

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0717-0100/Rev.1.00 March 2008 Page 1 of 25

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

Introduction
This document gives an example of the settings for using the SCIF of the SH7780 Group in asynchronous mode and
describes a sample application.

Target Device
SH7780 (MS7780SE03 Solution Engine by Hitachi ULSI Systems)

Contents

1. Preface.. 2

2. Description of the Sample Application .. 4

3. Listing of Sample Program.. 12

4. Documents for Reference ... 23

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 2 of 25

1. Preface

1.1 Specification
SCIF channel 0 is used in asynchronous mode to transfer data. Data received by the connected device are sent back
after reception is completed.

An overview of the communication is given below and a connection example is shown in figure 1.

• Bit rate: 115200 bps
• Format: 8-bit data length, parity bit added, 1 stop bit

SH7780

Connected unit

SCIF0_RXD
ch-0 receive data pin

TXD
Transmit data pin

RXD
Receive data pin

SCIF0_TXD
ch-0 transmit data pin

Figure 1 Example of Connection for SCIF (Asynchronous Mode) Operation

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 3 of 25

1.2 Module Used
• SCIF channel 0

1.3 Applicable Conditions
• MCU SH7780
• Operating frequency Internal clock : 400 MHz

 SuperHyway clock : 200 MHz
 Peripheral clock : 33 MHz
 DDR clock : 160 MHz
 External clock : 33 MHz
 PCI bus clock : 33 MHz

• Clock operating mode Mode 3 (MODE7 = low, MODE2 = low, MODE1 = high, MODE0 = high)
• Data alignment Little endian
• Addressing mode 29-bit
• C compiler SuperHRISC Engine Family C/C++ Compiler Package Ver.9.1.0

 (manufactured by Renesas Technology)

1.4 Related Application Note
The operation of the reference program for this document was confirmed with the setting conditions described in the
following application note: SH7780 Initialization Example (REJ06B0712-0100). Please refer to the application note in
combination with this one.

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 4 of 25

2. Description of the Sample Application
The sample program uses channel 0 of the SCIF in asynchronous mode to transmit and receive data. Raw received data
are sent back by the connected device as transmitted data.

In processing for reception, received data are read out from within interrupt handling for the receive data full interrupt.
Data are transmitted without using interrupts during the interrupt handling process.

2.1 Description of the Sample Program
This sample program consists of the following four source files.

(1) scif.c
(2) main.c
(3) intprg.c
(4) vecttbl.src

(1) scif.c describes the function used in this program to set up SCIF operations, the receive data full interrupt function

to which a jump is made from the interrupt function of intprg.c that was included SH7780 Initialization Example,
the receive error interrupt function, and the break interrupt function. This program code is not included in the
application for SH7780 Initialization Example, which is used as its basis.

(2) main.c sets the status register (SR) and calls the function to set up the SCIF operation.

Change main.c that was included with SH7780 Initialization Example as required to match main.c for this sample
program.

(3) intprg.c describes the interrupt program called from the exception/interrupt handler.

Change intprg.c that was included with SH7780 Initialization Example as required to match intprg.c for this sample
program.

(4) vecttbl.src describes the exception/interrupt vector table (including vector-table entries), and interrupt mask table.

To ensure that interrupts that have been accepted are not accepted again while they are being processed, the
interrupt mask levels to be set in the IMASK bits of the status register should be described in the interrupt mask
table.
Change vecttbl.src that was included with SH7780 Initialization Example as required to match vecttbl.src for this
sample program.

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 5 of 25

2.2 Operational Overview of Module Used
The SCIF can perform serial communications in two modes: an asynchronous mode in which synchronization is
achieved character by character, and a clock synchronous mode in which communications are synchronized with clock
pulses.

64-stage FIFO buffers are provided for both transmission and reception, enabling fast, efficient, and continuous
communications. Only channel 0 has modem control functions (RTS, CTS).

The serial mode register (SCSMR) is used to set the transfer format. The clock source for the SCIF is determined by the
combination of settings of the C/A bit in SCSMR and the CKE1 and CKE0 bits in the serial control register (SCSCR).

(1) Asynchronous mode
• Data length: 7 or 8 bits
• LSB first for data transmission/reception
• Choice of appending parity bit and 1 or 2 stop bits
• Receive error detection: Framing, parity, and overrun errors
• Break signal detection: A break is detected when a framing error lasts for more than 1 frame length at Space 0

(low level).
• Sending a break signal: The input/output condition and level of the SCIF_TXD pin are determined by bits

SPB2IO and SPB2DT in SCSPTR. This feature can be used to send a break signal. To
send a break signal during serial transmission, clear the SPB2DT bit to 0 (designating
low level), and then clear the TE bit to 0 (halting transmission). When the TE bit is
cleared to 0, the transmitter is initialized, regardless of the current transmission state,
and 0 is output from the SCIF_TXD pin.

• Indication of the number of data bytes stored in the transmit and receive FIFO registers (SCTFDR, SCRFDR)
• SCIF clock source: Choice of peripheral clock or SCIF_SCK input clock

When peripheral clock (Pck) is selected: The SCIF operates on the baud rate generator clock.
When SCIF_SCK input clock is selected: A clock with a frequency of 16 times the bit rate must be input.

(2) Clocked synchronous mode

• Data length: 8 bits
• LSB first for data transmission/reception
• Detection of overrun errors during reception
• SCIF clock source: Choice of peripheral clock or SCIF_SCK input clock

When peripheral clock (Pck) is selected: The SCIF operates on the baud rate generator clock.
When SCIF_SCK input clock is selected: A clock with a frequency of 16 times the bit rate must be input.

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 6 of 25

2.3 Procedure for Setting Module Used
This section describes the procedure for setting up SCIF channel 0 for asynchronous mode operation.

In this program, the following initial settings are made at the beginning of the main function on the assumption that this
is based on the program for SH7780 Initialization Example. Since operation in privileged mode is a precondition for the
program doing this, take care with regard to the processing mode when you adapt this code for use with other programs
etc.

Figure 2 in the next page shows an example of the flow for setting operations of the SCIF channel 0 in asynchronous
mode. For details on the settings of individual registers, see the SH7780 Group Hardware Manual.

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 7 of 25

Yes

Yes

No

No

START

END

*1

*2

*4

*5

*3

Set port H control register

(PHCR)

Set port H pull-up control

register (PHPUPR)

Set SPB2IO and SPB2DT to 1

(setting TXD pin output high)

Set TE and RE bits in SCSCR to 0
(disabling transmission and

reception)

Error flag set?

Refresh receive data FIFO

buffers (64-stage)

Set interrupt priority level and

interrupt masks

1-bit interval elapsed?

Set RTRG1-0, TTRG1-0, and

MCE bits in SCFCR and clear

TFCL and RFCL to 0

Set TE and RE bits in SCSCR

to 1 and set TIE, RIE, and

REIE bits

Clear serial status register 0

(SCFSR0)

Clear line status register 0

(SCLSR0)

Set TFCL and RFCL bits in

SCFCR to 1

Set clock in CKE1 and CKE0

in SCSCR

Set serial mode register

(SCSMR)

Set bit rate register (SCBRR)

SCIF0_Initialize function

Notes: 1. Enable or disable the SCIF clock source

(internal or external) and the clock output from

the SCIF_SCK pin.

 For this program, set 00 to enable internal

clock and to use the SCIF_SCK pin as a port.

 2. Set the serial communication format and the

clock source to be input to the baud rate

generator.

 3. Set a value in SCBRR so that the bit rate is

equal to the desired rate.

 4. Set the remaining transmit data bytes trigger to

D'00 and receive data bytes trigger to D'16.

 5. Set the RIE and REIE bits to enable receive

interrupts and receive error interrupts.

 Set the RE and TE bits to enable serial

transmission and reception operations. The

transmit FIFO data empty interrupt is not used

in this program and should be disabled.

Figure 2 Flow for Setting up SCIF Asynchronous Mode

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 8 of 25

2.4 Processing Sequence of Sample Program
Table 1 gives examples for setting SCIF-related registers.

Figures 3 to 6 provide sample flowcharts of the main function and interrupt handling of the sample program.

Table 1 SCIF Setting

Register Name Address Setting Function
Interrupt priority register 2
(INT2PRI2)

H'FFD4 0008 H'1F00 0000 SCIF-ch0 interrupt priority level:
31

Interrupt mask clear register
(INT2MSKCR)

H'FFD4 003C H'0000 0008 SCIF-ch0 interrupt mask clear

Port H control register (PHCR) H'FFEA 000E H' FC80 PH3 to PH0 SCIF0 module
functions

Port H pull-up control register
(PHPUPR)

H'FFEA 004E H' 0000 PH0 to PH7 pull-up off

Serial mode register (SCSMR) H'FFD8 0004 H' 0020 Asynchronous mode
8-bit data
Parity enabled (even parity)
1 stop bit
Clock source: Pck

Serial control register (SCSCR) H'FFD8 0008 H' 0078 Operating on internal clock
RXI, ERI, and BRI interrupts
enabled
SCK pin used as a port

Bit rate register (SCBBR) H'FFD8 000C H' 08
FIFO control register (SCFCR) H'FFD8 0010 H' 0070 RDF flag trigger number: 16

START

*Set status register (SR)

Set SCIF (channel 0)

operation

main function
MD: "1", privileged mode

BL: "0", exeptions and interrupts are not blocked.

IMASK: Interrupt mask level = 14

Note: * Since this program directly changes registers

for peripheral functions, the MD bit (processing

mode bit) is set to 1 (privileged mode).

 If this bit is changed to "0" (user mode) and the

function for setting operations is called, access

to the registers for peripheral functions leads to

an address error.

Figure 3 Flow of Processing by the Main Function of the Sample Program
(Asynchronous Serial Data Transmission)

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 9 of 25

END

START

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

END

START

TDFE = 1?

*

*

Read number of receive

data bytes

Initialize receive data

variables

Read TDFE bit in serial

status register

Read receive FIFO data register

(SCFRDR0)

Write 0 to DR bit
Has the specified

number of data been repeated?

Has the number of
receive data been

repeated?

Write 0 to TDFE bit

Write 0 to TEND bit

DR bit = 1?

Write transmit data into

transmit FIFO data register

(SCFTDR)

Write 0 to RDF bit

Dummy read serial status register 0

(SCFSR0)

Data transmission processing

Pck × 5 cyc

wait?

SCIF0_RcvInterrupt function SCIF0_SendData function

Note: * To prevent the erroneous acceptance of interrupts from

sources that should have been updated, wait for the priority

determination time (Pck × 5 cycles) after reading the on-chip

module register that contains the given flag and before

setting the BL bit to 0 (however, since this program clears

interrupt source flags before processing data transmission,

the priority determination time should have elapsed so this

can be commented out).

Figure 4 Flow of RXI (Receive Data Full) Interrupt Handling and Data Transmission

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 10 of 25

END

START

Pck × 5 cyc

wait?

No

No

No

No

Yes

Yes

Yes

Yes

*

*

Write 0 to ER bit

ER bit = 1?

Dummy read serial status register 0

(SCFSR0)

Receive error occurs

Set flag variable to 1

Read number of receive

data bytes

Read framing and parity error

flags

No error?

Read receive FIFO data register

(SCFRDR0)

Has the number of
receive data been

repeated?

Dummy read receive FIFO data

register (SCFRDR0)

SCIF0_ErrInterrupt function

Note: * To prevent the erroneous acceptance of interrupts from

sources that should have been updated, wait for the priority

determination time (Pck × 5 cycles) after reading the on-chip

module register that contains the given flag and before

setting the BL bit to 0 (however, since this program clears

interrupt source flags before processing data transmission,

the priority determination time should have elapsed so this

can be commented out).

Figure 5 Flow of ERI (Receive Error) Interrupt Handling

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 11 of 25

END

START

Pck × 5 cyc

wait?

No
No

No

No

Yes

Yes Yes

Yes

*

*

*

Write 0 to BRK bit

Write 0 to ORER bit

Dummy read serial status

register 0 (SCFSR0)

Initialize receive data variable

(clearing to 0)

Read receive FIFO data

register (SCFRDR0)

Dummy read line status

register 0 (SCLSR0)

Read number of receive

data bytes

ORER bit = 1? Has the number of receive
data been repeated?

BRK bit = 1?

SCIF0_BrkInterrupt function

Note: * To prevent the erroneous acceptance of

interrupts from sources that should have been

updated, wait for the priority determination time

(Pck × 5 cycles) after reading the on-chip

module register that contains the given flag and

before setting the BL bit to 0 (however, since

this program clears interrupt source flags

before processing data transmission, the

priority determination time should have elapsed

so this can be commented out).

Figure 6 Flow of BRK (Break) Interrupt Handling

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 12 of 25

3. Listing of Sample Program
1. Sample Program Listing: "main.c"

1. /*""FILE COMMENT""***

2. * System Name : SH7780 Sample Program

3. * File Name : main.c

4. * Version : 1.00.00

5. * Contents : SH7780 Initialize Program

6. * Model : Hitachi_ULSI_Systems SolutionEngine MS7780SE03

7. * CPU : SH7780

8. * Compiler : SHC.9.1.00

9. * OS : none

10. *

11. * note : < Caution >

12. * This sample program is provided simply as a reference and

13. * its operation is not guaranteed.

14. * Use this sample program as a technical reference when

15. * developing software.

16. *

17. * Copyright (C) 2007 Renesas Technology Corp. All Rights Reserved

18. *

19. * History : 2007/12/26 ver 1.00.00

20. *

21. ***/

22. #include <machine.h>

23.

24. /* --- Function Definition(internal) --- */

25.

26. /* --- Symbol Definition --- */

27. #define SR_Init 0x400000e0 /* Privileged mode, RB,BL=0, IMASK level 14 */

28.

29. /***** Function Comment ***************************************

30. * Outline : main

31. *--

32. * Declaration : void main(void)

33. *--

34. * Functional description:

35. * main function

36. *--

37. * Return Value : -

38. * Argument : -

39. *--

40. * Input : -

41. * Output : -

42. *--

43. * Notes : -

44. ****** Function Comment End ***********************************/

45. void main(void)

46. {

47. set_cr(SR_Init); /* Set SR "Privileged mode, RB,BL=0, IMASK level 14" */

48.

49. SCIF0_Initialize(); /* SCIF0 Initialize (additional part from Initialize program)*/

50.

51. while(1)

52. {

53. }

54. }

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 13 of 25

2. Sample Program Listing: "scif.c" (1)

1 /*""FILE COMMENT""***

2 * System Name : SH7780 Sample Program

3 * File Name : scif.c

4 * Version : 1.00.00

5 * Contents : SH7780 SCIF0 transmit Program

6 * Model : Hitachi_ULSI_Systems SolutionEngine MS7780SE03

7 * CPU : SH7780

8 * Compiler : SHC.9.1.00

9 * OS : none

10 *

11 * note : < Caution >

12 * This sample program is provided simply as a reference and

13 * its operation is not guaranteed.

14 * Use this sample program as a technical reference when

15 * developing software.

16 *

17 * Copyright (C) 2007 Renesas Technology Corp. All Rights Reserved

18 *

19 * History : 2007/12/26 ver 1.00.00

20 *

21 ***/

22 #include <machine.h>

23

24 /* --- Function Definition(internal) --- */

25 void SCIF0_Initialize(void);

26 void SCIF0_SendData(void);

27 void SCIF0_RcvInterrupt(void);

28 void SCIF0_ErrInterrupt(void);

29 void SCIF0_BrkInterrupt(void);

30 static void int_responstime_wait(unsigned int wait_time);

31

32 /* --- Symbol Definition --- */

33 union st_scsmr{ /* struct SCSMR */

34 unsigned short WORD; /* Word Access */

35 struct{ /* Bit Access */

36 unsigned short :8; /* */

37 unsigned short CA :1; /* CA */

38 unsigned short CHR :1; /* CHR */

39 unsigned short PE :1; /* PE */

40 unsigned short OE :1; /* OE */

41 unsigned short STOP :1; /* STOP */

42 unsigned short :1; /* */

43 unsigned short CKS :2; /* CKS */

44 }BIT;

45 };

46

47 union st_scscr{ /* struct SCSCR */

48 unsigned short WORD; /* Word Access */

49 struct{ /* Bit Access */

50 unsigned short :8; /* */

51 unsigned short TIE :1; /* TIE */

52 unsigned short RIE :1; /* RIE */

53 unsigned short TE :1; /* TE */

54 unsigned short RE :1; /* RE */

55 unsigned short REIE :1; /* REIE */

56 unsigned short :1; /* */

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 14 of 25

3. Sample Program Listing: "scif.c" (2)

57 unsigned short CKE :2; /* CKE */

58 }BIT;

59 };

60

61 union st_scfsr{ /* struct SCFSR */

62 unsigned short WORD; /* Word Access */

63 struct{ /* Bit Access */

64 unsigned short :8; /* */

65 unsigned short ER :1; /* ER */

66 unsigned short TEND :1; /* TEND */

67 unsigned short TDFE :1; /* TDFE */

68 unsigned short BRK :1; /* BRK */

69 unsigned short FER :1; /* FER */

70 unsigned short PER :1; /* PER */

71 unsigned short RDF :1; /* RDF */

72 unsigned short DR :1; /* DR */

73 }BIT;

74 };

75

76 union st_scfcr{ /* struct SCFCR */

77 unsigned short WORD; /* Word Access */

78 struct{ /* Bit Access */

79 unsigned short :5; /* */

80 unsigned short RSTRG :3; /* RSTRG */

81 unsigned short RTRG :2; /* RTRG */

82 unsigned short TTRG :2; /* TTRG */

83 unsigned short MCE :1; /* MCE */

84 unsigned short TFCL :1; /* TFCL */

85 unsigned short RFCL :1; /* RFCL */

86 unsigned short LOOP :1; /* LOOP */

87 }BIT;

88 };

89

90 union st_scsptr{ /* struct SCSPTR */

91 unsigned short WORD; /* Word Access */

92 struct{ /* Bit Access */

93 unsigned short :8; /* */

94 unsigned short RTSIO :1; /* RTSIO */

95 unsigned short RTSDT :1; /* RTSDT */

96 unsigned short CTSIO :1; /* CTSIO */

97 unsigned short CTSDT :1; /* CTSDT */

98 unsigned short SCKIO :1; /* SCKIO */

99 unsigned short SCKDT :1; /* SCKDT */

100 unsigned short SPB2IO :1; /* SPB2IO */

101 unsigned short SPB2DT :1; /* SPB2DT */

102 }BIT;

103 };

104

105 union st_sclsr{ /* struct SCLSR */

106 unsigned short WORD; /* Word Access */

107 struct{ /* Bit Access */

108 unsigned short :15; /* */

109 unsigned short ORER :1; /* ORER */

110 }BIT;

111 };

112

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 15 of 25

4. Sample Program Listing: "scif.c" (3)

1 union st_screr{ /* struct SCRER */

2 unsigned short WORD; /* Word Access */

3 struct{ /* Bit Access */

4 unsigned short :2; /* */

5 unsigned short PER :6; /* PER */

6 unsigned short :2; /* */

7 unsigned short FER :6; /* FER */

8 }BIT;

9 };

10

11 #define SCSMR0 (*(volatile union st_scsmr *)0xFFE00000) /* SCSMR0 Address */

12 #define SCBRR0 (*(volatile unsigned char *)0xFFE00004) /* SCBRR0 Address */

13 #define SCSCR0 (*(volatile union st_scscr *)0xFFE00008) /* SCSCR0 Address */

14 #define SCFTDR0 (*(volatile unsigned char *)0xFFE0000C) /* SCFTDR0 Address */

15 #define SCFSR0 (*(volatile union st_scfsr *)0xFFE00010) /* SCFSR0 Address */

16 #define SCFRDR0 (*(volatile unsigned char *)0xFFE00014) /* SCFRDR0 Address */

17 #define SCFCR0 (*(volatile union st_scfcr *)0xFFE00018) /* SCFCR0 Address */

18 #define SCRFDR0 (*(volatile unsigned short *)0xFFE00020) /* SCRFDR0 Address */

19 #define SCLSR0 (*(volatile union st_sclsr *)0xFFE00028) /* SCLSR0 Address */

20 #define SCSPTR0 (*(volatile union st_scsptr *)0xFFE00024) /* SCSPTR0 Address */

21

22 #define PHCR (*(volatile unsigned short *)0xFFEA000E) /* PHCR Address */

23 #define PHPUPR (*(volatile unsigned char *)0xFFEA004E) /* PHPUPR Address */

24 #define INT2PRI2 (*(volatile unsigned int *)0xFFD40008) /* INT2PRI2 Address */

25 #define INT2MSKCR (*(volatile unsigned int *)0xFFD4003C) /* INT2MSKCR Address */

26

27 #define NUM_RCV_DATABUF (0x40)

28

29 #define INTC_RESPONSEWAIT (0x00000014) /* INT response wait Pck 5cycle

30 H'14 = (1/Pck*5cyc) / (1/Ick*3cyc) */

31

32 /* --- RAM allocation variable declaration --- */

33 volatile unsigned char u1SCIF0Rcvdata[16];

34 volatile unsigned char u1FlgSCIF0BrkInt;

35 volatile unsigned char u1FlgSCIF0RcvErrInt;

36 volatile unsigned short u2NumRcvData;

37

38 /***** Function Comment ***************************************

39 * Outline : SCIF0_Initialize

40 *--

41 * Declaration : void SCIF0_Initialize(void)

42 *--

43 * Functional description:

44 * SCIF0 Initialize

45 *--

46 * Return Value : -

47 * Argument : -

48 *--

49 * Input : -

50 * Output : -

51 *--

52 * Notes : -

53 ****** Function Comment End ***********************************/

54 void SCIF0_Initialize(void)

55 {

56 volatile unsigned short u2loop;

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 16 of 25

5. Sample Program Listing: "scif.c" (4)

169 volatile unsigned char u1dummy;

170 volatile unsigned char u1ErrFlg;

171

172 PHCR = 0xFC80; /* PH4-PH0 mode select "SCIF0" */

173 PHPUPR = 0x00; /* set PH7-PH0 pullup off */

174

175 SCSPTR0.BIT.SPB2IO = 1; /* SPB2DT bit value is output to the SCIF_TXD pin */

176 SCSPTR0.BIT.SPB2DT = 1; /* output data is Hi-level */

177

178 SCSCR0.WORD = 0x0000; /* TE,RE bit clear */

179 u1ErrFlg = ((SCFSR0.BIT.ER)||(SCFSR0.BIT.DR)||(SCFSR0.BIT.BRK)||(SCLSR0.BIT.ORER)); /* read

error flag */

180

181 if(u1ErrFlg == 0x01)

182 {

183 for(u2loop = 0; u2loop < NUM_RCV_DATABUF ; u2loop++)

184 {

185 u1dummy = SCFRDR0; /* receive data FIFO buffer refresh */

186 }

187 SCFSR0.WORD &= 0x0000; /* clear all status bit */

188 SCLSR0.BIT.ORER &= 0x00; /* clear ORER bit */

189 }

190

191 SCFCR0.WORD = 0x0006; /* set TFCL,RFCL bit, loopback disable, modem control disable */

192 SCSCR0.WORD = 0x0000; /* internal clock, SCIF_SCK general port */

193 SCSMR0.WORD = 0x0020; /* UART, 8bit, parity enable, even parity, 1stopbit, Pck */

194 SCBRR0 = 0x08; /* baud rate 115200bps */

195

196 for(u2loop = 0; u2loop < 0x0d90 ; u2loop++) /* 1-bit interval elapsed? */

197 {

198 nop();

199 }

200

201 SCFCR0.WORD = 0x0070; /* clear TFCL,RFCL bit,RTRG0,1,TTRG */

202 SCSCR0.WORD = 0x0078; /* transimit enable, receive enable, receive interrupt enable */

203

204 INT2PRI2 |= 0x1F000000; /* SCIF ch0 interrupt level 31 */

205 INT2MSKCR = 0x00000008; /* SCIF ch0 interrupt mask clear */

206 }

207

208 /***** Function Comment ***************************************

209 * Outline : SCIF0_ReceiveInterrupt

210 *--

211 * Declaration : void SCIF0_RcvInterrupt(void)

212 *--

213 * Functional description:

214 * SCIF0 Recieve Data full interrupt

215 *--

216 * Return Value : -

217 * Argument : -

218 *--

219 * Input : -

220 * Output : -

221 *--

222 * Notes : -

223 ****** Function Comment End ***********************************/

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 17 of 25

6. Sample Program Listing: "scif.c" (5)

224 void SCIF0_RcvInterrupt(void)

225 {

226 volatile unsigned short u2loop;

227 volatile unsigned short u2dummy;

228

229 u2NumRcvData = SCRFDR0;

230

231 for(u2loop = 0; u2loop < u2NumRcvData ; u2loop++)

232 {

233 u1SCIF0Rcvdata[u2loop] = 0x00;

234 u1SCIF0Rcvdata[u2loop] = SCFRDR0; /* read receive data */

235 }

236

237 if(SCFSR0.BIT.DR == 0x01)

238 {

239 SCFSR0.BIT.DR &= 0x00; /* clear DR bit */

240 }

241 SCFSR0.BIT.RDF &= 0x00; /* clear RDF bit */

242

243 u2dummy = SCFSR0.WORD; /* dummy read */

244

245 SCIF0_SendData();

246

247 int_responstime_wait(INTC_RESPONSEWAIT); /* 5cyc(Pck=33MHz) wait */

248 }

249

250 /***** Function Comment ***************************************

251 * Outline : SCIF0_SendData

252 *--

253 * Declaration : void SCIF0_SendData(void)

254 *--

255 * Functional description:

256 * SCIF0 Send data

257 *--

258 * Return Value : -

259 * Argument : -

260 *--

261 * Input : -

262 * Output : -

263 *--

264 * Notes : -

265 ****** Function Comment End ***********************************/

266 void SCIF0_SendData(void)

267 {

268 volatile unsigned short u2loop;

269

270 for(u2loop = 0; u2loop < u2NumRcvData ; u2loop++)

271 {

272 while(SCFSR0.BIT.TDFE != 1)

273 {

274 nop();

275 }

276

277 SCFTDR0 = u1SCIF0Rcvdata[u2loop]; /* set Send Data */

278 SCFSR0.WORD &= 0x9f; /* clear TDFE,TEND bit */

279 }

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 18 of 25

7. Sample Program Listing: "scif.c" (6)

280 }

281

282 /***** Function Comment ***************************************

283 * Outline : SCIF0_ErrInterrupt

284 *--

285 * Declaration : void SCIF0_ErrInterrupt(void)

286 *--

287 * Functional description:

288 * SCIF0 Receive error interrupt

289 *--

290 * Return Value : -

291 * Argument : -

292 *--

293 * Input : -

294 * Output : -

295 *--

296 * Notes : -

297 ****** Function Comment End ***********************************/

298 void SCIF0_ErrInterrupt(void)

299 {

300 volatile unsigned short u2loop;

301 volatile unsigned char u1ErrFlg;

302 volatile unsigned char u1dummy;

303 volatile unsigned short u2dummy;

304

305 if(SCFSR0.BIT.ER == 0x01)

306 {

307 SCFSR0.BIT.ER &= 0x00; /* clear ER bit */

308 }

309

310 u2dummy = SCFSR0.WORD; /* dummy read */

311

312 u1FlgSCIF0BrkInt = 1; /* set Recieve Error Interrupt flag */

313

314 u2NumRcvData = SCRFDR0;

315

316 for(u2loop = 0 ; u2loop < u2NumRcvData ; u2loop++)

317 {

318 u1ErrFlg = ((SCFSR0.BIT.FER)||(SCFSR0.BIT.PER));

319

320 if(u1ErrFlg == 0x00)

321 {

322 u1SCIF0Rcvdata[u2loop] = SCFRDR0; /* read receive data */

323 }

324 else

325 {

326 u1SCIF0Rcvdata[u2loop] = 0x00;

327 u1dummy = SCFRDR0; /* dummy read */

328 }

329 }

330

331 int_responstime_wait(INTC_RESPONSEWAIT); /* 5cyc(Pck=33MHz) wait */

332 }

333

334 /***** Function Comment ***************************************

335 * Outline : SCIF0_BrkInterrupt

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 19 of 25

8. Sample Program Listing: "scif.c" (7)

336 *--

337 * Declaration : void SCIF0_BrkInterrupt(void)

338 *--

339 * Functional description:

340 * SCIF0 Break interrupt

341 *--

342 * Return Value : -

343 * Argument : -

344 *--

345 * Input : -;

346 * Output : -

347 *--

348 * Notes : -

349 ****** Function Comment End ***********************************/

350 void SCIF0_BrkInterrupt(void)

351 {

352 volatile unsigned short u2loop;

353 volatile unsigned short u2dummy;

354

355 if(SCFSR0.BIT.BRK == 0x01)

356 {

357 SCFSR0.BIT.BRK &= 0x00; /* clear BRK bit */

358 }

359 else if(SCLSR0.BIT.ORER == 0x01)

360 {

361 SCLSR0.BIT.ORER &= 0x00; /* clear ORER bit */

362 }

363

364 u2dummy = SCFSR0.WORD; /* dummy read */

365 u2dummy = SCLSR0.WORD; /* dummy read */

366

367 u1FlgSCIF0BrkInt = 1; /* set BreakInterrupt flag */

368

369 u2NumRcvData = SCRFDR0;

370 for(u2loop = 0 ; u2loop < u2NumRcvData ; u2loop++)

371 {

372 u1SCIF0Rcvdata[u2loop] = 0x00; /* receive data initial */

373 u1SCIF0Rcvdata[u2loop] = SCFRDR0; /* read receive data */

374 }

375

376 int_responstime_wait(INTC_RESPONSEWAIT); /* 5cyc(Pck=33MHz) wait */

377 }

378

379 /***** Function Comment ***************************************

380 * Outline : SCIF0_SendBrkSignal

381 *--

382 * Declaration : void SCIF0_SendBrkSignal(void)

383 *--

384 * Functional description:

385 * SCIF0 Send Break Signal

386 *--

387 * Return Value : -

388 * Argument : -

389 *--

390 * Input : -

391 * Output : -

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 20 of 25

9. Sample Program Listing: "scif.c" (8)

392 *--

393 * Notes : -

394 ****** Function Comment End ***********************************/

395 void SCIF0_SendBrkSignal(void)

396 {

397 volatile unsigned short u2loop;

398

399 SCSPTR0.BIT.SPB2IO = 1; /* SPB2DT bit value is output to the SCIF_TXD pin */

400 SCSPTR0.BIT.SPB2DT = 0; /* output data is low-level */

401

402 SCSCR0.BIT.TE = 0; /* clear TE bit */

403

404 for(u2loop = 0 ; u2loop < 0x87a2 ; u2loop++) /* 10bit(S+1byte+P+1STOP) interval elapsed?

*/

405 {

406 nop();

407 }

408

409 SCSPTR0.BIT.SPB2IO = 0; /* SPB2DT bit value is not output to the SCIF_TXD pin */

410 SCSCR0.BIT.TE = 1; /* set TE bit */

411 }

412

413 #pragma inline_asm(int_responstime_wait)

414 static void int_responstime_wait(unsigned int wait_time)

415 {

416 ?0001:

417 DT R4

418 BF ?0001

419 NOP

420 }

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 21 of 25

10. Sample Program Listing: "intprg.c"

1 /*""FILE COMMENT""***

2 * System Name : SH7780 Sample Program

3 * File Name : intprg.c

4 * Version : 1.00.00

5 * Contents : SH7780 Initialize Program

6 * Model : Hitachi_ULSI_Systems SolutionEngine MS7780SE03

7 * CPU : SH7780

8 * Compiler : SHC.9.1.00

9 * OS : none

10 *

11 * note : < Caution >

12 * This sample program is provided simply as a reference and

13 * its operation is not guaranteed.

14 * Use this sample program as a technical reference when

15 * developing software.

16 *

17 * Copyright (C) 2007 Renesas Technology Corp. All Rights Reserved

18 *

19 * History : 2007/12/26 ver 1.00.00

20 *

21 ***/

22 #include <machine.h>

23

24 /* --- Function Definition(internal) --- */

25 static void int_responstime_wait(unsigned int wait_time);

26

27 /* --- Symbol Definition --- */

28 #define INTC_RESPONSEWAIT (0x00000014) /* INT response wait Pck 5cycle

29 H'14 = (1/Pck*5cyc) / (1/Ick*3cyc) */

30

31 /* --- RAM allocation variable declaration --- */

32

33 #pragma section IntPRG

240 /* H'700 SCIF ch-0 receive error interrupt */

241 void INT_SCIF0_ERI0(void)

242 {

243 SCIF0_ErrInterrupt(); /* (additional part from Initialize program) */

244 }

245 /* H'720 SCIF ch-0 receive FIFO data full or receive data ready interrupt */

246 void INT_SCIF0_RXI0(void)

247 {

248 SCIF0_RcvInterrupt(); /* (additional part from Initialize program) */

249 }

250 /* H'740 SCIF ch-0 break or overrun error interrupt */

251 void INT_SCIF0_BRI0(void)

252 {

253 SCIF0_BrkInterrupt(); /* (additional part from Initialize program) */

254 }

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 22 of 25

11. Sample Program Listing: "vecttbl.src"

57 ;*""FILE COMMENT""***

58 ; System Name : SH7780 Sample Program

59 ; File Name : vecttbl.src

60 ; Version : 1.00.00

61 ; Contents : SH7780 Initialize Program

62 ; Model : Hitachi_ULSI_Systems SolutionEngine MS7780SE03

63 ; CPU : SH7780

64 ; Compiler : SHC.9.1.00

65 ; OS : none

66 ;

67 ; note : < Caution >

68 ; This sample program is provided simply as a reference and

69 ; its operation is not guaranteed.

70 ; Use this sample program as a technical reference when

71 ; developing software.

72 ;

73 ; Copyright (C) 2007 Renesas Technology Corp. All Rights Reserved

74 ;

75 ; History : 2007/12/26 ver 1.00.00

76 ;

77 ;**/

78

79 .include "vect.inc"

80

81 .section VECTTBL,data

82 .export _RESET_VECTORS

333 ;SCIF-ch0

334 ;H'700 ERI0

335 .data.b H'F0 /* (change part from Initialize program) */

336 ;H'720 RXI0

337 .data.b H'F0 /* (change part from Initialize program) */

338 ;H'740 BRI0

339 .data.b H'F0 /* (change part from Initialize program) */

340 ;H'760 TXI0

341 .data.b H'00

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 23 of 25

4. Documents for Reference
• Hardware Manual

SH7780 Hardware Manual
The most up-to-date version of this document is available on the Renesas Technology Website.

• Software Manual

SH-4A Software Manual
The most up-to-date version of this document is available on the Renesas Technology Website.

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 24 of 25

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Mar.21.08 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

SH7780 Group
Example of Using the SCIF in Asynchronous Mode (Serial Data Transfer)

REJ06B0717-0100/Rev.1.00 March 2008 Page 25 of 25

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008. Renesas Technology Corp., All rights reserved.

	Cover
	1. Preface
	1.1 Specification
	1.2 Module Used
	1.3 Applicable Conditions
	1.4 Related Application Note

	2. Description of the Sample Application
	2.1 Description of the Sample Program
	2.2 Operational Overview of Module Used
	2.3 Procedure for Setting Module Used
	2.4 Processing Sequence of Sample Program

	3. Listing of Sample Program
	4. Documents for Reference
	Website and Support
	Revision Record
	Notes regarding these materials

