

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

APPLICATION NOTE

REJ06B0139-0200O/Rev.2.00 March 2004 Page 1 of 28

H8S/2215 Group
0.35-µm F-ZTAT Software ECC Programming

Contents
1. Preface.. 2

2. Overview of Software ECC ... 3
2.1 Objective of Software ECC... 3
2.2 Function of Software ECC.. 3

3. Algorithm for Software ECC.. 6

4. Sample Program ... 8
4.1 Configuration of Sample Program and Specifications of Functions..... 8
4.2 Examples of Usage .. 13

4.2.1 Usage Example: CreateFlashToUser() 13
4.2.2 Usage Example: CreateUserToFlash() 15

4.3 Handling User Data .. 16
4.4 Source Program List... 17

5. Precautions ... 27

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 2 of 28

1. Preface

The F-ZTAT* microcomputer incorporates flash memory which is programmable after the
microcomputer has been mounted on a board. With the 0.35-µm F-ZTAT microcomputer,
reprogramming of the on-chip flash memory up to 100 times is normally guaranteed. However, we
can increase the limit to 10,000 times by adding an error correction code (ECC) to the
programmed data and using this to detect and correct bit errors during programming.

This application note describes how to add the ECC to the data which is programmed to the flash
memory and how to realize the detection and correction of bit errors during programming in
software.

This information will be useful to those users who are developing systems which use some of the
0.35-µm F-ZTAT microcomputer’s on-chip flash memory as a data area and expect this area to be
reprogrammed more than 100 times.

Note: * F-ZTAT (Flexible Zero Turn Around Time) is a trademark of Renesas Technology Corp.

Application program

User's data

(parameter etc.)

Flash memory

RAM

Normal usage

(renewal is possible to 100 times)

A method to assure

renewal to 10000 times

is explained

Purpose of this application note

Figure 1.1 Use example of the flash memory

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 3 of 28

2. Overview of Software ECC

2.1 Objective of Software ECC

The flash memory which is incorporated in the 0.35-µm F-ZTAT microcomputer can only be
reprogrammed up to 100 times. This limitation is due to the characteristics of the flash memory in
retaining data (the so-called retention characteristic). In general, each programming/erasing
operation (W/E cycle) worsens the retention characteristic of a flash-memory unit, but this
degradation does not apply evenly to all memory cells of the flash memory. The failure rate of an
individual flash-memory cell due to poor retention is very small.

Therefore, we can greatly increase the limit on the number of times the flash memory can be
reprogrammed by adding the error correction code (ECC) to the data when it is programmed to the
flash memory and using it to detect and correct bit errors in the programmed data. The addition of
ECC and the detection and correction of bit errors are both accomplished by software. This
software ECC lets us guarantee reprogramming of the flash memory up to 10,000 times. Note,
however, that this 10,000-time guarantee only applies to an area no larger than eight kbytes. Also,
if you want to apply this method, please carefully read the descriptions in this application note.

 Flash memory reprogramming: Up to 10,000 times

 Flash memory reprogramming: Up to 100 timesNormal method:

Software ECC method:

Figure 2.1 Number of Guaranteed Reprogramming with Software ECC

2.2 Function of Software ECC

The rate of error correction by software ECC is 1 bit per 32 bits of user data. Six bits of ECC are
required for 32 bits of user data, but if we take the byte boundaries into consideration, one byte
(only the lower 6 bits are valid) is used for the ECC of a 32-bit unit of user data. This means that,
when the possibility of a bit error in the ECC itself is included, the rate is one bit of error detection
and correction per 38 bits. The format in which the user data and ECC are allocated is given in
figure 2.2, since we need to consider physical allocation within the flash memory’s mats. If
another format is used, the defined number of reprogramming operations is not guaranteed.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 4 of 28

128 bytes

User data User dataECC ECC Not used

4 bytes 4 bytes1 byte 1 byte 3 bytes

.

Figure 2.2 Data Format for Programming of Flash Memory

As shown in figure 2.2, each 4 bytes (32 bits) of user data to which error correction is applied and
one byte of ECC must be allocated in sequence. The ECC is generated by software. Programming
of the flash memory is in 128-byte units, and there are no more than 100 bytes of user data in this
unit. The data must be programmed to the flash memory in the format given in figure 2.2. Either
of the following forms of errors can be detected and corrected in the data which is read from the
flash memory (in the same format as was used for programming):

• One bit of error detection and the correction of a detected bit error in every four bytes of user
data

• One bit of error detection and the correction of a detected bit error in every byte of ECC

The position of the software ECC function is shown in figure 2.3. The programming and erasing
of flash memory are not covered by this application note, so refer to the descriptions of procedures
in the hardware manuals of individual products when actually programming or erasing flash
memory.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 5 of 28

Flash memory

Note: * Data format of figure 1.2.

User data User data

Data programmed to flash memory* Data read from flash memory*

Software ECC function Software ECC function

Data programmed
to flash memory*

Figure 2.3 Position of Software ECC Function

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 6 of 28

3. Algorithm for Software ECC

In software ECC, a Hamming code, which is a single-error correction code, is used. The Hamming
code includes the information bits and check bits shown in figure 3.1.

Overall number of code bits n = k + m

Number of bits = k Number of bits = m

Check bitsInformation bits

Figure 3.1 Configuration of (n, k) Hamming Code

A Hamming code with 32 information bits and m = 6 satisfies 2m − m ≥ k + 1. By adding 6 check
bits to every 32 bits of information, the correction of a single error becomes possible. Accordingly,
we apply a (38, 32) Hamming code. The information bits correspond to 32 bits of user data and the
check bits correspond to a 6-bit ECC. The ECC consists of 6 bits, but is applied as a byte (only the
lower 6 bits are valid) to take the byte boundaries into consideration.

To simplify the explanation, we give an example of a (7, 4) Hamming code. The Hamming code is
shown in figure 3.2. The definition (parity) for generating the check bits is given in table 3.1.

Overall number of code bits n = 7

Number of information
bits = 4

Number of check
bits = 3

C1 C2 C3X1 X2 X3 X4

Figure 3.2 Configuration of (7, 4) Hamming Code

Table 3.1 Parity Definition

Position of Error S1 S2 S3 Hexadecimal Notation

x1 1 1 1 0x07

x2 1 1 0 0x06

x3 1 0 1 0x05

x4 0 1 1 0x03

c1 1 0 0 0x04

c2 0 1 0 0x02

c3 0 0 1 0x01

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 7 of 28

Let the pattern of information bits be B′1101. The parity which corresponds to each bit position of
the information bits is XORed (exclusively logically added). Since x1 = 1, x2 = 1, x3 = 0, and x4 =
1, we take the XOR of 0x07, 0x06, and 0x03, to obtain 0x02. This result is the value of the check
bits, so c1 = 0, c2 = 1, and c3 = 0 (collectively referred to as C).

• When Information Bits Change to B'1111 (x3 has changed from 0 to 1)

The check bits for B'1111 are c1' = 1, c2' = 1, and c3' = 1 (collectively referred to as C'). C is
not equal to C', so we can see that the value of a bit has changed. The XOR of C and C' is
value s where s1 = 1, s2 = 0, and s3 = 1. Table 4.1 tells us that this value indicates an error in
bit x3, so the information bits are corrected to B'1101.

• When Information Bits Change to B'1001 (x2 has changed from 1 to 0)

The check bits (C') for B'1001 are c1' = 1, c2' = 0, and c3' = 0. C is not equal to C', so we can
see that the value of a bit has changed. The XOR of C and C' is value s, where s1 = 1, s2 = 1,
and s3 = 0. Table 4.1 tells us that this value indicates an error in bit x2, so the information bits
are corrected to B'1101.

• When Check Bits Change to B'110 (c1 has changed from 0 to 1)

The check bits (C') for B′1101 are c1' = 0, c2' = 1, and c3’ = 0. C is not equal to C', so we can
see that the value of a bit has changed. The XOR of C and C' is value s, where s1 = 1, s2 = 0,
and s3 = 0. Table 4.1 tells us that this value indicates an error in bit c1, so the check bits are
corrected to B'010.

• When Check Bits Change to B'000 (c2 has changed from 1 to 0)

The check bits (C') for B'1101 are c1' = 0, c2' = 1, and c3' = 0. C is not equal to C', so we can
see that the value of a bit has changed. The XOR of C and C' is value s, where s1 = 0, s2 = 1,
and s3 = 0. Table 4.1 tells us that this value indicates an error in bit c2, so the check bits are
corrected to B'010.

• When Information Bits and Check Bits have not Changed

When C' is obtained by the same procedure as was used to obtain C, the two values are equal,
so we can see that no bit error has occurred.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 8 of 28

4. Sample Program

A sample program that realizes software ECC is described in this section. The operation of this
sample program has been checked. However, when the program is embedded in a user system, its
operation must be reconfirmed because of possible differences in the operating environment.

4.1 Configuration of Sample Program and Specifications of Functions

The sample program consists of two files as shown in table 4.1.

Table 4.1 Configuration Files of Sample Program

No. File Name Contents

1 FlashECC.h Header file in which the function prototypes are declared and the constants
which are return values of the function are defined.

2 FlashECC.c Function that realizes software ECC. Consists of four functions, two of which
are for the interface with the user system.

Each function is outlined in table 4.2. For further details, refer to the specifications of functions
below. The hierarchical structure of the functions is shown in figure 4.1.

Table 4.2 Outline of Functions

No. Function Name Description

1 CreateUserToFlash()*1 Creates data*2 for programming to the flash memory from user
data (100 bytes max.), adding one byte of ECC for every four
bytes of data.

2 CreateFlashToUser()*1 Creates user data (100 bytes max.) from the data*2 which is
read from the flash memory. One-bit errors detected during the
reading of data are corrected.

3 GenerateECC() Calculates one byte of ECC for four bytes of user data.

4 CheckECC() Performs one-bit error detection for four bytes of user data and
one byte of ECC. When a one-bit error is detected, the bit is
corrected. An error in two or more bits is detected but cannot be
corrected.

Notes: 1. Function for the interface with the user system
2. Data in the format given in figure 3.2.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 9 of 28

CreateUserToFlash () CreateFlashToUser ()

CheckECC ()

GenerateECC ()

Figure 4.1 Hierarchy of Functions

The specifications of the individual functions are given below.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 10 of 28

Creation of data for programming to flash memory

void CreateUserToFlash (unsigned char *pUserData, unsigned char *pFlashBuf, unsigned char DataSize)

Function From user data (100 bytes max.), creates data in the format shown in figure 2.2 for
programming to the flash memory by adding one byte of ECC for every four bytes of data.

Parameter pUserData Pointer to the user data. The user data must be in an area of DataSize
consecutive bytes.

pFlashBuf Pointer to the buffer for use in programming to the flash memory. The buffer
must be a 128-byte area.

DataSize Number of bytes of user data: 1 ≤ DataSize ≤ 100.

Return value None

Description
DataSize bytes

User data (100 bytes max.)

Buffer for programming to flash memory

128 bytes
Generated ECC
(one byte each)

This part is padded with 0xFF as user data,
for which the ECC is 0x18.
The last three bytes are also padded with 0xFF.

4 bytes

4 bytes

4 bytes

4 bytes

pUserData

pFlashBuf

.

.

When the length of the user data is not a multiple of four bytes, the last part of the data, i.e. the
shortfall from four bytes, is padded with 0xFF. Since reprogramming 10,000 times is
guaranteed for up to 8 kbytes, the software ECC can be applied to handle up to 64 x 128-byte-
unit program buffers (= 8 kbytes).

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 11 of 28

Creation of user data from data which is read from flash memory

unsigned char CreateFlashToUser (unsigned char *pUserData, unsigned char *pFlashBuf, unsigned char
DataSize)

Function Creates user data from the data in the format shown in figure 2.2, which is read from the flash
memory. The error-correction processing (one-bit error detection and correction) is applied to
every four-byte unit of user data and corresponding ECC which are read. The user data is
created after the errors have been corrected.

Parameter pUserData Pointer to the user data.
The user data must be in an area of DataSize consecutive bytes.

pFlashBuf Pointer to the read buffer from the flash memory.
The buffer must be a 128-byte area.

DataSize Number of bytes for user data: 1 ≤ DataSize ≤ 100.

Return value When a bit error is not detected: ECC_NOERROR

When a bit error is detected and corrected: ECC_REPAIRED

When more than one bit error is detected: ECC_FAILED

Description
DataSize bytes

User data (100 bytes max.)

Read buffer from flash memory

128 bytes
ECC
(one byte each)

4 bytes

4 bytes

4 bytes

4 bytes

pUserData

pFlashBuf

.

.

One-bit errors in four-byte units of user data (an error in one bit per four bytes) or errors in
single bits of one byte of ECC are detected in the read buffer to which the data is read from the
flash memory. The user data is then created by applying error correction to the read buffer.
Accordingly, the data in the read buffer and the user data are both corrected. In this case, the
return value is ECC_REPAIRED.

When more than one bit of error is detected in one of the five-byte units in the read buffer, that
is, the combination of a four-byte unit of user data and its ECC, the processing is terminated. In
this case, the return value is ECC_FAILED and correct user data is not created. However, this
will not normally occur within the limit on the number of times the flash memory can be
reprogrammed.

When no bit error is found in the read buffer, the return value is ECC_NOERROR.

The detection of bit errors is performed in five-byte units, that is, the four-byte unit of user data
and one-byte ECC (the upper two bits of the ECC are invalid; only 38 bits are valid). One-bit
error detection and correction is possible.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 12 of 28

Calculation of ECC for four-byte unit of user data

unsigned char GenerateECC (unsigned long *pDataItem)

Function Calculates one byte of ECC (error correction code) for four bytes of user data.

Parameter pDataItem Pointer to the user data.
There must be four bytes of user data.

Return value ECC

Description Calculates the ECC for the four bytes of user data which are passed by the pointer. The return
value is the calculated ECC.

Bit correction for four-byte unit of user data

unsigned char CheckECC (unsigned long *pDataItem, unsigned char *pECC)

Function Tests a four-byte unit of user data and corresponding one-byte ECC (error correction code) for
a bit error and corrects any detected single-bit error.

Parameter pDataItem Pointer to the user data.
The data must be four bytes.

pECC Pointer to the ECC.
The ECC must be one byte.

Return value When no bit error is detected: ECC_NOERROR

When a bit error is detected and corrected: ECC_REPAIRED

When more than one bit error is detected: ECC_FAILED

Description Determines whether or not there is a bit error in the four-byte user data passed by the pointer
or in the corresponding ECC. When an error in one bit of either the user data or the ECC is
detected, the error is corrected. The correction is applied to the area passed by the pointers,
and thus updates the data in the area indicated by pDataItem and pECC. In this case, the
return value is ECC_REPAIRED.

When an error in two or more bits is detected in the overall five bytes, i.e. the user data and
ECC (the upper two bits of the ECC are invalid; only 38 bits are valid), the errors are not
corrected. Here, the return value is ECC_FAILED. However, such an error will not normally
occur within the limit on the number of times the flash memory can be reprogrammed.

When no error is detected in any bit of the user data and ECC, the return value is
ECC_NOERROR.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 13 of 28

4.2 Examples of Usage

The interface with the user system is provided by the functions CreateFlashToUser() and
CreateUserToFlash(). Simple examples of the usage of these functions are given below.

4.2.1 Usage Example: CreateFlashToUser()

#include <string.h>

#include “FlashECC.h”

#define Param_Adrs 0x0030000 //Address of user data in flash
memory

#define Param_Size (unsigned char)92 //Number of bytes of user data in
flash memory

unsigned char FlashBuf[128]; //Read buffer from flash memory

unsigned char bUserParam1[11]; //These variables are user data
in RAM

unsigned char bReserved; //luded as dummy variable for
boundary adjustment

unsigned long lUserParam2[20]; //Total area of 92 bytes is used

void sample1(void)

{

unsigned char *pUserData; //Pointer to user data

unsigned char bRtnCode; //Return value of function

//Read user data from flash
memory

memcpy((const char *)FlashBuf,(const char *)
Param_Adrs,(size_t)128);

//Create user data from read data

bRtnCode = CreateFlashToUser(bUserParam1, FlashBuf, (unsigned
char)Param_Size);

if(bRtnCode == ECC_NOERROR)

{

//No bit error detected

}

else if(bRtnCode == ECC_REPAIRED)

{

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 14 of 28

//Bit error detected and corrected

}

else

{

//More than one bit error detected

}

.

.

.

}

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 15 of 28

4.2.2 Usage Example: CreateUserToFlash()

#include “FlashECC.h”

#define Param_Size (unsigned char)92 //Number of bytes of user
data in flash memory

unsigned char FlashBuf[128]; //Program buffer to flash
memory

unsigned char bUserParam1[11]; //These variables are user
data in RAM

unsigned char bReserved; //Included as dummy
variable for boundary adjustment

unsigned long lUserParam2[20]; //Total area of 92 bytes
is used

void sample2(void)

{

unsigned char *pUserData; //Pointer to user data

.

. (Set user data in RAM)

.

//Create program data from
user data

CreateUserToFlash (bUserParam1, FlashBuf, (unsigned char)Param_Size);

.

. (Program 128 bytes of FlashBuf to flash memory)

.

}

Note: The actual flash-memory programming processing must be executed in RAM.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 16 of 28

4.3 Handling User Data

The unit for programming of the flash memory is 128 bytes, 100 bytes of which can be used to
hold user data. However, more than 100 bytes of user data must be divided into 100-byte units. An
example is given below.

unsigned char DataA [5]

unsigned long DataB [10]

struct {
 unsigned short DataC [20]

 unsigned long DataD [20]
}

User data

5 bytes

41 bytes*

40 bytes

80 bytes

Note: * (one byte for boundary adjustment)

Program data β

100 bytes

66 bytes

(Program buffer)
128 bytes

(Programming units)
128 bytes

Program address

H'XXXXXX

H'XXXXXX + 128

Flash memory

Program data α

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 17 of 28

4.4 Source Program List

/***/

/* */

/*FILE :FlashECC.h */

/*DATE :Sep 1, 2002 */

/*DESCRIPTION :Header file of software ECC functions for Flash memory*/

/*CPU TYPE :H8S/2215 */

/* */

/***/

#ifndef _FLASHECC_H_

#define _FLASHECC_H_

/***/

/* */

/*Function prototypes */

/* */

/***/

void CreateUserToFlash(unsigned char *pUserData,

unsigned char *pFlashBuf,

unsigned char DataSize);

unsigned char CreateFlashToUser(unsigned char *pUserData,

unsigned char *pFlashBuf,

unsigned char DataSize);

unsigned char GenerateECC(unsigned long *pDataItem);

unsigned char CheckECC (unsigned long *pDataItem, unsigned char
*pECC);

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 18 of 28

/***/

/* */

/*Return-values of functions */

/* */

/***/

enum

{

ECC_NOERROR , /* No error was detected. */

ECC_REPAIRED, /* One bit repair was completed. */

ECC_FAILED /* Multiple bits error was detected. */

};

#endif /*_FLASHECC_H_*/

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 19 of 28

/***/

/* */

/*FILE :FlashECC.c */

/*DATE :Sep 1, 2002 */

/*DESCRIPTION :Software ECC functions for Flash memory */

/*CPU TYPE :H8S/2215 */

/* */

/* */

/***/

#include "FlashECC.h"

/***/

/* */

/*The T-table for ECC generation */

/* */

/***/

static const unsigned char T[38] =

{ /* values for the 32-bit data item */

0x03, 0x05, 0x06, 0x07, 0x09, 0x0A, 0x0B, 0x0C,

0x0D, 0x0E, 0x0F, 0x11, 0x12, 0x13, 0x14, 0x15,

0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,

0x1E, 0x1F, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26,

/* values for the 6-bit ECC item */

0x01, 0x02, 0x04, 0x08, 0x10, 0x20

};

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 20 of 28

/***/

/* */

/*C Prototype: void CreateUserToFlash(unsigned char *pUserData, */

/* unsigned char *pFlashBuf, */

/* unsigned char DataSize); */

/* */

/*Function: This routine makes the data to be write into Flash memory*/

/* including ECC values from user's data. */

/* */

/*Parameters:pUserData is a pointer to user's data. Maximal length of*/

/* User's data must be 100 bytes. */

/* pFlahBuf is a pointer to the data area to be write into */

/* Flash memory. The data area must be in RAM and needs 128*/

/* bytes area. */

/* DataSize is a byte-length of user's data. Its value may */

/* not exceed 100. */

/* */

/* Return : None. */

/* */

/***/

void CreateUserToFlash(unsigned char *pUserData,

unsigned char *pFlashBuf,

unsigned char DataSize)

{

unsigned char i; /* a loop counter */

unsigned char ecc; /* an ECC value */

unsigned char len; /* a temporary length */

unsigned char fil; /* byte-length for fill up */

union /* a data with zero padding */

{

unsigned long lword;

unsigned char bytes[4];

} upad;

/*--*/

/* Initialize local variables */

/*--*/

upad.lword = 0xFFFFFFFF;

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 21 of 28

fil = 128 - (((DataSize + 3) >> 2) * 5);

/*--*/

/* Generate an ECC and a Flash data buffer */

/*--*/

while(0 < DataSize)

{

if(4 <= DataSize) len = 4;

else len = DataSize;

for(i=0; i<len; i++) upad.bytes[i] = *(pUserData++);

ecc = GenerateECC((unsigned long *)(&upad));

for(i=0; i<4; i++) *(pFlashBuf++) = upad.bytes[i];

*(pFlashBuf++) = ecc;

DataSize -= len;

}

/*--*/

/* Fill up a Flash data buffer */

/*--*/

for(i=0; i<fil;i++)

{

if((i % 5) == 4) *(pFlashBuf++) = 0x18;

else *(pFlashBuf++) = 0xFF;

}

return;

}

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 22 of 28

/***/

/* */

/*C Prototype: unsigned char CreateFlashToUser(unsigned char *pUserData,*/

/* unsigned char *pFlashBuf, */

/* unsigned char DataSize); */

/* */

/*Function : This routine makes user's data from the data including ECC */

/* values which are read from Flash memory into RAM. */

/* */

/*Parameters : pUserData is a pointer to user's data. Maximal length of */

/* User's data must be 100 bytes. */

/* pFlahBuf is a pointer to the data area which are read from*/

/* Flash memory into RAM. The data area must be 128 bytes. */

/* DataSize is a byte-length of user's data. Its value may */

/* not exceed 100. */

/* */

/*Returns : If no error was detected, return-value will be ECC_NOERROR. */

/* If one bit repair for user's data or an ECC value was */

/* detected, return-value will be ECC_REPAIRED. */

/* If multiple bits error was detected, return-value will be */

/* ECC_FAILED. */

/* */

/***/

unsigned char CreateFlashToUser(unsigned char *pUserData,

unsigned char *pFlashBuf,

unsigned char DataSize)

{

unsigned char i; /* a loop counter */

unsigned char ecc; /* an ECC value */

unsigned char len; /* a temporary length */

unsigned char rtn; /* a return-value */

union /* a data with zero padding */

{

unsigned long lword;

unsigned char bytes[4];

} upad;

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 23 of 28

/*--*/

/* Initialize local variables */

/*--*/

upad.lword = 0xFFFFFFFF;

rtn = ECC_NOERROR;

/*--*/

/* Generate user's data from a Flash buffer */

/*--*/

while(0 < DataSize)

{

if(4 <= DataSize) len = 4;

else len = DataSize;

for(i=0; i<4; i++) upad.bytes[i] = *(pFlashBuf++);

switch(CheckECC((unsigned long *)(&upad),pFlashBuf))

{

case ECC_REPAIRED:

for(i=0; i<4; i++) *(pFlashBuf - 4 + i) = upad.bytes[i];

rtn = ECC_REPAIRED;

/*--- break statement no need --*/

case ECC_NOERROR:

for(i=0; i<len; i++) *(pUserData++) = upad.bytes[i];

pFlashBuf++;

break;

case ECC_FAILED:

return(ECC_FAILED);

}

DataSize -= len;

}

return(rtn);

}

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 24 of 28

/***/

/* */

/*C Prototype: unsigned char GenerateECC(unsigned long *pDataItem) */

/* */

/*Function : This routine returns an 8-bit ECC value calculated from a */

/* supplied 32-bit data item. */

/* */

/*Parameters : pDataItem is a pointer to 32-bit data value for which an */

/* ECC value is required. */

/* */

/*Returns : The return value is an 8-bit ECC value. Only lower 6-bit of */

/* an ECC are valid. */

/* */

/***/

unsigned char GenerateECC(unsigned long *pDataItem)

{

unsigned char i; /* a loop counter */

unsigned char ecc; /* an ECC value */

unsigned long mask; /* a bit mask value */

/*--*/

/* Initialize local variables */

/*--*/

ecc = 0x00;

mask = 0x00000001;

/*--*/

/* Calculate for each bit of a 32-bit data */

/*--*/

for(i=0; i<32; i++)

{

if((*pDataItem & mask) != 0) ecc ^= T[i];

mask <<= 1;

}

return(ecc);

}

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 25 of 28

/***/

/* */

/*C Prototype: unsigned char CheckECC(unsigned long *pDataItem, */

/* unsigned char *pECC); */

/* */

/*Function : This routine checks the validity of a 32-bit data item and */

/* an 8-bit ECC value. If an error is detected, a repair is */

/* performed. The repair can be in operation for only one bit */

/* error. */

/* */

/*Parameters : pDataItem is a pointer to the 32-bit data value. */

/* pECC is a pointer to the 8-bit original ECC value. */

/* */

/*Returns : If no error was detected, return-value will be ECC_NOERROR. */

/* If one bit repair for user's data or an ECC value was */

/* detected, return-value will be ECC_REPAIRED. */

/* If multiple bits error was detected, return-value will be */

/* ECC_FAILED. */

/* */

/***/

unsigned char CheckECC(unsigned long *pDataItem,

unsigned char *pECC)

{

unsigned char i; /* a loop counter */

unsigned char ecc; /* an ECC value */

unsigned long mask; /* a bit mask value */

/*--*/

/* Initialize a local variable */

/*--*/

mask = 0x00000001;

/*--*/

/* Check an ECC and repair a data an ECC */

/*--*/

ecc = GenerateECC(pDataItem);

if(ecc != *pECC)

{

for(i=0; i<sizeof(T); i++)

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 26 of 28

{

if(T[i] == (ecc ^ *pECC))

{

if(32 <= i) *pECC ^= (unsigned char)mask;

else *pDataItem ^= mask;

return(ECC_REPAIRED);

}

if(i == 31) mask = 0x00000001;

else mask <<= 1;

}

return(ECC_FAILED);

}

else

{

return(ECC_NOERROR);

}

}

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 27 of 28

5. Precautions

The following is a list of precaution to take in applying software ECC. Some relevant descriptions
have already been given in the previous sections.

1. The data format for programming of the flash memory in terms of the physical allocation of
the memory mat must be as shown in figure 3.2.

2. The error correction involves the detection and correction of single-bit errors in 32-bit user-
data units. If two or more bits are in error within a 32-bit user-data unit, the error is detected
but cannot be corrected.

3. 100 bytes of user data is retained in each unit for programming (128 bytes) of the flash
memory.

4. The reprogramming of any 8-kbyte span within flash memory 10,000 times can be
guaranteed. Here, eight kbytes include the user data and the ECC. Accordingly, this holds 64
units in the data format shown in figure 3.2. For other areas, the normal guarantee of 100
reprogramming operations applies.

5. The user data is divided into four-byte units for programming to the flash memory. Since the
user data is assumed to be continuous, take care to adjust the user data to correctly fill the
spaces between boundaries if there are empty areas.

6. Since the ECC is inserted every four bytes, this area cannot be used to hold instructions. That
is, an area of flash memory which contains ECCs is not available for use as a memory-
mapped program area.

7. If the flash-memory read time due to software ECC processing becomes a problem for the
user system, apply a countermeasure such as moving all of the user data from flash memory to
RAM on resets.

H8S/2215 Group
0.35-µµµµm F-ZTAT Software ECC Programming

REJ06B0139-0200O/Rev.2.00 March 2004 Page 28 of 28

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	Contents
	1. Preface
	2. Overview of Software ECC
	2.1 Objective of Software ECC
	2.2 Function of Software ECC

	3. Algorithm for Software ECC
	4. Sample Program
	4.1 Configuration of Sample Program and Specifications of Functions
	4.2 Examples of Usage
	4.2.1 Usage Example: CreateFlashToUser()
	4.2.2 Usage Example: CreateUserToFlash()

	4.3 Handling User Data
	4.4 Source Program List

	5. Precautions
	Cautions

