

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0937-0100/Rev.1.00 December 2009 Page 1 of 31

SH7763 Group
Example of Setting for Reception of Ethernet Frames

Introduction
This application note provides an example of setting for data reception through a port of the Ethernet function RMII
(Reduced Media Independent Interface), which is incorporated in the SH7763 Group.

Target Device
SH7763

Contents

1. Preface .. 2

2. Description of Sample Application .. 3

3. Listing of the Sample Program.. 18

4. Documents for Reference ... 29

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 2 of 31

1. Preface

1.1 Specifications
• In this sample program, ten Ethernet frames are received. Every time an Ethernet frame is received, the frame

received interrupt is used to initiate copying of the frame to a user buffer.

1.2 Modules Used
• Gigabit Ethernet controller (GETHER)
• Interrupt controller (INTC)
• General purpose I/O (GPIO)

1.3 Applicable Conditions
• Evaluation board: SH7763 Solution Engine (type no.: MS7763SE02) from Hitachi ULSI Systems Co., Ltd.

 Ethernet PHY: KSZ8721BL from Micrel
• MCU: SH7763 (R5S77631AY266BGV)
• Operating frequency: CPU clock: 266.66 MHz

 Local bus clock: 66.66 MHz
 DDR-SDRAM I/F clock: 133.33 MHz
 Peripheral bus clock 0: 66.67 MHz

• Toolchain: SuperH RISC engine Standard Toolchain Ver.9.3.0.0 from Renesas Technology
• Compiler options: Default settings of High-performance Embedded Workshop

 (-cpu=sh4a -include="$(PROJDIR)¥inc"
 -object="$(CONFIGDIR)¥$(FILELEAF).obj" -debug -gbr=auto –chgincpath
 -errorpath -global_volatile=0 -opt_range=all -infinite_loop=0
 -del_vacant_loop=0 -struct_alloc=1 -nologo)

1.4 Related Application Note
The operation of the reference program for this document was confirmed with the setting conditions described in the
SH7763 Group Application Note: SH7763 Example of Initialization (REJ06B0934). Please refer to that document in
combination with this one.

SH7763 Group Application Note: Example of Setting for Transmission of Ethernet Frames (REJ06B0936)

SH7670 Group Application Note: Example of Setting for Automatic Negotiation by Ethernet PHY-LSI (REJ06B0800)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 3 of 31

2. Description of Sample Application
This sample program performs Ethernet reception through one (E-MAC-0) of the two MAC layer interface lines of the
Gigabit Ethernet Controller (GETHER). The RMII is selected as the interface according to the specification of the
evaluation board in order to perform 100BASE-T Ethernet communication.

During reception, the dedicated Direct Memory Access Controller (E-DMAC) incorporated in the GETHER is used to
transfer Ethernet frames to a receive buffer in the memory.

2.1 Operational Overview of Module Used
The GETHER consists of the following three function units:

(1) DMA transfer controller (E-DMAC): DMA transfer between the transmit/receive buffer in the memory and the

transmit/receive FIFO
Using its direct memory access (DMA) function, the E-DMAC performs DMA transfer of frame data between a
user-specified Ethernet frame transmission/reception data storage destination (accessible memory space: transmit
buffer/receive buffer) and the transmit/receive FIFO in the EDMAC.
To enable the E-DMAC to perform DMA transfer, information (data) including a transmit/receive data storage
address and so forth, referred to as a descriptor, is required. The E-DMAC reads transmit data from the transmit
buffer or writes receive data to the receive buffer according to the descriptor information. By arranging multiple
descriptors as a descriptor row (list) (to be placed in a readable/writable memory space), multiple Ethernet frames
can be transmitted or received continuously.
The E-DMAC consists of two lines: one for port 0 and the other for port 1, and both operate independently for
transmission and reception.

(2) MAC controller (E-MAC): Transmission/reception processing between the transmit/receive FIFO and the

GMII/MII/RMII
The E-MAC constructs an Ethernet frame using the data written to the transmit FIFO and transmits the frame to the
GMII/MII/RMII. It also performs a CRC check of an Ethernet frame received from the GMII/MII/RMII and
deconstructs the frame to write to the receive FIFO. The EMAC supports three formats MII, GMII and RMII for
interface to the PHI-LSI connected externally to this LSI.
The E-MAC consists of two controllers: E-MAC0 for port 0 and E-MAC1 for port 1, which correspond to E-
DMAC0 and E-DMAC1 respectively.

(3) Transfer Switching Unit (TSU): Transfer processing between port 0 and port 1, and CAM processing

The TSU performs Ethernet frame data transfer between the E-MAC0 and E-MAC1. The TSU, which is placed
between the E-DMAC and E-MAC, references the CAM entry table to select one of the following tasks according to
the Ethernet frame destination address (DA) input to the E-MAC.
⎯ Receives frame and writes to the receive FIFO.
⎯ Transfers frame and writes to the transfer FIFO.
⎯ Receives frame and writes to the receive FIFO and transfer FIFO.
⎯ Discards frame.
The TSU performs transfers from port 0 to port 1 and from port 1 to port 0 independently.

Table 1 lists the outline of the GETHER.

For details on the GETHER, please refer to the section on Gigabit Ethernet controller (GETHER) in the SH7763 Group
Hardware Manual (REJ09B0256).

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 4 of 31

Table 1 Outline of the GETHER

Item Description
E-MAC function • Constructs/deconstructs data frames (frame format conforming to IEEE802.3, 2000

Edition)
• Supports transfer at 10, 100, and 1000 Mbps
• Supports full-duplex and half-duplex modes
• Two channels (GETHER0 and GETHER1)
• Flow control conforming to IEEE802.3x
• Supports three PHY interfaces conforming to IEEE802.3

⎯ GMII (Gigabit Media Independent Interface)
⎯ MII (Media Independent Interface)
⎯ RMII (Reduced Media Independent Interface)

• Upward protocol support (checksum) function
E-DMAC function • Data transfer between GETHER and external/internal memory

• Four channels
• 32-byte burst transfer
• Supports single-frame/single-descriptor operation and single-frame/multi-descriptor

(multibuffer) operation
• Transfer data width: 32 bits
• Transmit/receive FIFO (for transmission: 2 Kbytes, for reception: 8 Kbytes)

TSU function • Switching unit for data transfer between channels (relay FIFO: 6 Kbytes)

2.2 Procedure for Setting Module Used
This section describes an example of fundamental settings for reception of the Ethernet frames.

Figures 1 and 2 shows an example of flowchart for setting the reception of Ethernet frames.

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 5 of 31

START

1

Set the FIFO depth register

(FDR)

Set the receiving method control

register (RMCR)

yes

no

• This setting is made to indicate whether frame reception is continued or not.

When continuous reception after receiving one frame is desired, the setting is 1.

When continuous reception after receiving one frame is not desired, the setting is 0.

Set the receive descriptor list

address register (RDLAR)

Software reset the E-MAC/E-DMAC

Make an initial setting

of the receving discriptor

Clear the receive descriptor to 0

Clear the receiving buffer to 0

Initialize the management pointer

of the receive descriptor

Set the E-DMAC mode register

(EDMR)

Software reset the GETHER modules

Bit RACT is set to 1 (valid).

Bit RDLE is set to 1 in the last descriptor (and 0 in the others).

Setting is not required for bit RFP because this item is written back by the E-DMAC.

Bit RBL is set to specify the receive buffer maximum transfer byte length on a 32-byte

boundary basis.

Setting is not required for bit RDL because this item is written back by the E-DMAC.

The start address of the receive buffer for each descriptor is specified on a 32-byte

boundary.

Start the E-DMAC

Automatic negotiation

complete?

Set the receive descriptor fetch

address register (RDFAR)

Set the receive descriptor finished

address register (RDFXR)

Set the receive descriptor final

flag register (RDFFR)

• The GETHER modules are reset by software.

Write 1 to the ARST bit in the software reset register (ARSTR).

Prohibit access to the registers of all blocks in the GETHER from during the issuance

of a software reset (256 cycles of the external bus clock Bck).

• Areas of receive descriptors on memory is cleared.

• Areas of receiving buffers on memory is cleared.

• When automatic negotiation is enabled, wait until it is completed.

• Set the receive descriptor fetch address register.

In the initial setting, set the start address of the receive descriptor.

• Set the receive descriptor finished address register.

In the initial setting, set the address of the receive descriptor immediately before

the descriptor that is pointed to by the address in RDFAR.

• Set the receive descriptor final flag register.

Set this register to 0x00000001 if the RDFXR indicates the end of the receive descriptor list.

• Sets the capacity of the transmit FIFO and receive FIFO.

Set this register to 0x0000071F when selecting 2 KB and 8 KB as the maximum sizes of

transmit and receive buffers, respectively.

•

•

Slects whether or not the endian format is converted on data transfer by the E-DMAC.

Decriptor length is set.

• Set the start address of the receive descriptor list.

Lower-order bits are set as follows according to the specified descriptor length.

16-byte boundary: RDLA[3:0] = 0000

32-byte boundary: RDLA[4:0] = 00000

64-byte boundary: RDLA[5:0] = 000000

Actual memory areas are also allocated on corresponding boundaries.

• Initializes pointer variable that manages the current descriptor.

The start address of the receive descriptor list is set as the inital value.

• The entire receive-descriptor list is initialized.

RD0:

RD1:

RD2:

Padding area: This area is not used by the E-DMAC, but is freely available to the user.

• The E-MAC and E-DMAC modules are reset by software.

Write 1 to the SWRT and SWRR bits in the E-DMAC mode register (EDMR).

Prohibit access to the registers of all modules related to Ethernet communication on a

channel that has been reset, until the SWRT and SWRR bits are returned to 0.

• Start the E-DMAC transmitter and receiver.

Figure 1 Example of a Flowchart for Ethernet Settings (1)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 6 of 31

END

Initiate data reception

1

Enables data reception

Set the MAC address high

register (MAHR)

Set the MAC address low

register (MALR)

Set the receive frame length

register (RFLR)
• The maximum frame length is set.

This setting must be made if frames with lengths greater 1518 bytes, including the CRC,

are to be received.

• The highest-order 32 bits of the 48-bit MAC address are set.

ex.) When the MAC address 01-23-45-67-89-AB (in hexadecimal) → 0x01234567

• The lowest-order 16 bits of the 48-bit MAC address are set.

ex.) When the MAC address is 01-23-45-67-89-AB (in hexadecimal) → 0x000089AB

• Reception of data is enabled by setting the RE bit in the ECMR to 1.

• Reception of data is enabled by setting the RR bit in the EDRRR to 1.

Set the E-MAC mode

register (ECMR)

Set the E-MAC/E-DMAC status interrupt

permission register (EESIPR)

Set the interrupt priority register

(INT2PRI12)

Set the E-MAC interrupt

permission register (ECSIPR)

Clear E-MAC/E-DMAC

status register (EESR)

Clear E-MAC status register

(ECSR)

• Obtain information on the method of transmission, such as full duplex/half duplex and

10 Mbps/100 Mbps, from the result of automatic negotiation by the PHY-LSI.

•

•

•

•

Set whether CRC error frame is received as an error or not.

Magic Packet detection is enebled if required.

Internal/external loopback is specified if requied.

Specify full duplex or half duplex mode

The result of automatic negotiation by the PHY-LSI is reflected.

• The GETHER-related interrupt mask is cleared.

• Interrupts to all the bits in the E-MAC/E-DMAC status register (EESR) are enabled.

• Priority level of the GETHER-related interrupt is set.

Bits 15 to 12 in the IPR12 are set. The setting 0x0 indicates the priority level 0

(requested mask), and 0xF indicates the priority level 15 (the maximum level).

• The register is cleared to 0 by writing 1 to all of its bits.

• The register is cleared to 0 by writing 1 to all of its bits.

• Select the transmission mode from 10 Mbps and 100 Mbps

The result of automatic negotiation by the PHY-LSI is reflected.

• Settings are made to the following bits: the link signal change interrupt enable,

magic packet detection interrupt enable, and illegal carrier detection interrupt enable.

Set ECIIP in EESIPR to 1 when this interrupt is used.

Obtain the duplex mode

Set the GETHER mode

register (GECMR)

Set the interrupt mask clear

register 1 (INT2MSKCR1)

Figure 2 Example of a Flowchart for Ethernet Settings (2)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 7 of 31

2.3 Operation of the Sample Program
This sample program employs the E-MAC-0 and the E-DMAC0 modules to receive 10 Ethernet frames from the host
personal computer at the other end. In this sample program, there are four receive descriptors, and four areas of the
receiving buffer each with 1,520 bytes. The receive enable control (RNC) bit in the receiving method control register
(RMCR) is set to 1 to enable continuous reception operations. Every time an interrupt related to reception such as frame
reception (FR), etc. is generated, the RFE bit (bit 27 in the RD0) of the receive descriptor is checked, and if no errors
are found (i.e. RFE = 0) the single frame of data in the receiving buffer is copied to the user buffer. The corresponding
descriptor is then initialized in readiness for its next round of reception. If an error is found (i.e. RFE = 1), data in the
receiving buffer are not copied to the user buffer but the corresponding descriptor is initialized.

Additionally, data other than the preamble, SFD, and CRC in the Ethernet frame are transferred to the receiving buffer.

Figure 3 shows operating environment of the sample program, and figure 4 shows a format of the Ethernet frame.

Evaluation board for the SH7763

Ethernet cross cable

MAC address:

IP address:

01-23-45-67-89-AB(e.g.)

192.168.0.164(e.g.)

00-0E-35-18-34-FA(e.g.)

192.168.0.5(e.g.)

Host personal computer

Direction of data reception

Figure 3 Operating Environment of the Sample Program

Unit: bytes

Stored data in transmitting buffer: 60 to 1514 bytes

1 6 6 2 46 to 1500 47

Preamble SFD

MAC

source

address

Data section CRC
Type/

length

MAC

destination

address

Figure 4 Ethernet Frame Format

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 8 of 31

2.4 Definition of Descriptors Used in the Sample Program
The E-DMAC does not use the padding area of a descriptor; this area is freely available to the user. In this sample
program, this area is used to specify the address where the next descriptor starts, and this in conjunction with software is
used to arrange the descriptors in a ring structure.

Figure 5 shows the definition of the transmit-descriptor structure in the sample program and an example of how the
array of transmit descriptors is used.

First descriptor

Second descriptor

Third descriptor

First address of the second descriptor

First address of the third descriptor

First address of the fourth descriptor

First address of the first descriptor

Fourth descriptor

 typedef struct tag_edmac_recv_desc

{

 RD0 rd0;

 RD1 rd1;

 RD2 rd2;

 struct tag_edmac_recv_desc* pNext;

 }EDMAC_RECV_DESC;

Definition of structure

of the receive descriptor

Array of the receive descriptors (ring structure)

Figure 5 Definition of Receive Descriptor and Usage Example of Receive Descriptor Array

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 9 of 31

2.5 Sequence of Processing by the Sample Program
Figures 6 to10 show the flow of processing in the sample program. Although descriptors and the various registers of the
E-MAC and E-DMAC modules are initially set up for transmission, processing for transmission is not performed.

The programs other than main.c and ether.c are the same as those used in the example of setting for transmission of
Ethernet frames.

START

Success?

Main function
main()

LAN open

lan_open()

END

LAN close

lan_close()

yes

no

Reception of the Ethernet frame

lan_recv()

reception

of 10 frames?

yes

no

Figure 6 Flow of Handling in the Sample Program (1)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 10 of 31

START

LAN open function

lan_open()

Reset the E-MAC/E-DMAC

registers

lan_reg_reset()

Obtain result of automatic negotiation

phy_autonego()

Create descriptors

lan_desc_create()

Success?
no

yes

Set the E-MAC/E-DMAC

registers

lan_reg_set()

OPEN_OK OPEN_NG

START

LAN close function

lan_close()

Set interrupt priority

of the GETHER to 0

Reset the E-MAC/E-DMAC

registers

lan_reg_reset()

CLOSE_OK

Release the E-MAC/E-DMAC

from module standby

Set the E-MAC/E-DMAC

module standby

Set the MAC address

lan_set_mac()

Figure 7 Flow of Handling in the Sample Program (2)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 11 of 31

START

E-MAC/E-DMAC reset function

lan_reg_reset()

END

Set the SWRT and SWRR bits in the

E-DMAC mode register (EDMR)

Wait for over 256 bus clock cycles

START

Function for initialization of

transmit/receive descriptor

lan_desc_create()

END

Make initial settings

for the transmit descriptor

Clear the descriptor area to 0

Make initial settings

for the receive descriptor

Clear the transmit and receive

buffers to 0

Initialize pointers

for descriptor mangement

START

Function for E-MAC/E-DMAC register setting

lan_reg_set()

END

Set the transmit descriptor list

address register (TDLAR)

Set the E-DMAC mode register

(EDMR)

Set the receive descriptor list

address register (RDLAR)

Set the transmit FIFO threshold

register (TFTR)

Set the FIFO depth register

(FDR)

Set the overflow alert FIFO threshold

register (FCFTR)

Set the receive frame length

register (RFLR)

Set the MAC address low

register (MALR)

Set the transmit/receive status

copy enable register (TRSCER)

Set the receivinig method

control register (RMCR)

Set the E-MAC mode register

(ECMR)

Set the MAC address high

register (MAHR)

Set the PHY_INT polarity register

(PIPR)

Set the receive data padding insert

register (RPADIR)

Clear the E-MAC/E-DMAC

status register (EESR)

Set the E-MAC/E-DMAC status

interrupt permission register (EESIPR)

Clear the E-MAC status register

(ECSR)

Set the E-MAC interrupt permission

register (ECSIPR)

Set the interrupt priority register C

(INT2PRI12)

Enable operation for

transmitting and receiving

A

A

Set the ARST bit in the

software reset register (ARSTR)

Set the transmit descriptor fetch

address register (TDFAR)

Set the receive descriptor fetch

address register (RDFAR)

Set the transmit descriptor finished

address register (TDFXR)

Set the receive descriptor finished

address register (RDFXR)

Set the transmit descriptor final

flag register (TDFFR)

Set the receive descriptor final

flag register (RDFFR)

Set the Automatic PAUSE frame

register (APR)

Set the Manual PAUSE frame

register (MPR)

Set the Automatic PAUSE frame

retransmit count register (TPAUSER)

Set the E-MAC mode register

(ECMR)

Set the GETHER mode register

(GECMR)

Set the Interrupt mask clear

register C (INT2MSKCR1)

Set the E-DMAC start register

(EDSR)

Figure 8 Flow of Handling in the Sample Program (3)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 12 of 31

START

Function of Ethernet frame reception

lan_recv()

END

Set so the descriptor is

capable of receivinig data again

no

RFE = 0?

(No error?)

yes

no

Copy received data

to user buffer

Receive interrupt

counter > 0

yes

Initiate data reception

Set the number of received bytes

to return value

Disable interrupts

Release from inhibit of interrupts

Decrement the receive

interrupt counter

Mask the error flag

in the descriptor

Set the return value

to the error indicator (0)

Update pointers

for descriptor management

Figure 9 Flow of Handling in the Sample Program (4)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 13 of 31

START

Interrupt function

INT_EDMAC_EINT0()

END

Read and clear the E-MAC/E-DMAC

status register (EESR)

Transmission-related
interrupts occur?

yes

no

Clear the E-MAC/E-DMAC

status register (EESR)

Transmit interrupt handling

lan_send_handler()

Receive interrupt handling

lan_recv_handler()

E-MAC status interrupt handling

lan_etherc_handler()

Reception-related
interrupts occur?

yes

no

E-MAC-related

interrupts occur?

yes

no

Function for receive interrupt handling

lan_send_handler()

START

Increment the receive interrupt counter

END

Figure 10 Flow of Handling in the Sample Program (5)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 14 of 31

2.6 Allocation of Sections
In this sample program, the areas of the buffers and the transmit/receive descriptors are determined by allocating
sections. Table 2 lists the allocation of sections.

Table 2 Allocation of Sections

Section
Name Application of Section Area Allocation Address (Virtual Address)
P Program area (in the case of none

specified)
ROM

C Constant area ROM
C$BSEC Address structure for non-initialized data

area
ROM

C$DSEC Address structure for initialized data area ROM
D Initialized data (initial value) ROM

0x00002000

RINTTBL Initialized data area RAM
B Non-initialized data area RAM
R Initialized data area RAM
RP Program transfer area RAM
RC Constant transfer area RAM

0x08000000

S Stack area RAM 0x0FFFF9F0

Area P0
(caching is enabled, MMU
addresses can be translated)

INTHandler Exception/interrupt handler ROM
VECTTBL Reset vector table

Interrupt vector table
ROM

INTTBL Interrupt mask table ROM
PIntPRG Interrupt function ROM

0x80000800

SP_S Stack area for handler of TLB misses RAM 0x8FFFFDF0

Area P1
(caching is enabled, MMU
addresses cannot be translated)

RSTHandler Reset handler ROM
PResetPRG Reset program ROM
DINTTBL Initialized data area ROM
PnonCACHE Program area (non-cacheable access) ROM

0xA0000000

BETH_DESC Descriptor area RAM 0xAF000000
BETH_BUFF Buffer area RAM 0xAF001000

Area P2
(caching is disabled, MMU
addresses cannot be translated)

2.7 Setting for Automatic Negotiation by PHY-LSI
Figures 11 to 15 show the processing flows of the sample programs for obtaining the result of automatic negotiation
with the PHY-LSI.

The MII register in the PHY-LSI is accessed via the PHY interface register (PIR) to obtain the result of automatic
negotiation in the physical layer.

This sample application uses the PHY-LSI of the RMII interface, but the basic idea is the same as that of the MII
interface.

For details, please refer to the SH7670 Group Application Note: Example of Setting for Automatic Negotiation by
Ethernet PHY-LSI (REJ06B0800) and PHY-LSI data sheet.

The sample code of ether.h, intprg.c, phy.c, and phy.h is the same as that used in the example of setting for transmission
of Ethernet frames.

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 15 of 31

START

Function for Obtaining Result

of Automatic Negotiation
phy_autonego()

5 seconds elapsed?

END

yes

no

no

Automatic negotiation
complete?

yes

Obtain the link mode

Read register 1 of the MII

phy_reg_read()

Read the MII register 5

phy_reg_read()

Check if the value of bit 5 in the MII register 1 (in the basic status) is 1,

indicating completion of the automatic negotiation process.

Confirm that the partner in communications supports the

connection mode by checking bits 8 to 5 in MII register 5

(auto-negotiation link partner ability).

Figure 11 Flow of Handling in the Sample Program (6)

Output the preamble

mii_preamble()

Output the command (read command)

mii_cmd()

Bus release (switching of the transmission source)

mii_z()

DATA input

mii_reg_read()

Bus release

mii_z()

Function for Reading an MII Register
phy_reg_read()

START

END

Figure 12 Flow of Handling in the Sample Program (7)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 16 of 31

START

END

Function of Preamble Output
mii_preamble()

32 bits output?

yes

no

START

END

Place the ST code (01) in bits

b15 to b14 of the command.

Function of Command Output
mii_cmd()

yes

no

Place the OP code (10 or 01) in

bits b13 to b12 of the command.

Place the PHYAD code (xxxxx)

in bits b11 to b7 of the command.

Place the REGAD code (xxxxx)

in bits b6 to b2 of the command.

Shift the command

one bit to the left.

Output of one bit with vaule 1

mii_write_1()

Output of one bit with vaule 0.

mii_write_0()

Is the highest-order bit
of the command = 1?

Output of one bit with vaule 1.

mii_write_1()

14 bits output?

no

yes

Figure 13 Flow of Handling in the Sample Program (8)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 17 of 31

START

END

Write 0x00000000 in the PIR.

Write 0x00000001 in the PIR.

Write 0x00000001 in the PIR.

Write 0x00000000 in the PIR.

Function for Bus Release
mii_z()

START

END

Write 0x00000000 in the PIR.

Write 0x00000001 in the PIR.

Read 16 bits of data?

yes

no

Read the MDI bit to the PIR.

Write 0x00000001 in the PIR.

Write 0x00000000 in the PIR.

Function for DATA Input
mii_reg_read()

Figure 14 Flow of Handling in the Sample Program (9)

START

END

Write 0x00000006 in the PIR.

Write 0x00000007 in the PIR.

Write 0x00000007 in the PIR.

Write 0x00000006 in the PIR.

Function of One-Bit Output of 1
mii_write_1()

START

END

Write 0x00000002 in the PIR.

Write 0x00000003 in the PIR.

Write 0x00000003 in the PIR.

Write 0x00000002 in the PIR.

Function of One-Bit Output of 0
mii_write_0()

Figure 15 Flow of Handling in the Sample Program (10)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 18 of 31

3. Listing of the Sample Program

3.1 Sample Program Listing: "main.c"(1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

/**

* DISCLAIMER

* This software is supplied by Renesas Technology Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

* This software is owned by Renesas Technology Corp. and is protected under

* all applicable laws, including copyright laws.

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**/

/* Copyright (C) 2009. Renesas Technology Corp., All Rights Reserved. */

/*""FILE COMMENT""*********** Technical reference data ****************

* System Name : SH7763 Sample Program

* File Name : main.c

* Abstract : Sample Program for Reception of Ethernet Frames

* Version : Ver 1.00

* Device : SH7763

* Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)

* : C/C++ Compiler Package for SuperH Family (V.9.03 release00)

* OS : None

* H/W Platform : MS7763SE02

* Description : Sample Program for Reception of Ethernet Frames

* :

* Operation :

* Limitation :

* :

* History : 31.July.2009 Ver. 1.00 First Release

*""FILE COMMENT END""**/

#include "iodefine.h"

#include "ether.h"

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 19 of 31

3.2 Sample Program Listing: "main.c"(2)
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

/* **** Prototype declaration **** */

void main(void);

/* **** Variable Declaration **** */

#pragma section ETH_BUFF /* Allocated to SDRAM because of its large capacity */

typedef struct{

 unsigned char frame[SIZE_OF_BUFFER];

 int len;

 unsigned char wk[12];

}USER_BUFFER;

static USER_BUFFER recv[10];

#pragma section

/*""FUNC COMMENT""***

* ID :

* Outline : main function

* Include : #include "iodefine.h"

* Declaration : void main(void)

* Description : Receive Ethernet frames.

* :

* Argument : none

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

void main(void)

{

 int i,j;

 int ret;

 /* ==== Ethernet initial setting ==== */

 ret = lan_open();

 if(ret == OPEN_OK){

 /* ==== Start reception of 10 frames ==== */

 for(i=0; i<10; i++){

 /* ---- Reception ---- */

 recv[i].len = lan_recv(recv[i].frame);

 if(recv[i].len == 0){

 i--;

 }

 }

 }

 /* ==== Ethernet transmission/reception halted ==== */

 lan_close();

}

/* End of file */

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 20 of 31

3.3 Sample Program Listing: "ether.c"(1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

/**

* DISCLAIMER

* This software is supplied by Renesas Technology Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

* This software is owned by Renesas Technology Corp. and is protected under

* all applicable laws, including copyright laws.

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**/

/* Copyright (C) 2009. Renesas Technology Corp., All Rights Reserved. */

/*""FILE COMMENT""*********** Technical reference data ****************

* System Name : SH7763 Sample Program

* File Name : ether.c

* Abstract : Sample Program for Reception of Ethernet Frames

* Version : Ver 1.00

* Device : SH7763

* Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)

* : C/C++ Compiler Package for SuperH Family (V.9.03 release00)

* OS : None

* H/W Platform : MS7763SE02

* Description : Sample Program for Reception of Ethernet Frames

* :

* Operation :

* Limitation :

* :

* History : 31.July.2009 Ver. 1.00 First Release

*""FILE COMMENT END""**/

#include "machine.h"

#include "string.h"

#include "iodefine.h"

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 21 of 31

3.4 Sample Program Listing: "ether.c"(2)
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

#include "phy.h"

#include "ether.h"

/* **** Macro definition **** */

#define DEFAULT_MAC_H 0x00010203 /* For debugging */

#define DEFAULT_MAC_L 0x00000405

#define MACSET_OK 0

#define MACSET_NG -1

#define FPGA_ETON (*(volatile unsigned short *)0xBB00001A) /* FPGA Ether ON address */

/* **** Prototype declaration **** */

void main(void);

void lan_send_handler(unsigned long status);

static void lan_desc_create(void);

static void lan_reg_reset(void);

static void lan_reg_set(int link);

/* **** Variable Declaration **** */

/* ---- Descriptor ---- */

#pragma section ETH_DESC /* Allocated to a 16-byte boundary */

static volatile TXRX_DESCRIPTOR_SET desc; /* Descriptor area */

#pragma section

/* ---- Buffer ---- */

#pragma section ETH_BUFF /* Allocated to a 16-byte boundary */

static volatile TXRX_BUFFER_SET buf; /* Area for transmission/reception buffer */

#pragma section

/* ---- MAC address ---- */

static unsigned long my_macaddr_h;

static unsigned long my_macaddr_l;

/* ---- Other ---- */

static volatile int c_recv = 0; /* Received frame counter */

/*""FUNC COMMENT""***

* ID :

* Outline : Ethernet open function

* Include : #include "iodefine.h"

* : #include "phy.h"

* : #include "ether.h"

* Declaration : int lan_open(void)

* Description : Initializes E-DMAC, E-MAC, PHY, and buffer memory.

* :

* :

* Argument : none

* Return Value : OPEN_OK(0) :Success in opening

* : OPEN_NG(-1):Failure in opening

* Calling Functions :

*""FUNC COMMENT END""**/

int lan_open(void)

{

 int link;

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 22 of 31

3.5 Sample Program Listing: "ether.c"(3)
101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

 /* ==== PFC setting ==== */

 GPIO.PSEL2.BIT.PTSEL23 = 0;

 GPIO.PSEL3.BIT.PTSEL33 = 0;

 GPIO.PSEL4.BIT.PTSEL4A = 3;

 GPIO.PSEL4.BIT.PTSEL43 = 2;

 GPIO.PJCR.WORD = 0xFFFC;

 GPIO.PMCR.WORD = 0x0000;

 GPIO.POCR.WORD = 0x0000;

 /* ==== FPGA setting ==== */

 FPGA_ETON = 0x0001; /* FPGA: Ether port usable */

 /* ==== E-MAC,E-DMAC halted === */

 lan_reg_reset();

 /* ==== Buffer initialization ==== */

 lan_desc_create();

 /* ==== E-MAC,E-DMAC setting ==== */

 link = phy_autonego(); /* Check duplex mode */

 if(link == NEGO_FAIL){

 return OPEN_NG; /* OPEN failed */

 }

 else{

 lan_reg_set(link);

 }

 return OPEN_OK;

}

/*""FUNC COMMENT""***

* ID :

* Outline : Ethernet close function

* Include : #include "iodefine.h"

* : #include "ether.h"

* Declaration : int lan_close(void)

* Description : E-DMAC/E-MAC halted.

* :

* Argument : none

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

int lan_close(void)

{

 int i;

 /* ==== Reset E-MAC,E-DMAC === */

 lan_reg_reset();

 /* ==== E-DMAC-related interrupts are disabled === */

 INTC.INT2PRI12.BIT._GETHER = 0;

 return CLOSE_OK;

}

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 23 of 31

3.6 Sample Program Listing: "ether.c"(4)
151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

/*""FUNC COMMENT""***

* ID :

* Outline : Frame reception function

* Include : #include "iodefine.h"

* : #include "ether.h"

* Declaration : int lan_recv(unsigned char *addr)

* Description : Copies a received frame to the specified buffer.

* : If there is no received frame, a loop is set up to wait for one.

* :

* Argument : unsigned char *addr

* Return Value : int : Number of bytes in the received frame (or 0 for error in reception)

* Calling Functions :

*""FUNC COMMENT END""**/

int lan_recv(unsigned char *addr)

{

 int i;

 int pri;

 int ret = 0;

 EDMAC_RECV_DESC *p;

 /* ==== Wait for reception ==== */

 while(c_recv <= 0){

 ;/* wait */

 }

 /* ==== Decrement the interrupt count ==== */

 pri = INTC.INT2PRI12.BIT._GETHER; /* Exclusive control (interrupt disabled) */

 INTC.INT2PRI12.BIT._GETHER = 0;

 --c_recv;

 INTC.INT2PRI12.BIT._GETHER = pri;

 /* ==== Copy the received frame ==== */

 p = desc.pRecv_end;

 if(p->rd0.BIT.RFE == 0){

 memcpy(addr, p->rd2.RBA, p->rd1.RDL);

 ret = p->rd1.RDL;

 }

 /* ---- Receive error ---- */

 else{

 p->rd0.LONG &= 0x70000000; /* Processing for the error flags */

 ret = 0; /* 0 for error in reception */

 }

 /* ==== Restore the descriptor to the state where reception is possible ==== */

 p->rd0.BIT.RACT = 1;

 /* ---- Initiate data reception ---- */

 if(EDMAC0.EDRRR.BIT.RR == 0){ /* 0 must be read before writing 1 */

 EDMAC0.EDRRR.BIT.RR = 1;

 }

 /* ==== Update the current pointer value ==== */

 desc.pRecv_end = p->pNext;

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 24 of 31

3.7 Sample Program Listing: "ether.c"(5)
201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

 return ret;

}

/*""FUNC COMMENT""***

* ID :

* Outline : Descriptor configuration function

* Include : #include "ether.h"

* Declaration : static void lan_desc_create(void)

* Description : Initialize transmit/receive buffer required for Ethernet and

* : initialize descriptor. One frame/one buffer is assumed.

* :

* Argument : none

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

static void lan_desc_create(void)

{

 int i;

 /* ==== Descriptor area configuration ==== */

 /* ---- Memory clear ---- */

 memset(&desc, 0, sizeof(desc));

 /* ---- Transmit descriptor ---- */

 for(i=0; i<NUM_OF_TX_DESCRIPTOR; i++){

 desc.send[i].td2.TBA = buf.send[i]; /* TD2 */

 desc.send[i].td1.TDL = 0; /* TD1 */

 desc.send[i].td0.LONG= 0x30000000; /* TD0:1frame/1buf, transmission disabled*/

 if(i != (NUM_OF_TX_DESCRIPTOR-1)){ /* pNext */

 desc.send[i].pNext = &desc.send[i+1];

 }

 }

 desc.send[i-1].td0.BIT.TDLE = 1;

 desc.send[i-1].pNext = &desc.send[0];

 /* ---- Receive descriptor ---- */

 for(i=0; i<NUM_OF_RX_DESCRIPTOR; i++){

 desc.recv[i].rd2.RBA = buf.recv[i]; /* RD2 */

 desc.recv[i].rd1.RBL = SIZE_OF_BUFFER; /* RD1 */

 desc.recv[i].rd0.LONG= 0xb0000000; /* RD0:1frame/1buf, reception enabled*/

 if(i != (NUM_OF_RX_DESCRIPTOR-1)){ /* pNext */

 desc.recv[i].pNext = &desc.recv[i+1];

 }

 }

 desc.recv[i-1].rd0.BIT.RDLE = 1; /* Set the last descriptor */

 desc.recv[i-1].pNext = &desc.recv[0];

 /* ---- Initialize descriptor management information ---- */

 desc.pSend_top = &desc.send[0];

 desc.pRecv_end = &desc.recv[0];

 /* ==== Buffer area configuration ==== */

 /* ---- Clear the area ---- */

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 25 of 31

3.8 Sample Program Listing: "ether.c"(6)
251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

 memset(&buf, 0, sizeof(buf));

}

/*""FUNC COMMENT""***

* ID :

* Outline : E-MAC,E-DMAC registers initialization function

* Include : #include "iodefine.h"

* Declaration : static void lan_reg_reset(void)

* Description : Reset E-MAC and E-DMAC registers

* :

* Argument : none

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

static void lan_reg_reset(void)

{

 volatile int j = 200; /* Wait for Bφ256 cycles */

 /* ---- GETHER software reset ---- */

 GETHER.ARSTR.BIT.ARST = 1; /* E-DMAC software reset */

 while(j--){

 /* Wait for Bφ256 cycles */

 }

 /* ---- E-DMAC software reset ---- */

 EDMAC0.EDSR = 0x00000003; /* Initiating E-DMAC */

 EDMAC0.EDMR.LONG = 0x00000003; /* E-DMAC software reset */

 /* ---- Check clear software reset ---- */

 while(EDMAC0.EDMR.LONG != 0x00000000){

 nop();

 nop();

 }

}

/*""FUNC COMMENT""***

* ID :

* Outline : Setting E-MAC,E-DMAC registers

* Include : #include "iodefine.h"

* : #include "ether.h"

* : #include "PHY.h"

* Declaration : void lan_reg_set(int link)

* Description : E-DMAC, E-MAC initialization

* :

* Argument : int link

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

static void lan_reg_set(int link)

{

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 26 of 31

3.9 Sample Program Listing: "ether.c"(7)
301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

 /* ==== EDMAC ==== */

 EDMAC0.TDLAR = &desc.send[0];/* Transmit descriptor start */

 EDMAC0.RDLAR = &desc.recv[0];/* Receive descriptor start */

 EDMAC0.TDFAR = &desc.send[0];/* Transmit descriptor fetch address register */

 EDMAC0.RDFAR = &desc.recv[0];/* Receive descriptor fetch address register */

 EDMAC0.TDFXR = &desc.send[3];/* Transmit descriptor finished address register */

 EDMAC0.RDFXR = &desc.recv[3];/* Receive descriptor finished address register */

 EDMAC0.TDFFR = 0x00000001; /* Transmit descriptor final flag register */

 EDMAC0.RDFFR = 0x00000001; /* Receive descriptor final flag register */

 EDMAC0.EDMR.LONG = 0x00000000; /* Endian not changed (big endian) */

 /* descriptor length is 16 bytes */

 EDMAC0.TRSCER.LONG = 0x00000000; /* Copy all status to descriptor */

 EDMAC0.TFTR.LONG = 0x00000000; /* Transmit FIFO threshold: store&forward */

 EDMAC0.FDR.BIT.TFD = 0x07; /* Transmit FIFO capacity of 2048 bytes */

 EDMAC0.FDR.BIT.RFD = 0x1F; /* Receive FIFO capacity of 8192 bytes */

 EDMAC0.RMCR.BIT.RNC = 1; /* Continuous reception enabled */

 EDMAC0.FCFTR.LONG = 0x00170007; /* Flow control threshold setting, disabled by E-MAC */

 EDMAC0.RPADIR.LONG = 0x00000000; /* No padding insertion */

 /* ==== E-MAC ==== */

 MAC0.ECMR.LONG = 0x00000000; /* Counter clear mode */

 /* Checksum is not calculated */

 /* Padding is added to short frame */

 /* 0TIMEPAUSE frame reception disabled */

 /* PAUSE frame is not relayed */

 /* Lost carrier error is checked */

 /* PAUSE frame is not relayed */

 /* Flow control disabled */

 /* Multi-cast frame other than CAM entry is received */

 /* Magic Packet detection is disabled */

 /* Reception disabled */

 /* Transmission disabled */

 /* No internal loopback */

 /* No external loopback */

 /* Duplex mode (half-duplex mode) */

 /* No promiscuous-mode operation */

 MAC0.MAHR = DEFAULT_MAC_H; /* MAC address setting */

 MAC0.MALR = DEFAULT_MAC_L;

 MAC0.RFLR.LONG = 0x00000; /* Maximum receive frame length of 1518 bytes */

 MAC0.PIPR.BIT.PHYIP = 0; /* ET_PHY-INT pin is low-active */

 MAC0.APR.BIT.AP = 0x0000; /* TIME parameter value of an automatic PAUSE frame: Flow control is disabled */

 MAC0.MPR.BIT.MP = 0x0000; /* TIME parameter value of a manual PAUSE frame: Flow control is disabled */

 MAC0.TPAUSER = 0x00000000; /* Automatic PAUSE frame retransmission count is unlimited */

 if(link == FULL_TX || link == FULL_10M){

 MAC0.ECMR.BIT.DM = 1; /* Set to full-duplex mode */

 }

 if(link == FULL_TX || link == HALF_TX){

 MAC0.GECMR.LONG = 0x00000004; /* Set to 100 Mbps */

 }

 else{

 MAC0.GECMR.LONG = 0x00000000; /* Set to 10 Mbps */

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 27 of 31

3.10 Sample Program Listing: "ether.c"(8)
351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

 }

 MAC0.BCULR.BIT.BSTLMT= 0x000; /* Burst cycle upper-limit is 256 cycles */

 /* ==== Interrupt-related ==== */

 EDMAC0.EESR = 0xFF3F07FF; /* Clear all status (clear by writing 1) */

 EDMAC0.EESIPR.LONG = EDMAC_EESIPR_INI_SEND | EDMAC_EESIPR_INI_RECV | EDMAC_EESIPR_INI_EtherC;

 /* Transmit/receive and E-MAC interrupts enabled */

 MAC0.ECSR.LONG = 0x00000017; /* Clear all status (clear by writing 1) */

 MAC0.ECSIPR.LONG = EtherC_ECSIPR_INI; /* Enable interrupts */

 INTC.INT2PRI12.BIT._GETHER = 5; /* Assign the fifth priority level to the E-DMAC interrupt (EINT0) */

 INTC.INT2MSKCR1.BIT._GETHER = 1; /* GETHER interrupt mask clear */

 /* ==== Enable transmission/reception ==== */

 /* ==== Enable E-MAC ==== */

 MAC0.ECMR.BIT.RE = 1; /* Reception enabled */

 MAC0.ECMR.BIT.TE = 1; /* Transmission enabled */

 /* ==== Enable E-DMAC ==== */

 if(EDMAC0.EDRRR.BIT.RR == 0){

 EDMAC0.EDRRR.BIT.RR = 1; /* Initiate data reception */

 }

}

/*""FUNC COMMENT""***

* ID :

* Outline : Transmit interrupt function

* Include : #include "iodefine.h"

* : #include "ether.h"

* Declaration : void lan_send_handler(unsigned long status)

* Description : Interrupt handler related to transmission regarding E-DMAC(EESR)

* :

* Argument : unsigned long status

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

void lan_send_handler(unsigned long status)

{

}

/*""FUNC COMMENT""***

* ID :

* Outline : Receive interrupt function

* Include : #include "iodefine.h"

* : #include "ether.h"

* Declaration : void lan_recv_handler(unsigned long status)

* Description : Interrupt handler related to reception regarding E-DMAC (EESSR)

* :

* Argument : unsigned long status

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

void lan_recv_handler(unsigned long status)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 28 of 31

3.11 Sample Program Listing: "ether.c"(9)
401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

{

 c_recv++; /* Increment the counter for the number of reception interrupts */

}

/*""FUNC COMMENT""***

* ID :

* Outline : E-MAC interrupt function

* Include : #include "iodefine.h"

* : #include "ether.h"

* Declaration : void lan_etherc_handler(unsigned long status)

* Description : Interrupt handler regarding E-MAC(ECSR)

* :

* Argument : unsigned long status

* Return Value : none

* Calling Functions :

*""FUNC COMMENT END""**/

void lan_etherc_handler(unsigned long status)

{

}

/* End of file */

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 29 of 31

4. Documents for Reference
• Software Manual

SH-4A Software Manual (REJ09B0003)
(The most up-to-date versions of the documents are available on the Renesas Technology Website.)

• Hardware Manual

SH7763 Group Hardware Manual (REJ09B0256)
(The most up-to-date versions of the documents are available on the Renesas Technology Website.)

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 30 of 31

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev. Date Page Summary
1.00 Dec.03.09 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

SH7763 Group
Example of Setting for Reception of Ethernet Frames

REJ06B0937-0100/Rev.1.00 December 2009 Page 31 of 31

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2009. Renesas Technology Corp., All rights reserved.

	Cover
	1. Preface
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Note

	2. Description of Sample Application
	2.1 Operational Overview of Module Used
	2.2 Procedure for Setting Module Used
	2.3 Operation of the Sample Program
	2.4 Definition of Descriptors Used in the Sample Program
	2.5 Sequence of Processing by the Sample Program
	2.6 Allocation of Sections
	2.7 Setting for Automatic Negotiation by PHY-LSI

	3. Listing of the Sample Program
	3.1 Sample Program Listing: "main.c"(1)
	3.2 Sample Program Listing: "main.c"(2)
	3.3 Sample Program Listing: "ether.c"(1)
	3.4 Sample Program Listing: "ether.c"(2)
	3.5 Sample Program Listing: "ether.c"(3)
	3.6 Sample Program Listing: "ether.c"(4)
	3.7 Sample Program Listing: "ether.c"(5)
	3.8 Sample Program Listing: "ether.c"(6)
	3.9 Sample Program Listing: "ether.c"(7)
	3.10 Sample Program Listing: "ether.c"(8)
	3.11 Sample Program Listing: "ether.c"(9)

	4. Documents for Reference
	Website and Support
	Revision Record
	Notes regarding these materials

