

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REG05B0029-0100/Rev.1.00 December 2008 Page 1 of 23

H8/38076F
An Example of a Simple Clock

Introduction

The Renesas H8/38076F is a new microcontroller of the Super Low Power family, introducing the
16-bit core H8/300H in a series of devices up to now distinguished to have 8-bit core and low
power consumption for battery powered application.
This application note provides example C code to initialise and configure the RTC and the LCD
Controller found on the H8/38076F. The code is written for the Renesas MCS C compiler and was
developed using the High-Performance Embedded Workshop (HEW). The code was debugged
using the E7 emulator with the debugger integrated in the HEW.

Contents

AN EXAMPLE OF A SIMPLE CLOCK .. 1

INTRODUCTION .. 1

CONTENTS .. 1

PREFACE... 2

DESCRIPTION OF HARDWARE... 3

1. DESCRIPTION OF RTC.. 3

2. DESCRIPTION OF LCD CONTROLLER .. 4

3. DESCRIPTION OF DISPLAY... 5

DESCRIPTION OF THE APPLICATION ... 7

APPENDIX A: APPLICATION CODE.. 9

FILE RTC_38076.C.. 9

FILE INIT_PERIPHERALS.C ... 12

FILE UTILITY.C .. 15

FILE INTPRG.C .. 19

FILE DATI.H ... 21

WEBSITE AND SUPPORT .. 22

H8/38076F
An Example of a Simple Clock

Preface
The H8/38076F is suitable for a wide range of applications where performance and low power
consumption are the key requirements. Based around the 16-Bit H8/300H CPU core, the
H8/38076F features 32 Kbytes of single supply FLASH memory, a host of integrated peripherals
and can be clocked at a maximum of 10MHz. In the picture 1 is shown the block diagram.

This microcontroller, like all the SLP devices, supports power down modes such as Subactive mode,
Sleep mode, Subsleep and watch mode, that are used in the application here described.

The E7 used for debugging is a low-cost emulation tool for the SLP and H8/300H Tiny families,
and the HEW used is the version 3.

The objective of this application note is to produce example C code, which can be used to
demonstrate how to initialise and manage the RTC, the LCD Controller and a couple of low power
modalities.

Figure 1 – H8/38076F block diagram

REG05B0029-0100/Rev.1.00 December 2008 Page 2 of 23

H8/38076F
An Example of a Simple Clock

Description of Hardware
1. Description of RTC

The realtime clock (RTC) is a timer used to count time ranging from a second to a week. It is
possible to program it to be used as free funning counter or as clock.

The main features are:

- counts seconds, minutes, hours, and day-of-week, with start/stop and reset function

- possibility to read/write the counters with BCD codes

- Interrupts can be generated ranging from 0.25 seconds to a week

The RTC has the following registers.

- Second data register/free running counter data register (RSECDR)

- Minute data register (RMINDR)

- Hour data register (RHRDR)

- Day-of-week data register (RWKDR)

- RTC control register 1 (RTCCR1)

- RTC control register 2 (RTCCR2)

- Clock source select register (RTCCSR)

- RTC Interrupt flag register (RTCFLG)

Figure 2 shows the procedure for the initial setting of the RTC. To change the setting of the RTC
also follow this procedure.

When the second, minute, hour, or day-of-week data is set, check the BSY bit. When the BSY bit is
cleared to 0, clear the RUN bit in RTCCR1 to 0 to stop the RTC operation.

Figure 2 – Initial setting procedure
All the registers containing the time datum have a bit named BSY that is asserted during the update
of the register and is reset after the completion of the update. For reading procedure is necessary to
check the BSY bit before read in order to have the right data.

The routine read_time_from_rtc() detailed later shows an example.

REG05B0029-0100/Rev.1.00 December 2008 Page 3 of 23

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 4 of 23

2. Description of LCD Controller
This LSI has an on-chip peripheral able to directly drive an LCD panel. In this circuit are present
the segment-type LCD control circuit, the LCD driver and the power supply circuit.

The RAM used for LCD is on chip and is 16 bytes long. All the segments not used for the display
can be selected as I/O port, grouped by 4. The refresh frequency is selectable in a range of 11
available.

For this application has been used a 32x4 display, described in the next paragraph, but only 24x4
segments are connected and driven since in the EDK38076 the first 8 of these segments are
connected to LEDs (non used for the application but in any case available). The initialisation
sequence of the peripheral is the following:

SYSTEM.CKSTPR2.BIT.LDCKSTP = 1; // accendo periferica
LCD.LPCR.BYTE = 0xea;
LCD.LCR.BYTE = 0xf2;
LCD.LCR2.BIT.LCDAB = 0; / waveform A
LCD.LCR2.BIT.CHG = 1;

where:

- LDCKSTP switch on the peripheral.

- LPCR selects the duty cycle (DTS + CMX -> ¼ duty) and the pin functions (SEG1 to SEG8
used as I/O ports, SEG9 to SEG32 as segments driver).

DTS1 DTS0 CMX - SGS3 SGS2 SGS1 SGS0
1 1 1 0 1 0 1 0

- LCR controls LCD drive power supply (PSW 1 -> LCD drive power supply is turned on and
ACT 1 -> LCD controller/driver operates) and display data, and selects the frame frequency
(based on subclock/4).

- PSW ACT DISP CKS3 CKS2 CKS1 CKS0
1 1 1 1 0 0 1 0

- LCR2 controls switching between the A (selected) and B waveform, selection of the step-up
clock for the 3-V constant-voltage circuit, connection with the LCD power-supply split resistor
(selected), and turning on or off 3-V constant-voltage power supply.

H8/38076F
An Example of a Simple Clock

3. Description of display
To realise this application has been used the 3DK38076 connected to an external LCD, detailed in
figure 3. The LCD is a Varitronix VIM-828-DP (documentation can be downloaded from
www.varitronix.com) with 8 character (14 Segment Starburst) where only six are used.

Fig.3 - LCD

The LCD is directly connected to the microcontroller, in particular the segments from SEG8 to
SEG32 were used. This choice was due to the 3DK connections (on the first 8 segments are
connected LEDs). Since the LCD used is a 32 segments x 4 commons, the first two characters are
not connected. In any case, only six numbers are necessary, because the time is expressed in the
notation:

hh.mm.ss

The LCD RAM is mapped as shown in the following table, and the figure 4 shows as the segments
of single character are internally connected.

Figure 4 – digit configuration

REG05B0029-0100/Rev.1.00 December 2008 Page 5 of 23

http://www.varitronix.com/

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 6 of 23

LCD RAM
address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
F740 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.
F741 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.
F742 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.
F743 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.
F744 1M 1L 1G 1H 1DP 1C 1B 1A
F745 1N 1K 1J 1I 1D 1E 1F -
F746 2M 2L 2G 2H 2DP 2C 2B 2A
F747 2N 2K 2J 2I 2D 2E 2F -
F748 3M 3L 3G 3H 3DP 3C 3B 3A
F749 3N 3K 3J 3I 3D 3E 3F -
F74A 4M 4L 4G 4H 4DP 4C 4B 4A
F74B 4N 4K 4J 4I 4D 4E 4F -
F74C 5M 5L 5G 5H 5DP 5C 5B 5A
F74D 5N 5K 5J 5I 5D 5E 5F -
F74E 6M 6L 6G 6H 6DP 6C 6B 6A
F74F 6N 6K 6J 6I 6D 6E 6F -

 COM4 COM3 COM2 COM1 COM4 COM3 COM2 COM1

H8/38076F
An Example of a Simple Clock

Description of the application
The schematics of the application are shown in figure 6.

After the initialisation of the internal registers and internal peripherals, the microcontroller is driven
in watch mode in order to have very low power consumption.

The RTC is running linked with the subclock, as the LCD Controller.

Two different interrupt sources are enabled: the RTC (half second and second alternatively) and the
IRQ4.

The interrupt of RTC is used to refresh the value of time on the display: during the initialization
phase is enabled the 0.5 second interrupt. The ISR blinks the points between hours, minutes and
seconds, disables this interrupt and enables the 1 second interrupt. This interrupt set a flag used by
the main to read the time from RTC and update the display. After this the micon is driven in watch
mode another time.

So the application is for most of the time in watch mode, and the power consumption (measured
with a multimeter) is varying from 1.8 to 2.2 microamps without display and from 2.9 up to 5
microamps with display segments driven (the figure is strictly dependent by number of segments
ON).

Occurrence of interrupts drive the microcontroller from watch to subactive mode, and the power
consumption rises dramatically, up to 17 microamps.

The timing of the application is reported in figure 5:

Figure 5 - Timing

As said above, there is another interrupt enabled that is able to switch the micon in subactive mode.
In order to permit the programming of time, a switch connected to IRQ4 pin is available to select
this working phase.

In this phase the microcontroller runs in subactive mode and on the display is shown the present
time (without seconds) and the letter „M“ or „H“ indicating if the figure modifiable (pressing the
button connected to IRQAEC) is minutes or hours.

REG05B0029-0100/Rev.1.00 December 2008 Page 7 of 23

H8/38076F
An Example of a Simple Clock

The first one is used to refresh the value of time on the display, and the second one is used to select
the programming mode, in order to set up the new time for the RTC.

Fig.6 - Schematics

REG05B0029-0100/Rev.1.00 December 2008 Page 8 of 23

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 9 of 23

Appendix A: Application Code
File RTC_38076.c

/***/
/* */
/* FILE :RTC_38076.c */
/* DATE :Tue, Nov 02, 2004 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/Other */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.1). */
/* */
/***/

#include <machine.h>
#include <string.h>
#include <stdio.h>
#include "iodefine.h"
#include "dati.h"

unsigned char figures[11][2] =
{
{0x07, 0x0e},{0x06, 0x00},{0x23, 0x4c},{0x07, 0x48},{0x26, 0x42},
{0x25, 0x4a},{0x25, 0x4e},{0x07, 0x00},{0x27, 0x4e},{0x27, 0x4a},{0x0, 0x0}
};

unsigned int count_s, count_m, count_h, count_d;
unsigned char seconds;
unsigned char minute;
unsigned char hours;
unsigned char current_day;
unsigned char program_flag,plus_flag;
unsigned char flag_second,prog_minute,prog_hours;

unsigned char ram_lcd[12];

/***
Function Name: watch_mode
Description: change the operating mode of CPU from the running one to
 watch setting register and then transition by means of
 sleep instruction
Parameters: N/A
Return value: N/A
***/
void watch_mode (void)
{
 SYSTEM.SYSCR1.BIT.LSON = 1;
 SYSTEM.SYSCR2.BIT.MSON = 1;
 SYSTEM.SYSCR1.BIT.SSBY = 1;
 SYSTEM.SYSCR2.BIT.DTON = 0;
 SYSTEM.SYSCR1.BIT.TMA3 = 1;
 sleep();
}

/***

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 10 of 23

Function Name: subactive_mode
Description: change the operating mode of CPU from the running one to
 subactive setting register for direct transition and
 then transition by means of sleep instruction
Parameters: N/A
Return value: N/A
***/
void subactive_mode (void)
{
 SYSTEM.SYSCR1.BIT.LSON = 1;
 SYSTEM.SYSCR1.BIT.SSBY = 1;
 SYSTEM.SYSCR2.BIT.DTON = 1;
 SYSTEM.SYSCR1.BIT.TMA3 = 1;
 sleep();
}

/***
Function Name: active_mode
Description: change the operating mode of CPU from the running one to
 full speed setting register for direct transition and
 then transition by means of sleep instruction
Parameters: N/A
Return value: N/A
***/
void active_mode (void)
{
 SYSTEM.SYSCR1.BIT.LSON = 0;
 SYSTEM.SYSCR2.BIT.MSON = 0;
 SYSTEM.SYSCR1.BIT.SSBY = 1;
 SYSTEM.SYSCR2.BIT.DTON = 1;
 SYSTEM.SYSCR1.BIT.TMA3 = 1;
 sleep();
}

/***
Function Name: main
Description: main program. After initialization the micon is driven in
 subactive, then there is sequentially a check if the RTC
 interrupt related to „second“ is arrived (in this case the
 LCD is refreshed), a check if a programming phase is
 Requested and at the end the micon is driven in watch mode.
Parameters: N/A
Return value: N/A
***/
void main(void)
{
unsigned char i,y;

 initialize();
 flag_second = 0;
 subactive_mode();

 while(1)
 {
 if (flag_second == 1)
 {

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 11 of 23

 write_lcd();
 LCD_RAM.MEM.BYTE.DIG5 |= 0x08;
 LCD_RAM.MEM.BYTE.DIG9 |= 0x08;

 flag_second = 0;
 }
 if (program_flag == TRUE)
 {
 RTC.RTCCR1.BIT.RUN = 0; // stop rtc
 INT.IENR1.BIT.IENEC2 = 1; // enable interrupt aec
 program_time();
 write_time_to_rtc();
 program_flag = FALSE; // disable interrupt aec
 INT.IENR1.BIT.IENEC2 = 0;
 RTC.RTCCR1.BIT.RUN = 1; // restart rtc
 }
 else
 watch_mode();
 }
}

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 12 of 23

File init_peripherals.c

/***/
/* */
/* FILE :init_peripherals.c */
/* DATE :Tue, Nov 02, 2004 */
/* DESCRIPTION :Peripherals setup */
/* CPU TYPE :H8/Other */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.1). */
/* */
/***/

#include "iodefine.h"
#include <machine.h>
#include "dati.h"

/**
Function Name: PowerDown_Init
Description: initialisation of system registers in order to use various
 operating mode and switch off of all the peripherals
Parameters: N/A
Return value: N/A
**/
void PowerDown_Init(void)
{
 SYSTEM.CKSTPR1.BYTE = 0x8a;
 SYSTEM.CKSTPR2.BYTE = 0x88;

 INT.IENR2.BIT.IENDT = 1; //enable direct transition interrupts

 SYSTEM.SYSCR2.BIT.NESEL = 0; //noise elimination bit
 SYSTEM.SYSCR1.BIT.STS = 1;
 SYSTEM.SYSCR1.BIT.MA = 2;
 SYSTEM.SYSCR2.BIT.SA = 2;

 SYSTEM.SYSCR1.BIT.SSBY = 0;
 SYSTEM.SYSCR1.BIT.LSON = 0;
 SYSTEM.SYSCR2.BIT.DTON = 1; // enable direct transition
 SYSTEM.SYSCR2.BIT.MSON = 0;

}

/**
Function Name: lcd_init
Description: initialisation of LCD controller on-chip
Parameters: N/A
Return value: N/A
***/
void lcd_init (void)
{
unsigned char i,y;

 SYSTEM.CKSTPR2.BIT.LDCKSTP = 1; // switch on peripheral
 LCD.LPCR.BYTE = 0xea; // 1/4 duty, SEG9 to SEG32 enabled
 LCD.LCR.BYTE = 0xf2; // LCD supply on, fiw/8

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 13 of 23

 LCD.LCR2.BIT.LCDAB = 0; // waveform A
 LCD.LCR2.BIT.CHG = 1;

 // clear lcd ram and segments of display
 for (i=0;i<12;i++)
 {
 ram_lcd[i] = 0;
 LCD_RAM.MEM.DIGIT[i] = 0;
 }

 // write 00.00.00 on display
 y = 0;
 for (i=0; i<6; i++)
 {
 LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][0];
 LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][1];
 }
 LCD_RAM.MEM.BYTE.DIG5 |= 0x08;
 LCD_RAM.MEM.BYTE.DIG9 |= 0x08;
}

/**
Function Name: init_rtc
Description: initialisation of real time clock on-chip
Parameters: N/A
Return value: N/A
***/
void init_rtc (void)
{
 SYSTEM.CKSTPR1.BIT.RTCCKSTP = 1;
 while ((RTC.RSECDR.BYTE | 0x80) == 0);
 RTC.RTCCR1.BIT.RUN = 0;
 RTC.RTCCR1.BIT.RST = 1;
 RTC.RTCCR1.BIT.RST = 0;
 RTC.RTCCR1.BIT.B12_24 = 1;
 RTC.RTCCSR.BIT.SUB32K = 1;
 RTC.RTCCSR.BIT.RCS3 = 1;
 RTC.RTCCR2.BYTE = 0;
 PORT.PMR3.BYTE = 0xff;
 INT.IENR1.BIT.IENRTC = 1; // interrupt enabled
 RTC.RTCCR2.BIT.B05SEIE = 1;
 RTC.RTCCR1.BIT.RUN = 1; // start rtc
}

/**
Function Name: init_io
Description: all the I/O pins are initialised
Parameters: N/A
Return value: N/A
**/
void init_io (void)
{

 PORT.PMR1.BYTE = 0xfc; // double function pins selected as I/O
 PORT.PCR1.BYTE = 0xfd; // output pins selected pin11 in input

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 14 of 23

 PORT.PUCR1.BYTE = 0x80; // pull-up disabled
 PORT.PDR1.BYTE = 0xfd; // high level set

 PORT.PMR3.BYTE = 0xfe; // double function pins selected as I/O
 PORT.PCR3.BYTE = 0xff; // output pins selected
 PORT.PUCR3.BYTE = 0x3e; // pull-up disabled
 PORT.PDR3.BYTE = 0xff; // high level set

 PORT.PMR4.BYTE = 0xf8; // double function pins selected as I/O
 PORT.PCR4.BYTE = 0xff; // output pins selected
 PORT.PDR4.BYTE = 0xff; // high level set

 PORT.PMR5.BYTE = 0x00; // double function pins selected as I/O
 PORT.PCR5.BYTE = 0xff // output pins selected
 PORT.PUCR5.BYTE = 0; // pull-up disabled
 PORT.PDR5.BYTE = 0xff; // high level set

 PORT.PMR9.BYTE = 0xf4; // p92 selected as IRQ4
 PORT.PCR9.BYTE = 0xfb; // output pins selected
 PORT.PDR9.BYTE = 0xff; // high level set

 INT.IENR1.BIT.IEN4 = 1; // enable irq4 interrupt
 INT.IEGR.BIT.IEG4 = 0; // falling edge selected

 PORT.PMRB.BYTE = 0xe8; // all pin selected as input pin
}

/**
Function Name: init_variable
Description: initialization of the system registers, of the global
 variable and call of routine for initialize peripherals
Parameters: N/A
Return value: N/A
***/
void initialize(void)
{
 PowerDown_Init();
 lcd_init();
 init_io();
 init_rtc();
}

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 15 of 23

File utility.c
/***/
/* */
/* FILE :utility.c */
/* DATE :Tue, Nov 02, 2004 */
/* DESCRIPTION :utility routines */
/* CPU TYPE :H8/Other */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.1). */
/* */
/***/

#include "iodefine.h"
#include <machine.h>
#include "dati.h"

/**
Function Name: hextobcd
Description: routine to convert hexadecimal data in BCD format as
 requested by RTC registers
Parameters: datum hexadecimal to be converted in BCD
Return value: datum converted in BCD format
**/
unsigned char hextobcd(unsigned char datohex)
{
unsigned char datobcd,dummy;

 datobcd = datohex % 10;
 dummy = datohex / 10;
 dummy = dummy % 10;
 datobcd |= (dummy << 4);
 return datobcd;
}

/**
Function Name: bcdtohex
Description: routine to convert BCD data in hexadecimal format used
 for computation and visualisation on LCD
Parameters: datum BCD to be converted in hexadecimal
Return value: datum converted in hexadecimal format
**/
unsigned char bcdtohex(unsigned char datobcd)
{
unsigned char datohex,dummy;

 datohex = datobcd & 0xf0;
 datohex >>= 4;
 datohex *= 10;
 dummy = datobcd & 0x0f;
 datohex += dummy;
 return datohex;
}

/**
Function Name: read_time_from_rtc
Description: routine used to read time from RTC.

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 16 of 23

Parameters: N/A
Return value: N/A
***/
void read_time_from_rtc(void)
{
 while (RTC.RSECDR.BIT.BSY == 1);
 seconds = bcdtohex(RTC.RSECDR.BYTE & 0x7f);
 while (RTC.RMINDR.BIT.BSY == 1);
 minute = bcdtohex(RTC.RMINDR.BYTE & 0x7f);
 while (RTC.RHRDR.BIT.BSY == 1);
 hours = bcdtohex(RTC.RHRDR.BYTE & 0x3f);
 while (RTC.RWKDR.BIT.BSY == 1);
 current_day = (RTC.RWKDR.BYTE & 0x7);
}

/**
Function Name: write_time_to_rtc
Description: routine used to modify time in RTC.
Parameters: N/A
Return value: N/A
***/
void write_time_to_rtc(void)
{
unsigned char prova;

 RTC.RTCCR1.BIT.RUN = 0; // stop RTC operation
 RTC.RSECDR.BYTE = 0;
 RTC.RMINDR.BYTE = hextobcd(minute);
 RTC.RHRDR.BYTE = hextobcd(hours);
 RTC.RWKDR.BYTE = current_day;
 RTC.RTCCR1.BIT.RUN = 1; // start RTC operation
}

/**
Function Name: write_lcd
Description: read data from RTC and update time on the LCD
Parameters: N/A
Return value: N/A
***/
void write_lcd(void)
{
unsigned char i,y;

 read_time_from_rtc();

 ram_lcd[1] = seconds/10;
 ram_lcd[0] = seconds - (ram_lcd[1] * 10);
 ram_lcd[3] = minute/10;
 ram_lcd[2] = minute - (ram_lcd[3] * 10);
 ram_lcd[5] = hours/10;
 ram_lcd[4] = hours - (ram_lcd[5]*10);

 y = 0;
 for (i=0; i<6; i++)
 {
 LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][0];

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 17 of 23

 LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][1];
 }
}

/**
Function Name: write_program
Description: called during the programming phase, refresh the LCD with
 the increasing value of minutes or hours
Parameters: N/A
Return value: N/A
***/
void write_program(void)
{
unsigned char i,y;

 ram_lcd[1] = minute/10;
 ram_lcd[0] = minute - (ram_lcd[1] * 10);
 ram_lcd[3] = hours/10;
 ram_lcd[2] = hours - (ram_lcd[3]*10);

 y = 0;
 for (i=0; i<4; i++)
 {
 LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][0];
 LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][1];
 }

 if (prog_minute == FALSE)
 {
 LCD_RAM.MEM.DIGIT[y++] = 0x00;
 LCD_RAM.MEM.DIGIT[y++] = 0x00;
 LCD_RAM.MEM.DIGIT[y++] = 0x16;
 LCD_RAM.MEM.DIGIT[y++] = 0x26;
 }
 else
 {
 LCD_RAM.MEM.DIGIT[y++] = 0x00;
 LCD_RAM.MEM.DIGIT[y++] = 0x00;
 LCD_RAM.MEM.DIGIT[y++] = 0x26;
 LCD_RAM.MEM.DIGIT[y++] = 0x46;
 }

}

/**
Function Name: program_time
Description: handle of the programming phase, read the present time
 from the RTC and update the minutes or the hours if the
 flag associated to the increment is true.
Parameters: N/A
Return value: N/A
***/
void program_time(void)
{
 read_time_from_rtc();

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 18 of 23

 while (prog_minute == FALSE)
 {
 if (plus_flag == TRUE)
 {
 minute++;
 if (minute > 59)
 minute = 0;
 plus_flag = FALSE;
 }
 write_program();
 }
 while (prog_hours == FALSE)
 {
 if (plus_flag == TRUE)
 {
 hours++;
 if (hours > 23)
 hours = 0;
 plus_flag = FALSE;
 }
 write_program();
 }
 prog_minute = FALSE;
 prog_hours = FALSE;
}

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 19 of 23

File intprg.c
/***/
/* */
/* FILE :intprg.c */
/* DATE :Tue, Nov 02, 2004 */
/* DESCRIPTION :Interrupt Program file */
/* CPU TYPE :H8/Other */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.1). */
/* */
/***/

#include <machine.h>
#include "iodefine.h"
#include "dati.h"

#pragma section IntPRG

// vector 8 IRQAEC
/**
Function Name: INT_IRQAEC
Description: connected to the switch PLUS (activated only during the
 program phase) set a flag handled by routine program_time.
Parameters: N/A
Return value: N/A
**/
__interrupt(vect=8) void INT_IRQAEC(void)
{
 INT.IRR1.BIT.IRREC2 &= 0;
 plus_flag = TRUE;
}

// vector 10 IRQ4
/**
Function Name: INT_IRQ4
Description: connected to the switch PROGRAMMING (request in sequence
 the program phase for minutes, for hours and then the exit
 from the procedure).
Parameters: N/A
Return value: N/A
**/
__interrupt(vect=10) void INT_IRQ4(void)
{
 INT.IRR1.BIT.IRRI4 &= 0;
 if (program_flag == FALSE)
 program_flag = TRUE;
 else
 {
 if (prog_minute == FALSE)
 prog_minute = TRUE;
 else
 prog_hours = TRUE;
 }
}

// vector 20 RTC 0.5 sec

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 20 of 23

/**
Function Name: INT_RTC_HALF_SECOND
Description: interrupt activated each half second that modifies the LCD
 dots (and enables the „second“ interrupt
Parameters: N/A
Return value: N/A
**/
__interrupt(vect=20) void INT_RTC_HALF_SECOND(void)
{
 RTC.RTCFLG.BIT.B05SEIFG &= 0;
 RTC.RTCCR2.BIT.B05SEIE = 0;
 RTC.RTCCR2.BIT.B1SEIE = 1;

 LCD_RAM.MEM.BYTE.DIG5 &= 0xf7;
 LCD_RAM.MEM.BYTE.DIG9 &= 0xf7;
}
// vector 21 RTC 1 sec
/**
Function Name: INT_RTC_SECOND
Description: interrupt activated each second that modifies the LCD dots
 and set a flag used by main routine.
Parameters: N/A
Return value: N/A
**/
__interrupt(vect=21) void INT_RTC_SECOND(void)
{
 RTC.RTCFLG.BIT.SEIFG &= 0;
 RTC.RTCCR2.BIT.B05SEIE = 1;
 RTC.RTCCR2.BIT.B1SEIE = 0;
 flag_second = 1;
}

// vector 43 Direct Transition
/**
Function Name: INT_Direct_Transition
Description: Interrupt for direct transition.
Parameters: N/A
Return value: N/A
**/
__interrupt(vect=43) void INT_Direct_Transition(void)
{
 INT.IRR2.BIT.IRRDT &= 0;
}

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 21 of 23

File dati.h
/***/
/* */
/* FILE :dati.h */
/* DATE :Tue, Nov 02, 2004 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/Other */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.1). */
/* */
/***/

void lcd_init (void);
void init_peripherals (void);

void subactive_mode(void);
void change_speed(unsigned char next_mode);

extern unsigned char figures[11][2];

extern unsigned char program_flag,plus_flag,select_uart;
extern unsigned char flag_second,prog_minute,prog_hours;
extern unsigned char seconds;
extern unsigned char minute;
extern unsigned char hours;
extern unsigned char current_day;
extern unsigned char receive_byte;

extern unsigned char ram_lcd[12];

extern unsigned int count_s, count_m, count_h, count_d;

struct mem_lcd {
 union {
 unsigned char DIGIT[12];
 struct {
 unsigned char DIG1:8;
 unsigned char DIG2:8;
 unsigned char DIG3:8;
 unsigned char DIG4:8;
 unsigned char DIG5:8;
 unsigned char DIG6:8;
 unsigned char DIG7:8;
 unsigned char DIG8:8;
 unsigned char DIG9:8;
 unsigned char DIG10:8;
 unsigned char DIG11:8;
 unsigned char DIG12:8;
 }BYTE;
 }MEM;
};

#define LCD_RAM (* (volatile struct mem_lcd *) (0xF374))

#define FALSE 0
#define TRUE !FALSE

H8/38076F
An Example of a Simple Clock

REG05B0029-0100/Rev.1.00 December 2008 Page 22 of 23

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

H8/38076F
An Example of a Simple Clock

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008. Renesas Technology Corp., All rights reserved.

REG05B0029-0100/Rev.1.00 December 2008 Page 23 of 23

	Preface
	Description of Hardware
	1. Description of RTC
	2. Description of LCD Controller
	3. Description of display

	Description of the application
	Appendix A: Application Code

