Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/80, M32C/83 Group

Differences between M16C/80 and M32C/83

1. Abstract

This issue is the reference matelials of function differences between M16C/80 and M32C/83.

2. Introduction

The explanation of this issue is applied to the following condition: Applicable MCU: M16C/80, M32C/83 Group

3. Contents

3.1 Function Differences

Table 3.1.1 and table 3.1.2 show the Function Differences.

Table 3.1.1 Function Differences (1) (Note1)

Item	M16C/80	M32C/83
Basic Instructions	106 instructions	108 instructions (Add SHANC, SHLNC instructions)
Shortest Instruction Execution Time	50ns(f(XiN)=20MHz)	31.3ns(f(BCLK)=32MHz)
Supply Voltage	4.2V to 5.5V(f(XIN)=20MHz) 2.7V to 5.5V(f(XIN)=10MHz)	4.2V to 5.5V (f(BCLK)=32MHz, through VDC) 3.0V to 5.5V (f(BCLK)=20MHz, through VDC) 3.0V to 3.6V (f(BCLK)=20MHz, not through VDC)
Clock Generating Circuit	Xin, Xcin	XIN, XCIN, PLL, On-chip oscillator
Main clock, sub clock drive capability select function	Have	None
Peripheral Function clock	f1, f8, <u>f32</u> , fC32	f1, f8, fC32, <u>f2n</u> (n=0 ot 15. No division when n=0)
Oscillation Stop Detect Function	None	Have
Power Consumption	45mA(5V, f(Xin)=20MHz)	41mA (VCC=5V, f(BCLK)=32MHz) 38mA (VCC=5V, f(BCLK)=30MHz) 26mA (VCC=3.3V, f(BCLK)=20MHz) 470μA (VCC=5V, f(XCIN)=32kHz, in wait mode) 340μA (VCC=3.3V, f(XCIN)=32kHz, through VDC in wait mode) 5.0μA (VCC=3.3V, f(XCIN)=32kHz, not through VDC in wait mode) 0.4μA (VCC=5V, in stop mode) 0.4μA (VCC=3.3V, in stop mode)
Access to SFR	1 wait fixed	Variable (1 to 2 waits)
Protect	Can be set for PM0, PM1, CM0, CM1, MCD, PD9, PS3 register	Can be set for PM0, PM1, CM0, CM1, MCD, PD9, PS3, <u>CM2</u> , <u>PLC0</u> , <u>PLC1</u> , <u>INVC0</u> , <u>INVC1</u> , <u>PLV</u> , <u>VDC0</u> register
DMA Request Factors	Falling edge or both edges of input signals to the INTO to INT3 pin Timer A0 to timer A4 interrupt requests Timer B0 to timer B5 interrupt requests UART0 to UART4 transmit and receive interrupt requests A/D conversion interrupt request Software trigger	The next interrupt is added to M16C/80. A/D1 conversion interrupt request Intelligent I/O interrupt request CAN interrupt request
DMAII Function	None	Have
Timer A, Timer B Count Source	Selectable: f1, f8, <u>f32</u> , fC32	Selectable: f1, f8, fC32, <u>f2n</u> (n=0 to 15,.No division when n=0)

Note 1: About the details and the characteristics, refer to hardware manual.

Table 3.1.2 Function Differences (2) (Note1)

Item	M16C/80	M32C/83	
Three-Phase Motor Control Timer Dead Time	Have	Selectable	
Three-Phase Motor Control Timer Dead Time Trigger	Fixed	Selectable	
Three-Phase Motor Control Timer Count Source	Selectable: f1, f8, <u>f32</u> , fC32	Selectable: f1, f8, fc32, $\underline{f_{2n}}$ (n=0 to 15. No division when n=0)	
Serial I/O	(Clock synchronous serial I/O, Clock asynchronous serial I/O) \times 2 (Clock synchronous serial I/O, Clock asynchronous serial I/O, I ² C bus TM (Note 2), IEBus TM (Note 3), SIM interface) \times 3	(Clock synchronous serial I/O, Clock asynchronous serial I/O, 1^2 C bus TM (Note 2), IEBus TM (Note 3), GCI bus, SIM interface) × 5	
Serial I/O CTS/RTS Separate Function	Can be used in UART0	None	
Serial I/O Transfer Clock Output from Multiple Pins	Can be used in UART1	None	
Serial I/O TxD, RxD I/O Polarity Switching Function	Can be used in UART2 to UART4	Can be used in UART0 to UART4	
Serial I/O Sleep Function	Can be used in UART0, UART1	None	
Serial I/O Count Source	Selectable: f1, f8, <u>f32</u>	f1, f8, <u>f2n</u> (n=0 to 15. No division when n=0)	
Serial I/O Overrun error occur timing	This error occurs when the next data is ready before contents of UiRB register (i=0 to 4) are read out	This error occurs if the serial I/O started receiving the next data before reading the UiRB register (i=0 to 4) and received the 7th bit of the next data (Clock synchronous serial I/O). This error occurs if the serial I/O started receiving the next data before reading the UiRB register and received the bit one before the last stop bit of the next data (Clock asynchronous serial I/O).	
Serial I/O RTS Timing	Assert low when reception is completed	Assert low when receive buffer is read	
Serial I/O I ² C Mode	Start condition, stop condition: Not auto-generation	Start condition, stop condition: Auto-generation	
Serial I/O I ² C mode SDA delay	SDA digital delay count source: 1/f(XIN)	SDA digital delay count source: BRG	
CAN Module	None	1 channel	
Intelligent I/O	None	4 group	
A/D Converter	1 circuit, 10 channels	2 circuits, 34 channels	
A/D Converter Maximum Operating Frequency	10MHz	16MHz (VCC=5.0V)	
A/D Converter Operating Clock	Selectable: faD, faD/2, faD/4	Selectable: fad, fad/2, fad/3, fad/4	

Note 1: About the details and the characteristics, refer to hardware manual.

Note 2: I²C bus is a trademark of Koninklijke Philips Electronics N. V.

Note 3: IEBus is a trademark of NEC Electronics Corporation.

3.2 Pin function Differences

Table 3.2.1 and table 3.2.2 show the Pin Function Differences.

Table 3.2.1 Pin Function Differences (1/2)

N400/00		
M16C/80	M32C/83	Remarks
P92/TB2IN/TxD3/SDA3/SRxD3	P92/TB2IN/TxD3/SDA3/SRxD3/IEout/ISTxD2/OUTC20	Add IEout/ISTxD2/OUTC20
P91/TB1IN/RxD3/SCL3/STxD3	P91/TB1IN/RxD3/SCL3/STxD3/ISRxD2/IEIN	Add ISRxD2/IEIN
P143	P143/INPC17/OUTC17	Add INPC17/OUTC17
P142	P142/INPC16/OUTC16	Add INPC16/OUTC16
P141	P141/OUTC15	Add OUTC15
P140	P140/OUTC14	Add OUTC14
		Add VCONT
P83/INT1	P83/INT1/CANIN	Add CANIN
P82/INT0	P82/INT0/OUTC32/CANout/ISRxD3	Add OUTC32/CANout/ISRxD3
P81/TA4IN/U	P81/TA4IN/U/OUTC30/ISTxD3	Add OUTC30/ISTxD3
P80/TA40UT/U	P80/TA40UT/U/INPC02/ISRxD0/BE0IN	Add INPC02/ISRxD0/BE0IN
P77/TA3IN	P77/TA3IN/INPC01/OUTC01/ISCLK0/CANIN	Add INPC01/OUTC01/ISCLK0/CANIN
P76/TA3out	P76/TA3out/INPC00/OUTC00/ISTxD0/BE0out/CANout	Add INPC00/OUTC00/ISTxD0/BE0out/CANout
P75/TA2IN/W	P75/TA2IN/W/INPC12/OUTC12/ISRxD1/BE1IN	Add INPC12/OUTC12/ISRxD1/BE1IN
P74/TA2out/W	P74/TA2out/W/INPC11/OUTC11/ISCLK1	Add INPC11/OUTC11/ISCLK1
P73/V/CTS2/RTS2/TA1IN	P73/V/CTS2/RTS2/SS2/TA1IN/OUTC10/ISTxD1/BE1out	Add OUTC10/ISTxD1/BE1out/SS2
P71/RxD2/SCL2/TA1out/TB5IN	P71/RxD2/SCL2/TA1out/TB5IN/STxD2/OUTPC22/ISRxD2 /IEIN	Add STxD2/OUTPC22/ISRxD2/IEIN
P70/TxD2/SDA2/TA0out	P70/TxD2/SDA2/TA0out/SRxD2/OUTC20/ISTxD2/IEout	Add SRxD2/OUTC20/ISTxD2/IEout
P67/TxD1	P67/TxD1/SDA1/SRxD1	Add SDA1/SRxD1
P66/RxD1	P66/RxD1/SCL1/STxD1	Add SCL1/STxD1
P64/CTS1/RTS1/CTS0/CLKS1	P64/CTS1/RTS1/SS1/OUTC21/ISCLK2	Add SS1/OUTC21/ISCLK2
		Delete CTS0/CLKS1
P63/TxD0	P63/TxD0/SDA0/SRxD0	Add SDA0/SRxD0
P62/RxD0	P62/RxD0/SCL0/STxD0	Add SCL0/STxD0
P60/CTS0/RTS0	P60/CTS0/RTS0/SS0	Add SS0
P137	P137/OUTC27	Add OUTC27
P136	P136/OUTC21/ISCLK2	Add OUTC21/ISCLK2
P135	P135/OUTC22/ISRxD2/IEIN	Add OUTC22/ISRxD2/IEIN
P134	P134/OUTC20/ISTxD2/IEouT	Add OUTC20/ISTxD2/IEout
P133	P133/OUTC23	Add OUTC23
P132	P132/OUTC26	Add OUTC26
P131	P131/OUTC25	Add OUTC25
P130	P130/OUTC24	Add OUTC24
P127	P127/OUTC37	Add OUTC37
P126	P126/OUTC36	Add OUTC36
P125	P125/OUTC35	Add OUTC35
P123	P124/OUTC34	Add OUTC34
P124	P124/001C34 P123/OUTC33	Add OUTC34 Add OUTC33
P122	P122/OUTC32/ISRxD3	Add OUTC32/ISRxD3
P121	P121/OUTC31/ISCLK3	Add OUTC31/ISCLK3
P120	P120/OUTC30/ISTxD3	Add OUTC30/ISTxD3

Table 3.2.2 Pin Function Differences (2/2)

M16C/80	M32C/83	Remarks
P27/A7(/D7)	P27/A7(/D7)/AN27	Add AN27
P26/A6(/D6)	P26/A6(/D6)/AN26	Add AN26
P25/A5(/D5)	P25/A5(/D5)/AN25	Add AN25
P24/A4(/D4)	P24/A4(/D4)/AN24	Add AN24
P23/A3(/D3)	P23/A3(/D3)/AN23	Add AN23
P22/A2(/D2)	P22/A2(/D2)/AN22	Add AN22
P21/A1(/D1)	P21/A1(/D1)/AN21	Add AN21
P20/A0(/D0)	P20/A0(/D0)/AN20	Add AN20
P07/D7	P07/AN07/D7	Add AN07
P06/D6	P06/AN06/D6	Add AN06
P05/D5	P05/AN05/D5	Add AN05
P04/D4	P04/AN04/D4	Add AN04
P113	P113/OUTC13	Add OUTC13
P112	P112/OUTC12/INPC12/ISRxD1/BE1IN	Add OUTC12/INPC12/ISRxD1/BE1IN
P111	P111/OUTC11/INPC11/ISCLK1	Add OUTC11/INPC11/ISCLK1
P110	P110/OUTC10/ISTxD1/BE1out	Add OUTC10/ISTxD1/BE1out
P03/D3	P03/AN03/D3	Add AN03
P02/D2	P02/AN02/D2	Add AN02
P01/D1	P01/AN01/D1	Add AN01
P00/D0	P00/AN00/D0	Add AN00
P157	P157/AN157/INPC07	Add AN157/INPC07
P156	P156/AN156/INPC06	Add AN156/INPC06
P155	P155/AN155/INPC05/OUTC05	Add AN155/INPC05/OUTC05
P154	P154/AN154/INPC04/OUTC04	Add AN154/INPC04/OUTC04
P153	P153/AN153/INPC03	Add AN153/INPC03
P152	P152/AN152/INPC02/ISRxD0/BE0IN	Add AN152/INPC02/ISRxD0/BE0IN
P151	P151/AN151/INPC01/OUTC01/ISCLK0	Add AN151/INPC01/OUTC01/ISCLK0
P150	P150/AN150/INPC00/OUTC00/ISTxD0/BE0out	Add AN150/INPC00/OUTC00/ISTxD0/BE0out

3.3 SFR Differences

Table 3.3.1 and table 3.2.3 show the SFR Differences.

Table 3.3.1 SFR Differences (1/3)

M16C/80	M32C/83	Remarks
PM1	PM1	Add bit 3. Change set value of reserved bit.
CM0	CM0	Change function
CM1	CM1	Add bit 7. Change function.
PRCR	PRCR	Add bit 3. Change function.
-	CM2	
-	PLV	
-	VDC0	
-	VDC1	
BCN3IC	BCN0IC/BCN3IC	Shard with BCN0IC register
ADIC	ADOIC	Change register name
-	AD1IC	
BCN4IC	BCN1IC/BCN4IC	Shard with BCN1IC register
RLVL	RLVL	Add bit 5
-	Intelligent I/O, CAN related	
	interrupt control register	
-	Intelligent I/O	
	interrupt request register	
-	Intelligent I/O	
	interrupt enable register	
-	Intelligent I/O, related register	
-	IPS	
-	AD1 related register	
-	CAN related register	
-	U4SMR4	
U4SMR2	U4SMR2	Change function
U4SMR	U4SMR	Add bit 7
U4C0	U4C0	Change function
U4C1	U4C1	Change function
INVC1	INVC1	Add bits 5, 6
IFSR	IFSR	Add bits 6, 7
-	U3SMR4	
U3SMR2	U3SMR2	Change function
U3SMR	U3SMR	Add bit 7
U3C1	U3C1	Change function
-	U2SMR4	
U2SMR3	U2SMR3	Add bits 0 to 4
U2SMR2	U2SMR2	Change function
U2SMR	U2SMR	Add bit 7
U2C1	U2C1	Change function
-	TB2SC	
-	TCSPR	
	10011	

Table 3.3.2 SFR Differences (2/3)

M16C/80	M32C/83	Remarks
-	U0SMR4	
-	U0SMR3	
-	U0SMR2	
-	U0SMR1	
-	U0SMR	
U0MR	UOMR	Address change from 0360h to 0368h. Change function.
U0BRG	U0BRG	Address change from 0361h to 0369h.
U0TB	UOTB	Address change from 0363h-0362h to 036Bh-036Ah.
U0C0	U0C0	Address change from 0364h to 036Ch
U0C1	U0C1	Address change from 0365h to 036Dh. Add bits 4 to 7.
UORB	UORB	Address change from 0367h-0366h to 036Bh-036Ah
-	U1SMR3	
-	U1SMR2	
-	U1SMR	
U1MR	U1MR	Address change from 0368h to 02E8h. Change function.
U1BRG	U1BRG	Address change from 0369h to 02E9h.
U1TB	U1TB	Address change from 036Bh-036Ah to 02EBh-02EAh
U1C0	U1C0	Address change from 036Ch to 02ECh
U1C1	U1C1	Address change from 036Dh to 02EDh. Add bits 4 to 7.
U1RB	U1RB	Address change from 036Fh-036Eh to 02EFh-02EEh
UCON	-	
FMR1	-	
FMR0	FMR0	Address change from 0377h to 0057h
-	PLC0	
-	PLC1	
DM0SL	DM0SL	Change function
DM1SL	DM1SL	Change function
DM2SL	DM2SL	Change function
DM3SL	DM3SL	Change function
AD0	AD00	Change register name
AD1	AD01	Change register name
AD2	AD02	Change register name
AD3	AD03	Change register name
AD4	AD04	Change register name
AD5	AD05	Change register name
AD6	AD06	Change register name
AD7	AD07	Change register name
ADCON2	AD0CON2	Change register name. Add bits 4 to 7.
ADCON0	AD0CON0	Change register name. Change function.
ADCON1	AD0CON1	Change register name. Change function.

Table 3.3.3 SFR Differences (3/3)

M16C/80	M32C/83	Remarks	
-	PS8		
-	PS9		
PSC	PSC	Add bits 1 to 4, 6. Change function.	
PS0	PS0	Add bits 2, 6. Change function.	
PS1	PS1	Add bit 7. Change function.	
PSL0	PSL0	Add bits 1, 6. Change function.	
PSL1	PSL1	Add bits 1, 5, 6. Change function.	
PS2	PS2	Add bit 2. Change function.	
PS3	PS3	Change function	
PSL2	PSL2	Add bits 1, 2.	
PSL3	PSL3	Add bit 2	
-	PS5		
-	PS6		
-	PS7		

3.4 Interrupt Vector Differences

Table 3.4.1 shows the Fixed Vector Table Differences. Table 3.4.2 shows the Relocatable Vector Table Differences.

Table 3.4.1 Fixed Vector Table Differences

M16C/80 Interrupt Factor	M32C/83 Interrupt Factor	Remarks
Watchdog Timer	Watchdog Timer	Add Watchdog Timer
	Oscillation Stop Detection	

Table 3.4.2 Relocatable Vector Table Differences

M16C/80 Interrupt Factor	M32C/83 Interrupt Factor	Software Interrupt Number
-	A/D1	7
UART0 transmission	UART0 transmission, NACK	17
UART0 reception	UART0 reception, ACK	18
UART1 transmission	UART1 transmission, NACK	19
UART1 reception	UART1 reception, ACK	20
Bus Conflict Detect, Start Condition Detect,	Bus Conflict Detect, Start Condition Detect,	39
Stop Condition Detect (UART2)	Stop Condition Detect, Fault Error (UART2)	
Bus Conflict Detect, Start Condition Detect,	Bus Conflict Detect, Start Condition Detect,	40
Stop Condition Detect, Fault Error (UART3)	Stop Condition Detect, Fault Error (UART3	
	or UART0)	
Bus Conflict Detect, Start Condition Detect,	Bus Conflict Detect, Start Condition Detect,	41
Stop Condition Detect, Fault Error (UART4)	Stop Condition Detect, Fault Error (UART4	
	or UART1)	
-	Intelligent I/O Interrupt 0	44
-	Intelligent I/O Interrupt 1	45
-	Intelligent I/O Interrupt 2	46
-	Intelligent I/O Interrupt 3	47
-	Intelligent I/O Interrupt 4	48
-	Intelligent I/O Interrupt 5	49
-	Intelligent I/O Interrupt 6	50
-	Intelligent I/O Interrupt 7	51
-	Intelligent I/O Interrupt 8	52
-	Intelligent I/O Interrupt 9, CAN0	53
-	Intelligent I/O Interrupt 10, CAN1	54
-	Intelligent I/O Interrupt 11, CAN2	57

3.5 Support Tool Differences

Table 3.5.1 shows the support tool differences.

Table 3.5.1 Support Tool Differences

Tool information	M16C/80 Tool Product	M32C/83 Tool Product	M32C/83 Tool Product
		(Max.20MHz)	(Max.30MHz)
C Compiler	M3T-NC308WA	M3T-NC308WA	M3T-NC308WA
Real-time OS	M3T-MR308	M3T-MR308	M3T-MR308
Simulator Debugger	M3T-PD308SIM	M3T-PD308SIM	M3T-PD308SIM
Emulator Debugger	M3T-PD308	M3T-PD3083	M3T-PD308F
Emulator	PC4701U	PC4701U	PC7501
Emulation Pod,	M30803T-RPD-E	M30830T-RPD-E	M30830T-EPB
Emulation Probe			

4. Reference

Renesas Technology Corporation Home Page <u>http://www.renesas.com/</u>

E-mail Support

E-mail: csc@renesas.com

Hardware Manual

M32C/83 Group Hardware Manual (Use the latest version on the home page: http://www.renesas.com)

User's Manual

M16C/80 Group User's Manual (Use the latest version on the home page: http://www.renesas.com)

REVISION HISTORY

Pov	Pov Doto		Description	
Rev.	Date	Page	Summary	
1.01	2005.01.12	-	First edition issued	
1.02	2005.04.15	2	Add A/D converter maximum operating frequency	

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
- Any diversion of reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

KENESAS