

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.renesas-electoronics.com

Flash Development Toolkit
Application Note (Applications)

A
pplication N

ote

Rev.1.00 2006.06

User Program Mode (H8/3694F)

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

Renesas Flash Development Toolkit

Application Note (Applications)

User Program Mode (H8/3694F)

Revision 1.0

Renesas Technology Corp.

 ii

Contents

1. Introduction ...1

2. H8/3694F (H8/300H Tiny Series) ..2

2.1 Flash Memory Configuration .. 2

2.2 Programming Modes.. 2

2.3 On-Board Programming Modes... 3

3. Functions of the Flash Development Toolkit...4

3.1 Main Functions .. 4

4. Operating the Flash Development Toolkit ..6

4.1 Connecting the Adapter Board .. 6
Connecting the Adapter Board .. 7
4.1.1 Setting Pins on the Adapter Board .. 9

4.2 Setting the Flash Development Toolkit... 9
4.2.1 Starting the Flash Development Toolkit.. 9
4.2.2 Selecting an Option ... 9
4.2.3 Setting a New Project Workspace ...11
4.2.4 Selecting the Device and Kernel .. 12
4.2.5 Selecting a Communications Port .. 13
4.2.6 Device Settings (Setting the Input Clock) ... 14
4.2.7 Selecting the Connection Type (Communication Speed) .. 15
4.2.8 Selecting Programming Options (Protection Level and Messaging Level) 16
4.2.9 Adapter Board Pin Settings.. 17
4.2.10 Reset Mode Pin Settings ... 19
4.2.11 Completion of Setting.. 20
4.2.12 Connecting the Device... 21
4.2.13 Completion of Connection ... 22

4.3 Boot Mode (Programming the User Area) ... 23
4.3.1 Selecting Files.. 23
4.3.2 Building the Image.. 26
4.3.3 Programming ... 28
4.3.4 Blank Check... 30
4.3.5 Checksum... 32
4.3.6 Disconnecting the Device .. 34
4.3.7 Removing Files .. 36
4.3.8 Removing Folders.. 39
4.3.9 Exiting.. 42

 iii

4.4 User Program Mode... 43
4.4.1 Starting the Flash Development Toolkit.. 43
4.4.2 Selecting an Option ... 43
4.4.3 Connecting the Device... 45
4.4.4 Writing a Program in the User Area.. 46
4.4.5 Disconnecting the Device .. 47
4.4.6 Configuring the Project... 48
4.4.7 Setting User Program Mode ... 50
4.4.8 Completion of Setting.. 54
4.4.9 Connecting the Device... 55
4.4.10 Timeout .. 56
4.4.11 Programming ... 57
4.4.12 Blank Check and Checksum... 58

5. Flash Development Toolkit Processing..59

6. Sample Program ..60

6.1 Program Configuration.. 60

6.2 File Configuration.. 61
6.2.1 Main Processing Module ... 61
6.2.2 Micro Kernel .. 62
6.2.3 Main Kernel ... 63
6.2.4 Programming Kernel... 64
6.2.5 Erasing Kernel... 64

6.3 Relationships between Program Modules and Files... 65

6.4 Build Operation ... 66
6.4.1 SET Command... 66
6.4.2 Library File.. 66
6.4.3 Output Files... 66

6.5 Modules .. 67

6.6 Module Hierarchical Structure.. 68

6.7 Program Processing Flow .. 71

6.8 Command Sequence in the User Program Mode .. 72

6.9 Program Sequence ... 75
6.9.1 Preparation .. 75
6.9.2 Main Processing Module ... 76
6.9.3 Micro Kernel .. 76
6.9.4 Main Kernel ... 77

 iv

6.9.5 Programming Kernel... 77
6.9.6 Erasing Kernel... 77

6.10 Memory Map... 78

7. Source Files of the Sample Program ...79

7.1 Header Files... 79
7.1.1 Bit Rate Setting (GenTest.h) .. 79
7.1.2 I/O Register Definition (io3694.h) .. 80
7.1.3 Macro Definition (KAIg.h) .. 81

7.2 Main Processing Module (Strt3694.src and GenTest.c) .. 82
7.2.1 Module Hierarchical Structure... 82
7.2.2 Reset Vector (GenTest.c and GenTest.h) .. 82
7.2.3 Stack (Strt3694.src)... 82
7.2.4 Main Processing (main) .. 83
7.2.5 Branch to Copy (JumpCopy)... 83

7.3 Micro Kernel (uGenu.c and CmdFunc.c) ... 84
7.3.1 Module Hierarchical Structure... 84
7.3.2 Start Micro Kernel (StartFDTUserKernel) ... 84
7.3.3 Prepare Micro Kernel (PrepareFDTUserKernel) .. 85
7.3.4 Command Function (CmdFunc and CmdFunc.c).. 86
7.3.5 Prepare RAM (PrepareRAM).. 88

7.4 Main Kernel (FDTUMain.c, CmdFunc.c, and CopyFunc.c).. 89
7.4.1 Module Hierarchical Structure... 89
7.4.2 Main Kernel (Kernelmain).. 89
7.4.3 Command Processing (ProcessCommand)... 90
7.4.4 Copy Function (CopyFunction)... 91

7.5 Erasing Kernel (FDTErase.c, EraseTime.c, and F3694e.src) 92
7.5.1 Module Hierarchical Structure... 92
7.5.2 Flash Erasing (EraseFLASH)... 92
7.5.3 Erasing Wait Time (EraseWaitTime and CalCount)... 93

7.6 Programming Kernel (FDTWrite.c, WriteTime.c, and F3694w.src) 95
7.6.1 Module Hierarchical Structure... 95
7.6.2 Flash Memory Programming (WriteFLASH) .. 95
7.6.3 Programming Wait Time (WriteWaitTime and CalCount) ... 96

8. Using Programming/Erasing Kernels (Supplied Programs)...................................98

8.1 Programming ... 98
8.1.1 Used Files .. 98
8.1.2 Module Specifications.. 98

 v

8.2 Erasing ... 99
8.2.1 Used Files .. 99
8.2.2 Module Specifications.. 99

 1

1. Introduction
This application note describes the following items with respect to the use of the Flash Development Toolkit and the use

of the user program mode (user mode) of the H8/3694F (H8/300H Tiny Series) using the Flash Development Toolkit:

(1) Boot mode (programming the user area)

(2) User program mode (user mode)

Read the explanation of these items to understand differences between the boot mode and the user program mode and

understand the user program mode.

This application note describes the above items using a sample program created by referencing a boot mode control

program. This sample program programs and erases on-chip flash memory. To program or erase flash memory in the

user program mode, refer to this sample program.

 2

2. H8/3694F (H8/300H Tiny Series)
2.1 Flash Memory Configuration
The flash memory version of the H8/3694F incorporates 32-Kbyte flash memory. In addition, it has an area for

containing a flash memory programming and erasing control program. This application note calls the area containing

the control program the boot area and flash memory the user area. The flash memory configuration is shown in Table

2-1.

Table 2-1 Flash Memory Configuration
Area Type Size Blocks

Boot area Control program - -
User area Flash memory 32 Kbytes 5 blocks

Four 1-Kbyte blocks
One 28-Kbyte block

2.2 Programming Modes
The following two modes are available to program and erase flash memory: The boot mode which enables on-board

programming/erasing operations and the programmer mode which enables programming/erasing operations using a

PROM programmer. In addition to the above modes, the user program mode enables on-board programming/erasing

operations. When the H8/3694F is started from the reset state, it enters a mode depending on the input levels of the

TEST and NMI pins and port as listed in Table 2-2. The input level of each pin must be set at least 4 states before the

reset state is cleared.

When the LSI enters the boot mode, the boot program incorporated into the LSI starts up. The boot program transfers

the programming control program from the externally connected Flash Development Toolkit to the on-chip RAM via

SCI3, erases the entire flash memory, then executes the programming control program. The boot mode is available for

initial programming in the on-board state and forced return when data cannot be programmed or erased in the user

program mode.

In the user program mode, any desired block can be erased and programmed by causing a branch to a user-provided

programming/erasing program.

For details, refer to the Hardware Manual.

Table 2-2 Programming Mode Selection
LSI Status After the Reset State Is Cleared TEST NMI P85 PB0 PB1 PB2

User program mode 0 1 X X X X On-board programming
modes Boot mode 0 0 1 X X X
Programmer mode 1 X X 0 0 0
Note: 1. X: Don't care

 3

2.3 On-Board Programming Modes
There are two on-board programming modes: The boot mode and the user boot mode. On-board programming modes

are listed in Table 2-3.

Table 2-3 On-Board Programming Modes
Item Boot Mode User Program Mode

Function This mode is a program mode that uses an
on-chip SCI interface. The user area can be
programmed.
This mode can automatically adjust the bit
rate between the host and this LSI.
The entire user area is erased first.

The user area can be programmed by
using a desired interface.

Control program Boot area
(On-chip boot program)

User area
(User-created user program)

Programming/erasing
enable area

User area User area

All erasure (Automatic)
Block division erasure *1
Programming data transfer From the host via the SCI From a desired device via RAM
Reset start On-chip boot program storage area

(Boot area)
User area

Transition to the user
program mode

Changing mode setting and reset Changing the FLSHE bit setting

Note: 1. All-erasure is performed. After that, the specified block can be erased.

The entire user area is erased in the boot mode. Then, the user area can be programmed by commands. However, the

contents of the area cannot be read until the entire erasing is done.

 4

3. Functions of the Flash Development Toolkit
The Flash Development Toolkit is an on-board flash programming tool for Renesas F-ZTAT microcomputers, which

offers a sophisticated and easy-to-use graphical user interface.

When it is used with Renesas High-performance Embedded Workshop (HEW), it allows users who develop embedded

application software using Renesas F-ZTAT microcomputers to use an integrated environment.

The Flash Development Toolkit can also be used as an editor for S-record and hexadecimal files.

Note: F-ZTAT (Flexible-Zero Turn Around Time) is a trademark of Renesas Technology Corp.

3.1 Main Functions
• Connecting a device: Connects a device to the interface of the Flash Development Toolkit.

• Disconnecting the device: Disconnects the device from the interface of the Flash Development Toolkit.

• Erasing blocks: Opens the "Erase Block" dialog to erase all or individual blocks in flash memory on the device.

• Checking the blank status: Checks whether the flash section on the target device is blank.

• Uploading data: Uploads data from the target device.

• Downloading a target file: Downloads an active file using the hexadecimal editor.

• Returning a checksum: Returns a checksum of data in flash memory.

• Specifying a flash area: Sets a flash area in which non-programming (such as uploading and blank check) operations

are to be performed.

• The Flash Development Toolkit is available in the simple interface mode and basic simple interface mode to facilitate

the usability of the kit.

For details, refer to Renesas Flash Development Toolkit 3.4 User's Manual.

 5

 The graphical user interface screen of the Flash Development Toolkit is shown in Figure 3-1.

Figure 3-1 Graphical User Interface of the Flash Development Toolkit

 6

4. Operating the Flash Development Toolkit
4.1 Connecting the Adapter Board
On-board programming adapter board for F-ZTAT* microcomputers HS0008EAUF1H (called the adapter board

hereafter), which is connected between a host computer and user system, has a function which can write a user

application program in flash memory built into an F-ZTAT microcomputer on the user system (on-board) and erase it

from the flash memory using the Flash Development Toolkit.

The adapter board connection is shown in Figure 4-1.

Note: F-ZTAT (Flexible-Zero Turn Around Time) is a trademark of Renesas Technology Corp.

Note: FDM (flash development module) is a former name of the adapter board.

USB cable

Adapter board

Host computer

User system

F-ZTAT
microcomputer

Figure 4-1 Connecting the Adapter Board

 7

The pin numbers and corresponding signals of the user system interface cable used for connecting the adapter board and

user system are listed in the following table.

Table 4-1 Pin Numbers and Corresponding Signals of the HS0008EAUF1H User System Interface

Cable
No. Signal Name No Signal Name

1 RES 2 GND
3 FWx 4 GND
5 MD0 6 GND
7 MD1 8 GND
9 MD2 (IO0) 10 GND
11 MD3 (IO1) 12 GND
13 MD4 (IO2) 14 GND
15 RXD (TXD on the user system side) 16 GND*1
17 TXD (RXD on the user system side) 18 VIN (Vcc or PVcc)*2
19 SCK (NC) 20 VIN (PVcc)*2
Notes: 1. Be sure to connect pin No. 16 to GND to detect that the user system is connected properly.
2. For a device with Vcc and PVcc, be sure to supply Vcc or PVcc (pin No. 18) and PVcc (pin No. 20) to the VIN pins of
the user interface connector, respectively. To use a device under condition Vcc = PVcc or when PVcc is not present in
the device, be sure to supply Vcc to both VIN pins Vcc or PVcc (pin No. 18) and PVcc (pin No. 20).

Connecting the Adapter Board

An example of connecting the H8/3694F and Renesas adapter board (HS0008EAUF1H) is shown in Figure 4-2. The

pull-up and pull-down resistor values shown are only examples. Evaluate the microcomputer to determine the actual

values on the user system.

 8

H8/3694F

TxD

RxD3

RES

15

Vcc

17

5

1

VIN(Vcc)

RXD

TXD

MD0

RE
S

GND
2,4,6,8,10,
12,14,16

Adapter board
(HS0008EAUF1H) Pulled up at 47 kΩ

or more.

Pulled up at
about 1 kΩ.

Note: 1. Manufacturer: 3M Corporate

18,20

P859MD2
(IO0)

NMI

Vcc

Connector*1
3428-6002LCSC

Figure 4-2 Example of Connecting the H8/3694F and Adapter Board

 9

4.1.1 Setting Pins on the Adapter Board

An example of setting pins for the boot mode when the H8/3694F user system and Renesas adapter board

(HS0008EAUF1H) is shown in Table 4-2.

Table 4-2 Example of Setting Pins on the H8/3694F and Adapter Board (for the Boot Mode)
Pin No. Pin on the Adapter

Board
Pin on the

Device
Input/Output Output Level

1 RES RES Output (default) Adapter board
3 FWx NC NC -
5 MD0 NMI Output Low (0)
7 MD1 NC NC -
9 MD2 (IO0) P85 Output High (1)
11 MD3 (IO1) NC NC -
13 MD4 (IO2) NC NC -
15 RXD TXD Input (default) Adapter board
17 TXD RXD Output (default) Adapter board
19 SCK (NC) NC NC (default) -
Note: NC: Means no connection.

Table 4-3 Programming Mode Selection
TEST NMI P85 PB0 PB1 PB2 LSI Status After the Reset State Is Canceled

- MD0 MD2(IO0) - - -
User Program Mode 0 1 X X X X On-Board Programming

Modes Boot Mode 0 0 1 X X X
Programmer mode 1 X X 0 0 0
Note: X: Don't care

4.2 Setting the Flash Development Toolkit
Set the Flash Development Toolkit first to write a program in flash memory.

4.2.1 Starting the Flash Development Toolkit

From the "All Programs" menu, select "Flash Development Toolkit 3.4."

4.2.2 Selecting an Option

The "Welcome!" screen of the Flash Development Toolkit appears.

Select "Create a new project workspace."

When the Flash Development Toolkit is started up for the second and subsequent times, the previously selected device

and port information are retained. Select "Open a recent project workspace."

 10

When you have selected an option, click "OK."

 11

4.2.3 Setting a New Project Workspace

Set a new project workspace. Use "Browse..." and select a directory, and specify the device name in "Workspace

Name." Specify a project name if required. In this example, specify the same name in "Workspace Name:" and "Project

Name:."

When you have set the project workspace, click "OK."

 12

4.2.4 Selecting the Device and Kernel

Select the target device from the pull-down menu. In this example, select H8/3694F.

When you have set the device, click "Next."

 13

4.2.5 Selecting a Communications Port

Select the adapter board (FDM) from the pull-down menu.

When you have selected the communications port, click "Next."

 14

4.2.6 Device Settings (Setting the Input Clock)

In the first column enter the frequency of the clock used for the board in MHz. For example, enter 9.8 (MHz).

 When you have entered the value, click "Next."

The input clock is the frequency of the clock directly input to the microcomputer. Enter the frequency of the crystal or

ceramic resonator connected to the user system with three significant digits. The input clock differs from the operating

frequency (PLL output).

 15

4.2.7 Selecting the Connection Type (Communication Speed)

Set the baud rate. For example, select "Use Default."

When you have selected the baud rate, click "Next."

 16

4.2.8 Selecting Programming Options (Protection Level and Messaging Level)

Select the protection level and messaging level. For example, select "Automatic" for "Protection" and "Advanced" for

"Messaging."

When you have selected programming options, click "Next."

 17

4.2.9 Adapter Board Pin Settings

Set the pins on the adapter board (FDM) for the boot mode.

In the H8/3694F boot mode, set the output of P85 to high (1) and that of NMI to low (0). On the H8/3694F user system,

MD2 (IO0) is connected to P85 and MD0 is connected to NMI. For this reason, set the output of MD2 (IO0) to high (1)

and that of MD0 to low (0). No FWE pin setting is required because no FWE pin is given.

When you have set the pins, click "Next."

 18

An example of connecting the H8/3694F and Renesas adapter board (HS0008EAUF1H) is shown in Figure 4-3. The

pull-up and pull-down resistor values shown are only examples. Evaluate the microcomputer to determine the actual

values on the user system.

H8/3694F

TxD

RxD3

RES

15

Vcc

17

5

1

VIN (Vcc)

RXD

TXD

MD0

RES

GND
2,4,6,8,10,
12,14,16

Adapter board
(HS0008EAUF1H) Pulled up at 47 kΩ

or more.

Pulled up at
about 1 kΩ.

Note: 1. Manufacturer: 3M Corporate

18,20

P859MD2
(IO0)

NMI

Vcc

Connector*1
3428-6002LCSC

Figure 4-3 Example of Connecting the H8/3694F and Adapter Board

An example of setting pins for the boot mode when the H8/3694F user system and Renesas adapter board

(HS0008EAUF1H) is shown in Table 4-4.

Table 4-4 Example of Setting Pins on the H8/3694F and Adapter Board (for the Boot Mode)
Pin No. Pin on the Adapter

Board
Pin on the

Device
Input/Output Output Level

1 RES RES Output (default) Adapter board
3 FWx NC NC -
5 MD0 NMI Output Low (0)
7 MD1 NC NC -
9 MD2 (IO0) P85 Output High (1)
11 MD3 (IO1) NC NC -
13 MD4 (IO2) NC NC -
15 RXD TXD Input (default) Adapter board
17 TXD RXD Output (default) Adapter board
19 SCK (NC) NC NC (default) -
Note: NC: Means no connection.

 19

4.2.10 Reset Mode Pin Settings

Set pins on the adapter board for restarting the device in the reset mode. These settings are not required for this

procedure.

When you have set the items, click "Finish."

 20

4.2.11 Completion of Setting

The H8/3694F board has been set to the Flash Development Toolkit in the boot mode.

 21

4.2.12 Connecting the Device

Connect the adapter board (FDM) to a PC and the H8/3694F board to the adapter board and turn on the power.

After the completion of the connection, click "Device" to open the pull-down menu and click "Connect to Device."

Select the adapter board (FDM).

When you have selected the device, click "OK."

 22

4.2.13 Completion of Connection

The H8/3694F board has been connected to the Flash Development Toolkit in the boot mode.

At this time, the contents of the user area have been erased.

 23

4.3 Boot Mode (Programming the User Area)
Write a program in the user area in the boot mode. The program to be written is the sample test program supplied with

the Flash Development Toolkit (files 3694Test.mot and uGenU.mot (S-type files)). The bit rate in this program must be

modified according to the frequency. For how to modify the bit rate, refer to section 7.1.1, Bit Rate Setting (GenTest.h).

The program is contained in the Renesas\FDT3.4\Kernels\ProtB folder for the Flash Development Toolkit. The

following is the full pathname of the Flash Development Toolkit programs when they are installed in the Program Files

folder:

C:\Program Files\Renesas\FDT3.4\Kernels\ProtB\3694\Renesas\1_2_00

4.3.1 Selecting Files

To select files to be programmed, select "Add Files..." from the "Project" pull-down menu.

 24

In the "Add Files" dialog box, add file 3694Test.mot.

When you have selected the file, click "Add."

File 3694Test.mot is now added to the project.

 25

In the same way, add uGenU.mot.

 26

4.3.2 Building the Image

Build the user area device image because more than one file is to be programmed. From the "Project" pull-down menu,

select "Rebuild Image" then "User Area."

 27

Image file 3694.fpr is created.

 28

4.3.3 Programming

Program the user area.

Click the right mouse button on file 3694.fpr to display the pop-up menu. Click "Download User Image" to download

file 3694.fpr to the user area.

 29

You can check that the program has been downloaded to the user area.

 30

4.3.4 Blank Check

To confirm that the user boot area has been programmed, perform a blank check.

Click "Device" to open the pull-down menu and click "Blank Check."

 31

The result of the blank check for the selected area is displayed.

The user area is not blank.

 32

4.3.5 Checksum

To confirm that the user boot area has been programmed, display a checksum.

Click "Device" to open the pull-down menu and click "FLASH Checksum."

 33

The result of the checksum calculation is displayed.

When the user area is blank, the following value is displayed as the result:

Calculating device checksum

Flash Checksum: 0x00FF0000 (User Area)

 34

4.3.6 Disconnecting the Device

After the completion of programming, disconnect the device.

Click "Device" to open the pull-down menu and click "Disconnect."

 35

The device is disconnected.

 36

4.3.7 Removing Files

Remove files.

Click "Project" to open the pull-down menu and click "Remove Files...."

 37

The project files are desplayed.

Click "Remove All."

Click "OK."

 38

The files are removed.

 39

4.3.8 Removing Folders

Remove folders.

Click the right mouse button on a folder to display the pop-up menu and click "Remove Folder."

 40

The folder is removed.

 41

In the same way, remove the Device Image and FDT Image Files folders.

 42

4.3.9 Exiting

Save the work folder and exit the Flash Development Toolkit.

Click "File" to open the pull-down menu and click "Exit."

The Flash Development Toolkit terminates.

The work file space of the Flash Development Toolkit is saved as file 3694.AWS.

 43

4.4 User Program Mode
In the user program mode, the user area can be programmed or erased.

4.4.1 Starting the Flash Development Toolkit

From the "All Programs" menu, select "Flash Development Toolkit 3.4."

4.4.2 Selecting an Option

The "Welcome!" screen of the Flash Development Toolkit appears.

Select "Open a recent project workspace" and project workspace file 3694.AWS.

When you have selected an option, click "OK."

 44

Project 3694 is displayed.

The Flash Development Toolkit can also be activated by directly opening (or double-clicking on) project workspace file

3694.AWS.

 45

4.4.3 Connecting the Device

Connect the adapter board (FDM) to a PC and the H8/3694F board to the adapter board and turn on the power.

After the completion of the connection, click "Device" to open the pull-down menu and click "Connect to Device."

The device is connected.

 46

4.4.4 Writing a Program in the User Area

Add files 3694Test.mot and uGenU.mot and build the image to create file 3694.fpr. Then, download file 3694.fpr to

write the program in the user area.

 47

4.4.5 Disconnecting the Device

Click "Device" to open the pull-down menu and click "Disconnect."

 48

4.4.6 Configuring the Project

Click "Device" to open the pull-down menu and click "Configure Flash Project."

 49

The configure project window appears.

 50

4.4.7 Setting User Program Mode

Select the "Device" tab in the configure project window and double-click "Connection" and "Boot."

 51

Set the connection type.

Select "USER Program Mode" in "Select Connection:."

Set the baud rate to 9600 bps.

When you have selected the baud rate, click "Next."

 52

Set the pins on the adapter board (FDM) for the user program mode.

In the H8/3694F user program mode, set the output of NMI to high (1). On the H8/3694F user system, MD0 is

connected to NMI. For this reason, set the output of MD0 to high (1). No FWE pin setting is required because no FWE

pin is given.

When you have set the pin, click "Finish."

 53

 An example of connecting the H8/3694F and Renesas adapter board (HS0008EAUF1H) is shown in Figure 4-4. The

pull-up and pull-down resistor values shown are only examples. Evaluate the microcomputer to determine the actual

values on the user system.

H8/3694F

TxD

RxD3

RES

15

Vcc

17

5

1

VIN(Vcc)

RXD

TXD

MD0

RES

GND
2,4,6,8,10,
12,14,16

Adapter board
(HS0008EAUF1H) Pulled up at 47 kΩ

or more.

Pulled up at
about 1 kΩ.

Note: 1. Manufacturer: 3M Corporate

18,20

P859MD2
(IO0)

NMI

Vcc

Connector*1
3428-6002LCSC

Figure 4-4 Example of Connecting the H8/3694F and Adapter Board

An example of setting pins for the user program mode when the H8/3694F user system and Renesas adapter board

(HS0008EAUF1H) is shown in Table 4-5.

Table 4-5 Example of Setting Pins on the H8/3694F and Adapter Board (for the User Program Mode)
Pin No. Pin on the Adapter

Board
Pin on the

Device
Input/Output Output Level

1 RES RES Output (default) Adapter board
3 FWx NC NC -
5 MD0 NMI Output High (1)
7 MD1 NC NC -
9 MD2 (IO0) P85 Input -
11 MD3 (IO1) NC NC -
13 MD4 (IO2) NC NC -
15 RXD TXD Input (default) Adapter board
17 TXD RXD Output (default) Adapter board
19 SCK (NC) NC NC (default) -
Note: NC: Means no connection.

 54

4.4.8 Completion of Setting

The user program mode has been set.

 55

4.4.9 Connecting the Device

After the completion of the setting, click "Device" to open the pull-down menu and click "Connect to Device."

The connection in the user program mode is completed.

 56

4.4.10 Timeout

A timeout error may occur during an attempt to connect the device.

There are several possible causes. Either of the following operations may not be performed. Check them.

(1) Modify the bit rate in the sample program to 9600 bps.

For how to modify the bit rate, refer to section 7.1.1, Bit Rate Setting (GenTest.h).

(2) Connect the serial input to the I/O bus (26P) (J2).

For details on connection to the I/O bus, refer to section エラー! 参照元が見つかりません。, エラー! 参

照元が見つかりません。.

 57

4.4.11 Programming

Write a program in the user area in the user program mode.

Click the right mouse button on file 3694.fpr to display the pop-up menu. Click "Download User Image" to download

file 3694.fpr to the user area.

You can check that the program has been downloaded to the user area.

 58

4.4.12 Blank Check and Checksum

To confirm that the user area has been programmed, perform a blank check and calculate a checksum.

Click "Device" to open the pull-down menu and click "Blank Check."

Click "Device" to open the pull-down menu and click "FLASH Checksum."

The results of the blank check and checksum calculation are displayed.

 59

5. Flash Development Toolkit Processing
The Flash Development Toolkit can be connected in either of the following two modes: the boot mode and user

program mode. In both modes, the continuation of the execution from a previous session (direct connection to the main

kernel) can be specified. The connection modes of the Flash Development Toolkit are listed in Table 5-1. Usually, use

new connection processing. The hexadecimal codes are the command codes of the Flash Development Toolkit.

Table 5-1 Connection Modes of the Flash Development Toolkit
Mode Normal Processing Continuation of the Execution from a Previous

Session
Boot mode Baud rate adjustment

Micro kernel transfer
H'27 (Programming unit inquiry)
H'10 (Device selection)
H'11 (Clock mode selection)
H'3F (New baud rate setting)
Main kernel transfer

H'27 (Programming unit inquiry)
H'4F (Status request)
H'4D (User area blank check)

User program mode H'27 (Programming unit inquiry)
H'10 (Device selection)
H'11 (Clock mode selection)
H'3F (New baud rate setting)
Main kernel transfer

H'27 (Programming unit inquiry)
H'4F (Status request)
H'4D (User area blank check)

 60

6. Sample Program
This section describes the sample program in the user program mode of the H8/3694F.

6.1 Program Configuration
The configuration of the sample program is shown in Table 6-1.

Table 6-1 Program Configuration
No. Program Function Location and Startup

1 Main processing
module

Causes a branch to the micro kernel. Stored in ROM in the boot mode in
advance.
Initiated by a reset.

2 Micro kernel Processes inquiry and selection
commands.
Transfers the transmit and receive
modules to RAM.
Receives the main kernel and stores it
in RAM.
Causes a branch to the main kernel.

Stored in ROM in the boot mode in
advance.
Branches from the main processing
module.

3 Main kernel Processes programming, erasing, and
check commands.
Receives the programming or erasing
program and stores it in RAM.
Calls the programming or erasing
program.

Received by the micro kernel and stored
in RAM.
Branches from the micro kernel.

4 Programming kernel Programs flash memory. Received by the main kernel and stored in
RAM.
Called from the main kernel.

5 Erasing kernel Erases flash memory. Received by the main kernel and stored in
RAM.
Called from the main kernel.

 61

6.2 File Configuration
The program files are contained in the C:\Program Files\Renesas\FDT3.4\Kernels\ProtB\3694\Renesas\1_2_00 folder.

The file configuration of each program module is shown below. These program modules are provided as a sample of a

program in the user program mode that is to be created uniquely by the user.

6.2.1 Main Processing Module

Table 6-2 File Configuration of the Main Processing Module
No. File Name Description Type

1 3694Test.mot Load module of the main processing module in the
user program mode

S-type format

2 bTest.bat Batch file of the main processing module in the user
program mode

MS-DOS batch file

3 l3694t.xcl Link subfile of the main processing module in the user
program mode

Linkage editor command file

4 Strt3694.src Stack initial setting source file Assembly language source file
5 GenTest.c Main source file of the main processing module in the

user program mode
C source file

6 GenTest.h GenTest.c function prototype declaration C header file
7 io3694.h SCI and port register definition C header file
8 KDevice.h Device-specific information (such as kernel location

definition)
C header file

9 KStruct.h Structure definition and other information C header file
10 KTypes.h Type definition and other information C header file

 62

6.2.2 Micro Kernel

Table 6-3 File Configuration of the Micro Kernel
No. File Name Description File Type

1 uGenU.mot Load module of the micro kernel in the user
program mode

S-type format

2 ub3694u.bat Batch file of the micro kernel in the user program
mode

MS-DOS batch file

3 ul3694u.xcl Link subfile of the micro kernel in the user program
mode

Linkage editor command file

4 uGenu.c Main source file of the micro kernel in the user
program mode

C source file

5 CmdFunc.c Command function source file C source file (common)
6 CmdFunc.h CmdFunc.c function prototype declaration C header file
7 Commands.h Command ID definition C header file
8 DeviceInfo.h Device-specific information (inquiry/response data) C header file
9 Extern.h External reference definition for functions and

variables
C header file

10 uGenu.h uGenu.c function prototype declaration C header file
11 io3694.h SCI and port register definition C header file
12 KDevice.h Device-specific information (such as kernel location

definition)
C header file

13 KStruct.h Structure definition and other information C header file
14 KTypes.h Type definition and other information C header file
15 H8runtime.lib Runtime library Required for re-creating the kernel.

(This file is not provided. Use a library
configuration tool to create the file.)
Note: Refer to BuildAll.bat.

 63

6.2.3 Main Kernel

Table 6-4 File Configuration of the Main Kernel
No. File Name Description File Type

1 Genu3694.cde Load module of the main kernel in the user
program mode

Binary format

2 b3694u.bat Batch file of the main kernel in the user program
mode

MS-DOS batch file

3 l3694u.xcl Link subfile of the main kernel in the user program
mode

Linkage editor command file

4 FDTUMain.c Source file of the main kernel in the user program
mode

C source file

5 CopyFunc.c Source file of the copy function of the main kernel
in the user program mode

C source file

6 CmdFunc.c Command function source file C source file (common)
7 CmdFunc.h CmdFunc.c function prototype declaration C header file
8 Commands.h Command ID definition C header file
9 DeviceInfo.h Device-specific information (inquiry/response data) C header file
10 Extern.h External reference definition for functions and

variables
C header file

11 FDTBMain.h FDTBMain.c function prototype declaration C header file
12 io3694.h SCI and port register definition C header file
13 KDevice.h Device-specific information (such as kernel location

definition)
C header file

14 KStruct.h Structure definition and other information C header file
15 KTypes.h Type definition and other information C header file

 64

6.2.4 Programming Kernel

Table 6-5 File Configuration of Programming Kernel Main
No. File Name Description File Type

1 Genw3694.cde Load module of the programming kernel Binary format
2 b3694w.bat Batch file of the programming kernel MS-DOS batch file
3 l3694w.xcl Link subfile of the programming kernel Linkage editor command file
4 F3694w.src Source file of the programming kernel Assembly language source file
5 FDTWrite.c Main source file of the programming kernel C source file
6 WriteTime.c Source file of programming wait time calculation C source file
7 Commands.h Command ID definition C header file
8 F3694asm.inc Flash memory register definition and other

information
Assembly language include file

9 io3694.h SCI and port register definition C header file
10 KAlg.h Programming/erasing function definition C header file
11 KDevice.h Device-specific information (such as kernel

location definition)
C header file

12 KStruct.h Structure definition and other information C header file
13 KTypes.h Type definition and other information C header file
14 H8runtime.lib Runtime library Required for re-creating the kernel.

(This file is not provided. Use a library
configuration tool to create the file.)
Note: Refer to BuildAll.bat.

6.2.5 Erasing Kernel

Table 6-6 File Configuration of the Erasing Kernel
No. File Name Description File Type

1 Gene3694.cde Load module of the erasing kernel Binary format
2 b3694e.bat Batch file of the erasing kernel MS-DOS batch file
3 l3694e.xcl Link subfile of the erasing kernel Linkage editor command file
4 F3694e.src Source file of the erasing kernel Assembler source file
5 FDTErase.c Source file of the erasing kernel C source file
6 EraseTime.c Source file of erasing wait time calculation C source file
7 Commands.h Command ID definition C header file
8 F3694asm.inc Flash memory register definition and other

information
Assembler include file

9 io3694.h SCI and port register definition C header file
10 KAlg.h Programming/erasing function definition C header file
11 KDevice.h Device-specific information (such as kernel

location definition)
C header file

12 KStruct.h Structure definition and other information C header file
13 KTypes.h Type definition and other information C header file
14 H8runtime.lib Runtime library Required for re-creating the kernel.

(This file is not provided. Use a library
configuration tool to create the file.)
Note: Refer to BuildAll.bat.

 65

6.3 Relationships between Program Modules and Files
The relationships between program modules and files are given in Table 6-7.

Table 6-7 Relationships between Program Modules and Files

Program Name Batch File Source Files Header Files Subcommand
File

Library File Output File

Main processing module
(User program mode)

bTest.bat GenTest.c
strt3694.src

GenTest.h
io3694.h
KDevice.h
KStruct.h
KTypes.h

l3694t.xcl - 3694Test.mot

Micro kernel
(User program mode)

ub3694u.bat Ugenu.c
CmdFunc.c

Ugenu.h
CmdFunc.h
Commands.h
DeviceInfo.h
Extern.h
io3694.h
KDevice.h
KStruct.h
KTypes.h

ul3694u.xcl H8runtime.lib uGenU.mot

Main kernel
(User program mode)

b3694u.bat FDTUMain.c
CopyFunc.c
CmdFunc.c

FDTUMain.h
CmdFunc.h
Commands.h
DeviceInfo.h
Extern.h
io3694.h
KDevice.h
KStruct.h
KTypes.h

l3694u.xcl - Genu3694.cde

Programming kernel b3694w.bat FDTWrite.c
WriteTime.c
F3694w.src

F3694asm.inc
Commands.h
io3694.h
KAlg.h
KDevice.h
KStruct.h
KTypes.h

l3694w.xcl H8runtime.lib Genw3694.cde

Erasing kernel b3694e.bat FDTErase.c
EraseTime.c
F3694e.src

F3694asm.inc
Commands.h
io3694.h
KAlg.h
KDevice.h
KStruct.h
KTypes.h

l3694e.xcl H8runtime.lib Gene3694.cde

Micro kernel
(Boot mode)

ub3694.bat Ugen.c
CmdFunc.c
strt3694.src

Ugen.h
CmdFunc.h

ul3694.xcl - uGen3694.cde

Main kernel
(Boot mode)

b3694m.bat FDTBMain.c
CmdFunc.c

FDTBMain.h
CmdFunc.h

l3694m.xcl - Genm3694.cde

All build batch file BuildAll.bat - - H8runtime.lib -

Note: Boot mode program modules and all build batch files are included.

 66

6.4 Build Operation
Build operation is not required when the provided program is used. When re-creation is required due to such as the use

of a different operating frequency, build operation is required.

Executing build operation deletes all generated files. Create a copy, then execute build operation because a current file

may be required.

6.4.1 SET Command

Before executing build operation, set the environment. Insert the following commands in the set.bat batch file to

execute set before build operation:

set PATH=%PATH%;C:\Hew3\Tools\Renesas\H8\6_1_0\Bin

set CH38=C:\Hew3\Tools\Renesas\H8\6_1_0\Include

set CH38TMP=C:\Hew3\Tools\Renesas\H8\6_1_0\Ctemp

6.4.2 Library File

A library file is required for executing build operation. No library file is provided, so use a library configuration tool to

create the file. For the command, refer to BuildAll.bat. Use the following command to create a library file. Executing

BuildAll allows all programs including a library file to be created.

REM -- LIBRARY COMPILE --

"%CH38%\..\bin\lbg38" -output=H8runtime.lib -head=runtime -cpu=300HN

6.4.3 Output Files

Open the "Command Prompt" window by clicking "Accessories," then "Command Prompt." On the window, execute

each batch file to create the relevant output file.

Table 6-8 Batch Files and Output Files

No. Program Batch File Output File Output File Type

1 Main processing module bTest.bat 3694Test.mot S-type file

2 Micro kernel ub3694u.bat uGenU.mot S-type file

3 Main kernel b3694u.bat Genu3694.cde Binary load module file

4 Programming kernel b3694w.bat Genw3694.cde Binary load module file

5 Erasing kernel b3694e.bat Gene3694.cde Binary load module file

6 Library BuildAll.bat H8runtime.lib Library file

 67

6.5 Modules
The modules are listed in Table 6-9.

Table 6-9 Modules
Program File Module Function

Strt3694.src startup Start
main Main processing
WDTStop Watchdog timer stop
InitSCI SCI initial setting
Get Reception
Put Transmission

Main processing
module GenTest.c

JumpCopy Branch to copy
StartFDTUserKernel Start FDT
PrepareFDTUserKernel Prepare FDT
PrepareRAM Prepare RAM

Ugenu.c

CmdFunc Command function
ReferFunc Reference function
SelectDevice Device selection
SelectClockMode Clock mode selection
SetNewBaudRate New baud rate setting
SendSciBreak Break transmission
RequestBootPrgSts Program status
SendAck ACK transmission

Micro kernel

CmdFunc.c

GetCmdData Command read
Kernelmain Main kernel FDTUMain.c
ProcessCommand Command processing

CopyFunc.c CopyFunction Copy function
RequestBootPrgSts Program status
SumcheckUserArea User area checksum
SendAck ACK transmission
CheckBlank Blank check
ReadMemory Memory read

Main kernel

CmdFunc.c

GetCmdData Command read
WriteFLASH Flash programming
RequestBootPrgSts Program status
SendAck ACK transmission

FDTWrite.c

GetWriteData Programming data reception
WriteTime.c WriteWaitTime Programming wait time

flash_write Data programming

Programming kernel

F3694w.src
CalCount Time calculation
EraseFLASH Flash erasing
RequestBootPrgSts Program status
SendAck ACK transmission

FDTErase.c

GetEraseData Erase data reception
EraseTime.c EraseWaitTime Erasing wait time

block_erase Block erasing

Erasing kernel

F3694e.src
CalCount Time calculation

 68

6.6 Module Hierarchical Structure
 The module hierarchical structure is shown in Figure 6-1.

VECT (0x0000) Reset vector
 ⏐⎯startup (0x400) (Strt3694.src) Start (Main processing module)
 ⏐⎯main (GenTest.c) Main processing
 ⏐⎯WDTStop Watchdog timer stop
 ⏐⎯InitSCI SCI initial setting
 ⏐⎯JumpCopy Branch to copy
 ⏐⎯CopyFDT (0x7600) Micro kernel copy
 ⏐⎯StartFDTUserKernel (uGenu.c) Start micro kernel (Micro kernel)
 ⏐⎯PrepareFDTUserKernel Prepare micro kernel
 ⏐ ⏐⎯CmdFunc Command function
 ⏐ ⏐ ⏐⎯Get Reception
 ⏐ ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐⎯ReferFunc Reference function
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐⎯GetCmdData Command read
 ⏐ ⏐ ⏐ ⏐⎯Get Reception
 ⏐ ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐⎯SelectDevice Device selection
 ⏐ ⏐ ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐⎯SelectClockMode Clock mode selection
 ⏐ ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐ ⏐⎯SetNewBaudRate New bit rate selection
 ⏐ ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐ ⏐ ⏐⎯SendSciBreak Break transmission
 ⏐ ⏐ ⏐ ⏐ ⏐⎯Get Reception
 ⏐ ⏐ ⏐ ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐ ⏐ ⏐⎯Get Reception
 ⏐ ⏐ ⏐⎯RequestBootPrgSts Program status
 ⏐ ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯PrepareRAM Prepare RAM
 ⏐ ⏐⎯Get Reception
 ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯SendAck ACK transmission
 ⏐⎯RAMStartAddress (0xF780) RAM start address
 (To be continued)

Figure 6-1 Module Hierarchical Structure (1)

 69

 (Continued)
 ⏐⎯RAMStartAddress (0xF780) RAM start address
 ⏐⎯Kernelmain (FDTUMain.c) Main kernel
 ⏐⎯ProcessCommand Command processing
 ⏐ ⏐⎯Get Reception
 ⏐ ⏐⎯RequestBootPrgSts Program status
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯SumcheckUserArea User area checksum
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐⎯GetCmdData Command read
 ⏐ ⏐ ⏐⎯Get Reception
 ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯ReadMemory Memory read
 ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯CheckBlank Blank check
 ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐⎯Put Transmission
 ⏐⎯CopyFunction (CopyFunc.c) Copy function
 ⏐⎯Get Reception
 ⏐⎯ErrorCode Error code macro
 ⏐⎯Put Transmission
 ⏐⎯SendAck ACK transmission
 ⏐⎯FLASHFunc (0xFB10) Flash function
 (To be continued)

Figure 6-2 Module Hierarchical Structure (2)

 70

 (To be continued)
 ⏐⎯FLASHFunc (0xFB10) Flash function
 ⏐⎯EraseFLASH (FDTErase.c) Flash erasing (Erasing kernel)
 ⏐ ⏐⎯EraseWaitTime Erasing wait time
 ⏐ ⏐ ⏐⎯CalCount (F3694e.src) Time calculation
 ⏐ ⏐⎯Get Reception
 ⏐ ⏐⎯RequestBootPrgSts Program status
 ⏐ ⏐⎯GetEraseData Erase data reception
 ⏐ ⏐ ⏐⎯Get Reception
 ⏐ ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯block_erase (F3694e.src) Block erasing
 ⏐ ⏐⎯Put Transmission
 ⏐ ⏐⎯SendAck ACK transmission
 ⏐⎯WriteFLASH (FDTWrite.c) Flash programming (Programming kernel)
 ⏐⎯WriteWaitTime Programming wait time
 ⏐ ⏐⎯CalCount (F3694w.src) Time calculation
 ⏐⎯Get Reception
 ⏐⎯RequestBootPrgSts Program status
 ⏐⎯GetWriteData Programming data reception
 ⏐ ⏐⎯Get Reception
 ⏐ ⏐⎯ErrorCode Error code macro
 ⏐ ⏐⎯Put Transmission
 ⏐⎯flash_write (F3694w.src) Data programming
 ⏐⎯Put Transmission
 ⏐⎯SendAck ACK transmission

Figure 6-3 Module Hierarchical Structure (3)

 71

6.7 Program Processing Flow
The processing flow of the sample program is shown in Figure 6-4.

In the user program mode, bit rate adjustment and user area erase processing, which are performed during boot

operation, are not performed. Accordingly, the program and data written in flash memory can be saved.

Transition to the
programming/
erasing status

Check

Inquiry

ErasingProgramming

Reset

User MAT/user
boot MAT erase

processing

Selection
processing

Programming
processing

Check
processing

Erase
processing

Bit rate
adjustment

Inquiry
processing

Bit-rate-adjustment status

Inquiry/selection status

Programming/erasing status

Selection

Wait for inquiry
and selection

Wait for
programming or

erasing to be
selected

Note: The sample program
does not contain this program.

Note: The sample program does
not contain this processing.

Figure 6-4 Program Processing Flow

 72

6.8 Command Sequence in the User Program Mode
The sequence of the commands between the Flash Development Toolkit and microcomputer when a device is connected,

when flash memory is programmed, and when flash memory is erased in the user program mode is shown in Figure 6-5,

Figure 6-6, and Figure 6-7.

Main kernel downloading

MicrocomputerHost (PC)

H’27: Programming unit inquiry

H’37: Response to programming unit inquiry

H’10: Device selection

ACK

H’11: Clock mode selection

ACK

H’3F: New baud rate setting

ACK

ACK

ACK

H’40: Completion of data setting

ACK

ACK

H’4F: Boot program status request

H’5F: Response to boot program status request

H’4D: User area blank check

ACK

Micro
kernel

Main
kernel

Figure 6-5 When a Device Is Connected

 73

H’43: User area programming preparation

ACK

Programming kernel downloading

ACK

H’50: 128-byte data programming

H’4F: Boot program status request

ACK

H’5F: Response to boot program status

H’50: Data programming (end code)

ACK

MicrocomputerHost (PC)

To the main kernel

Programming
kernel

Main
kernel

．
．
．
．
．
．

Figure 6-6 When Flash Memory Is Programmed

 74

H’48: Erasing preparation

ACK

Erasing kernel downloading

ACK

H’58: Block erasing

H’4F: Boot program status request

ACK

H’5F: Response to boot program status request

H’58: Block erasing (end code)

ACK

MicrocomputerHost (PC)

To the main kernel

Erasing
kernel

Main
kernel

．
．
．
．
．
．

Figure 6-7 When Flash Memory Is Erased

 75

6.9 Program Sequence
This section describes the program sequence of the sample program. An outline of the program sequence is given in

Table 6-10.

Table 6-10 Program Sequence
No. Sequence Processing

1 Preparation • To use the Flash Development Toolkit in the user program mode, program the
main processing module and micro kernel in flash memory in advance.
• When the entire flash memory can be erased with no problems, they can be
programmed in the boot mode of using the Flash Development Toolkit.

2 Main processing
module

• The reset vector causes a branch to the main processing module by a power-on
reset.
• Performs initial setting for the stack pointer.
• Performs initial setting for the SCI.
• Pushes the addresses and sizes of the SCI interface functions (Put and Get) on
the stack.
(Passes arguments to the micro kernel.)
• Causes a branch to the micro kernel.

3 Micro kernel • Receives and responds to the device specification inquiry/selection commands.
• After receiving the data setting completion command, receives the main kernel and
stores it in RAM.
• Stores the SCI interface functions (Put and Get) in RAM.
• Causes a branch to the main kernel.

4 Main kernel • Receives and responds to the programming, erasing, and check commands.
• After receiving the programming/erasing preparation command, receives the
programming or erasing kernel and stores it in RAM.
・ Calls the programming or erasing kernel.

5 Programming kernel • Receives programming data and the programming destination address.
• Programs flash memory.
• Receives programming end data, then returns control to the main kernel.

6 Erasing kernel • Receives the erase block number.
• Erases the block in flash memory.
• Receives erasing end data, then returns control to the main kernel.

6.9.1 Preparation

The flow of preparation is shown below:

(1) To use the Flash Development Toolkit in the user program mode, program the main processing module and

micro kernel in flash memory in advance.

When the entire flash memory can be erased with no problems, they can be programmed using the boot mode

of the Flash Development Toolkit. Alternatively, they can be programmed in the programmer mode using a

PROM programmer.

(2) After programming the main processing module and micro kernel in the flash memory, set the pins on the

microcomputer to the user program mode, perform a reset, and initiate the user program mode.

 76

6.9.2 Main Processing Module

The flow of the main processing module is shown below. The main processing module runs in ROM.

(1) The reset vector causes a branch to start (startup).

(2) Start (startup) sets the stack pointer and calls main processing (main).

(3) Main processing (main) calls watchdog timer stop (WDTStop) and SCI initial setting (InitSCI) and causes a

branch to branch to copy (JumpCopy).

Watchdog timer stop (WDTStop) stops the watchdog timer and SCI initial setting (InitSCI) sets the SCI bit

rate.

(4) Micro kernel copy (CopyFDT) sets the addresses and sizes of the SCI interface functions (Get and Put) in the

variable area and branches to start micro kernel (StartFDTUserKernel) via micro kernel copy (CopyFDT).

6.9.3 Micro Kernel

The flow of the micro kernel is shown below. The micro kernel runs in ROM.

(1) Command function (CmdFunc) processes each command, responds to each inquiry, and sets selection.

(2) Reference function (ReferFunc) and program status (RequestBootPrgSts) respond to each inquiry that

corresponds to one of the following commands:

Supported device inquiry

Clock mode inquiry

Multiplication ratio inquiry

Operating frequency inquiry

User area information inquiry

Erase block information inquiry

Programming unit inquiry

Boot program status inquiry

(3) A selection setting command is set using one of the following modules:

Device selection (SelectDevice)

Clock mode selection (SelectClockMode)

New bit rate selection (SetNewBaudRate)

(4) The command for a transition to the programming/erasing status ends command processing and calls prepare

RAM (PrepareRAM).

(5) Prepare RAM (PrepareRAM) receives the main kernel (Kernelmain) and stores it in RAM and transfers the

SCI interface functions (Get and Put) to RAM.

(6) Control branches to the main kernel (Kernelmain) transferred to RAM.

 77

6.9.4 Main Kernel

The flow of the main kernel is shown below. The main kernel runs in RAM.

(1) Command processing (ProcessCommand) processes commands. The following commands are to be processed:

Memory read (ReadMemory)

User area sum check (SumcheckUserArea)

User area blank check (CheckBlank)

Boot program status inquiry (RequestBootPrgSts)

(2) When command processing receives the user area programming selection command or erasing selection

command, it calls copy function (CopyFunction).

(3) Copy function (CopyFunction) receives the programming kernel (WriteFLASH) or erasing kernel

(EraseFLASH) corresponding to the command, stores it in RAM, and calls the programming kernel

(WriteFLASH) or erasing kernel (EraseFLASH).

6.9.5 Programming Kernel

The flow of the programming kernel is shown below. The programming kernel runs in RAM.

(1) Flash programming (WriteFLASH) calculates the wait time using programming wait time (WriteWaitTime).

Then, it receives a command.

(2) When the received command is the boot program status inquiry command, flash programming calls program

status (RequestBootPrgSts).

(3) When the received command is the 128-byte programming command, programming data reception

(GetWriteData) receives programming data.

(4) When the received programming data is not programming end (the address data is H'FFFFFFFF), data

programming (flash_write) programs flash memory.

(5) When the received programming data is programming end, flash programming terminates programming and

returns control to the main kernel.

6.9.6 Erasing Kernel

The flow of the erasing kernel is shown below. The erasing kernel runs in RAM.

(1) Flash erasing (EraseFLASH) calculates the wait time using erasing wait time (EraseWaitTime).

Then, it receives a command.

(2) When the received command is the boot program status inquiry command, flash erasing calls program status

(RequestBootPrgSts).

(3) When the received command is the block erasing command, erase data reception (GetEraseData) receives the

erase block number.

(4) When the received erase block number is not erasing end (H'FF), block erasing (block_erase) erases a block in

flash memory.

(5) When the received erase block number is erasing end, flash erasing terminates erasing and returns control to

the main kernel.

 78

6.10 Memory Map
The memory map corresponding to the program sequence of the sample program is shown in Table 6-11.

Table 6-11 Program Sequence and Memory Map
Sequence ROM/

RAM
Address

Main
Processing

Module

Micro Kernel Main Kernel Programming
Kernel

Erasing Kernel

H’0000 - Reset vector
H’0400 - Main

processing
module

ROM

H’7600 - Micro kernel Micro kernel

Programming
enable area

Erasing enable
area

H’F780 - Main kernel
Put, Get

Main kernel
Put, Get

Main kernel
Put, Get

Main kernel
Put, Get

H’FB08 - Variable

H’FB10 - Programming
kernel or erasing
kernel

Programming
kernel

Erasing kernel

H’FF10 - Global variable Global variable Global variable Global variable Global variable

RAM

- H’FF7F Stack Stack Stack Stack Stack

 79

7. Source Files of the Sample Program
This section describes the functions and processing of the following main source files of the sample program.

7.1 Header Files
This sample program uses the following header files.

7.1.1 Bit Rate Setting (GenTest.h)

A bit rate is set.

 /* 20MHz 9600bps */

//#define MA_BRR_SCI 0x40 /* Bit rate register channel 3 */

 /* 9.8MHz 9600bps */

#define MA_BRR_SCI 0x1f /* Bit rate register channel 3 */

In the user program mode, a device is connected at 9600 bps. For this reason, the bit rate register (BRR) in the SCI

module must be set according to the operating frequency. In this example, the operating frequency is 9.8 MHz. To set

9600 bps, MA_BRR_SCI is set to 31 (0x1f). The relationships between operating frequencies and BRR register settings

are shown in Table 7-1.

Table 7-1 Operating Frequencies and BRR Register Settings (When the Bit Rate Is 9600 (bit/s))
Operating Frequency φ (MHz) BRR Setting Error (%)
8 25 0.16
9.8304 31 0.00
10 32 -1.36
12 38 0.16
12.288 39 0.00
14 45 -0.93
14.7456 47 0.00
16 51 0.16
17.2032 55 0.00
18 58 -0.69
19.6608 63 0.00
20 64 0.16

The MA_BRR_SCI value is set according to the operating frequency of the board and perform a build with a batch file

or HEW to create an S-type file program.

 80

7.1.2 I/O Register Definition (io3694.h)

 The registers and bits related to the SCI module and WDT are defined.

/**/

/* H8/3694F,36014F,36024F,36064F Internal I/O Include File */

/**/

/**/

/* SCI */

/*--*/

/* CHANNEL 3 */

/**/

#define SCI_SMR (*(volatile unsigned char *)0xFFA8)

#define SCI_BRR (*(volatile unsigned char *)0xFFA9)

#define SCI_SCR3 (*(volatile unsigned char *)0xFFAA)

 #define TE (unsigned char)0x20

 #define RE (unsigned char)0x10

 #define TE_RE (unsigned char)(TE | RE)

#define SCI_TDR (*(volatile unsigned char *)0xFFAB)

#define SCI_SSR (*(volatile unsigned char *)0xFFAC)

 #define TDRE (unsigned char)0x80

 #define RDRF (unsigned char)0x40

 #define ERR_CLR (unsigned char)0xC7

 #define TEND (unsigned char)0x04

#define SCI_RDR (*(volatile unsigned char *)0xFFAD)

/**/

/* I/O Port */

/*--*/

/* Port 1 (in use : TXD) */

/**/

#define PMR1 (*(volatile unsigned char *)0xFFE0)

 #define TXD (unsigned char)0x02

/**/

/* I/O Port */

/*--*/

/* Port 2 (in use : P22/TXD at SCI Break) */

/**/

#define PCR2 (*(volatile unsigned char *)0xFFE5)

 #define PCR22 (unsigned char)0x04

 81

#define PDR2 (*(volatile unsigned char *)0xFF5D)

 #define P22 (unsigned char)0x04

/**/

/* WDT */

/*--*/

/* */

/**/

#define TCSRWD (*(volatile unsigned char *)0xFFC0)

7.1.3 Macro Definition (KAIg.h)

 Labels used in the program are defined. ERASE_END is used to determine the end of erasing by the block erasing

command. WRITE_END is used to determine the end of programming by the 128-byte programming command.

/* D E F I N E S */

#define LOOP_END 1

#define bufSize 0x80

#define BLOCK_NO_ERROR 0xE1

#define ERASE_END 0xFF

#define WRITE_END 0xFFFFFFFF

#define ADDRESS_ERROR 0xF1

#define ADDRESS_BOUNDARY_ERROR 0xF2

 82

7.2 Main Processing Module (Strt3694.src and GenTest.c)
7.2.1 Module Hierarchical Structure

The module hierarchical structure of the main processing module is shown in Figure 7-1.

VECT (0x0000) Reset vector
 ⏐⎯startup (0x400) (Strt3694.src) Start (Main processing module)
 ⏐⎯main (GenTest.c) Main processing
 ⏐⎯WDTStop Watchdog timer stop
 ⏐⎯InitSCI SCI initial setting
 ⏐⎯JumpCopy Branch to copy
 ⏐⎯CopyFDT (0x7600) Micro kernel copy
 ⏐⎯StartFDTUserKernel (uGenu.c) Start micro kernel (Micro kernel)

Figure 7-1 Module Hierarchical Structure of the Main Processing Module

7.2.2 Reset Vector (GenTest.c and GenTest.h)

Reset vector H'400 is set in the CVECT section.

(1) GenTest.c

/*Declare the vector table*/

#pragma section VECT

const WORD RESET_VECTOR = (DWORD)RESET_JMP_ADDRESS;

#pragma section

(2) GenTest.h

/*

 This value specifies the address to where to program

 will JMP on startup. This value should be the link address

 for the associated asm file.

*/

#define RESET_JMP_ADDRESS 0x400

7.2.3 Stack (Strt3694.src)

The stack pointer is set to H'FF80.

 MOV.L #H'FF80, ER7

 83

7.2.4 Main Processing (main)

 WDTStop();

 InitSCI();

 JumpCopy();

The watchdog timer is stopped, SCI initial setting is performed, and control branches to the micro kernel.

7.2.5 Branch to Copy (JumpCopy)

（１） JumpCopy
 /* Create Function Pointer & assign address to it */

 FuncPtr CopyFDT = (FuncPtr)USER_KERNEL_LINK_ADDRESS;

 /*This is where the linker has put the code*/

 /* Store structure elements */

 ParamFDT.GetFuncPtr = (GetPtr)Get;

 ParamFDT.PutFuncPtr = (PutPtr)Put;

 ParamFDT.PutSize = (WORD)((DWORD)Dummy - (DWORD)Put);

 ParamFDT.GetSize = (WORD)((DWORD)Put - (DWORD)Get);

 ParamFDT.RAMStartAddress = RAM_START_ADDRESS;

 /* Jump to CopyFDT */

 (*CopyFDT)((paramFDT *)&ParamFDT);

（２） GenTest.h
/*

 These defines relate to the USER kernel.

 In order to call the user kernel we must know the address it was

 linked at.

*/

#define USER_KERNEL_LINK_ADDRESS 0x7600

The addresses and sizes of the SCI interface functions (Get and Put) are set in ParamFDT and control branches to

CopyFDT. The address of CopyFDT is H'7600, which is indicated by USER_KERNEL_LINK_ADDRESS. Start micro

kernel (StartFDTUserKernel) of the micro kernel is programmed at H'7600.

 84

7.3 Micro Kernel (uGenu.c and CmdFunc.c)
7.3.1 Module Hierarchical Structure

The module hierarchical structure of the micro kernel is shown in Figure 7-2.

 |⎯StartFDTUserKernel (uGenu.c) Start micro kernel (Micro kernel)
 |⎯PrepareFDTUserKernel Prepare micro kernel
 | |⎯CmdFunc Command function
 | | |⎯ReferFunc Reference function
 | | ⏐⎯GetCmdData Command read
 | | ⏐⎯SelectDevice Device selection
 | | ⏐⎯SelectClockMode Clock mode selection
 | | ⏐⎯SetNewBaudRate New bit rate selection
 | | ⏐⎯RequestBootPrgSts Program status
 | |⎯PrepareRAM Prepare RAM
 |⎯RAMStartAddress (0xF780) RAM start address
 |⎯Kernelmain (FDTUMain.c) Main kernel

Figure 7-2 Module Hierarchical Structure of the Micro Kernel

7.3.2 Start Micro Kernel (StartFDTUserKernel)

（１） StartFDTUserKernel
 PrepareFDTUserKernel(parameters);

 /* Pass execution to the main kernel */

 (*((FuncPtr)parameters->RAMStartAddress))(parameters);

（２） GenTest.h
/*Use these defines to specify the range of RAM FDT can use*/

#define RAM_START_ADDRESS 0xF780

Prepare micro kernel is called and the module stored at RAMStartAddress in RAM is called. Prepare micro kernel

stores the main kernel in the area starting at RAMStartAddress in RAM. RAMStartAddress is set to H'F780.

 85

7.3.3 Prepare Micro Kernel (PrepareFDTUserKernel)

 while(1){

 /* Command Function */

 CmdFunc(parameters->PutFuncPtr, parameters->GetFuncPtr);

 /*Prepare RAM */

 if(!PrepareRAM(parameters, &ParamFDT)){

 break;

 }

 }

Command function is called. When command function terminates (on receiving the command for a transition to the

programming/erasing status), prepare RAM is called. When prepare RAM terminates (the main kernel has been

received and stored normally), prepare micro kernel terminates.

 86

7.3.4 Command Function (CmdFunc and CmdFunc.c)

The structure of command function is shown below.

 while(1){

 /* Acquisition of a command ID */

 add_sum = Get(&commandID, 1);

 switch(commandID)

 {

 case finishDataSet:

 return;

 case supportDevice:

 ReferFunc(commandID, deviceData, sizeof(deviceData), Put);

 break;

 case selectDevice:

 SelectDevice(cmdBuf.bdata, Put);

 break;

 case referClockMode:

 ReferFunc(commandID, clockModeData, sizeof(clockModeData), Put);

 break;

 case selectClockMode:

 SelectClockMode(cmdBuf.bdata, Put);

 break;

 case referRatio:

 ReferFunc(commandID, ratioData, sizeof(ratioData), Put);

 break;

 case setNewBaudRate:

 SetNewBaudRate(commandID, (BaudRate *)cmdBuf.bdata, Put, Get);

 break;

 case referUserRomInfo:

 ReferFunc(commandID, usrRomData, sizeof(usrRomData), Put);

 break;

 case referEraseBlockInfo:

 ReferFunc(commandID, eraseBlkData, sizeof(eraseBlkData), Put);

 break;

 case referWriteSystem:

 ReferFunc(commandID, writeSysData, sizeof(writeSysData), Put);

 break;

 case referFrequency:

 ReferFunc(commandID, frequencyData, sizeof(frequencyData), Put);

 break;

 87

 case referWriteSize:

 ReferFunc(commandID, writeSizeData, sizeof(writeSizeData), Put);

 break;

 case requestBootPrgSts:

 RequestBootPrgSts(Put);

 break;

 default:

 cBuff[0] = COMMAND_ERROR;

 cBuff[1] = commandID;

 Put(cBuff, 2);

 break;

 }

 }

When command function receives the command for a transition to the programming/erasing status, it terminates

processing. When command function receives another command, it processes the command, then enters the command

reception wait state.

The processing module for each command is contained in CmdFunc.c. CmdFunc.c contains both the command

processing modules for the micro kernel, as well as those for the main kernel. #ifdef is used to determine whether a

command processing module is for the micro kernel or main kernel.

These command processing modules are used not only in the user program mode, but also in the boot mode. In the user

program mode, the SCI interface functions (Get and Put) have arguments, but in the boot mode, they have no

arguments.

 88

7.3.5 Prepare RAM (PrepareRAM)

 kernelPos = (BYTE *)parameters->RAMStartAddress;

 /* Receive size of User Kernel module from host */

 add_sum = Get((BYTE *)&kernelSize, sizeof(kernelSize));

 /* Download kernel to beginning of allowable RAM */

 add_sum+= Get(kernelPos, kernelSize);

 /* Adjust start position of RAM */

 parameters->RAMStartAddress += kernelSize;

 /*

 Copy the Get and Put functions into memory, first Get() then Put()

 */

 pSrc = (BYTE *)parameters->GetFuncPtr;

 pDest = (BYTE *)parameters->RAMStartAddress;

 /* Now perform the copy */

 for(i = 0; i < parameters->GetSize; i++, pSrc++, pDest++)

 {

 *pDest = *pSrc;

 }

 parameters->RAMStartAddress += parameters->GetSize;

 pSrc = (BYTE *)parameters->PutFuncPtr;

 pDest = (BYTE *)parameters->RAMStartAddress;

 /* Now perform the copy */

 for(i = 0; i < parameters->PutSize; i++, pSrc++, pDest++)

 {

 *pDest = *pSrc;

 }

Prepare RAM performs the following processing:

(1) Receives the main kernel and stores it in RAM.

(2) Copies the Get function into RAM.

(3) Copies the Put function into RAM.

Prepare RAM sets the starting address of each function and stores it in RAM. Prepare RAM also stores the size of each

function in RAM. The functions are executed in RAM to erase or program flash memory.

 89

7.4 Main Kernel (FDTUMain.c, CmdFunc.c, and CopyFunc.c)
7.4.1 Module Hierarchical Structure

 The module hierarchical structure of the main kernel is shown in Figure 7-3.

 ⏐⎯Kernelmain (FDTUMain.c) Main kernel
 ⏐⎯ProcessCommand Command processing
 ⏐ ⏐⎯RequestBootPrgSts Program status
 ⏐ ⏐⎯SumcheckUserArea User area checksum
 ⏐ ⏐⎯SendAck ACK transmission
 ⏐ ⏐⎯GetCmdData Command read
 ⏐ ⏐⎯ReadMemory Memory read
 ⏐ ⏐⎯CheckBlank Blank check
 ⏐⎯CopyFunction (CopyFunc.c) Copy function
 ⏐⎯FLASHFunc (0xFB10) Flash function

Figure 7-3 Module Hierarchical Structure of the Main Kernel

7.4.2 Main Kernel (Kernelmain)

 /* Main control processing loop */

 while (1)

 {

 if(ProcessCommand(&commandID, parameters))

 {

 CopyFunction(commandID, parameters);

 }

 }

The main kernel executes command processing (ProcessCommand) repeatedly. Command processing receives and

processes commands. Copy function (CopyFunction) is called only when the user area programming selection or

erasing selection command is received. It receives the erasing or programming kernel corresponding to the command

and stores it in RAM. The erasing kernel erases data and the programming kernel programs data. When programming or

erasing terminates, command processing is called again.

 90

7.4.3 Command Processing (ProcessCommand)

The structure of command processing is shown below:

 /* Acquisition of a command ID */

 add_sum = Get(commandID, 1);

 switch(*commandID)

 {

 case requestBootPrgSts:

 RequestBootPrgSts(Put);

 break;

 case sumcheckUserArea:

 SumcheckUserArea(Put);

 break;

 case prepareErase:

 case prepareUserAreaWrite:

 return(TRUE);

 case readMemory:

 ReadMemory(cmdBuf.bdata, Put);

 break;

 case checkBlank:

 CheckBlank(Put);

 break;

 default:

 cBuff[0] = COMMAND_ERROR;

 cBuff[1] = *commandID;

 Put(cBuff, 2);

 break;

 }

 return(FALSE);

When command processing receives the erasing or programming selection command, it returns TRUE. Other

commands are processed by the relevant command processing modules and command processing returns FALSE.

The command processing modules are contained in CmdFunc.c.

 91

7.4.4 Copy Function (CopyFunction)

(1) CopyFunction

 BYTE *funcAddress = (BYTE *)FUNC_START, add_sum;

 FLASHFuncPtr FLASHFunc = (FLASHFuncPtr)FUNC_START;

 /* Acquire size of function to be downloaded */

 add_sum = Get((BYTE *)&size, sizeof(size));

 /* Download function to RAM address received */

 add_sum+= Get(funcAddress, size);

 /* Pass execution to the FLASH function */

 (*FLASHFunc)(Put, Get);

(2) KDevice.h

 #define FUNC_START 0xFB10 /* Write/Erase function start position */

 #define WRITE_DATA 0xFE90 /* write-data area start position */

Copy function receives the erasing or programming kernel and stores it in a RAM area starting at H'FB10 indicated by

FUNC_START. After storing the kernel, copy function calls FUNC_START to execute erasing or programming.

Erasing or programming is determined according to the command received by command processing

(ProcessCommand).

 92

7.5 Erasing Kernel (FDTErase.c, EraseTime.c, and F3694e.src)
7.5.1 Module Hierarchical Structure

 The module hierarchical structure of the erasing kernel is shown in Figure 7-4.

 ⏐⎯FLASHFunc (0xFB10) Flash function
 ⏐⎯EraseFLASH (FDTErase.c) Flash erasing (Erasing kernel)
 ⏐ ⏐⎯EraseWaitTime (EraseTime.c) Erasing wait time
 ⏐ ⏐ ⏐⎯CalCount (F3694e.src) Time calculation
 ⏐ ⏐⎯RequestBootPrgSts Program status
 ⏐ ⏐⎯GetEraseData Erase data reception
 ⏐ ⏐⎯block_erase (F3694e.src) Block erasing

Figure 7-4 Module Hierarchical Structure of the Erasing Kernel

7.5.2 Flash Erasing (EraseFLASH)

The structure of flash erasing is shown below:

 /* Waiting time calculation of erase processing */

 EraseWaitTime();

 do{

 /* Acquisition of a command ID */

 add_sum = Get(&commandID, 1);

 /* Is it a demand of boot status command? */

 if (commandID == requestBootPrgSts){

 RequestBootPrgSts(Put);

 }else{

 /* Acquisition of command data */

 if(GetEraseData(&blk_no, add_sum, Put, Get)){

 return;

 }

 if (blk_no != ERASE_END){

 /* Erase start */

 rsts = block_erase(blk_no);

 if(rsts){

 if (rsts == BLOCK_NO_ERROR){

 cBuff[1] = ERASE_BLOCK_NO_ERROR;

 }else{

 cBuff[1] = ERASE_ERROR;

 }

 return;

 93

 }

 }else{

 end_flg = LOOP_END;

 }

 }

 }while(!end_flg);

Flash erasing (EraseFLASH) calculates the erasing wait time using erasing wait time (EraseWaitTime).

Then, it receives a command. When the command is program status inquiry, flash erasing responds with the status using

program status (RequestBootPrgSts).

When the command is block erasing and the data is not erasing end, flash erasing specifies the block number and calls

block erasing (block_erase).

When the data is erasing end, flash erasing terminates erasing and returns control to the main kernel.

7.5.3 Erasing Wait Time (EraseWaitTime and CalCount)

(1) EraseWaitTime

 SWES_W = CalCount(1)+1;

 SWEC_W = ESUS_W = CalCount(100)+1;

 ESUC_W = EC_W = CalCount(10)+1;

 ES_W = CalCount(10000);

 EVS_W = CalCount(20)+1;

 EVC_W = CalCount(4)+1;

 DLCH_W = CalCount(2)+1;

(2) CalCount

FREQ: .EQU H'FF10 ; Frequency(Global data) import from "KDevice.h"

LCNT: .EQU D'600 ; 1μs loop counter

; _CalCount .EQU $

 SUB.W E0,E0

 MOV.W @FREQ,R1 ;frequency

 MULXU.W R1,ER0

 MOV.W #LCNT,R1

 DIVXU.W R1,ER0

 RTS

Erasing wait time (EraseWaitTime) calculates the wait time (μs) after each bit of the relevant register is set to 1 or

cleared to 0 when erasing is executed. Time calculation (CalCount) calculates the wait time with the number of

instructions based on the given frequency, assuming that one instruction requires 6 cycles. The frequency is the

operating frequency calculated based on the value given by new bit rate selection. The frequency in 10 kHz is stored at

H'FF10.

To erase flash memory using a dedicated interface without using the Flash Development Toolkit, create a program,

referring to the user manual for how to set the operating frequency and how to calculate the erasing wait time.

 94

Examples of calculated erasing wait time values are listed in Table 7-2.

Table 7-2 Examples of Erasing Wait Time Values (Operating Frequency: 20 MHz)
Erasing Wait Time Variable Time (μs) Software Loop Count

After the SWE bit is set SWES_W 1 4
After the SWE bit is cleared SWEC_W 100 334
After the ESU bit is set ESUS_W 100 334
After the ESU bit is cleared ESUC_W 10 34
After the E bit is set ES_W 10000 (10 ms) 33333
After the E bit is cleared EC_W 10 34
After the EV bit is set EVS_W 20 67
After the EV bit is cleared EVC_W 4 14
After dummy data is
programmed

DLCH_W 2 7

 95

7.6 Programming Kernel (FDTWrite.c, WriteTime.c, and F3694w.src)
7.6.1 Module Hierarchical Structure

 The module hierarchical structure of the programming kernel is shown in Figure 7-5.

 ⏐⎯FLASHFunc (0xFB10) Flash function
 ⏐⎯WriteFLASH (FDTWrite.c) Flash memory programming (Programming kernel)
 ⏐⎯WriteWaitTime (WriteTime.c) Programming wait time
 ⏐ ⏐⎯CalCount (F3694w.src) Time calculation
 ⏐⎯RequestBootPrgSts Program status
 ⏐⎯GetWriteData Programming data reception
 ⏐⎯flash_write (F3694w.src) Data programming

Figure 7-5 Module Hierarchical Structure of the Programming Kernel

7.6.2 Flash Memory Programming (WriteFLASH)

The structure of flash memory programming is shown below:

 /* Waiting time calculation of write processing */

 WriteWaitTime();

 do{

 /* Acquisition of a command ID */

 add_sum = Get(&commandID, 1);

 /* Is it a demand of boot status command? */

 if (commandID == requestBootPrgSts){

 RequestBootPrgSts(Put);

 }else{

 /* Acquisition of command data */

 if(GetWriteData(&pAddress, add_sum, Put, Get)){

 return;

 }

 if (pAddress != WRITE_END){

 /* Write-in start */

 rsts = flash_write((BYTE *)WRITE_DATA, (BYTE *)pAddress);

 if(rsts)

 {

 if (rsts == ADDRESS_ERROR ||

 rsts == ADDRESS_BOUNDARY_ERROR)

 {

 cBuff[1] = WRITE_ADDRESS_ERROR;

 }else{

 96

 cBuff[1] = WRITE_ERROR;

 }

 return;

 }

 }else{

 end_flg = LOOP_END;

 }

 }

 }while(!end_flg);

Flash memory programming (WriteFLASH) calculates the programming wait time using programming wait time

(WriteWaitTime).

Then, it receives a command. When the command is program status inquiry, flash memory programming responds with

the status using program status (RequestBootPrgSts).

When the command is 128-byte programming and the data is not programming end, flash memory erasing specifies the

programming address and programming data and calls data programming (flash_write).

When the data is programming end, flash memory programming terminates programming and returns control to the

main kernel.

7.6.3 Programming Wait Time (WriteWaitTime and CalCount)

(1) WriteWaitTime

 P10S_W = CalCount(10);

 P30S_W = CalCount(30);

 PSUS_W = CalCount(50);

 SWEC_W = PSUS_W * 2;

 P200S_W = SWEC_W * 2;

 PSUC_W = PC_W = PVS_W = DLCH_W = CalCount(5);

(2) CalCount

FREQ: .EQU H'FF10 ; Frequency(Global data) import from "KDevice.h"

LCNT: .EQU D'600 ; 1μs loop counter

_CalCount .EQU $

 SUB.W E0,E0

 MOV.W @FREQ:16,R1 ;frequency

 MULXU.W R1,ER0

 MOV.W #LCNT,R1

 DIVXU.W R1,ER0

 RTS

Programming wait time (WriteWaitTime) calculates the wait time (μs) after each bit of the relevant register is set to 1 or

cleared to 0 when programming is executed. Time calculation (CalCount) calculates the wait time with the number of

 97

instructions based on the given frequency, assuming that one instruction requires 6 cycles. The frequency is the

operating frequency calculated based on the value given by new bit rate selection. The frequency in 10 kHz is stored at

H'FF10.

To program flash memory using a dedicated interface without using the Flash Development Toolkit, create a program,

referring to the user manual for how to set the operating frequency and how to calculate the programming wait time.

 Examples of calculated programming wait time values are listed in Table 7-3.

Table 7-3 Examples of Programming Wait Time Values (Operating Frequency: 20 MHz)
Programming Wait Time Variable Time (μs) Software Loop Count

After the PSU bit is set PSUS_W 50 166
After the PSU bit is cleared PSUC_W 5 16
Programming time for
additional programming

P10S_W 10 33

Programming time for
programming after the P bit is
set
(Programming count: 1 to 6)

P30S_W 30 100

Programming time for
programming
(Programming count: 7 to
1000)

P200S_W 200 666

After the SWE bit is cleared SWEC_W 100 34
After the P bit is cleared PC_W 5 16
After the PV bit is set PVS_W 5 16
After dummy data is
programmed

DLCH_W 5 16

 98

8. Using Programming/Erasing Kernels (Supplied Programs)
You can use the flash memory programming/erasing logical modules by connecting them to your own developed

program without the Flash Development Toolkit interface section (main processing module and micro kernel). This

section describes the logical modules which are part of the programming/erasing kernels.

8.1 Programming
8.1.1 Used Files

File Name Description Language
F3694w.src Source file of 128-byte programming Assembly language
F3694asm.inc Header file common to 128-byte programming and

block erasing
Assembly language

8.1.2 Module Specifications

Name 128-byte programming
Type unsigned char flash_write(unsigned char *data, unsigned char *adr)
Function Programs 128-byte data.
Arguments data: Programming data start address

adr: Programming destination address
Return Value Processing result

 Normal termination: H'00
 Maximum programming count error: H'01
 Programmed data error: H'02
 FWE error: H’D1
 FLER error: H’D2
 Programming address error: H'F1
 128-byte boundary address error: H'F2

Input Programming wait time
Processing Executes programming in 128-byte units.

For details, refer to program/program-verify flowchart in the hardware manual.
Note To use the module, set the programming wait time (software loop count) in the

global variable area in advance.

 99

8.2 Erasing
8.2.1 Used Files

File Name Description Language
F3694e.src Source file of block erasing Assembly language
F3694asm.inc Header file common to 128-byte programming and

block erasing
Assembly language

8.2.2 Module Specifications

Name Block erasing
Type unsigned char block_erase (unsigned char blk_no)
Function Erases a block.
Argument blk_no: Block number
Return Value Processing result

 Normal termination: H'00
 Erasing error: H’01
 FWE error: H’D1
 FLER error: H’D2
 Block number error: H'E1
 Maximum erasing count error: H’E2

Input Erasing wait time
Processing Executes erasing of each block.

For details, refer to erase/erase-verify flowchart in the hardware manual.
Note To use the module, set the erasing wait time (software loop count) in the global

variable area in advance.

Flash Development Toolkit Application Note (Applications)
User Program Mode (H8/3694F)

Publication Date: Jun. 28, 2006 Rev.1.00

Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Microcomputer Tool Development Department
Renesas Solutions Corp.

© 2006. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

Flash Development Toolkit

REJ06J0004-0100

Application Note (Applications)

	1. Introduction
	2. H8/3694F (H8/300H Tiny Series)
	2.1 Flash Memory Configuration
	2.2 Programming Modes
	2.3 On-Board Programming Modes

	3. Functions of the Flash Development Toolkit
	3.1 Main Functions

	4. Operating the Flash Development Toolkit
	4.1 Connecting the Adapter Board
	Connecting the Adapter Board
	4.1.1 Setting Pins on the Adapter Board

	4.2 Setting the Flash Development Toolkit
	4.2.1 Starting the Flash Development Toolkit
	4.2.2 Selecting an Option
	4.2.3 Setting a New Project Workspace
	4.2.4 Selecting the Device and Kernel
	4.2.5 Selecting a Communications Port
	4.2.6 Device Settings (Setting the Input Clock)
	4.2.7 Selecting the Connection Type (Communication Speed)
	4.2.8 Selecting Programming Options (Protection Level and Messaging Level)
	4.2.9 Adapter Board Pin Settings
	4.2.10 Reset Mode Pin Settings
	4.2.11 Completion of Setting
	4.2.12 Connecting the Device
	4.2.13 Completion of Connection

	4.3 Boot Mode (Programming the User Area)
	4.3.1 Selecting Files
	4.3.2 Building the Image
	4.3.3 Programming
	4.3.4 Blank Check
	4.3.5 Checksum
	4.3.6 Disconnecting the Device
	4.3.7 Removing Files
	4.3.8 Removing Folders
	4.3.9 Exiting

	4.4 User Program Mode
	4.4.1 Starting the Flash Development Toolkit
	4.4.2 Selecting an Option
	4.4.3 Connecting the Device
	4.4.4 Writing a Program in the User Area
	4.4.5 Disconnecting the Device
	4.4.6 Configuring the Project
	4.4.7 Setting User Program Mode
	4.4.8 Completion of Setting
	4.4.9 Connecting the Device
	4.4.10 Timeout
	4.4.11 Programming
	4.4.12 Blank Check and Checksum

	5. Flash Development Toolkit Processing
	6. Sample Program
	6.1 Program Configuration
	6.2 File Configuration
	6.2.1 Main Processing Module
	6.2.2 Micro Kernel
	6.2.3 Main Kernel
	6.2.4 Programming Kernel
	6.2.5 Erasing Kernel

	6.3 Relationships between Program Modules and Files
	6.4 Build Operation
	6.4.1 SET Command
	6.4.2 Library File
	6.4.3 Output Files

	6.5 Modules
	6.6 Module Hierarchical Structure
	6.7 Program Processing Flow
	6.8 Command Sequence in the User Program Mode
	6.9 Program Sequence
	6.9.1 Preparation
	6.9.2 Main Processing Module
	6.9.3 Micro Kernel
	6.9.4 Main Kernel
	6.9.5 Programming Kernel
	6.9.6 Erasing Kernel

	6.10 Memory Map

	7. Source Files of the Sample Program
	7.1 Header Files
	7.1.1 Bit Rate Setting (GenTest.h)
	7.1.2 I/O Register Definition (io3694.h)
	7.1.3 Macro Definition (KAIg.h)

	7.2 Main Processing Module (Strt3694.src and GenTest.c)
	7.2.1 Module Hierarchical Structure
	7.2.2 Reset Vector (GenTest.c and GenTest.h)
	(1) GenTest.c
	(2) GenTest.h

	7.2.3 Stack (Strt3694.src)
	7.2.4 Main Processing (main)
	7.2.5 Branch to Copy (JumpCopy)
	（１） JumpCopy
	（２） GenTest.h

	7.3 Micro Kernel (uGenu.c and CmdFunc.c)
	7.3.1 Module Hierarchical Structure
	7.3.2 Start Micro Kernel (StartFDTUserKernel)
	（１） StartFDTUserKernel
	（２） GenTest.h

	7.3.3 Prepare Micro Kernel (PrepareFDTUserKernel)
	7.3.4 Command Function (CmdFunc and CmdFunc.c)
	7.3.5 Prepare RAM (PrepareRAM)

	7.4 Main Kernel (FDTUMain.c, CmdFunc.c, and CopyFunc.c)
	7.4.1 Module Hierarchical Structure
	7.4.2 Main Kernel (Kernelmain)
	7.4.3 Command Processing (ProcessCommand)
	7.4.4 Copy Function (CopyFunction)
	(1) CopyFunction
	(2) KDevice.h

	7.5 Erasing Kernel (FDTErase.c, EraseTime.c, and F3694e.src)
	7.5.1 Module Hierarchical Structure
	7.5.2 Flash Erasing (EraseFLASH)
	7.5.3 Erasing Wait Time (EraseWaitTime and CalCount)
	(1) EraseWaitTime
	(2) CalCount

	7.6 Programming Kernel (FDTWrite.c, WriteTime.c, and F3694w.src)
	7.6.1 Module Hierarchical Structure
	7.6.2 Flash Memory Programming (WriteFLASH)
	7.6.3 Programming Wait Time (WriteWaitTime and CalCount)
	(1) WriteWaitTime
	(2) CalCount

	8. Using Programming/Erasing Kernels (Supplied Programs)
	8.1 Programming
	8.1.1 Used Files
	8.1.2 Module Specifications

	8.2 Erasing
	8.2.1 Used Files
	8.2.2 Module Specifications

