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H8/38076F 
An Example of a Simple Clock 

Introduction 

The Renesas H8/38076F is a new microcontroller of the Super Low Power family, introducing the 
16-bit core H8/300H in a series of devices up to now distinguished to have 8-bit core and low 
power consumption for battery powered application. 
This application note provides example C code to initialise and configure the RTC and the LCD 
Controller found on the H8/38076F. The code is written for the Renesas MCS C compiler and was 
developed using the High-Performance Embedded Workshop (HEW). The code was debugged 
using the E7 emulator with the debugger integrated in the HEW. 
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H8/38076F 
An Example of a Simple Clock 

Preface 
The H8/38076F is suitable for a wide range of applications where performance and low power 
consumption are the key requirements. Based around the 16-Bit H8/300H CPU core, the 
H8/38076F features 32 Kbytes of single supply FLASH memory, a host of integrated peripherals 
and can be clocked at a maximum of 10MHz.  In the picture 1 is shown the block diagram. 

This microcontroller, like all the SLP devices, supports power down modes such as Subactive mode, 
Sleep mode, Subsleep and watch mode, that are used in the application here described. 

The E7 used for debugging is a low-cost emulation tool for the SLP and H8/300H Tiny families, 
and the HEW used is the version 3.  

The objective of this application note is to produce example C code, which can be used to 
demonstrate how to initialise and manage the RTC, the LCD Controller and a couple of low power 
modalities.  

 

Figure 1 – H8/38076F block diagram 
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Description of Hardware  
1. Description of RTC 

The realtime clock (RTC) is a timer used to count time ranging from a second to a week. It is 
possible to program it to be used as free funning counter or as clock. 

The main features are: 

- counts seconds, minutes, hours, and day-of-week, with start/stop and reset function 

- possibility to read/write the counters with BCD codes 

- Interrupts can be generated ranging from 0.25 seconds to a week  

 

The RTC has the following registers. 

- Second data register/free running counter data register (RSECDR) 

- Minute data register (RMINDR) 

- Hour data register (RHRDR) 

- Day-of-week data register (RWKDR) 

- RTC control register 1 (RTCCR1) 

- RTC control register 2 (RTCCR2) 

- Clock source select register (RTCCSR) 

- RTC Interrupt flag register (RTCFLG) 

 

Figure 2 shows the procedure for the initial setting of the RTC. To change the setting of the RTC 
also follow this procedure. 

When the second, minute, hour, or day-of-week data is set, check the BSY bit. When the BSY bit is 
cleared to 0, clear the RUN bit in RTCCR1 to 0 to stop the RTC operation. 

Figure 2 – Initial setting procedure 
All the registers containing the time datum have a bit named BSY that is asserted during the update 
of the register and is reset after the completion of the update. For reading procedure is necessary to 
check the BSY bit before read in order to have the right data. 

The routine read_time_from_rtc() detailed later shows an example.  
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2. Description of LCD Controller 
This LSI has an on-chip peripheral able to directly drive an LCD panel. In this circuit are present 
the segment-type LCD control circuit, the LCD driver and the power supply circuit. 

The RAM used for LCD is on chip and is 16 bytes long. All the segments not used for the display 
can be selected as I/O port, grouped by 4. The refresh frequency is selectable in a range of 11 
available. 

For this application has been used a 32x4 display, described in the next paragraph, but only 24x4 
segments are connected and driven since in the EDK38076 the first 8 of these segments are 
connected to LEDs (non used for the application but in any case available). The initialisation 
sequence of the peripheral is the following:  

 
SYSTEM.CKSTPR2.BIT.LDCKSTP = 1;    // accendo periferica 
LCD.LPCR.BYTE = 0xea; 
LCD.LCR.BYTE = 0xf2; 
LCD.LCR2.BIT.LCDAB = 0;   / waveform A 
LCD.LCR2.BIT.CHG = 1; 

 

where:  

- LDCKSTP switch on the peripheral. 

- LPCR selects the duty cycle (DTS + CMX -> ¼ duty) and the pin functions (SEG1 to SEG8 
used as I/O ports, SEG9 to SEG32 as segments driver). 

DTS1 DTS0 CMX - SGS3 SGS2 SGS1 SGS0 
1 1 1 0 1 0 1 0 

 

- LCR controls LCD drive power supply (PSW 1 -> LCD drive power supply is turned on and  
ACT 1 -> LCD controller/driver operates) and display data, and selects the frame frequency 
(based on subclock/4). 

- PSW ACT DISP CKS3 CKS2 CKS1 CKS0 
1 1 1 1 0 0 1 0 

 

- LCR2 controls switching between the A (selected) and B waveform, selection of the step-up 
clock for the 3-V constant-voltage circuit, connection with the LCD power-supply split resistor 
(selected), and turning on or off 3-V constant-voltage power supply. 
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3. Description of display 
To realise this application has been used the 3DK38076 connected to an external LCD, detailed in 
figure 3. The LCD is a Varitronix VIM-828-DP (documentation can be downloaded from 
www.varitronix.com) with 8 character (14 Segment Starburst) where only six are used. 

 

 
 

Fig.3 - LCD 

 

The LCD is directly connected to the microcontroller, in particular the segments from SEG8 to 
SEG32 were used. This choice was due to the 3DK connections (on the first 8 segments are 
connected LEDs). Since the LCD used is a 32 segments x 4 commons, the first two characters are 
not connected. In any case, only six numbers are necessary, because the time is expressed in the 
notation: 

hh.mm.ss 

 

The LCD RAM is mapped as shown in the following table, and the figure 4 shows as the segments 
of single character are internally connected. 

 
Figure 4 – digit configuration 
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LCD RAM 
address 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
F740 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. 
F741 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. 
F742 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. 
F743 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. 
F744 1M 1L 1G 1H 1DP 1C 1B 1A 
F745 1N 1K 1J 1I 1D 1E 1F - 
F746 2M 2L 2G 2H 2DP 2C 2B 2A 
F747 2N 2K 2J 2I 2D 2E 2F - 
F748 3M 3L 3G 3H 3DP 3C 3B 3A 
F749 3N 3K 3J 3I 3D 3E 3F - 
F74A 4M 4L 4G 4H 4DP 4C 4B 4A 
F74B 4N 4K 4J 4I 4D 4E 4F - 
F74C 5M 5L 5G 5H 5DP 5C 5B 5A 
F74D 5N 5K 5J 5I 5D 5E 5F - 
F74E 6M 6L 6G 6H 6DP 6C 6B 6A 
F74F 6N 6K 6J 6I 6D 6E 6F - 

 COM4 COM3 COM2 COM1 COM4 COM3 COM2 COM1
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Description of the application 
The schematics of the application are shown in figure 6. 

 

After the initialisation of the internal registers and internal peripherals, the microcontroller is driven 
in watch mode in order to have very low power consumption.  

The RTC is running linked with the subclock, as the LCD Controller.  

Two different interrupt sources are enabled: the RTC (half second and second alternatively) and the 
IRQ4. 

The interrupt of RTC is used to refresh the value of time on the display: during the initialization 
phase is enabled the 0.5 second interrupt. The ISR blinks the points between hours, minutes and 
seconds, disables this interrupt and enables the 1 second interrupt. This interrupt set a flag used by 
the main to read the time from RTC and update the display. After this the micon is driven in watch 
mode another time. 

So the application is for most of the time in watch mode, and the power consumption (measured 
with a multimeter) is varying from 1.8 to 2.2 microamps without display and from 2.9 up to 5 
microamps with display segments driven (the figure is strictly dependent by number of segments 
ON). 

Occurrence of interrupts drive the microcontroller from watch to subactive mode, and the power 
consumption rises dramatically, up to 17 microamps. 

 

The timing of the application is reported in figure 5: 

 

 
Figure 5 - Timing 

 

 

As said above, there is another interrupt enabled that is able to switch the micon in subactive mode. 
In order to permit the programming of time, a switch connected to IRQ4 pin is available to select 
this working phase. 

In this phase the microcontroller runs in subactive mode and on the display is shown the present 
time (without seconds) and the letter „M“ or „H“ indicating if the figure modifiable (pressing the 
button connected to IRQAEC) is minutes or hours. 
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The first one is used to refresh the value of time on the display, and the second one is used to select 
the programming mode, in order to set up the new time for the RTC. 

 

 

 

 

  
Fig.6 - Schematics 
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Appendix A: Application Code 
File RTC_38076.c 

/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :RTC_38076.c                                           */ 
/*  DATE        :Tue, Nov 02, 2004                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/Other                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.3.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
                   
#include    <machine.h> 
#include <string.h> 
#include <stdio.h> 
#include  "iodefine.h" 
#include  "dati.h" 
 
unsigned char figures[11][2] =  
{ 
{0x07, 0x0e},{0x06, 0x00},{0x23, 0x4c},{0x07, 0x48},{0x26, 0x42}, 
{0x25, 0x4a},{0x25, 0x4e},{0x07, 0x00},{0x27, 0x4e},{0x27, 0x4a},{0x0, 0x0} 
}; 
 
unsigned int count_s, count_m, count_h, count_d; 
unsigned char seconds; 
unsigned char minute; 
unsigned char hours; 
unsigned char current_day; 
unsigned char program_flag,plus_flag; 
unsigned char flag_second,prog_minute,prog_hours; 
 
unsigned char ram_lcd[12]; 
 
/************************************************************************* 
Function Name: watch_mode 
Description: change the operating mode of CPU from the running one to  
   watch setting register and then transition by means of 
   sleep instruction 
Parameters:  N/A 
Return value:  N/A 
*************************************************************************/ 
void watch_mode (void) 
{ 
 SYSTEM.SYSCR1.BIT.LSON = 1; 
 SYSTEM.SYSCR2.BIT.MSON = 1; 
 SYSTEM.SYSCR1.BIT.SSBY = 1; 
 SYSTEM.SYSCR2.BIT.DTON = 0; 
 SYSTEM.SYSCR1.BIT.TMA3 = 1; 
 sleep(); 
} 
 
/************************************************************************* 
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Function Name: subactive_mode 
Description: change the operating mode of CPU from the running one to  
   subactive setting register for direct transition and  
   then transition by means of sleep instruction 
Parameters:  N/A 
Return value:  N/A 
*************************************************************************/ 
void subactive_mode (void) 
{ 
 SYSTEM.SYSCR1.BIT.LSON = 1; 
 SYSTEM.SYSCR1.BIT.SSBY = 1; 
 SYSTEM.SYSCR2.BIT.DTON = 1; 
 SYSTEM.SYSCR1.BIT.TMA3 = 1; 
 sleep(); 
} 
 
/************************************************************************* 
Function Name: active_mode 
Description: change the operating mode of CPU from the running one to  
   full speed setting register for direct transition and  
   then transition by means of sleep instruction 
Parameters:  N/A 
Return value:  N/A 
*************************************************************************/ 
void active_mode (void) 
{ 
 SYSTEM.SYSCR1.BIT.LSON = 0; 
 SYSTEM.SYSCR2.BIT.MSON = 0; 
 SYSTEM.SYSCR1.BIT.SSBY = 1; 
 SYSTEM.SYSCR2.BIT.DTON = 1; 
 SYSTEM.SYSCR1.BIT.TMA3 = 1; 
 sleep(); 
} 
 
/************************************************************************* 
Function Name: main 
Description:  main program. After initialization the micon is driven in  
   subactive, then there is sequentially a check if the RTC  
   interrupt related to „second“ is arrived (in this case the  
   LCD is refreshed), a check if a programming phase is 
   Requested and at the end the micon is driven in watch mode. 
Parameters:  N/A 
Return value:  N/A 
*************************************************************************/ 
void main(void) 
{ 
unsigned char i,y; 
 
 initialize(); 
 flag_second = 0; 
 subactive_mode(); 
 
 while(1) 
 { 
  if (flag_second == 1) 
  { 



H8/38076F 
An Example of a Simple Clock 

REG05B0029-0100/Rev.1.00 December 2008 Page 11 of 23 

   write_lcd(); 
   LCD_RAM.MEM.BYTE.DIG5 |= 0x08; 
   LCD_RAM.MEM.BYTE.DIG9 |= 0x08; 
 
   flag_second = 0; 
  } 
  if (program_flag == TRUE) 
  { 
   RTC.RTCCR1.BIT.RUN = 0;    // stop rtc 
   INT.IENR1.BIT.IENEC2 = 1;   // enable interrupt aec 
   program_time(); 
   write_time_to_rtc(); 
   program_flag = FALSE;    // disable interrupt aec 
   INT.IENR1.BIT.IENEC2 = 0; 
   RTC.RTCCR1.BIT.RUN = 1;    // restart rtc 
  } 
  else 
   watch_mode(); 
 } 
} 
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File init_peripherals.c 
 
/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :init_peripherals.c                                    */ 
/*  DATE        :Tue, Nov 02, 2004                                     */ 
/*  DESCRIPTION :Peripherals setup                                     */ 
/*  CPU TYPE    :H8/Other                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.3.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
#include  "iodefine.h" 
#include <machine.h> 
#include  "dati.h" 
 
/**************************************************************************** 
Function Name:  PowerDown_Init 
Description: initialisation of system registers in order to use various 
   operating mode and switch off of all the peripherals 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
void PowerDown_Init(void) 
{ 
 SYSTEM.CKSTPR1.BYTE = 0x8a; 
 SYSTEM.CKSTPR2.BYTE = 0x88; 
 
 INT.IENR2.BIT.IENDT = 1;  //enable direct transition interrupts 
  
 SYSTEM.SYSCR2.BIT.NESEL = 0;  //noise elimination bit 
 SYSTEM.SYSCR1.BIT.STS = 1; 
 SYSTEM.SYSCR1.BIT.MA = 2; 
 SYSTEM.SYSCR2.BIT.SA = 2; 
 
 SYSTEM.SYSCR1.BIT.SSBY = 0; 
 SYSTEM.SYSCR1.BIT.LSON = 0; 
 SYSTEM.SYSCR2.BIT.DTON = 1; // enable direct transition 
 SYSTEM.SYSCR2.BIT.MSON = 0; 
 
} 
 
/**************************************************************************** 
Function Name:  lcd_init 
Description:  initialisation of LCD controller on-chip 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void lcd_init (void) 
{ 
unsigned char i,y; 
 
 SYSTEM.CKSTPR2.BIT.LDCKSTP = 1; // switch on peripheral 
 LCD.LPCR.BYTE = 0xea;         // 1/4 duty, SEG9 to SEG32 enabled 
 LCD.LCR.BYTE = 0xf2;          // LCD supply on, fiw/8 
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 LCD.LCR2.BIT.LCDAB = 0;    // waveform A 
 LCD.LCR2.BIT.CHG = 1; 
 
 // clear lcd ram and segments of display 
 for (i=0;i<12;i++) 
 { 
  ram_lcd[i] = 0; 
  LCD_RAM.MEM.DIGIT[i] = 0; 
 }  
 
 // write 00.00.00 on display 
 y = 0; 
 for (i=0; i<6; i++) 
 { 
  LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][0]; 
  LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][1]; 
 } 
 LCD_RAM.MEM.BYTE.DIG5 |= 0x08; 
 LCD_RAM.MEM.BYTE.DIG9 |= 0x08; 
} 
 
/**************************************************************************** 
Function Name:  init_rtc 
Description:  initialisation of real time clock on-chip 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void init_rtc (void) 
{ 
 SYSTEM.CKSTPR1.BIT.RTCCKSTP = 1; 
 while ((RTC.RSECDR.BYTE | 0x80) == 0); 
 RTC.RTCCR1.BIT.RUN = 0; 
 RTC.RTCCR1.BIT.RST = 1; 
 RTC.RTCCR1.BIT.RST = 0; 
 RTC.RTCCR1.BIT.B12_24 = 1; 
 RTC.RTCCSR.BIT.SUB32K = 1; 
 RTC.RTCCSR.BIT.RCS3 = 1; 
 RTC.RTCCR2.BYTE = 0; 
 PORT.PMR3.BYTE = 0xff; 
 INT.IENR1.BIT.IENRTC = 1;         // interrupt enabled 
 RTC.RTCCR2.BIT.B05SEIE = 1; 
 RTC.RTCCR1.BIT.RUN = 1;   // start rtc 
} 
 
 
/**************************************************************************** 
Function Name: init_io 
Description:  all the I/O pins are initialised 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
void init_io (void) 
{ 
 
 PORT.PMR1.BYTE = 0xfc;  // double function pins selected as I/O 
 PORT.PCR1.BYTE = 0xfd;  // output pins selected pin11 in input 
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 PORT.PUCR1.BYTE = 0x80;  // pull-up disabled 
 PORT.PDR1.BYTE = 0xfd;  // high level set 
 
 PORT.PMR3.BYTE = 0xfe;  // double function pins selected as I/O  
 PORT.PCR3.BYTE = 0xff;  // output pins selected 
 PORT.PUCR3.BYTE = 0x3e;  // pull-up disabled 
 PORT.PDR3.BYTE = 0xff;  // high level set 
  
 PORT.PMR4.BYTE = 0xf8;  // double function pins selected as I/O  
 PORT.PCR4.BYTE = 0xff;  // output pins selected 
 PORT.PDR4.BYTE = 0xff;  // high level set 
 
 PORT.PMR5.BYTE = 0x00;  // double function pins selected as I/O  
 PORT.PCR5.BYTE = 0xff  // output pins selected 
 PORT.PUCR5.BYTE = 0;  // pull-up disabled 
 PORT.PDR5.BYTE = 0xff;  // high level set 
 
 PORT.PMR9.BYTE = 0xf4;  // p92 selected as IRQ4 
 PORT.PCR9.BYTE = 0xfb;  // output pins selected 
 PORT.PDR9.BYTE = 0xff;  // high level set 
 
 INT.IENR1.BIT.IEN4 = 1;  // enable irq4 interrupt 
 INT.IEGR.BIT.IEG4 = 0;  // falling edge selected 
 
 PORT.PMRB.BYTE = 0xe8;  // all pin selected as input pin 
} 
 
/**************************************************************************** 
Function Name: init_variable 
Description:  initialization of the system registers, of the global 
   variable and call of routine for initialize peripherals 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void initialize(void) 
{ 
 PowerDown_Init(); 
 lcd_init(); 
 init_io(); 
 init_rtc(); 
} 
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File utility.c 
/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :utility.c                                             */ 
/*  DATE        :Tue, Nov 02, 2004                                     */ 
/*  DESCRIPTION :utility routines                                      */ 
/*  CPU TYPE    :H8/Other                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.3.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
#include  "iodefine.h" 
#include    <machine.h> 
#include  "dati.h" 
 
/**************************************************************************** 
Function Name: hextobcd 
Description:  routine to convert hexadecimal data in BCD format as  
   requested by RTC registers 
Parameters:  datum hexadecimal to be converted in BCD 
Return value:  datum converted in BCD format 
****************************************************************************/ 
unsigned char hextobcd(unsigned char datohex) 
{ 
unsigned char datobcd,dummy; 
 
 datobcd = datohex % 10; 
 dummy = datohex / 10; 
 dummy = dummy % 10; 
 datobcd |= (dummy << 4); 
 return datobcd; 
} 
 
/**************************************************************************** 
Function Name: bcdtohex 
Description:  routine to convert BCD data in hexadecimal format used 
   for computation and visualisation on LCD 
Parameters:  datum BCD to be converted in hexadecimal 
Return value:  datum converted in hexadecimal format 
****************************************************************************/ 
unsigned char bcdtohex(unsigned char datobcd) 
{ 
unsigned char datohex,dummy; 
 
 datohex = datobcd & 0xf0; 
 datohex >>= 4; 
 datohex *= 10; 
 dummy = datobcd & 0x0f; 
 datohex += dummy; 
 return datohex; 
} 
 
/**************************************************************************** 
Function Name: read_time_from_rtc 
Description:  routine used to read time from RTC. 
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Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void read_time_from_rtc(void) 
{ 
 while (RTC.RSECDR.BIT.BSY == 1); 
 seconds = bcdtohex(RTC.RSECDR.BYTE & 0x7f); 
 while (RTC.RMINDR.BIT.BSY == 1); 
 minute = bcdtohex(RTC.RMINDR.BYTE & 0x7f); 
 while (RTC.RHRDR.BIT.BSY == 1); 
 hours = bcdtohex(RTC.RHRDR.BYTE & 0x3f); 
 while (RTC.RWKDR.BIT.BSY == 1); 
 current_day = (RTC.RWKDR.BYTE & 0x7); 
} 
 
/**************************************************************************** 
Function Name: write_time_to_rtc 
Description:  routine used to modify time in RTC. 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void write_time_to_rtc(void) 
{ 
unsigned char prova; 
 
 RTC.RTCCR1.BIT.RUN = 0;    // stop RTC operation 
 RTC.RSECDR.BYTE = 0; 
 RTC.RMINDR.BYTE = hextobcd(minute); 
 RTC.RHRDR.BYTE = hextobcd(hours); 
 RTC.RWKDR.BYTE = current_day; 
 RTC.RTCCR1.BIT.RUN = 1;    // start RTC operation 
} 
 
/**************************************************************************** 
Function Name: write_lcd 
Description:  read data from RTC and update time on the LCD 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void write_lcd(void) 
{ 
unsigned char i,y; 
 
 read_time_from_rtc(); 
 
 ram_lcd[1] = seconds/10; 
 ram_lcd[0] = seconds - (ram_lcd[1] * 10); 
 ram_lcd[3] = minute/10; 
 ram_lcd[2] = minute - (ram_lcd[3] * 10); 
 ram_lcd[5] = hours/10; 
 ram_lcd[4] = hours - (ram_lcd[5]*10); 
 
 y = 0; 
 for (i=0; i<6; i++) 
 { 
  LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][0]; 
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  LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][1]; 
 } 
} 
 
/**************************************************************************** 
Function Name: write_program 
Description:  called during the programming phase, refresh the LCD with 
   the increasing value of minutes or hours 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void write_program(void) 
{ 
unsigned char i,y; 
 
 ram_lcd[1] = minute/10; 
 ram_lcd[0] = minute - (ram_lcd[1] * 10); 
 ram_lcd[3] = hours/10; 
 ram_lcd[2] = hours - (ram_lcd[3]*10); 
 
 y = 0; 
 for (i=0; i<4; i++) 
 { 
  LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][0]; 
  LCD_RAM.MEM.DIGIT[y++] = figures[ram_lcd[i]][1]; 
 } 
 
 if (prog_minute == FALSE) 
 { 
  LCD_RAM.MEM.DIGIT[y++] = 0x00; 
  LCD_RAM.MEM.DIGIT[y++] = 0x00; 
  LCD_RAM.MEM.DIGIT[y++] = 0x16; 
  LCD_RAM.MEM.DIGIT[y++] = 0x26; 
 } 
 else 
 { 
  LCD_RAM.MEM.DIGIT[y++] = 0x00; 
  LCD_RAM.MEM.DIGIT[y++] = 0x00; 
  LCD_RAM.MEM.DIGIT[y++] = 0x26; 
  LCD_RAM.MEM.DIGIT[y++] = 0x46; 
 } 
 
} 
 
/**************************************************************************** 
Function Name: program_time 
Description:  handle of the programming phase, read the present time 
   from the RTC and update the minutes or the hours if the  
   flag associated to the increment is true. 
Parameters:  N/A 
Return value:  N/A 
*****************************************************************************/ 
void program_time(void) 
{ 
 read_time_from_rtc(); 
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 while (prog_minute == FALSE) 
 { 
  if (plus_flag == TRUE) 
  { 
   minute++; 
   if (minute > 59) 
    minute = 0; 
   plus_flag = FALSE; 
  } 
  write_program(); 
 } 
 while (prog_hours == FALSE) 
 { 
  if (plus_flag == TRUE) 
  { 
   hours++; 
   if (hours > 23) 
    hours = 0; 
   plus_flag = FALSE; 
  } 
  write_program(); 
 } 
 prog_minute = FALSE; 
 prog_hours = FALSE; 
} 
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File intprg.c 
/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :intprg.c                                              */ 
/*  DATE        :Tue, Nov 02, 2004                                     */ 
/*  DESCRIPTION :Interrupt Program file                                */ 
/*  CPU TYPE    :H8/Other                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.3.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
#include <machine.h> 
#include "iodefine.h" 
#include "dati.h" 
 
#pragma section IntPRG 
 
//  vector 8 IRQAEC 
/**************************************************************************** 
Function Name:  INT_IRQAEC 
Description:  connected to the switch PLUS (activated only during the 
   program phase) set a flag handled by routine program_time. 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
__interrupt(vect=8) void INT_IRQAEC(void) 
{ 
 INT.IRR1.BIT.IRREC2 &= 0; 
 plus_flag = TRUE; 
} 
 
//  vector 10 IRQ4 
/**************************************************************************** 
Function Name:  INT_IRQ4 
Description:  connected to the switch PROGRAMMING (request in sequence 
   the program phase for minutes, for hours and then the exit 
   from the procedure). 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
__interrupt(vect=10) void INT_IRQ4(void) 
{ 
 INT.IRR1.BIT.IRRI4 &= 0; 
 if (program_flag == FALSE) 
  program_flag = TRUE; 
 else 
 { 
  if (prog_minute == FALSE) 
   prog_minute = TRUE; 
  else 
   prog_hours = TRUE; 
 } 
} 
 
//  vector 20 RTC 0.5 sec 
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/**************************************************************************** 
Function Name:  INT_RTC_HALF_SECOND 
Description:  interrupt activated each half second that modifies the LCD  
   dots (and enables the „second“ interrupt 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
__interrupt(vect=20) void INT_RTC_HALF_SECOND(void) 
{ 
 RTC.RTCFLG.BIT.B05SEIFG &= 0; 
 RTC.RTCCR2.BIT.B05SEIE = 0; 
 RTC.RTCCR2.BIT.B1SEIE = 1; 
 
 LCD_RAM.MEM.BYTE.DIG5 &= 0xf7; 
 LCD_RAM.MEM.BYTE.DIG9 &= 0xf7; 
} 
//  vector 21 RTC 1 sec 
/**************************************************************************** 
Function Name:  INT_RTC_SECOND 
Description:  interrupt activated each second that modifies the LCD dots  
   and set a flag used by main routine. 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
__interrupt(vect=21) void INT_RTC_SECOND(void)  
{ 
 RTC.RTCFLG.BIT.SEIFG &= 0; 
 RTC.RTCCR2.BIT.B05SEIE = 1; 
 RTC.RTCCR2.BIT.B1SEIE = 0; 
 flag_second = 1; 
} 
 
//  vector 43 Direct Transition 
/**************************************************************************** 
Function Name:  INT_Direct_Transition 
Description:  Interrupt for direct transition. 
Parameters:  N/A 
Return value:  N/A 
****************************************************************************/ 
__interrupt(vect=43) void INT_Direct_Transition(void) 
{ 
 INT.IRR2.BIT.IRRDT &= 0; 
} 
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File dati.h 
/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :dati.h                                                */ 
/*  DATE        :Tue, Nov 02, 2004                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/Other                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.3.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
void lcd_init (void); 
void init_peripherals (void); 
 
void subactive_mode(void); 
void change_speed(unsigned char next_mode); 
 
extern unsigned char  figures[11][2]; 
 
extern unsigned char program_flag,plus_flag,select_uart; 
extern unsigned char flag_second,prog_minute,prog_hours; 
extern unsigned char  seconds; 
extern unsigned char  minute; 
extern unsigned char  hours; 
extern unsigned char  current_day; 
extern unsigned char receive_byte; 
 
extern unsigned char ram_lcd[12]; 
 
extern unsigned int count_s, count_m, count_h, count_d; 
 
struct mem_lcd { 
  union { 
   unsigned char DIGIT[12]; 
   struct { 
    unsigned char DIG1:8; 
    unsigned char DIG2:8; 
    unsigned char DIG3:8; 
    unsigned char DIG4:8; 
    unsigned char DIG5:8; 
    unsigned char DIG6:8; 
    unsigned char DIG7:8; 
    unsigned char DIG8:8; 
    unsigned char DIG9:8; 
    unsigned char DIG10:8; 
    unsigned char DIG11:8; 
    unsigned char DIG12:8; 
   }BYTE; 
  }MEM; 
}; 
 
#define LCD_RAM  (* (volatile struct mem_lcd *) (0xF374)) 
 
#define FALSE 0 
#define TRUE      !FALSE 
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