environment ..13

3.2.1 Sample Program...13
3.2.2 Compiling and Linking ..13

3.3 Loading and Executing the Program...15
3.3.1 Loading the Program..15
3.3.2 Executing the Program...16

3.4 Using the RAM Disk...16
3.5 Modifying RAM Disk Settings ...17

3.5.1 Selecting Removable or Fixed Disk...17
3.5.2 Changing the RAM Disk Size..17

Section 4 Overview of the Sample Program... 19
4.1 State Transition Diagram ..19
4.2 USB Communication State ...20

4.2.1 Control Transfer...21
4.2.2 Bulk Transfer ...21

4.3 File Structure...22
4.4 Purposes of Functions ...24
4.5 RAM Disk ...29
4.6 Operation of SCSI Commands That Are Supported ...30
4.7 Processing If an Error Occurs ...34

Section 5 Sample Program Operation... 43
5.1 Main Loop...43
5.2 Types of Interrupts ..44

Rev. 1.00, 10/03, page iv of vi

5.2.1 Method of Branching to Different Transfer Processes... 45
5.3 USB Operating Clock Stabilization Interrupt ... 46
5.4 Interrupt on Cable Connection (VBUS).. 47
5.5 Bus Reset Interrupt (BRST).. 48
5.6 Control Transfers .. 49

5.6.1 Setup Stage .. 50
5.6.2 Data Stage .. 52
5.6.3 Status Stage.. 54

5.7 Bulk Transfers... 56
5.7.1 Command Transport .. 57
5.7.2 Data Transport ... 59
5.7.3 Status Transport ... 63

Section 6 Analyzer Data ..67

Rev. 1.00, 10/03, page 1 of 80

Section 1 Overview

These application notes describe how to use the USB Function Module that is built into the
H8S/2218, and contain examples of firmware programs.

The features of the USB Function Module contained in the H8S/2218 are listed below.

• An internal UDC (USB Device Controller) conforming to USB 1.1
• Automatic processing of USB controls
• Automatic processing of USB standard commands for end point 0 (some commands need to be

processed through the firmware)
• Full-speed (12 Mbps) transfer supported
• Various interrupt signals needed for USB transmission and reception are generated.
• On-chip PLL circuit to generate the USB operation clock (24 MHz × 2 = 48 MHz or

16 MHz × 3 = 48 MHz)
• On-chip bus transceiver
• Bus-powered mode or self-powered mode is selectable via the USB specific pin (UBPM)
• Current Configuration value can be checked by Set_Configuration interrupt

End Point Configurations

End Point Name Name Transfer Type
Max. Packet
Size

FIFO Buffer
Capacity

DMA
Transfer

End point 0 EP0s Setup 8 bytes 8 bytes 

EP0i Control In 64 bytes 64 bytes 

EP0o Control Out 64 bytes 64 bytes 

End point 1 EP1 Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

End point 2 EP2 Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

End point 3 EP3 Interrupt (in) 64 bytes 64 bytes (variable) 

Rev. 1.00, 10/03, page 2 of 80

Figure 1.1 shows an example of a system configuration.

Figure 1.1 System Configuration Example

This system is configured of the H8S/2218 Solution Engine manufactured by Hitachi ULSI
Systems Co., Ltd. (hereafter referred to as the MS2218CP) on which the H8S/2218 is mounted and
a PC containing Windows 2000/Windows Me/Windows XP or Mac OS 9 operating
system.

By connecting the host PC and the MS2218CP through USB, the SRAM in the MS2218CP can be
accessed as a RAM disk, enabling data in the SRAM of the MS2218CP to be stored in and loaded
from the host PC.

It is also possible to use the USB Mass Storage Class (Bulk-Only Transport) device driver that
comes as an accessory with the operating systems listed above.

This system offers the following features.

1. The sample program can be used to evaluate the USB module of the H8S/2218 quickly.
2. The sample program supports USB control transfer and bulk transport.
3. An E10A can be used, enabling efficient debugging.
4. Additional programs can be created to support interrupt transfer.*

Note: * Interrupt transfer programs are not provided, and will need to be created by the user.

H8S2218 Solution Engine
Windows 2000/Windows Me/

Windows XP
Mac OS 9

USB host PC

Rev. 1.00, 10/03, page 3 of 80

Section 2 Overview of the USB Mass Storage Class
(Bulk-Only Transport)

This section describes the USB Mass Storage Class (Bulk-Only Transport).

We hope that it will provide a convenient reference for use when developing USB storage-related
systems. For more detailed information on standards, please see the following:

• Universal Serial Bus Mass Storage Class Specification Overview Revision 1.1

• Universal Serial Bus Mass Storage Class Bulk-Only Transport Revision 1.0

2.1 USB Mass Storage Class

USB Mass Storage Class is a class of standards that apply to large-scale memory (storage) devices
that are connected to a host PC and handle reading and writing of data.

In order to let the PC know that a function is in this class, a value of 0x08 must be entered in the
bInterfaceClass field of the Interface Descriptor. In addition, the host must be notified of the serial
number through the String Descriptor in the Mass Storage Class. For this purpose, the sample
program provided here returns 0000 0000 0000 in Unicode.

When transferring data between the host PC and the function, four transport methods defined by
the USB are used (control transfer, bulk transfer, interrupt transfer, and isochronous transfer).
Protocol codes determine the transport method and how it is used.

There are two types of data transport protocols:

• USB Mass Storage Class Bulk-Only Transport

• USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport

As its name indicates, USB Mass Storage Class Bulk-Only Transport is a data transport protocol
that only uses bulk transport.

USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport is a data transport protocol that
uses control transfer, bulk transfer, and interrupt transfer. CBI Transport is further subdivided into
a data transport protocol that uses interrupt transfer, and one that does not use interrupt transfer.

The sample program provided here uses USB Mass Storage Class Bulk-Only Transport as the data
transport protocol.

When the host PC uses a device in order to load and save data, instructions (commands) are
provided by the host PC to the function. The function then executes those commands to load and
save data. The commands sent by the host PC to the function are defined in the form of sub-class
code.

Rev. 1.00, 10/03, page 4 of 80

2.2 Sub-Class Code

Sub-class codes are values that indicate the command format sent from the host PC to a function
by means of command transport. There are seven types of command formats, described in table
2.1.

Table 2.1

Sub-Class Code Command Standards

0x01 Reduced Block Commands (RBC), T10/1240-D

0x02 Attachment Packet Interface (ATAPI) for CD-ROMs. SFF-8020i,

Multi-Media Command Set 2 (MMC-2)

0x03 Attachment Packet Interface (ATAPI) for Tape. QIC-157

0x04 USB Mass Storage Class UFI Command Specification

0x05 Attachment Packet Interface (ATAPI) for Floppies. SFF-8070i

0x06 SCSI Primary Commands –2 (SPC-2), Revision 3 or later

In order to tell the host PC the command format supported by the device, a sub-class code value
must be entered in the bINterfaceSubClass field of the Interface Descriptor.

The sample program used here uses a sub-class code value of 0x06, which indicates the SCSI
Primary Commands.

2.3 Bulk-Only Transport

With Bulk-Only Transport, data is transferred between the host PC and a function using bulk data
transfer only.

Bulk transfer can be divided into two types, depending on the direction in which the data is sent. If
data is sent from the host controller to the function, bulk-out transfer is used. If data is being sent
to the host controller from the function, bulk-in transfer is used.

With Bulk-Only Transport, a combination of bulk-out transfer and bulk-in transfer determined in
advance is used to transfer data between the host and the function. Bulk-Only Transport always
uses the combination of bulk transfers shown in figure 2.1. These bulk transfers have different
meanings, but they are handled as stages (transports).

Rev. 1.00, 10/03, page 5 of 80

Start

Bulk-out
transfer

End

Bulk-out transfer

Bulk-in
transfer

Bulk-in transfer

Command
transport (CBW)

Status
transport (CSW)

Data
transport

Figure 2.1 Relationship between Transfer Methods and Transports

In order to tell the host PC that the Bulk-Only Transport protocol is being used, a value of 0x50
must be entered in the bInterfaceProtocol field of the Interface Descriptor.

2.3.1 Command Transport

In command transport, commands are sent from the host PC to the function using bulk-out
transfer. This command packet is defined as the Command Block Wrapper (CBW), and Bulk-Only
Transport must always begin with the CBW.

The CBW is sent from the host PC as a 31-byte packet, using bulk-out transfer.

It is sent using the format shown in table 2.2.

Table 2.2

7 6 5 4 3 2 1 0

00-03 dCBWSignature

04-07 dCBWTag

08-0B dCBWDataTransferLength

0C bmCBWFlags

0D Reserved (0) bCBWLUN

0E Reserved (0) bCBWCBLength

0F-1E CBWCB

Rev. 1.00, 10/03, page 6 of 80

The fields are explained below.

dCBWSignature: This field identifies the data packet as a CBW.
The value is 43425355h (Little Endian).

dCBWTag: This is the command block tag. It is used to connect the CSW with
its corresponding CBW, and is specified by the host PC.

dCBWDataTransferLength: This is the length of the data planned for transport.
If this is 0, no data transport exists.

bmCBWFlags: If bit 7 of this field is 0, data is transported using bulk-out transport,
and if it is 1, bulk-in transport is used. Bits 0 to 6 are fixed at 0.

bCBWLUN: This is the Logical Unit Number of the device sending the
command block.

bCBWCBLength: This indicates the number of valid bytes for the next CBWCB field.

CBWCB: This field stores the command block to be executed by the function.
The command that the host PC wants to execute (the SCSI
command in this sample program) is entered in this field.

2.3.2 Status Transport

Status transport is used to send the results of command execution from the function to the host PC,
using bulk-in transfer.

This status packet is defined by the Command Status Wrapper (CSW). Bulk-Only Transport must
always end with the CSW.

The CSW is sent to the host as a 13-byte packet, using bulk-in transport.

It is sent in the format shown in table 2.3.

Table 2.3

7 6 5 4 3 2 1 0

0-3 dCSWSignature

4-7 dCSWTag

8-B dCSWDataResidue

C bCSWStatus

The fields are explained below.

Rev. 1.00, 10/03, page 7 of 80

dCSWSignature: This field identifies the data packet as the CSW.
The value is 53425355h (Little Endian).

dCSWTag: This is the command block tag. It ties the CBW to the CSW, and the same
value is entered here as that of the dCBWTag field of the CBW.

dCSWDataResidue: This reports any differences in the value of the CBW
dCBWDataTransferLength and the actual amount of data processed by the
function.

bCSWStatus: This indicates whether or not a command has been successfully executed. If
the command was executed successfully, the function sets 0x00 in this field.
Any value other than 0 indicates that the command was not executed
successfully. Error values are as follows: 0x01 indicates a failed command,
and 0x02 indicates a phase error.

2.3.3 Data Transport

Data transport is used to transfer data between the host PC and the function. For example, with the
Read/Write command (see section 4.6, Operation of SCSI Commands That Are Supported), the
actual data of the various storage sectors is sent using data transport.

Data transport is configured of multiple bus transactions.

Data transfers carried out using data transport use either bulk-out or bulk-in transfer. The
bmCBWFlags field of the CBW data determines which type of transport is used.

Data transport (bulk-out transfer)

This section explains how data is transferred when bulk-out data transport is used.

This status is set if bit 7 of the bmCBWFlags field of the CBW data is 0, and the
dCBWDataTransferLength field of the CBW data is not 0.

Here, the function receives the anticipated length of the data indicated by the
dCBWDataTransferLength field of the CBW data. The data transferred at this point is needed
when the SCSI command specified by the CBWCB field of the CBW data is executed.

Rev. 1.00, 10/03, page 8 of 80

Data transport (bulk-in transfer)

This section explains how data is transferred when bulk-in data transport is used.

This status is set if bit 7 of the bmCBWFlags field of the CBW data is 1, and the
dCBWDataTransferLength field of the CBW data is not 0.

Here, the anticipated length of the data indicated by the dCBWDataTransferLength field of the
CBW data is sent to the host PC. The data transferred at this point is the result produced when the
SCSI command specified by the CBWCB field of the CBW data was executed.

2.3.4 Class Commands

Class commands are commands that are defined by the various USB classes. They use control
transfer.

When USB Mass Storage Class Bulk-Only Transport is used as the data transport protocol, there
are two types of commands that must be supported. The class commands are indicated in table 2.4.

Table 2.4 Class Commands

bRequest Field Value Command Meaning of Command

255 (0xFF) Bulk-Only Mass Storage Reset Resets the interface

254 (0xFE) Get Max LUN Checks the number of LUNs
supported

When the Bulk-Only Mass Storage Reset command is received, the function resets all of the
interfaces used in USB Mass Storage Class Bulk-Only Transport.

When the Get Max LUN command is received, the function returns the largest logical unit number
that can be used. In the sample system used here, there is one logic unit, so a value of 0 will be
returned to the host.

Rev. 1.00, 10/03, page 9 of 80

2.4 SCSI Transparent Command Set Sub-Class Code

The various commands must be processed in response to the sub-class commands in the CBW sent
to the function by the host PC.

In this sample program, the nine SCSI commands shown in table 2.5 are supported. If a command
is not supported, the CSW will be used to inform the host PC that the command failed.

Table 2.5 Supported Commands

Operation Code Command Name Command Operation

12 INQUIRY Tells the host the drive information.

25 READ CAPACITY Tells the host the media sector information.

28 READ(10) Reads the specified sector volume data from a
specified sector.

2A WRITE(10) Writes the specified sector volume data to a specified
sector.

03 REQUEST SENSE If an error occurred for the previous command, this tells
the host what kind of error occurred.

1A MODE SENSE(6) Tells the host the drive status.

1E PREVENT ALLOW
MEDIUM REMOVAL

Inhibits/enables installing and removing media.

00 TEST UNIT READY Checks whether or not a medium can be used.

2F VERIFY(10) Confirms whether or not the data in a medium can be
accessed.

1B STOP/START UNIT Controls installation and removal of media.

Rev. 1.00, 10/03, page 10 of 80

Rev. 1.00, 10/03, page 11 of 80

Section 3 Development Environment

This chapter looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

• H8S/2218 Solution Engine (hereafter called the MS2218CP; type number: MS2218CP01)
manufactured by Hitachi ULSI Systems Co., Ltd.

• E10A Emulator manufactured by Renesas Technology Corp.
• PC (Windows 95/Windows 98/Windows Me/Windows 2000/Windows XP) equipped

with a PCI, PCMCIA, or USB slot
• PC (Windows 2000/Windows Me/Windows XP or Mac OS 9) to serve as the USB host
• USB cable
• Debugging Interface (hereafter called the HDI) manufactured by Renesas Technology Corp.
• High-performance Embedded Workshop (hereafter called the HEW) manufactured by Renesas

Technology Corp.

3.1 Hardware Environment

Figure 3.1 shows device connections.

Figure 3.1 Device Connections

USB cable

USB host PC
(Windows 2000/Windows
Me/Windows XP, or Mac OS 9)
This was used as the USB host to save and
load data in and from the SRAM.

E10A PC
(Windows 95/Windows 98/Windows Me/Windows
2000/Windows XP)
User firmware can be developed using the HDI and HEW.
HDI: Debugging Interface
HEW: High-performance Embedded Workshop

E10A cable

Rev. 1.00, 10/03, page 12 of 80

1. MS2218CP
Some DIP switch and jumper settings on the MS2218CP board must be changed from those at
shipment. Before turning on the power, ensure that the switches and jumpers are set as follows.
There is no need to change any other DIP switches and jumpers.

Table 3.1 Switch and Jumper Settings

At Shipment After Change Function
SW1-1 Off SW1-1 On

SW1-2 Off SW1-2 Off

SW1-3 Off SW1-3 Off

Selects operation mode 6

SW1-5 Off SW1-5 On Selects the E10A emulator mode

J-3 Closed J-3 Open Selects the USB self-powered mode

J-9 Closed J-9 Open Selects the big endian mode.

2. USB host PC
A PC with Windows 2000/Windows Me/Windows XP or Mac OS 9 installed, and with
a USB port, is used as the USB host. This system uses USB Mass Storage Class (Bulk-Only
Transport) device drivers installed as a standard part of the Windows 2000/Windows Me/
Windows XP or Mac OS 9 system, and so there is no need to install new drivers.

3. E10A
The PCMCIA is used for the communication interface between the E10A PC and the E10A
emulator.
The E10A emulator should be inserted into a PCMCIA slot and connected to the MS2218CP
via an interface cable. After connection, start the HDI and perform emulation.

Rev. 1.00, 10/03, page 13 of 80

3.2 Software Environment

A sample program, as well as the compiler and linker used, are explained.

3.2.1 Sample Program

Files required for the sample program are all stored in the H8S2218 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are indicated in figure 3.2 below.

H8S2218

CatBOTTypedef.h CatProType.h CatSCSITypedef.h CatTypedef.h
SetBOTInfo.h SetMacro.h SetSCSIInfo.h SetSystemSwitch.h SetUsbInfo.h
H8S2218.h SysMemMap.h

StartUp.c DoControl.c DoBulk.c DoInterrupt.c DoRequest.c
DoRequestBOT_StorageClass.c UsbMain.c DoBOTMSClass.c
DoSCSICommand.c sct.src

debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf (folder)
BuildOfHew.bat InkSet1.sub CH38iop (folder)

debugger.hds debugger.HDT debugger.HDW

Figure 3.2 Files Included in the Folder

3.2.2 Compiling and Linking

The sample program is compiled and linked using the following software.

High-performance Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed in C:\Hew, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling.
(Figure 3.3)

C:\

\Hew

\Tmp

Figure 3.3 Creating a Working Folder

Rev. 1.00, 10/03, page 14 of 80

Next, the folder in which the sample program is stored (H8S2218) should be copied to C:\Usr (or
can be copied to any location, then "C:\Usr\h8s2218" written in the debugger.hds file should be
modified to the path to the copied folder). In addition to the sample program, this folder contains a
batch file named BuildOfHew.bat. This batch file sets the path, specifies compile options,
specifies a log file indicating the compile and linking results, and performs other operations. When
BuildOfHew.bat is executed, compiling and linking are performed. As a result, an executable file
named debugger.ABS is created within the folder. At the same time, a map file named
debugger.MAP and a log file named log.txt are created. The map file indicates the program size
and variable addresses. The compile results (whether there are any errors etc.) are recorded in the
log file. (Figure 3.4)

Note: If HEW is installed in a folder other than C:\Hew, the compiler path setting and settings
for environment variables used by the compiler in BuildOfHew.bat, as well as the library
settings in InkSet1.sub, must be changed. Here the compiler path setting should be
changed to the path of ch38.exe, the setting for the environment variable ch38 used by the
compiler should be set to the folder of machine.h, and the setting of ch38tmp should
specify the work folder for the compiler. The library setting should specify the path of
c8s2ba.lib.

Batch file

BuildOfHew.bat
Execution

Execution results

debugger.ABS

debugger.MOT

debugger.MAP

log.txt

H8S2218

Figure 3.4 Compile Results

Rev. 1.00, 10/03, page 15 of 80

3.3 Loading and Executing the Program

Figure 3.5 shows the memory map for the sample program.

MS2218CP

Vector area

P, C, and D areas*1

Empty area

Empty area

B and R areas*1

RAM_disk area

Stack area*2

0000 0000

0000 01BF
0000 0200

0000 26F4

0040 0000

005F FFFF

00FF C000

00FF EC30
00FF EC30

00FF EFB0

448 bytes

9460 bytes

About 11 kbytes

2 Mbytes

897 bytes

Notes: 1. The memory map differs according to the compiler version, compiling conditions,
 firmware upgrade, etc.
 2. The stack does not occupy the whole area.

Figure 3.5 Memory Map

As shown in figure 3.5, this sample program allocates areas for vectors P, C, and D to the on-chip
ROM area in area 1, the stack, B, R, and control transfer areas to the on-chip RAM, and the RAM
disk area to the SRAM. These memory allocations are specified by the InkSet1.sub file in the
H8S2218 folder. When modifying the program allocation, this file must be modified.

3.3.1 Loading the Program

In order to load the sample program into the MS2218CP, the following procedure is used.

• Insert the E10A into the E10A PC in which the HDI has been installed.
• Connect the E10A to the MS2218CP via an E10A cable.
• Turn on the power to the E10A PC to start up the machine.
• Turn on the power to the MS2218CP.
• Execute debugger.hds in the H8S2218 folder.
• When the operating frequency is asked, enter the frequency of the installed crystal resonator

(16 or 24 MHz)
• When the registry is asked, enter 0.

Through the above procedure, the E10A starts operation.

Rev. 1.00, 10/03, page 16 of 80

3.3.2 Executing the Program

In order to execute the program which was loaded in section 3.3.1 above, the program counter
(PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clicking
the numerical area of the register (PC) in the window, a dialog box appears, and the register value
can be changed. Use this dialog box to set the PC to H'0000 0200.

After making the above settings, select Go from the Run menu to execute the program.

3.4 Using the RAM Disk

The following describes an example in which Windows 2000 is used.

After the program has been run, the Series B connector of the USB cable is inserted into the
MS2218CP, and the Series A connector on the opposite side is connected to the USB host PC.

After the emulation used for control transfer and bulk transfer has ended, USB Large-Size Storage
Device is displayed under USB Controller in the Device Manager, and Renesas EX RAM Disk
USB Device is displayed under Disk Drive. As a result, the host PC recognizes the MS2218CP as
the storage device, and the local disk is mounted in the microcomputer.

Next, the local disk needs to be formatted.

Select Local Disk and click with the right button of the mouse to display a floating menu. Select
Format. A format selection window for the drive is displayed. Enter the necessary format settings.
Check to make sure FAT has been selected for the file system, and click on the Start button.

A format confirmation window is displayed. Click on the OK button.

When the formatting has been completed, a message window is displayed. Click on the OK
button.

The screen returns to the drive format selection window. Click on the Close button to exit the
procedure.

The MS2218CP can now be used as the RAM disk for USB connection.

Rev. 1.00, 10/03, page 17 of 80

3.5 Modifying RAM Disk Settings

The following describes how to modify the settings of the RAM disk used by the sample program.

3.5.1 Selecting Removable or Fixed Disk

The sample program uses the RAM disk as a removable disk.

To use the RAM disk as a fixed disk, modify "#define REMOVABLE_DISK" in
SetSystemSwitch.h to a comment and remove the comment mark from "#undef
REMOVABLE_DISK".

3.5.2 Changing the RAM Disk Size

The sample program uses 2-Mbyte SRAM as the RAM disk. To change the RAM disk size,
modify the contents of SysMemMap.h. First, specify the total bytes*1 to be used as the RAM disk
as DISK_ALL_BYTE. Then, specify the start and end locations of the RAM disk area as
RAM_DISK_S and RAM_DISK_E*2, respectively.

Notes: 1. Specify 1.5 Mbytes or a larger size. As the FAT information occupies some area, the
area that can be accessed from the PC will be less than the specified size. The FAT
information provided by the sample program uses about 16 Mbytes for FAT12 and
about 2 Gbytes for FAT16. The information for other FAT systems must be prepared
by the user.

2. The area between RAM_DISK_S and RAM_DISK_E must be larger than the size
specified by DISK_ALL_BYTE.

Rev. 1.00, 10/03, page 18 of 80

Rev. 1.00, 10/03, page 19 of 80

Section 4 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the MS2218CP, which works as a RAM disk, and initiates USB transfers by
means of interrupts from the USB function module. Of the interrupts from modules in the
H8S/2218, there are three interrupts related to the USB function module: EXIRQ0, EXIRQ1, and
IRQ6, but in this sample program, only EXIRQ0 is used.

Features of this program are as follows.

• Control transfer can be performed.

• Bulk-out transfer can be used to receive data from the host controller.

• Bulk-in transfer can be used to send data to the host controller.

• It operates as a RAM disk that supports SCSI commands.

4.1 State Transition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 4.1, there are transitions between four states.

Reset state

Stationary state

Immediately after the power supply has been turned on,
the system is in reset state.After the initial settings have been
completed, it returns to the stationary state.

Control transfer

Bulk transport

USB communication state

Initial settings completed

USB communication
 completed

Interrup generated
(EXIRQ0)

Figure 4.1 State Transition Diagram

• Reset State

Upon power-on reset and manual reset, this state is entered. In the reset state, the H8S/2218
mainly performs initial settings.

• Stationary State

When initial settings are completed, a stationary state is entered in the main loop.

Rev. 1.00, 10/03, page 20 of 80

• USB Communication State

In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according to the
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
registers 0 to 3 (UIFR0 to UIFR3), and there are nine interrupt types in all. When an interrupt
factor occurs, the corresponding bits in UIFR0 to UIFR3 are set to 1.

4.2 USB Communication State

The USB communication state can be further divided into two states according to the transfer type
(see figure 4.2). When an interrupt occurs, first there is a transition to the USB communication
state, and then there is further branching to a transfer state according to the interrupt type. The
branching method is explained in section 5, Sample Program Operation.

Ready

Setup stage
Command

transport (CBW)

Status transport (CSW)Status stage

Control transfer

Ready

Bulk transport

USB communication state

Data outData stage
OUT direction

Data stage
IN direction

Data in

Figure 4.2 USB Communication State

Rev. 1.00, 10/03, page 21 of 80

4.2.1 Control Transfer

Control transfer is used mainly for functions such as obtaining device information and specifying
device operating states. For this reason, when the function is connected to the host PC, control
transfer is the first transfer to be carried out.

Transfer processing for control transfer is carried out in a series of two or three stages. These
stages are a setup stage, a data stage, and a status stage.

4.2.2 Bulk Transfer

Bulk transfer has no time limitations, so it is used to send large volumes of data with no errors.
The data transfer speed is not guaranteed, but the data contents are guaranteed. With USB Mass
Storage Class (Bulk-Only Transport), bulk transfer is used to transfer storage data between the
host PC and the function.

Transport processing for USB Mass Storage Class (Bulk-Only Transport) is carried out in a series
of two or three stages. These stages are command transport (CBW), data transport, and status
transport (CSW).

Rev. 1.00, 10/03, page 22 of 80

4.3 File Structure

This sample program consists of eight source files and eleven header files. The overall file
structure is shown in table 4.1. Each function is arranged in one file by transfer method or function
type. Figure 4.3 shows the layered configuration of these files.

Table 4.1 File Structure

File Name Principle Role

StartUp.c Microcomputer default settings

UsbMain.c Judging the causes of interrupts

Sending and receiving packets

DoRequest.c Processing setup commands issued by the host

DoRequestBOT_StorageClass.c Processing Mass Storage Class (Bulk-Only Transport) class
commands

DoControl.c Executing control transfer

DoBulk.c Executing bulk transfer

DoBOTMSClass.c Executing Mass Storage Class (Bulk-Only Transport)

DoSCSICommand.c Analyzing and processing SCSI commands

h8s2218.h Defining H8S/2218 registers

SysMemMap.h Defining MS2218CP memory map addresses

CatProType.h Prototype declarations

CatTypedef.h Defining the basic structures used in USB firmware

CatBOTTypedef.h Defining structures used for Bulk-Only Transport

CatSCSITypedef.h Defining structures used for SCSI and macros for preparing FAT
information

SetUsbInfo.h Default settings of variables needed to support USB

SetBOTInfo.h Default settings of variables needed to support Bulk-Only
Transport

SetSCSIInfo.h Default settings of variables needed to support SCSI commands

SetSystemSwitch.h System operation settings

SetMacro.h Defining macros

sct.src Specifying variables to be used to copy initial values from RAM

Rev. 1.00, 10/03, page 23 of 80

Target data file
Operation: Interprets SCSI commands and carries out
 RAM disk operations
Relevant files: DoSCSICommand.c
 CatSCSITypedef.h
 SetSCSIInfo.h

Class file
Operation: Carries out Mass Storage Class (Bulk-Only
 Transport) operations and supports class commands
Relevant files: DoBOTMSClass.c
 CatBOTTypedef.h
 SetBOTInfo.h

Bulk transport
Operation: Carries out
 bulk transport
 operations
Relevant file: DoBulk.c

Bulk transport

V
en

de
r

co
m

m
an

ds

Operation: Carries out
responses to class commands
Relevant file:
DoRequestBOT_Storage
Class.c

Standard commands
Operation: Carries out
responses to standard commands
Relevant file: DoRequest.c

Control transfer
Operation: Carries out control transfer operations
Relevant file: DoControl.c

USB common variables

USB hardware
USB
bus
interface

USB
device
layer

Class layer

Application
layer

Operation: Carries out reception of packet data, transmission of packet data, Endian comversion, various types of
settings, and other necessary operations regardless of transport method
Relevant file: UsbMain.c
 CatTypedef.h
 SetUsbInfo.h

Figure 4.3 Layered Configuration of the Storage Class (BOT) Firmware

Rev. 1.00, 10/03, page 24 of 80

4.4 Purposes of Functions

Table 4.2 to 4.9 shows functions contained in each file and their purposes.

Table 4.2 StartUp.c

File in Which
Stored Function Name Purpose

SetPowerOnSection
Sets BSC, terminals, and interrupt controller, calls
initialization routines, and shifts to the main loop

_INITSCT
Copies variables that have default settings to the RAM
work area

InitMemory Clears the RAM area used in bulk communication

StartUp.c

InitSystem Specifies the USB clock, system interrupts, and masks

When a power-on reset or manual reset is carried out, the SetPowerOnSection of the StartUp.c file
is called. At this point, the H8S/2218 default settings are entered and the RAM area used for bulk
transfer is cleared.

Table 4.3 UsbMain.c

File in Which
Stored Function Name Purpose

BranchOfInt
Discriminates interrupt factors, and calls function
according to interrupt

GetPacket Writes data transferred from the host controller to RAM

GetPacket4
Writes data transferred from the host controller to RAM
in longwords (ring buffer supported; not used by the
Mass Storage Class)

GetPacket4S
Writes data transferred from the host controller to RAM
in longwords (ring buffer not supported; fast-speed
version)

PutPacket
Writes data for transfer to the host controller to the USB
module

UsbMain.c

PutPacket4
Writes data for transfer to the host controller to the USB
module in longwords (ring buffer supported; not used by
the Mass Storage Class)

Rev. 1.00, 10/03, page 25 of 80

File in Which
Stored Function Name Purpose

PutPacket4S
Writes data for transfer to the host controller to the USB
module in longwords (ring buffer not supported; fast-
speed version)

SetControlOutContents Overwrites data with that sent from the host

SetUsbModule Sets USB module initial settings

ActBusReset Clears FIFO on receiving bus reset

ActBusVcc
Pulls up D+ and controls USB module when the USB
cable is connected or disconnected (not used by this
sample application)

ConvRealn
Reads data of a specified byte length from a specified
address

UsbMain.c

ConvReflexn
Reads data of a specified byte length from specified
addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are sent and received between the host
controller and function modules.

Table 4.4 DoRequest.c

File in Which
Stored Function Name Purpose

DecStandardCommands
Decodes command issued by host controller, and
processes standard commandsDoRequest.c

DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded and processed. In this
sample program, a vendor ID of 045B (vendor: Renesas Technology Corp.) is used. When the
customer develops a product, the customer should obtain a vendor ID at the USB Implementers'
Forum. Because vendor commands are not used, DecVenderCommands does not perform any
action. In order to use a vendor command, the customer should develop a program.

Table 4.5 DoRequestBOT_StorageClass.c

File in Which
Stored Function Name Purpose

DoRequestBOT_

StorageClass.c

DecBOTClass

Commands

Processes USB Mass Storage Class (Bulk-Only Transport)
commands

Rev. 1.00, 10/03, page 26 of 80

This function carries out processing according to the Mass Storage Class (Bulk-Only Transport)
commands (Bulk-Only Mass Storage Reset and Get Max LUN).

The Bulk-Only Mass Storage Reset command resets all of the interfaces used in Bulk-Only
Transport.

The Get Max LUN command returns the largest logical unit number used by peripheral devices. In
this sample program, there is one logical unit, so a value of 0 is returned to the host.

Table 4.6 DoControl.c

File in Which
Stored Function Name Purpose

ActControl Controls the setup stage of control transfer

ActControlIn
Controls the data stage and status stage of control IN
transfer (transfer in which the data stage is in the IN
direction)

ActControlOut
Controls the data stage and status stage of control OUT
transfer (transfer in which the data stage is in the OUT
direction)

DoControl.c

ActControlInOut
Sorts the data stage and status stage of control transfers and
direct them to ActControlIn and ActControlOut.

When control transfer interrupt SETUP TS is generated, ActControl obtains the command, and
decoding is carried out by DecStandardCommands to determine the transfer direction. Next, when
control transfer interrupt EP0o TS, EP0i TR, or EP0i TS is generated, ActControlInOut calls either
ActControlIn or ActControlOut depending on the transfer direction, and the data stage and status
stage are carried out by the called function.

Table 4.7 DoBulk.c

File in Which
Stored Function Name Purpose

ActBulkOut Performs bulk-out transfer

ActBulkIn Performs bulk-in transferDoBulk.c

ActBulkInReady Performs preparations for bulk-in transfer

These functions carry out processing involving bulk ransfer.

Rev. 1.00, 10/03, page 27 of 80

Table 4.8 DoBOTMSClass.c

File in Which
Stored Function Name Purpose

ActBulkOnly Divides Bulk-Only Transport into separate stages

ActBulkOnlyCommand Controls CBW for Bulk-Only Transport

ActBulkOnlyIn
Controls data transport and status transport (when the
data stage is in the IN direction)

DoBOTMS
Class.c

ActBulkOnlyOut
Controls data transport and status transport (when the
data stage is in the OUT direction)

With DoBOTMSClass.c, control of the two or three stages of the Mass Storage Class (Bulk-Only
Transport) is carried out, and operation is carried out in accordance with the specifications.

Table 4.9 DoSCSICommand.c

File in Which
Stored Function Name Purpose

DecBotCmd
Processes SCSI commands sent from the host using
Bulk-Only Transport

DoSCSI

Command.c
SetBotCmdErr Processes SCSI command errors

The DoSCSICommand.c function is used to analyze SCSI commands sent from the host PC and
prepare for the next data transport or status transport.

Figure 4.4 shows the interrelationship between the functions explained in table 4.2 to 4.9. The
upper-side functions can call the lower-side functions. Also, multiple functions can call the same
function. In the stationary state, SetPowerOnSection calls other functions, and in the case of a
transition to the USB communication state which occurs on an interrupt, BranchOfInt calls other
functions. Figure 4.4 shows the hierarchical relation of functions; there is no order for function
calling. For information on the order in which functions are called, please refer to the flow charts
of section 5, Sample Program Operation.

Rev. 1.00, 10/03, page 28 of 80

SetPowerOnSection

DecStandardCommands

ActBulkOut

InitSystem_INTSCTInitMemory

ActControl

GetPacket4S

GetPacket SetControlOutContents PutPacket

ActBusReset

SetUsbModule ActBulkInReadyActBusVcc

ConvReflexn DecBOTClassCommands DecVenderCommands

ActControlInOut

ActControlOut ActControlIn

ActBulkOnly

ConvReaIn ConvReflexn SetBotCmdErr

BranchOfInt

ActBulkOnlyOut ActBulkOnlyInActBulkOnlyCommand

GetPacketDecBotCmd GetPacket4S

ActBulkIn ConvReflexIn

PutPacket PutPacket4S

Figure 4.4 Interrelationship between Functions

Rev. 1.00, 10/03, page 29 of 80

4.5 RAM Disk

In the sample program provided here, the SRAM in the MS2218CP is selected as the disk device,
and the host PC is notified that the MS2218CP (function) is a disk.

As shown in figure 4.5, the disk device of the function has a master boot block and a partition boot
block. When the system is booted, an initialization routine is used to write the master boot block
and the partition boot block to the RAM disk area on the SRAM.

Master boot block

Sector 0

Sector 20
Partition boot block

Figure 4.5 Disk Construction

SCSI commands are used to allow function access from the host PC (saving and loading data). In
order to work with SCSI commands, the user needs to understand the construction shown in figure
4.5 and then write the operation.

Rev. 1.00, 10/03, page 30 of 80

4.6 Operation of SCSI Commands That Are Supported

Table 4.10 shows the SCSI commands that are supported by the sample program.

Table 4.10 SCSI Command Operations

Command Name
Transport
Name Operation Content

CBW This decodes a command and recognizes it as an INQUIRY
command. It then prepares to send the INQUIRY information (96
bytes) stored in the ROM.

Data This sends the INQUIRY information to the host PC using bulk-in
transfer.

INQUIRY

CSW This sends the results of executing a command to the PC. If the
data being sent is 96 bytes or less, the transmission will end
successfully.

CBW This decodes the command and recognizes it as a READ
CAPACITY command. It then reads the number of bytes per
sector, which is stored in the partition boot block on the disk
device open on the S-RAM, and the value stored for the total
number of sectors on the disk, and prepares to send the READ
CAPACITY information (8 bytes).

If the medium is inaccessible (the LSB of unit_state[0] is 1), the
function treats it as no data transfer and performs the processing
for (4) described in section 4.7, Processing If and Error Occurs.
The function sets NOT READY for the value to be returned with
the REQUEST SENSE command.

Data This sends the READ CAPACITY information to the host PC using
bulk-in transfer.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x00).

READ CAPACITY

CSW This sends the results of the command execution to the host PC.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x01).

Rev. 1.00, 10/03, page 31 of 80

Command Name
Transport
Name Operation Content

CBW This decodes the command and recognizes it as the READ (10)
command. It then prepares to send the data for a specified read
sector volume from the disk device open on the S-RAM.

If the medium is inaccessible (the LSB of unit_state[0] is 1), the
function treats it as no data transfer and performs the processing
for (4) described in section 4.7, Processing If and Error Occurs.
The function sets NOT READY for the value to be returned with
the REQUEST SENSE command.

Data This sends the data from the read sectors to the host PC using
bulk-in transfer.

If the medium is inaccessible, this returns the same amount of
data (0x00) as requested by the host PC.

READ(10)

CSW This sends the results of executing the READ (10) command to
the host computer.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x01).

CBW This decodes the command and recognizes it as the WRITE (10)
command. It then prepares to receive the data of the specified
sector volume from the specified write sector in the disk device
open on the S-RAM.

If the medium is inaccessible (the LSB of unit_state[0] is 1), the
function treats it as no data transfer and performs the processing
for (9) described in section 4.7, Processing If and Error Occurs.
The function sets NOT READY for the value to be returned with
the REQUEST SENSE command.

Data This receives the write sector data from the host PC using bulk-out
transfer.

If the medium is inaccessible, this reads and discards data sent
from the host.

WRITE(10)

CSW This notifies the host PC that the operation has been completed
successfully.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x01).

Rev. 1.00, 10/03, page 32 of 80

Command Name
Transport
Name Operation Content

CBW This decodes the command and recognizes it as the REQUEST
SENSE command. It then prepares to send the returned value
(the results of executing the previous SCSI command).

Data This sends the returned value to the host PC using bulk-in
transfer.

REQUEST
SENSE

CSW This sends the results of the command execution to the host PC.
The transmission is completed successfully as long as the data
consists of 8 bytes or less.

CBW This decodes the command and recognizes it as the PREVENT
ALLOW MEDIUM REMOVAL command. It then prepares to notify
the host PC that the operation has been successfully completed.

If the medium is inaccessible (the LSB of unit_state[0] is 1), this
sets the command status as failed and sets NOT READY for the
value to be returned with the REQUEST SENSE command.

Data Data transport does not exist for this command.

PREVENT
ALLOW MEDIUM
REMOVAL

CSW This notifies the host PC that the operation has been completed
successfully.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x01).

CBW This decodes the command and recognizes it as the TEST UNIT
READY command. It then prepares to notify the host PC that the
operation has been successfully completed.

If the medium is inaccessible (the LSB of unit_state[0] is 1), this
sets the command status as failed and sets NOT READY for the
value to be returned with the REQUEST SENSE command.

Data Data transport does not exist for this command.

TEST UNIT
READY

CSW This notifies the host PC that the operation has been completed
successfully.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x01).

Rev. 1.00, 10/03, page 33 of 80

Command Name
Transport
Name Operation Content

CBW This decodes the command and recognizes it as the VERIFY(10)
command. It then prepares to notify the host PC that the operation
has been successfully completed.

If the medium is inaccessible (the LSB of unit_state[0] is 1), this
sets the command status as failed and sets NOT READY for the
value to be returned with the REQUEST SENSE command.

Data Data transport does not exist for this command.
VERIFY(10)

CSW This notifies the host PC that the operation has been completed
successfully.

If the medium is inaccessible, this returns "command failed" (CSW
status 0x01).

CBW This decodes the command and recognizes it as the
STOP/START UNIT command. It then sets the LSB of
unit_state[0] to 1 when the command specifies removal or stop of
the medium. In other cases, it sets the LSB of unit_state[0] to 0.

To recover from the inaccessible state, the user must modify the
LSB of unit_state[0] is 0.

Data Data transport does not exist for this command.

STOP/START
UNIT

CSW This notifies the host PC that the operation has been completed
successfully.

CBW This decodes the command and recognizes it as the MODE
SENSE (6) command. It then prepares to send the requested
MODE SENSE information

Data This sends the MODE SENSE information to the host PC using
bulk-in transfer.

MODE SENSE(6)

CSW This sends the results of the command execution to the host PC.

CBW This decodes the command and, if it is an unsupported command,
sets INVALID FIELD IN CDB for the value to be returned with the
REQUEST SENSE command. It then prepares to transport the
data.

If the host PC has requested data using bulk-in transfer, this
sends the same amount of data (0x00) as that requested by the
host PC.

If the host PC has sent data using bulk-out transfer, the number of
bytes received are counted.

Data

If there is no data transport, no operation is carried out.

Commands that
are not supported

CSW This returns "command failed" (CSW status 0x01) to the host PC.

Rev. 1.00, 10/03, page 34 of 80

4.7 Processing If an Error Occurs

The errors that may occur during a Mass Storage Class (Bulk-Only Transport) transmission
between the host PC and function, and how the function operates when an error occurs are
described below.

The Bulk-Only Transport standard defines the following two types of errors:

• Invalid CBW

• Operation expected by the host PC and operation planned by the function (operation specified
by the SCSI command) do not match (10 cases)

The Bulk-Only Transport standard does not cover any other states.

There are 13 states for data transfer between the host PC and a function as shown in Tables 4.11
and 4.12. Cases 1, 6 and 12 are normal states.

Table 4.11 Data Transfer States between Host PC and Function.

What the Host PC Expects

No Data Transfer
Data Reception
from Function

Data Send to
Function

No data transfer (1) Hn = Dn (4) Hi > Dn (9) Ho > Dn

(5) Hi > Di

Data send to host PC (2) Hn < Di (6) Hi = Di (10) Ho < > Di

(7) Hi < Di

(11) Ho > Do

(3) Hn < Do (8) Hi < > Do (12) Ho = Do

What the
function
plans

Data reception from host

PC (13) Ho < Do

Rev. 1.00, 10/03, page 35 of 80

Table 4.12 Explanation of Data Transfer States between Host PC and Function

Case No. Relation between Host PC and Function

1 The host PC expects no data transfer and the function plans no data transfer.

2 The host PC expects no data transfer but the function plans to send data to the host PC

3 The host PC expects no data transfer but the function plans to receive data from the
host PC.

4 The host PC expects to receive data from the function but the function plans no data
transfer to the host PC.

5 The amount of data the function sends to the host PC is less than the amount of data
the host PC expected to receive from the function.

6 The amount of data the function sends to the host PC is equal to the amount of data the
host PC expected to receive from the function.

7 The amount of data the function sends to the host PC is greater than the amount of
data the host PC expected to receive from the function.

8 The host PC expects to receive data from the function but the function plans to receive
data from the host PC.

9 The host PC expects to send data to the function but the function plans no data transfer
to the host PC.

10 The host PC expects to send data to the function but the function plans to send data to
the host PC.

11 The amount of data the function receives from the host PC is less than the amount of
data the host PC expected to send to the function.

12 The amount of data the function receives from the host PC is equal to the amount of
data the host PC expected to the function.

13 The amount of data the function receives from the host PC is greater than the amount
of data the host PC expected to send to the function.

Rev. 1.00, 10/03, page 36 of 80

Table 4.13 shows sample error conditions that may be generated.

Table 4.13 Sample Error Conditions

Case No. Relation between Host PC and Function

2 When a READ command is issued from the host PC, the amount of data to be
transported in the USB data transport is 0 while the amount of data specified by the SCSI
command is a value other than 0.

3 When a WRITE command is issued from the host PC, the amount of data to be
transported in the USB data transport is 0 while the amount of data specified by the SCSI
command is a value other than 0.

4 When a READ command is issued from the host PC, the amount of data to be
transported in the USB data transport is 0 while the amount of data specified by the SCSI
command is 0.

5 When a READ command is issued from the host PC, the amount of data specified by the
SCSI command is less than the amount of data to be transported in the USB data
transport.

7 When a READ command is issued from the host PC, the amount of data specified by the
SCSI command is greater than the amount of data to be transported in the USB data
transport.

8 Even though a WRITE command has been issued from the host PC, the host PC
requests for data in the USB data transport.

9 When a WRITE command is issued from the host PC, the amount of data to be
transported in the USB data transport is a value other than 0 while the amount of data
specified by the SCSI command is 0.

10 Even though a READ command has been issued from the host PC, the host PC sends
data in the USB data transport.

11 When a WRITE command is issued from the host PC, the amount of data specified by the
SCSI command is less than the amount of data to be transported in the USB data
transport.

13 When a WRITE command is issued from the host PC, the amount of data specified by the
SCSI command is greater than the amount of data to be transported in the USB data
transport.

Rev. 1.00, 10/03, page 37 of 80

Table 4.14 shows how a function operates when each error condition occurs.

Table 4.14 Function Operation for Each Error Condition

Case No. Relation between Host PC and Function

2, 3 • Set 0x02 as the CSW status.

4, 5 • The function adds data to become equal to the data length set in
dCBWDataTransferLength and then sends data to the host PC.

• Set the amount of data added in the data transport in dCBWDataResidue of CSW.

• Set 0x00 as the CSW status.

7, 8 • The function sends data to the host PC up to the data length set in
dCBWDataTransferLength.

• Set 0x02 as the CSW status.

9, 11 • The function receives data from the host PC up to the data length set in
dCBWDataTransferLength.

• Set the difference between the amount of data received in the data transport and the
amount of data processed by the function in dCBWDataResidue of CSW.

• Set 0x01 as the CSW status.

10, 13 • The function receives data from the host PC up to the data length set in
dCBWDataTransferLength.

• Set 0x02 as the CSW status.

Figures 4.6 to 4.8 show the processing when a data transfer error occurs.

Rev. 1.00, 10/03, page 38 of 80

Yes

Yes

No

Start

CBW is received

Is CBW data valid?

Command
transport

Data
transport

Status
transport

EP1 is stalled

Case:2, 3

Bulk-out

Bulk-in

0x02 is set in
bCSWStatus

Data transport direction is
judged from CBWk

Bulk-in operation in
data transport

CSW is sent

End

Bulk-out operation in
data transport

Amount of data planned by
host=0 while
Amount of data planned by
function !=0

No

Figure 4.6 Error Processing Flow in Data Transfer (1)

Rev. 1.00, 10/03, page 39 of 80

Yes

Yes

No

Bulk-in operation
in data transport

Data us sent in
data transport

Amount of data planned b host
=

Amount of data planned by function

Amount of data planned b host
>

Amount of data planned by function

0 is added until data is equal to
the data length required by

the host and then data is output

Data is sent until the
amount of data planned

by the host has been sent

Set the additional
amount of data in

dCSWDataRecidue

Set the amount of data
not yet sent in

dCSWDataRecidue

Set 0x00 in
bCSWStatus

Set 0x00 in
bCSWStatus

Status transport operation

Case: 6 Case: 4, 5 Case: 7, 8

Set 0x02 in
bCSWStatus

No

Figure 4.7 Error Processing Flow in Data Transfer (2)

Rev. 1.00, 10/03, page 40 of 80

Yes

Yes

Yes

No

Bulk-out operation
in data transport

Data is received in
data transport

Data is received in
data transport

Set the overflowed
amount of data in

bCSWDataResidue
Set the amount of data

not yet sent in
bCSWDataResidue

Data is received until the
amount of data planned by
the host has been received

Dummy read is performed
for the amount of data
planned by the host

Set 0x00 in
bCSWStatus

Case: 1, 12 Case: 9, 11 Case: 13 Case: 10

Set 0x01 in
bCSWStatus

Set 0x02 in
bCSWStatus

Set 0x02 in
bCSWStatus

Status transport
operation

Does the command to be executed
by the function match the transport

direction in data transport?

Amount of data planned by host
=

Amount of data planned by function

Amount of data planned by host
>

Amount of data planned by function

No

No

Figure 4.8 Error Processing Flow in Data Transfer (3)

Rev. 1.00, 10/03, page 41 of 80

When a Mass Storage Class (Bulk-Only Transport) transmission is carried out, transport of the
CBW initiates a series of data transfers, and when the CSW is transported to the host PC, a series
of data transfers is processed. This status contains two items: dCSWStatus that indicates the
transport result, and dCSWDataResidue that indicates the number of error bytes.

In this sample program, the following two fields are used to create these two items.

• dCBWDataTransferLength field of CBW packet

• dCSWDataTransferResidue field of CSW packet

The dCBWDataTransferLength field of the CBW packet is used as the variable in which the
number of data bytes the host PC specifies to be handled in the data transport is entered.

The dCSWDataTrasferResidue field of the CSW packet is used as the variable in which the
number of data bytes the function handles in the data transport is entered.

When the CBW transport has been completed, the number of data bytes planned to be handled in
the data transport by the host PC and the function are stored in the dCBWDataTransferLength and
dCSWDataTransferResidue fields, respectively.

Data is transferred in the data transport according to the flowcharts.

If data transport between the host PC and function has been processed without errors, the values in
the dCBWDataTransferLength and dCSWDataTransferResidue fields are both subtracted by the
number of bytes that have been transferred for every data transfer in the data transport. For other
cases, the difference between the number of data bytes the host PC requires to be handled in the
data transport and the number of data bytes the function has handled in the data transport is stored
in the dCSWDataTransferResidue field of the CSW packet, and operation then moves to the status
transport.

Rev. 1.00, 10/03, page 42 of 80

dCBWDataTransferLength

dCSWDataResidue

dCBWDataTransferLength

dCSWDataResidue

dCBWDataTransferLength

dCSWDataResidue

CBW

Command
transport

Data
transport

Status
transport

...IN/OUT IN/OUT IN/OUT CSW

Amount of data planned by the host

Amount of data planned by the device

Amount of data planned by the host

Amount of data planned by the device Insufficient

Exceeding

Amount of data planned by the host

0 is returned because it is
equal to the amount of

data planned by the host

The amount of data
insufficient for that planned

by the host is returned

The amount of data
exceeding that planned
by the host is returned

Amount of data planned by the device

Figure 4.9 Each Stage in Bulk-Only Transport

Rev. 1.00, 10/03, page 43 of 80

Section 5 Sample Program Operation

In this chapter, the operation of the sample program is explained, relating it to the operation of the
USB function module.

5.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of
internal peripheral modules are initialized. Next, the function SetPowerOnSection in StartUp.c is
called, and the CPU is initialized. Figure 5.1 is a flow chart for the SetPowerOnSection function
operation.

START

Microcomputer
default settings

RAM is
cleared

Variables
are initialized

Constant
status

(inifinite loop)

StartUp.c <SetPowerOnSection>

After the various default settings have been
entered, the program enters the constant status
mode.

Figure 5.1 Main Loop

Rev. 1.00, 10/03, page 44 of 80

5.2 Types of Interrupts

As explained in section 4, the interrupts used in this sample program are indicated by the interrupt
flag registers 0 to 3 (UIFR0 to UIFR3); there are a total of nine types of interrupts. When an
interrupt factor occurs, the corresponding bits in the interrupt flag registers are set to 1, and an
EXIRQ0 interrupt request is sent to the CPU. In the sample program, the interrupt flag registers
are read as a result of this interrupt request, and the corresponding USB communication is
performed. Figure 5.2 shows the interrupt flag registers and their relation to USB communication.

USB interrupt flag register 0 (UIFR0)

USB interrupt flag register1(UIFR1)

USB interrupt flag register 3 (UIFR3)

Bit:

Bit name:

Bit:

Bit name:

Bit:

Bit name:

BRST

SOF SETC SPRSs SPRSi VBUSs VBUSi

Setup
TS

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
EP1
ALL

EMPTYs

EP2
READY

EP1
TR

EP1
EMPTY

CK48
READY

EP3
TS

EP3
TR

EP0o
TS

EP0i
TR

EP0i
TS

7 6 5 4 3 2 1 0

USB clock
stabilization detection

Bulk-Only
Transport

Bus reset Control transfer

Not used

Cable connectionNot usedNot used

Not used

Note: This sample program uses EP1 and EP2 for bulk transport, and EP0 for control transfer.
It does not use interrupts related to endpoints other than EP0, EP1, and EP2. ïïïïïïïïø¢s

*

*

*

**

Figure 5.2 Types of Interrupt Flags

Rev. 1.00, 10/03, page 45 of 80

5.2.1 Method of Branching to Different Transfer Processes

In this sample program the transfer method is determined by the type of interrupt from the USB
module. Branching to the different transfer methods is executed by BranchOfInt in UsbMain.c.
Table 5.1 shows the relations between the types of interrupts and the functions called by
BranchOfInt.

Table 5.1 Interrupt Types and Functions Called on Branching

Register Name Bit Bit Name Name of Function Called

7 BRST ActBusReset

6  

5 EP3 TR 

4 EP3 TS 

3 EP0o TS ActControlInOut

2 EP0i TR ActControlInOut

1 EP0i TS ActControlInOut

UIFR0

0 SETUP TS ActControl

7  

6  

5  

4  

3 EP1 ALL EMPTY 

2 EP2 READY ActBulkOnly

1 EP1 TR ActBulkInReady

UIFR1

0 EP1 EMPTY ActBulkOnly

7 CK48 READY SetUSBModule

6 SOF 

5 SETC 

4  

3 SPRSs 

2 SPRSi 

1 VBUSs 

UIFR3

0 VBUSi ActBusVcc

The EP0iTS and EP0oTS interrupts are used both for control-in and control-out transfer. Hence in
order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For details, refer to section 5.6, Control Transfers.

Rev. 1.00, 10/03, page 46 of 80

In the H8S/2218 hardware manual, operation of the USB function module when an interrupt
occurs, and a summary of operation on the application side are described. From the next section,
details of application-side firmware are explained for each USB transfer method.

5.3 USB Operating Clock Stabilization Interrupt

This interrupt occurs when the USB operating clock (48 MHz) stabilization time is automatically
counted after USB module stop mode is canceled. After receiving the interrupt, the sample
program makes necessary interrupt settings and waits for USB cable connection.

USB function module

USB operating clock
 stabilization time waited?

USB operating clock stabilization
interrupt generated

EXIRQ0

SetUsbModule

Sample program

NO

YES

USB interface reset canceled
UCTLR/UIFRST = 0

Wait for USB cable connection

UIFR3/CK48Ready = 0

Power-on reset state canceled

USB operating clock
oscillation started

Wait for USB operating clock
stabilization

USB interface is ready

Interrupt settings

USB operating clock selected
UCTLR/UCKS3-0 written

USB module stop canceled
MSTPCRB/MSTPB = 0

Interrupt settings

Figure 5.3 USB Operating Clock Stabilization Interrupt

Rev. 1.00, 10/03, page 47 of 80

5.4 Interrupt on Cable Connection (VBUS)

This interrupt occurs when the cable of the USB function module is connected to the host
controller. On the application side, after completion of initial microcomputer settings, a general-
purpose output port is employed to pull-up the USB data bus D+. By means of this pull-up, the
host controller recognizes that the device has been connected. (Figure 5.4)

USB function module

USB cable
connected/disconnected

Determined status
of USB cable?

All FIFOs cleared UDC core reset

UDC core reset

Wait for UBC cable
connection

Wait for bus reset signal

EXIRQ0 interrupt
 generated Waiting for VBUS flag

to be determined

D+ pull-up enabled

UDC core reset
canceled

D+ pull-up disabled

ActBusVcc

Sample program

Connected Disconnected

VBUS interrupt generated

USB module initialization
completed

VBUS flag cleared

Figure 5.4 Interrupt on Cable Connection

Rev. 1.00, 10/03, page 48 of 80

5.5 Bus Reset Interrupt (BRST)

When the host controller detects that a device has been connected to the USB data bus, it outputs a
bus reset signal. When receiving this bus reset signal, the USB function module generates a bus
reset.

USB function module

Bus reset received
from the host

BRST interrupt
generated

Wait for setup token

 All endpoint stall
canceled

Medium status recording
variable cleared

EXIRQ0 interrupt
generated

 BRST flag cleared

 All FIFOs cleared

ActBusReset

 Sample program

Figure 5.5 Bus Reset Interrupt

Rev. 1.00, 10/03, page 49 of 80

5.6 Control Transfers

In control transfers, bits 0 to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage. (Figure 5.6) In the data
stage, data transfers from the host controller to the USB function module are control-out transfers,
and transfers in the opposite direction are control-in transfers.

Control-out transfers

Control-in transfers

Host controller USB function module

USB function moduleHost controller

Data (Data stage)

(Data stage)Data

Figure 5.6 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (figure 5.7).
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call a function to perform control-in or control-out transfers
(table 5.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-in or control-out, (figure 5.7) and must call the
appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined by
commands received in the setup stage.

Rev. 1.00, 10/03, page 50 of 80

SETUP (0)

Setup stage Data stage

...

...

Status stage

Control-in

Firmware state

Control-out

Firmware state

No data

Firmware state

IN (1) IN (0)

DATA0 DATA1 DATA0

IN (0/1)

DATA0/1

OUT (1)

DATA1

WAITWAIT TRANS_IN

SETUP (0) OUT (1) OUT (0)

DATA0 DATA1 DATA0

OUT (0/1)

DATA0/1

IN (1)

DATA1

WAITWAIT TRANS_OUT

SETUP (0)

DATA0

IN

DATA1

WAITWAIT TRANS_OUT

Figure 5.7 Status in Control Transfers

5.6.1 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in and
control-out transfer, the firmware goes into the WAIT state. Depending on the type of command
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

• Commands for control-in transfers: GetDescriptor (Standard command)
Get Max LUN (Class command)

• Commands for control-out transfers: Bulk-Only Mass Storage Reset (Class command)

Figure 5.8 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

Rev. 1.00, 10/03, page 51 of 80

USB function module

Setup token received

Data stage

8-byte command data
received at EP0s

Application processing
command?

Setup command receive
complete flag set

(UIFR0/SETUP TS=1)

BranchOfInt

Automatic
processing

By USB module

YES

ActControl

SETUP TS flag cleared
EP0iTR flag cleared
EP0o/EP0i FIFO cleared

Firmware state changed to WAIT

Read pointer and write pointer to
the command buffer initialized

DecStandardCommands

NO

NO

NO

NO

NO

NO

Sample program

EXIRQ0 interrupt
generated

GetPacket4S

Data read from EP0s FIFO

Data stage Status stage

EP0s read complete bit set to 1
(UTRG/EP0s RDFN=1)

DecVender
Command DecBOTClass

Commands

Vendor command?

Class command?

Supported standard command
to be processed?

Get and Set Descriptor
processing prepared

Firmware state changed
to TRANS_OUT

Firmware state changed
to TRANS_IN

Firmware state
changed to STALL

Interrupt enable bit set to 1
for control-in transfer

Interrupt enable bit set to 1
for control-out transfer

IN direction?

NO
MaxPavketSize?

PutPacket
Data written

to FIFO

EP0i and EP0o
interrupts masked

EP0i T
 interrupt masked

EP0 STALL bit set to 1

Supported command? Supported command?

YES

YES

YES

YES

YES YES

YES

YES

NO

YES

NO

Firmware in STALL state?

Figure 5.8 Setup Stage

Rev. 1.00, 10/03, page 52 of 80

5.6.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS_IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 5.9 and 5.10 show the operation of
the sample program in the data stage of control transfer.

USB function module Sample program

In-token received

Data sent to host

Valid data in
FP0i FIFO?

EP0i transmit flag set
(UIFR0/EP0iTS = 1)

UTRG0/EP0s RDFN
set to 1?

YES

YES

ActControlIn

UIFR0/EP0i TS interrupt
flag cleared

EP0i TS interrupt
masked

Data written to
UEDR0i data register

EP0i packet enable bit set to 1
(UTRG0/EP0i PKTE = 1)

PutPacket

NO

NO

NO

YES

NO

EXIRQ0
interrupt generated

ACK

NAK

NAK

Receive complete
 interrupt?

 (UIFR0/EP0o TS)

MaxPacketSize?

Status stage

Return

YES

ActControlInOut

NO

YES

Firmware in
TRANS_OUT state?

When data direction changes,
data stage is completed and

status stage is entered.

BranchOfInt

Control-out transfer
(figure 5.10)

Figure 5.9 Data Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 53 of 80

USB function module

Out-token received

Out-token received

EP0o receive complete flag set
(UIFR0/EP0o TS = 1)

BranchOfInt

Data received from host

UTRG0/EP0s RDFN
set to 1?

UTRG0/EP0s RDFN
set to 1?

YES

YES

ActControlOut

 EP0o receive complete
 flag cleared

 (UIFR0/EP0o TS = 0)

Data read from UEP0o
 receive data size register (UESZ0o)

 Data read from USBEP0o
 data register (UEDR0o)

 EP0o read complete bit
 set to 1

 (UTRG0/EP0o RDFN = 1)

GetPacket

YES

NO

NO

Sample program

EXIRQ0
interrupt
generated

ACK

NAK

NAK

Receive complete
 interrupt?

 (UIFR0/EP0o TS)

Status stage

 When data direction changes,
 data stage is completed and

 status stage is entered.

NO

ActControlInOut

NO

YES

Firmware in
TRANS_OUT state?

Control-in transfer
(figure 5.9)

Figure 5.10 Data Stage (Control-Out Transfer)

Rev. 1.00, 10/03, page 54 of 80

5.6.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller.

USB function module

Out-token received

EP0o receive complete flag set
(UIFR0/EP0o TS = 1) BranchOfInt

0 byte received from host

ActControl IN

EP0o-related interrupt
 flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

 EP0o receive complete
flag set to 1

 (UTRG0/EP0o RDFN = 1)

 Control-in transfer end

YES

NO

Sample program

ACK

Receive complete
 interrupt?

 (UIFR0/EP0o TS)

 Data stage

EXIRQ0
 interrupt
generated

Control transfer end

ActControlInOut

NO

YES

Firmware in
TRANS_OUT state?

Control-out transfer
(figure 5.12)

Figure 5.11 Status Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 55 of 80

USB function module

In-token received

Control transfer end

EP0i transmit complete
flag set

(UIFR0/EP0i TS = 1)

BranchOfInt

0 byte sent to host

ActControlOut

SetControlOutContents

EP0i transmit complete
flag cleared

(UIFR0/EP0i TS = 0)

Firmware state
changed to WAIT

 EP0i transfer request
flag cleared

(UIFR0/EP0i TR = 0)

EP0i packet enable
bit set to 1

(UTRG0/EP0i PKTE = 1)

YES

YES

YES

NO

NO

NO

Sample program

EXIRQ0
interrupt

generated

ACK

NAK

Receive complete interrupt?
(UIFR0/EP0o TS)

Receive complete interrupt?
(UIFR0/EP0o TS)

Data stage

Valid data in
EP0i FIFO?

EXIRQ0
interrupt

generated

ActControlInOut

NO

YES

Firmware in
TRANS_OUT state?

Control-in transfer
(figure 5.11)

Figure 5.12 Status Stage (Control-Out Transfer)

Rev. 1.00, 10/03, page 56 of 80

5.7 Bulk Transfers

In bulk transfers, bits 0 to 2 of interrupt flag register 1 are used. Bulk transfers can also be divided
into two types according to the direction of data transmission. (Figure 5.13)

When data is transferred from the host controller to the USB function module, the transfer is
called a bulk-out transfer; when data is transferred in the opposite direction, it is a bulk-in transfer.

Bulk-out transfers

Bulk-in transfers

Host controller USB function module

Data

Data

USB function moduleHost controller

Figure 5.13 Bulk Transfers

The Bulk-Only Transport used in the USB Mass Storage Class consists of bulk-in and bulk-out
transfers.

Bulk-Only Transfer comprises two or three stages (figure 5.14): command transport (CBW), data
transport (this is sometimes not included), and status transport (CSW). In addition, data transfer is
made up of multiple bus transactions.

With Bulk-Only transport, the command transport (CBW) is done using bulk-out transfer, while
the status transport (CSW) is done using bulk-in transfer. Either bulk-in transfer or bulk-out
transfer may be used for data transport, depending on the direction in which the data is being sent.

Whether bulk-in or bulk-out transfer is used for data transport is determined by the CBW data
received using command transport. In the firmware, whether bulk-in or bulk-out is used for data
transport is controlled by states (TRANS_IN and TRANS_OUT) (figure 5.14). The appropriate
functions must be called by the firmware.

Additionally, the transition in stages from data transport to status transport is handled by data of a
planned length being sent or received using data transport requested by the host PC. Consequently,
the firmware manages the data length sent or received using data transport, and after the transition
between stages, status transport must be used to send the data to the host PC.

If the CBW data received using command transport cannot be acknowledged as valid, the endpoint
is stalled, and no bulk transfer is carried out.

Rev. 1.00, 10/03, page 57 of 80

Bulk-in

Firmware state

CBW IN IN IN CSW...

WAITWAIT TRANS_IN

Bulk-out

Firmware state

CBW

CBW

OUT OUT OUT CSW

CSW

...

WAITWAIT TRANS_OUT

No data

Firmware state WAITWAIT TRANS_OUT

Command
transport

Data transport Status transport

Figure 5.14 Various Stages in Bulk-Only Transport

5.7.1 Command Transport

With command transport, the CBW data is transferred from the host to the function.

At this point, the firmware is in the WAIT state. At the stage following reception of the CBW
data, the five types of processing listed below are carried out.

1. The CBW data is stored from the EP1 data register to the work area.

2. A judgment is made as to whether the CBW data is valid.

3. The CSW data is prepared.

4. The contents of the CBW data are decoded, and if there is any data to be sent using data
transport, the data is prepared. (Processing is carried out in the DecBotCmd function.)

5. A distinction is made as to whether the data transport is bulk-in or bulk-out, and the firmware
state (TRANS_IN or TRANS_OUT) is determined.

Figure 5.15 shows the operation carried out by the sample program when command transport is
used. The operation of the USB function module is shown at the left of the illustration.

Rev. 1.00, 10/03, page 58 of 80

USB function module

Out-token received

31-byte CBW data
received at EP2

EP2 FIFO full status set
(UIFR1/EP2 READY2)

BranchOfInt

ActBulkOnly

ActBulkOnlyCommand

Data transport
(figure 5.17)

YES

NO

NO

NO

NO

 Sample program

TRANS_OUT state?

TRANS_IN state?

Valid CBW data?

Data direction
determined by CBW

Data transport
(figure 5.16)

State set to TRANS_IN

dCBWDataTranserLength = 0
and dCSWDataResidue! = 0?

State set to TRANS_OUT

bCSWStatus set
to 0x02

CSW data prepared

CBW data stored
in work area

YES

YES

YES

NO

YES

IFR1/EP1 EMPTY
interrupt masked

 State is WAIT and
receive data is in

bulk-out FIFO

GetPacket

SCSI command analyzed
and data transfer prepared

DecBotCmd

EP1 stalled

Bulk-out

 Bulk-in

 Data transport

EXIRQ0 interrupt generated

Figure 5.15 Command Transport

Rev. 1.00, 10/03, page 59 of 80

5.7.2 Data Transport

With data transport, data is sent and received between the host and the function.

At this point, the firmware is in either the TRANS_IN or TRANS_OUT state.

If the firmware state is TRANS_IN (bulk-in transfer), the following three types of processing are
carried out.

1. Data is sent from the function to the host.

2. If the length of the data sent by the function is shorter than the length planned by the host, 0 is
added.

3. The information to be sent by the CSW is created.

Figure 5.16 shows the operations that take place when data transport (bulk-in transfer) is carried
out in the sample program. The operation of the USB function module is shown at the left side of
the illustration.

In this sample software, if the length of the data sent by the function is shorter than the length of
the data requested by the host, 0 is added after the data sent by the function, as noted in the Bulk-
Only Transport of the USB Mass Storage Class, and after data of the length requested by the host
has been sent, the number of 0 bytes added is reported, using status transport.

In order to carry out this operation, the following is used as global variables: the
dCBWDataTransferLength of the CBW data, the dCSWDataResidue of the CSW data, and the
bCSWStatus of the CSW data.

Rev. 1.00, 10/03, page 60 of 80

USB function module

EP1 empty status cleared
(UIFR1/EP1EMPTY = 0)

EP1 FIFO empty status set
(UIFR1/EP1 EMPTY = 1)

BranchOfInt

ActBulkOnly

ActBulkOnlyIn

NO

NO

NO

NO

NO (normal path)

 No

NO

Sample program

EXIRQ0 interriput generated

TRANS_OUT
 state?Any space in

 EP1 FIFO?

TRANS_IN
state?

bCSWStatus !=0x00?

Status transport
 (figure 5.18)

Remaining length of
 data requested by host

(dCBWDataTransferLegnth)
is subtracted

Planned transmit data length
(dCBWDataResidue)

is subtracted

Planned transmit
data output prepared

0 added
Data output prepared

Data length requested by host
 (dCBWDataTransferLength)

 transferred?

 bCSWStatus = 0x00 and
 planned transmit data length

 is larger than MaxPacketSize?

YES

Yes (normal path)

YES
(error path)

YES

YES

ActBulkIn
Data written to transmit

register and sent

Remaining length of
 data requested by host

(dCBWDataTransferLegnth)
is subtracted

Data length of additional
 0s (dCSWDataResidue)

 is subtracted

ActBulkIn

 Data written to transmit
register and sent

Remaining length of
data requested by host

(dCBWDataTransferLegnth)
is subtracted

Length of transmitted data
is subtracted from

dCSWDataResidue

Work area cleared

ActBulkInData written to
transmit register and

sent

 State is WAIT and
 receive data is in

 bulk-out FIFO

Figure 5.16 Data Transport (Bulk-In Transfer)

Rev. 1.00, 10/03, page 61 of 80

Figure 5.17 shows the operations that take place when data transport (bulk-out transfer) is carried
out in the sample program. The operation of the USB function module is shown at the left side of
the illustration.

If the firmware state is TRANS_OUT (bulk-out transfer), the following three types of processing
are carried out.

1. Data from the host is received in the function.

2. Data length is calculated.

3. The information to be sent by the CSW is created.

In this sample software, if the length of the data received by the function is shorter than the length
of the data that the host planned to send, the missing length of data received by the function using
data transport is reported using status transport, as noted in the Bulk-Only Transport of the USB
Mass Storage Class.

In order to carry out this operation, the following is used as global variables: the
dCBWDataTransferLength of the CBW data and the dCSWDataResidue of the CSW data.

Rev. 1.00, 10/03, page 62 of 80

USB function module

In-token received

Data sent
to host

EP2 transfer request set
(IFR1/EP1 TR = 1)

YES

Valid space in
EP1 FIFO?

NAK

ACK

BranchOfInt

 Sample programEXIRQ0
interrupt generated

ActBulkInReady

EP1 empty status set
(IFR1/EP1 EMPTY = 1)

EP1 empty status cleared
(IFR1/EP1 EMPTY = 0)

YESAny space in
EP1 FIFO?

BranchOfInt

NO

 EXIRQ0
interrupt generated

ActBulkOnlyOut

USBIFR0/EP1 TR
interrupt flag cleared

CSW data
output prepared

State set to WAIT

Data transport

Clear EP1 TR interrupt

Set EP1 EMPTY interrupt enable
Set EP1 TR interrupt disable

 bCSWStatus set to 0x02

Data written to data
transmit register and sent

ActBulkIn

NO

NO

EP2 FIFO FULL interrupt?
(IFR1/EP2 FULL)

dCSWDataResidue != 0 and
dCBWDataTransferLength = 0 and

bCSWStatus = 0x00

YES

YES

ActBulkOnly

NO

NO

TRANS_OUT
 state?

TRANS_IN
state?

YES

 State is WAIT and
receive data is in

bulk-out FIFO

Figure 5.17 Data Transport (Bulk-Out Transfer)

Rev. 1.00, 10/03, page 63 of 80

5.7.3 Status Transport

With status transport, data is sent from the function to the host.

At this point, the firmware is in either the TRANS_IN or TRANS_OUT state.

If the firmware state is TRANS_IN (bulk-in transfer), the following four types of processing are
carried out.

1. EP1 empty status interrupts are inhibited.

2. The system prepares to send the CSW data.

3. The CSW data is issued.

4. The firmware state is set to WAIT.

Figure 5.18 shows the operations that take place when status transport (data transport bulk-in
transfer) is carried out in the sample program. The operation of the USB function module is shown
at the left side of the illustration.

Rev. 1.00, 10/03, page 64 of 80

USB function module

EP1 empty status set
(UIFR1/EP1 EMPTY = 1)

EP1 empty status cleared
(UIFR1/EP1 EMPTY = 0)

ActBulkOnlyIn

YESAny space in
EP1 FIFO?

State set to WAIT

CSW data output prepared

EP1 empty status
interrupt disabled

Data transport

Data written to transmit
register and sent

ActBulkIn

BranchOfInt

NO

NO

Sample program

YES

 bCSWStatus set
to 0x02

 EXIRQ0 interrupt generated

Data length requested by host
(dCBWDataTransferLength)

transferred?

bCSWStatus = 0x00 and
dCSWDataResidue! = 0?

ActBulkOnly

NO

NO

NO

TRANS_OUT
 state?

TRANS_IN
state?

YES

NO

YES

YES

 State is WAIT and
receive data is in

bulk-out FIFO

Figure 5.18 Status Transport (Data Transport Bulk-In Transfer)

Rev. 1.00, 10/03, page 65 of 80

Figure 5.19 shows the operations that take place when status transport (data transport bulk-out
transfer) is carried out in the sample program. The operation of the USB function module is shown
at the left side of the illustration.

If the firmware state is TRANS_OUT (bulk-out transfer), the following four types of processing
are carried out.

1. Preparation is made to send the CSW data.

2. The data is checked to see if any data is missing from the reception.

3. The CSW data is issued.

4. The firmware state is set to WAIT.

In this sample software, if the length of the data received by the function is shorter than the length
of the data that the host planned to send, the missing length of data received by the function using
data transport is reported using status transport, as noted in the Bulk-Only Transport of the USB
Mass Storage Class. In order to do this, a check is made to see if there is any data missing that
should have been received by the function, and if there is, the value of the bCSWStatus of the
CSW data is set to 0x02 (phase error).

Rev. 1.00, 10/03, page 66 of 80

USB function module

EP1 transfer request set
(UIFR1/EP1 TR = 1)

ActBulkOnlyOut

YES

Valid data in
EP2 FIFO?

USBUFR0/EP1 TR
interrupt flag cleared

CSW data
output prepared

State set to WAIT

Data sent to host

In-token received

Data transport

 bCSWStatus set to 0x02

Data written to data
transmit register and sent

ActBulkIn

BranchOfInt

NO

NO

NO

 Sample program

EP2 FIFO full interrupt?
(UIFR1/EP2 READY)

dCSWDataResidue != 0,
 dCBWDataTransferLength = 0,

 and bCSWStatus = 0x00?

YES

YES

EXIRQ0
 interrupt
generated

NAK

ACK

ActBulkOnly

NO

NO

NO

TRANS_OUT
 state?

TRANS_IN
state?

YES

 State is WAIT and
receive data is in

bulk-out FIFO

Figure 5.19 Status Transport (Data Transport Bulk-Out Transfer)

Rev. 1.00, 10/03, page 67 of 80

Section 6 Analyzer Data

In this section, we look at how measurement is carried out with the USB Advisor, a USB protocol
analyzer manufactured by CATC (http://www.catc.com), using the USB function module in the
H8S/2218, and at what happens to the data as it actually flows along the bus. For more detailed
information on the packets, please see section 2.3.

Note: The Packet found in front of each packet is the packet number used when measuring.

• INQUIRY Command

CSW
(status

transport)

INQUIRY command

CBW
(command
transport)

INQUIRY information

DATA
(data

transport)

INQUIRY command execution results

Rev. 1.00, 10/03, page 68 of 80

• READ CAPACITY Command (normal operation)

CSW
(status

transport)

READ CAPACITY command

CBW
(command
transport)

DATA
(data

transport)
READ CAPACITY information

READ CAPACITY command execution results

Rev. 1.00, 10/03, page 69 of 80

• READ CAPACITY Command (medium removed)

CSW
(status

transport)

READ CAPACITY command

CBW
(command
transport)

READ CAPACITY information (invalid data)

DATA
(data

transport)

READ CAPACITY command execution results (command failed)

Rev. 1.00, 10/03, page 70 of 80

• READ (10) Command

READ (10) command

CBW
(command
transport)

DATA
(data

transport)

READ (10) information

CSW
(status

transport)
READ (10) command execution results

Rev. 1.00, 10/03, page 71 of 80

• WRITE (10) Command

WRITE (10) information

WRITE (10) command

CBW
(command
transport)

DATA
(data

transport)

Rev. 1.00, 10/03, page 72 of 80

CSW
(status

transport)

WRITE (10) command execution results

DATA
(data

transport)

Rev. 1.00, 10/03, page 73 of 80

• REQUEST SENSE Command

REQUEST SENSE command

CBW
(command
transport)

DATA
(data

transport)

CSW
(status

transport)

REQUEST SENSE information

REQUEST SENSE command execution results

Rev. 1.00, 10/03, page 74 of 80

• PREVENT ALLOW MEDIUM REMOVAL Command

PREVENT ALLOW MEDIUM REMOVAL command (PREVENT)

CBW
(command
transport)

CSW
(status

transport)

PREVENT ALLOW MEDIUM REMOVAL command execution results

Rev. 1.00, 10/03, page 75 of 80

• TEST UNIT READY Command (normal operation)

CSW
 (status

transport)

TEST UNIT READY command

CBW
(command
transport)

TEST UNIT READY command execution results

Rev. 1.00, 10/03, page 76 of 80

• TEST UNIT READY Command (medium removed)

CSW
(status

transport)

TEST UNIT READY command

CBW
(command
transport)

TEST UNIT READY command execution results (command failed)

Rev. 1.00, 10/03, page 77 of 80

• VERIFY (10) Command

CSW
 (status

transport)

VERIFY (10) command

CBW
(command
transport)

VERIFY (10) command execution results

Rev. 1.00, 10/03, page 78 of 80

• STOP/START UNIT Command

CSW
(status

transport)

STOP/START UNIT command (EJECT)

CBW
(command
transport)

STOP/START UNIT command execution results

Rev. 1.00, 10/03, page 79 of 80

• MODE SENSE (6) Command

MODE SENSE (6) (1C) information

CBW
(command
transport)

CBW
(command
transport)

MODE SENSE (6) command (1C)

CSW
(status

transport)
MODE SENSE (6) command execution

Rev. 1.00, 10/03, page 80 of 80

• READ FORMAT CAPACITIES Command (unsupported command)

CSW
(status

transport)

READ FORMAT CAPACITIES command

CBW
(command
transport)

READ FORMAT CAPACITIES information (invalid data)

DATA
(data

transport)

READ FORMAT CAPACITIES command execution results (command failed)

H8S/2218 USB Function Module Mass Storage Class
(Bulk-Only Transport) Application Note

Publication Date: Rev.1.00, October 20, 2003
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

Colophon 1.0

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

RENESAS SALES OFFICES

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

H8S/2218 USB Function Module
Mass Storage Class (Bulk-Only Transport)

REJ06B0213-0100Z

Application Note

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the USB Mass Storage Class�	(Bulk-Only Transport)
	2.1	USB Mass Storage Class
	2.2	Sub-Class Code
	2.3	Bulk-Only Transport
	2.3.1	Command Transport
	2.3.2	Status Transport
	2.3.3	Data Transport
	2.3.4	Class Commands

	2.4	SCSI Transparent Command Set Sub-Class Code

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2	Executing the Program

	3.4 Using the RAM Disk
	3.5	Modifying RAM Disk Settings
	3.5.1	Selecting Removable or Fixed Disk
	3.5.2	Changing the RAM Disk Size

	Section 4 Overview of the Sample Program
	4.1	State Transition Diagram
	4.2	USB Communication State
	4.2.1	Control Transfer
	4.2.2	Bulk Transfer

	4.3	File Structure
	4.4	Purposes of Functions
	4.5	RAM Disk
	4.6	Operation of SCSI Commands That Are Supported
	4.7	Processing If an Error Occurs

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Method of Branching to Different Transfer Processes

	5.3	USB Operating Clock Stabilization Interrupt
	5.4	Interrupt on Cable Connection (VBUS)
	5.5	Bus Reset Interrupt (BRST)
	5.6	Control Transfers
	5.6.1	Setup Stage
	5.6.2	Data Stage
	5.6.3	Status Stage

	5.7	Bulk Transfers
	5.7.1	Command Transport
	5.7.2	Data Transport
	5.7.3	Status Transport

	Section 6 Analyzer Data
	Colophon
	Address List
	Back Cover

