
Desiging a Local Bus Slave 
Interface

80C2000_AN004_02

November 2, 2009

6024 Silver Creek Valley Road San Jose, California 95138

Telephone: (408) 284-8200  •  FAX: (408) 284-3572

Printed in U.S.A.

©2009 Integrated Device Technology, Inc.

®



GENERAL DISCLAIMER
Integrated Device Technology, Inc. ("IDT") reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or 
performance. IDT does not assume responsibility for use of any circuitry described herein other than the circuitry embodied in an IDT product. Disclosure of the information 
herein does not convey a license or any other right, by implication or otherwise, in any patent, trademark, or other intellectual property right of IDT.  IDT products may 
contain errata which can affect product performance to a minor or immaterial degree.  Current characterized errata will be made available upon request.  Items identified 
herein as "reserved" or "undefined" are reserved for future definition.  IDT does not assume responsibility for conflicts or incompatibilities arising from the future definition 
of such items.  IDT products have not been designed, tested, or manufactured for use in, and thus are not warranted for, applications where the failure, malfunction, or 
any inaccuracy in the application carries a risk of death, serious bodily injury, or damage to tangible property.  Code examples provided herein by IDT are for illustrative 
purposes only and should not be relied upon for developing applications. Any use of such code examples shall be at the user's sole risk.

Titlepage
Copyright © 2009 Integrated Device Technology, Inc.
All Rights Reserved.

The IDT logo is registered to Integrated Device Technology, Inc. IDT is a trademark of Integrated Device Technology, Inc. 



3

Designing a Tsi107 Local-Bus Slave Interface 

This application note describes the steps for designing an interface device that provides access to I/O and
memory peripherals using the local-bus slave features of the Tsi107 PowerPC Host Bridge. The Tsi107 and
local-bus slave (LBS) feature may be used with any microprocessor that implements the PowerPCTM 60x bus
protocol. 

This application note discusses following topics:

Topic Page

Section 1.1, “Introduction”  4

Section 1.2, “Conventions”  4

Section 1.3, “Local-Bus Slave Architecture”  5

Section 1.4, “Interactions between the LBS and Memory”  7

Section 1.5, “AEIOU Architecture”  8

Section 1.6, “Address Bus Interface”  9

Section 1.7, “Address Decoder”  10

Section 1.8, “Data Bus Interface”  21

Section 1.9, “Cycle Completion”  28

Section 1.10, “Byte Write Enable”  30

Section 1.11, “Internal Peripherals”  33

Section 1.12, “The AEIOU”  37

Section 1.13, “Conclusion”  44
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



4

1.1  Introduction
The Tsi107 (and the Tsi106) provide support for an interface called the local-bus slave (LBS) that allows
devices to be attached more easily to the high-speed 60x bus. The LBS can respond to read and write cycles
while relying upon the Tsi107 to provide the majority of the interface controls. An LBS device monitors a
subset of the 60x bus and asserts TA when the read or write operation is completed. A device that provides
local-bus slave I/O and memory access is outlined in the remaining sections of this application note, and is
called the Applications Engineering Input/Output Unit (AEIOU). For the rest of this document, the Tsi107
refers to either the Tsi107 or the Tsi106; the information contained herein applies to both devices unless
otherwise stated.

NOTE:
The VHDL in this application note was compiled and verified using a
software test bench, but was not verified in hardware. The AEIOU can
contain significant errors, and the 60x bus test bench might not have revealed
latent errors in the VHDL code that is presented in this document. Treat this
application note as general design information for creating an LBS I/O
controller, rather than as a drop-in component. 

NOTE:
All the software contained in this application note is copyrighted by IDT or its
license source, and IDT customers may use it freely as long as the copyright
notice remains present in each literal or derived module or source file. The
code may be freely modified to suit customized applications. 

1.2  Conventions
This application note refers to both hardware and software signals (pins and nets) and components (physical
and logical). Table 1 shows typographic conventions that are used.

Table 1. Typographic Conventions

Class Example Typography Description

Hardware TT(0:4) Uppercase, no overbar Hardware pin that is asserted when active high

TA Uppercase, with overbar Hardware pin that is asserted when active low

Software done Lowercase Internal signal that is asserted when logic ‘1’ or ‘H’ (high)

go_L Lowercase, ’_L’ appended Internal signal that is asserted when logic ‘0’ or ‘L’ (low)

TT0 Uppercase Internal signal that is asserted when logic ‘1’ or ‘H’ and drives an 
external hardware pin of the same name

TA_L Uppercase, ’_L’ appended Internal signal that is asserted when logic ‘0’ or ‘L’ and drives an 
external hardware pin of the same name

BYTEW Uppercase, bold Name of a VHDL entity or module
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



5

In VHDL, a signal may be high when set to the value 'H' or '1'; the former is a 'weak' high-level that other
signals can override, while the latter is a ‘strong’ high level that cannot be overridden (see Table 2).

1.3  Local-Bus Slave Architecture
The Tsi107 provides 60x-bus arbitration for itself, a 60x-bus microprocessor, and optionally an additional
processor. Typically, the Tsi107 claims all non-snoop cycles for itself and forwards them to the PCI bus, the
memory controller, or asserts an error signal. The Tsi107 provides an input signal called LBCLAIM so that
another 60x-bus device can claim a bus cycle. If asserted during the address phase of a bus transaction, the
Tsi107 handles the termination of the address phase, but not the data phase of the transaction. Instead, the
Tsi107 disconnects from the data phase and waits until the LBS device completes that portion.

The LBS is called a slave because it cannot initiate bus transactions on its own (bus mastery); instead, it relies
upon an external master (principally the processor) to initiate a transaction specifically to it. This reliance can
limit the architectures in which an LBS is suitable, but for many applications bus mastering may not be a
concern. Furthermore, using software to initiate bus transactions (for example, using interrupts/exceptions to
trigger bus operations from program- or device-initiated loads and stores to which the LBS can respond) is still
possible. Figure 1. shows the general architecture of an LBS system. 

Figure 1. Local Bus Slave Architecture.

The LBS communicates with the 60x bus using the same signals as any other device (A(0:31), D(0:63), TS,
TT, TSIZ, AACK, and so on), though not all are required for the subset an LBS may use. Two additional
side-band signals between the LBS and the Tsi107 (LBCLAIM and DBGLB) can be used respectively to claim
and be granted a cycle. 

Table 2. IEEE 1164 Logic Conventions

Example Description Usage

‘0’ Logic low, forcing Internally and on outputs that are not shared (for example, LBCLAIM)

‘1’ Logic high, forcing Internally and on outputs that are not shared

‘L’ Logic low, weak On outputs that are shared (for example, TA)

‘H’ Logic high, weak On outputs that are shared

DBGLB

LBCLAIM

D(0:63)

Embedded
Processor

Target-Specific
Interface

Tsi107MPC7400 AEIOU

60x Bus

TARGET
I/O
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



6

Figure 2 shows the general sequence of a LBS cycle.

Figure 2. LBS Transaction.

One complication in the design of an LBS controller is that the 60x-bus implements separate address and data
tenures. The address bus is not tightly coupled to the data bus, and while data is being transferred, the address
of that data may no longer be present on the address bus. Figure 2 shows an example where in cycle #6 TS is
asserted for a new transaction while data is still transferred. The effect of split tenures is that the LBS controller
usually requires the capability of storing the current address, size, and transfer type information of the current
cycle. Because the Tsi107 does not allow the 60x-bus protocol to pipeline more than one address tenure, the
information storage requirements are modest.

NOTE:

Although the 60x-bus does allow the control of the address and data tenure to overlap (by delaying the
assertion of AACK), the Tsi107 does not have this facility and cannot be used with an LBS interface. When the
LBS claims a cycle, the Tsi107 asserts AACK as soon as possible, either immediately (if the system bus is idle)
or after the preceding data tenure is completed (if pipelining has already occurred (shown in cycle #8 of
Figure 2). Consequently, LBS controllers must accept the possibility of pipelined addresses. This problem has
two solutions:

• Implement address tenure data storage. In this solution, as each local-bus 
cycle is claimed, all needed information is stored in a register. This 
approach is relatively easy and inexpensive (in an ASIC or FPGA), and the 
60x bus interface guarantees that no more than one address cycle is 
pending.

• The second solution is more simple and less expensive, but moves the 
complexity from the hardware into the software. The system and software 
expect that any cycle after an LBS I/O cycle may be missed (unclaimable). 
To guarantee that LBS-targeted cycles are not performed back-to-back, 
software must either allow other instructions to run or perform a write to a 
non-LBS address. A read cycle is not effective because the PowerPC 
instruction-set architecture allows loads to bypass stores under certain 
circumstances. A 'sync' instruction is not effective either because it causes 
the Tsi107 to flush its internal buffers, which could trigger a 

By ‘107

By LBS

By LBS

By LBS (read)
By ‘107 (write)

51 10

By ‘107

data

LBCLAIM

60x Bus Clock

TS

AACK

A[0-31]

TA

DBG0 / DBGLB
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



7

PCI-to-local-bus snoop transaction. A dummy write to an unused memory 
location usually suffices.

1.3.1  Coherency
To keep the LBS design simple for I/O-controller purposes, the design assumes that accesses to the
LBS-controlled addresses are coherent. The system does not expect the LBS to snoop the system bus to supply
cached data to external devices, nor that it invalidates internally cached data. This assumption does not imply
that LBS-controlled devices must be non-cacheable. (This restriction on the 60x-bus would imply that burst
transfers are not allowed.) It means only that if the LBS-controlled devices are cacheable, the I/O software
must enforce coherency if required. In this design, the AEIOU includes a pipelined burst SRAM controller that
requires the ability to accept burst transfers. 

The Tsi106 User Manual (see the section about 60x local bus slave support) and the Tsi107 User Manual
present a complex state machine for tracking the 60x-bus state. The state machine logic is necessary only when
the LBS must maintain cache coherency with external bus masters, or with the external L2 cache controller for
the Tsi106. For the purposes of this application note, coherency may be disregarded. (I/O controllers are often
required to be non-cacheable), obviating the need for coherency.)

1.4  Interactions between the LBS and Memory
Some interactions occur between the LBS interface of the Tsi107 and the memory controller. When the Tsi107
is programmed to trap on illegal memory operations known as memory select errors (see the Tsi107 User
Manual for details on error handling), the memory controller interferes with LBS operations. To avoid this
interference, observe the following restrictions:

• If memory select errors were enabled by setting the ErrEnR1[MSE] bit, the address chosen for the LBS 
must be in the range 0-1 GB (0-0x3FFF_FFFF). Furthermore, the selected range for LBS accesses 
must be stored into an unused memory boundary register (one of eight bit fields in the 
MSAR/EMSAR/MEAR/EMEAR registers). This restriction implies that the memory cannot use eight 
physical banks of memory because one must be reserved for the LBS. 

• If memory select errors are not enabled, the address chosen for the LBS may be anywhere from 
0-4 GB (0-0xFFFF_FFFF), including the ROM and extended ROM areas, except for the PCI 
configuration address and the interrupt acknowledge address.

When the above restrictions are followed, the Tsi107 operates properly with an activated memory controller.
The Tsi106 cannot place an LBS anywhere above 2Gbytes.

The second issue is that the Tsi106 (and only the Tsi106) multiplexes the SDRAM clock enable signal (CKE)
with the DBGLB signal. Therefore, SDRAM-based systems that use local bus slaves must provide a data bus
grant signal to the local bus slave by an alternate means. In a uniprocessor system, the DBG0 signal can be
used for DBGLB. In a multiprocessor system, DBG[0–3] can be logically ANDed to create a suitable DBGLB
signal. Note that using these methods to provide a data bus grant signal for the local bus slave is incompatible
with the external L2 interface of the Tsi106. Therefore, SDRAM-based systems that use local bus slaves
cannot use an external L2 cache. Note that this restriction refers only to the external 60x-bus-based
Tsi106-controlled L2 cache, and not the MPC75x/MPC74xx “backside” L2/L3 cache interfaces.
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



8

An example of a two-processor connection is shown in Figure 3.

Figure 3. DBGLB Recovery Logic for the Tsi106.

Note that DBGLB recovery logic requires that the LBS interface does not drive the data bus unless it has also
decoded an LBS transaction. This logic is implemented in the design of the AEIOU. The Tsi107 does not
require this logic. 

1.5  AEIOU Architecture
This section defines the architecture of the AEIOU. Most real-world applications of the AEIOU should be
highly customized for the target system; but here a common set of features is provided as follows:

• Address tenure storage (hardware overlap control)

• General purpose I/O port (8 inputs, 8 outputs)

• 8-bit register file (7 read/write registers, 1 read-only ID register)

• External pipelined burst SRAM interface (chip-select, write strobe and output enable)

The AEIOU implementation for this application note provides an interface to these I/O devices to demonstrate
the flexibility of the LBS I/O interface. 

MPC755

DBG

MPC755

DBG

Tsi106

DBG0

DBG1

DBGLB

AEIOU

DBGLB

ULVC08

‘To SDRAM as CKE
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



9

Figure 4 shows the general block diagram with connections to the 60x bus on the left and the connections to
the I/O devices on the right.

Figure 4. AEIOU Architecture.

1.6  Address Bus Interface
The AEIOU design has a module that captures address transactions into a holding register. The Address
Interface Module (AIM) captures all important address tenure information (whether or not it is an LBS cycle)
at every assertion of the TS signal.

Give careful attention to the performance of AIM, because delays there affect the rest of the system. Consider
how the Tsi107 implements transactions when an LBS is enabled. On each transaction, the Tsi107 waits a
programmable number of bus clocks (that PICR1[CF_LBCLAIM_DELAY] sets) in case an LBS claims the
cycle.If there is no LBCLAIM, the cycle proceeds to the PCI or memory bus. If the CF_LBCLAIM_DELAY
setting must be set to '3' to accommodate a slow LBS address decoder so that every cycle that the system runs
incurs a three-clock delay. For example, an SDRAM memory system configured to run at 3-1-1-1 would slow
down to 6-1-1-1. It is advantageous to eliminate dead clock cycles from the address phase decoder of the LBS.

A(0:31)
TT(1)

OE

D(0:7)

L
B

S
 I

/O
 B

u
s

TSIZ(0:2)

CLK

done_L

doit_L

SRAM_CS
ADSC
BAA

GPI(0:7)

GPO(0:7)

BWE(0:7)

IOA(12:31)

AIM

Module

BYTEW

Write
Enables

GPIO

General
I/O

DBSM

Data bus
State
Machine

Address
Interface

Latched Data

TS

TBST

AACK

LBCLAIM

TA

RST

60
x 

b
u

s

DBGLB
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



10
The general block diagram of the AIM is shown in Figure 5.

Figure 5. Address Bus Interface of AEIOU.

The address information module (AIM) is composed of several modules that decode addresses and capture the
information from the address phase of the bus cycle into a holding register. The CLAIM module generates the
required LBCLAIM signal on any LBS-targeted transactions. Note that CLAIM is the only module to which
careful placement and timing controls must be observed for the reasons stated above (fast overall system
speed). In parallel with CLAIM, the ALATCH module latches the preserved address and address attributes of
the cycle.

All other modules in the AEIOU can proceed at a somewhat more leisurely pace, because the bus transactions,
when claimed, can proceed at the natural speed of the I/O device without greatly interfering with the
performance of other bus transactions, including those to SDRAM or flash. The ALSM module tracks the state
of the latch for use by the remainder of the AEIOU. Furthermore, ALSM communicates with the data interface
module DBSM (see Section 1.8, “Data Bus Interface” on page 21) to begin and end LBS transactions.

1.7  Address Decoder
The first step of any LBS interface is to decode the address and transfer attributes (for example, A[0:n], TSIZ,
TBST (optionally), TT and so on) presented at the start of each 60x bus transaction when the bus master asserts
transfer start (TS). The address decoder must assert LBCLAIM when any transaction hits within the space
claimed by the LBS. To keep the decoder simple, the AEIOU claims all transactions within the range
0x2000_0000 to 0x3FFF_FFFF. This address is compatible with the address maps that Tsi107 provides, and
also meets the restrictions for SDRAM with an LBS, (see Section 1.4, “Interactions between the LBS and
Memory” on page 7).

A(0:n)

TT(1)

TSIZ(0:2)

TBST

LBCLAIM

CLK

DONE

DOIT

AIM

Address
Claimer

CLAIM

27 bits of
Storage

ALSM

Address
State
Machine

CLAIMED

TS

AACK

RST
ALATCH
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



11
The LBS address space occupies 512 MB of the 4-GB available space. Although this size can be quite reduced
if space is required for other purposes, many systems do not need the additional logic to decode a smaller space
completely. Because many systems do not use all the SDRAM memory banks, and because only one LBS is
allowed per system, it is not necessary to decode much more than the upper three or four bits of the address.

The VHDL entity that implements the CLAIM module follows:

------------------------------------------------------------------------------

-- VHDL Entity AEIOU.CLAIM.symbol

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY CLAIM IS

   PORT( 

      a         : IN     std_logic_vector (0 to 2) ;

      aack_L    : IN     std_logic  ;

      clk       : IN     std_logic  ;

      rst_L     : IN     std_logic  ;

      ts_L      : IN     std_logic  ;

      lbclaim_L : OUT    std_logic 

   );

END CLAIM ;

------------------------------------------------------------------------------

ARCHITECTURE BEHAVIOR OF CLAIM is

SIGNAL lbc_L : std_logic; -- local LBClaim*

BEGIN

monitor : PROCESS( clk, rst_L )

BEGIN
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



12
IF (rst_L = '0') THEN

lbc_L <= '1';

ELSIF (clk = '1'  AND  clk'event) THEN

IF ((ts_L = '0' AND a = "001")-- TS* and address is LBS

or  (lbc_L = '0' AND aack_L = 'H')) THEN-- claimed, but not AACK’d

lbc_L <= '0';

ELSE-- not LBS cycle

lbc_L <= '1';

END IF;

END IF;

END PROCESS;

lbclaim_L <= lbc_L; -- copy BUFFER to OUT

END BEHAVIOR;

-----------------------------------------------------------------------------

CLAIM asserts LBCLAIM on any LBS-related transaction and keeps LBCLAIM asserted until the Tsi107
asserts AACK, acknowledging that the LBCLAIM has been accepted. It is not required for the AEIOU to hold
LBCLAIM asserted until AACK; however, it must be asserted at least during the interval programmed into the
Tsi107s PICR1[CF_L2_HITDELAY] register. Alternatives include:

• Assert LBCLAIM for only the one clock cycle in which the Tsi107 samples it.

• Assert LBCLAIM for three clock cycles (the maximum sample width).

In general, preserving LBCLAIM until AACK is asserted is usually the easiest method.

1.7.1  Address Latch State Machine (ALSM)
The second portion of the address interface is the implementation of a simple state machine, ALSM, that tracks
the presence of a pending transaction in the holding register. ALSM provides a signal to the DBSM on any
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



13
claimed transaction and waits for an acknowledgement from the DBSM. Figure 6 shows the state machine
diagram.

Figure 6. Address FIFO State Machine.

The state encoding (below the state name) directly controls the (active-low) latch enables for the ALATCH
module. When idling in state EMPTY (0), the latch enables are asserted and data flows into the latch. When the
state machine transitions to state TAKE1 (1), the latch is closed and the address information is captured. The
state machine uses the following two input signals:

• claimed_L is asserted for one clock when the address phase ends. It is similar to AACK but is asserted 
only on LBS cycles.

• done_L is asserted for one clock when a previous LBS I/O cycle ends.

Thereafter, transitions from TAKE1 to EMPTY re-open all the latches. This extremely simple state machine
can directly control the latches. The following VHDL entity implements the ALSM state machine:

-------------------------------------------------------------------------- VHDL 
Entity AEIOU.ALSM.symbol

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

EMPTY
0

TAKE1

1

done_L claimed_L

!claimed_L

!done_L
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



14
ENTITY ALSM IS

   PORT( 

      claimed_l : IN     std_logic  ;

      clk       : IN     std_logic  ;

      done_L    : IN     std_logic  ;

      rst_L     : IN     std_logic  ;

      doit_L    : OUT    std_logic  ;

      lg        : OUT    std_logic 

   );

END ALSM ;

----------------------------------------------------------------------------

ARCHITECTURE BEHAVIOR OF ALSM IS

   -- Architecture Declarations

   CONSTANT EMPTY : std_logic := '0';    -- Don't change!

   CONSTANT TAKE1 : std_logic := '1';    -- "

   SUBTYPE state_type IS std_logic;

   -- State vector declaration

   ATTRIBUTE state_vector : string;

   ATTRIBUTE state_vector OF BEHAVIOR : architecture IS "fsm" ;

   -- Declare current and next state signals

   SIGNAL fsm, next_fsm : state_type ;

BEGIN

clocked : PROCESS ( clk, rst_L )

BEGIN

IF (rst_L = '0') THEN

         fsm <= EMPTY;-- Reset Values

ELSIF (clk'EVENT AND clk = '1') THEN
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



15
fsm <= next_fsm;-- Default Assignment To Internals

END IF;

END PROCESS clocked;

nextstate : PROCESS ( claimed_l, done_L, fsm )

BEGIN

      CASE fsm IS

      WHEN EMPTY =>

         IF ((claimed_L = '0')) THEN

            next_fsm <= TAKE1;

         ELSE

            next_fsm <= EMPTY;

         END IF;

      WHEN TAKE1 =>

         IF ((done_L = '0')) THEN

            next_fsm <= EMPTY;

         ELSE

            next_fsm <= TAKE1;

         END IF;

      WHEN OTHERS =>

         next_fsm <= EMPTY;

      END CASE;

   END PROCESS nextstate;

-- Concurrent Statements

-- Now the outputs. This is a simple Moore machine, and the outputs are

-- only state-dependant. In fact, the actual output is the encoded state, which

-- is even simpler.

    

   lg <= fsm; -- Copy SIGNALs (buffers) to OUTs

-- Drive 'doit_L' active when there is anything in the FIFO, which is true when

-- we are not idling.
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



16
   doit_L <= '0' WHEN (fsm /= EMPTY) ELSE '1';

END BEHAVIOR;

1.7.2  Address Latch
The next portion of the address interface is the address latch (ALATCH). Only one level of buffering is needed
for the single-overlap 60x bus. The number of bits needed to store a complete address transaction (TBST,
TSIZ, TT, and A[0:n]) determines the width of ALATCH. To save silicon space, only the required address
transaction signals are saved (see Table 3).

TT(0:4) may be reduced to TT1 because address-only cycles are forbidden to the LBS I/O space; the remaining
cycles reduce to simple single-beat or burst reads or writes, which TT(1) can detect. Consequently, the latch
needs to preserve only 27 bits of information. (Note that this reduced amount is application-dependent).

The following VHDL entity describes the latch:

------------------------------------------------------------------------------

-- VHDL Entity AEIOU.ALATCH.symbol

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

Table 3. Address Transaction Signals Preserved

Signal
Defined 

Bits
Preserved 

Bits
Notes

TBST 1 1 Can be reduced to none if only non-cacheable/non-burst I/O will be 
controlled.

TSIZ(0:2) 3 3 All bits are needed.

TT(0:4) 5 1 TT(1) is sufficient to show read/write selection for valid LBS transactions.

A(0:31) 32 22 Upper 3 not needed; low 3 required for byte lane selection; the rest are 
determined by the size of the I/O needed. This example is sufficient to 
support a 256Kx64 SRAM space plus bits to select SRAM or I/O.

Total 40 27 Total needed for storage
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



17
ENTITY ALATCH IS

   PORT( 

      a_low     : IN     std_logic_vector (10 TO 31) ;

      lg        : IN     std_logic  ;

      rst_L     : IN     std_logic  ;

      tbst_L    : IN     std_logic  ;

      tsiz      : IN     std_logic_vector (0 to 2) ;

      tt1       : IN     std_logic  ;

      ff_a_low  : OUT    std_logic_vector (10 to 31) ;

      ff_tbst_L : OUT    std_logic  ;

      ff_tsiz   : OUT    std_logic_vector (0 to 2) ;

      ff_tt1    : OUT    std_logic 

   );

END ALATCH ;

------------------------------------------------------------------------------

ARCHITECTURE BEHAVIOR OF ALATCH is

BEGIN

L0: PROCESS( lg, rst_L, tbst_L, tsiz, tt1, a_low )

BEGIN

IF (rst_L = '0') THEN

ff_tbst_L <= '0';

ff_tsiz   <= (OTHERS => '0');

ff_tt1    <= '0';

ff_a_low  <= (OTHERS => '0');

ELSIF (lg = '0') THEN

ff_tbst_L <= tbst_L;

ff_tsiz   <= tsiz;

ff_tt1    <= tt1;

ff_a_low  <= a_low;

END IF;

END PROCESS;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



18
END BEHAVIOR;

----------------------------------------------------------------------------

1.7.3  Address Interface Module
The AIM module integrates the other address decoding modules. Because the ALSM module can directly
control the address latch module (ALATCH), the AIM module connects only the other modules and creates the
CLAIMED signal.  The CLAIMED signal must be asserted for one clock cycle for all LBS I/O cycles claimed;
neither AACK nor LBCLAIM alone is sufficient. The logical NOR of the two signals (asserted when both are
low) ensures that only claimed LBS cycles trigger the state machine.

The following VHDL entity describes the top-level address interface:

------------------------------------------------------------------------------

-- VHDL Entity AEIOU.AIM.symbol

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF AIM IS

-- Internal signal declarations

SIGNAL claimed_L : std_logic;

SIGNAL iclaim_L  : std_logic;

SIGNAL lg        : std_logic;

-- Component Declarations

COMPONENT CLAIM

   PORT (

      a         : IN     std_logic_vector (0 to 2);

      aack_L    : IN     std_logic ;

      clk       : IN     std_logic ;

      rst_L     : IN     std_logic ;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



19
      ts_L      : IN     std_logic ;

      lbclaim_L : OUT    std_logic 

   );

END COMPONENT;

COMPONENT ALATCH

   PORT (

      a_low     : IN     std_logic_vector (10 TO 31);

      lg        : IN     std_logic ;

      rst_L     : IN     std_logic ;

      tbst_L    : IN     std_logic ;

      tsiz      : IN     std_logic_vector (0 to 2);

      tt1       : IN     std_logic ;

      ff_a_low  : OUT    std_logic_vector (10 to 31);

      ff_tbst_L : OUT    std_logic ;

      ff_tsiz   : OUT    std_logic_vector (0 to 2);

      ff_tt1    : OUT    std_logic 

   );

END COMPONENT;

COMPONENT ALSM

   PORT (

      claimed_l : IN     std_logic ;

      clk       : IN     std_logic ;

      done_L    : IN     std_logic ;

      rst_L     : IN     std_logic ;

      doit_L    : OUT    std_logic ;

      lg        : OUT    std_logic 

   );

END COMPONENT;

BEGIN

-- Drive claimed_L low for one clock cycle.

claimed_L <= '0' WHEN (iclaim_L = '0' AND aack_L = 'L') ELSE '1';
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



20
-- Copy from buffer to output.

lbclaim_L <= iclaim_L;

-- Instance port mappings.

   CLz : CLAIM

      PORT MAP (

         a         => a_high,

         aack_L    => aack_L,

         clk       => clk,

         rst_L     => rst_L,

         ts_L      => ts_L,

         lbclaim_L => iclaim_L

      );

   Foz : ALATCH

      PORT MAP (

         a_low     => a_low,

         lg        => lg,

         rst_L     => rst_L,

         tbst_L    => tbst_L,

         tsiz      => tsiz,

         tt1       => tt1,

         ff_a_low  => ff_a_low,

         ff_tbst_L => ff_tbst_L,

         ff_tsiz   => ff_tsiz,

         ff_tt1    => ff_tt1

      );

   SMz : ALSM

      PORT MAP (

         claimed_l => claimed_L,

         clk       => clk,

         done_L    => done_L,

         rst_L     => rst_L,
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



21
         doit_L    => doit_L,

         lg        => lg

      );

END BEHAVIOR;

1.8  Data Bus Interface
After the address phase has been handled, the AEIOU waits for doit_L (from the AIM module) to be signaled
and DBGLB (from the Tsi107) to be asserted, indicating that the AEIOU has control of the data bus. Because
DBGLB acts as a gating factor in deciding whether to proceed, the Tsi107 must not have parked the bus.
PICR1[DPARK] must be cleared.

Depending on the complexity of the addressed device, the LBS interface might immediately assert TA for one
cycle and do nothing more. This interface would be appropriate and minimal for devices such as high-speed
register files, SRAMs, or FIFOs that can capture single-beat cycles at the full bus rate (usually 15 ns or faster).

Delaying the assertion of TA for a fixed number of cycles to allow for access to slower devices, such as Flash,
ROM, and device I/O (UARTs and so forth) is another frequently required action. These devices are usually
accessed with single-beat transfers, but have access times on the order of 90-200 ns. For such devices, the data
bus interface logic must wait a specified number of cycles after DBGLB before asserting TA but is otherwise
similar.

To support the highest transfer rates, the data bus interface can respond to burst transfers and supply data in
beats of four. The AEIOU supports all of these types of cycles to demonstrate the flexibility of the LBS
interface. Table 4 lists the characteristics of the I/O devices.

To implement all of these cycles, a simple state machine asserts TA at the proper interval: after one clock for
register accesses, after five clocks for I/O accesses, and in a 3-1-1-1 sequence for bursts to SRAM. Negating
TA temporarily can insert wait states in burst transfers, but it is not necessary at the speed of the local bus
interface. Because the AEIOU is not programmable (though it could be, but that is another application note),
wait states must be added to support slower devices when the bus speed is increased to 83, 100, or 133 MHz. 

Table 4. AEIOU I/O Device Characteristics

Interface 
Type

Address Range Read/Write Size Bus Clocks
Speed

(66 MHz)
Cache/Burst 

Support?

Register 0x2X00_0000 ... 0x2x3F_FFFF 1, 2, 4, 8 bytes 1 15 ns No

I/O 0x2x40_0000 ... 0x2x7F_FFFF 1, 2, 4, 8 bytes 6 90 ns No

SRAM 0x2x80_0000 ... 0x2xFF_FFFF 1, 2, 4, 8 bytes 3-1-1-1 90 ns Yes
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



22
Figure 7 shows the state machine for the DBSM.

Figure 7. DBSM State Machine Flow.

The main flow of the DBSM state machine is the transition from IDLE to SREAD, SWRITE, or SB1. The first
two transitions are for the pipelined-burst SRAM interface (single-beat or burst) and comprise the right-hand
side of the diagram. TA is asserted on each state from BEAT1 to BEAT4.

The left-hand side of the state machine shows accesses to non-burst, slow I/O. TA is asserted only at LAST,
with the preceding states SB1 to SB5 simply marking time. A counter that would add flexibility (particularly at
variable bus speeds) can replace these delay states, but it requires the addition of more complex timer logic. 

The state BUSGRANT tracks when DBGLB has asserted. As the Tsi107 User Manual notes, the local bus
slave needs to sample DBGLB continuously. If the local bus slave claims the transaction (by asserting
LBCLAIM) and DBGLB was asserted for that address tenure, the local bus slave can drive TA. If DBGLB was
not asserted when the local bus slave claims a transaction, it must wait for the Tsi107 to grant the data bus to
the processor before the local bus slave can drive TA. This way, the Tsi107 can maintain the pipeline and the

SB1

0001

SB2

0010

0011

SB4

0100

SB5

0101

LAST

1111

SREAD

1000

BEAT2

1011

BEAT3

1100

BEAT4

1101

DESEL

BEAT1

1010

DBGLB
!doit_L

BUSGRANT

1110

0111

SWRITE

0110

BEAT0

1001

IDLE

0000

& !DBGLB

!go_L &
reg_L

doit_L &
reg_L

SB3

!go_L &
slow_L

doit_L &
slow_L

!go_L &
sram_L &
ttrw_L

!go_L &
sram_L &
!ttrw_Ldoit_L &

sram_L &
!ttrw_L

doit_L &
sram_L &
ttrw_L

!tbst_L

tbst_L
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



23
previous data tenure is allowed to complete before the Tsi107 relinquishes the data bus to the processor and the
local bus slave. The DBSM handles this event, switching to the BUSGRANT state when DBGLB is asserted.

The following VHDL describes the implementation of the DBSM:

------------------------------------------------------------------------------

-- VHDL Entity AEIOU.DBSM.symbol

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF DBSM IS

-- Architecture Declarations

CONSTANT IDLE : std_logic_vector(0 to 3) := "0000";

CONSTANT SB1 : std_logic_vector(0 to 3) := "0001";

CONSTANT SB2 : std_logic_vector(0 to 3) := "0010";

CONSTANT SB3 : std_logic_vector(0 to 3) := "0011";

CONSTANT SB4 : std_logic_vector(0 to 3) := "0100";

CONSTANT SB5  : std_logic_vector(0 to 3) := "0101";

CONSTANT DESEL : std_logic_vector(0 to 3) := "0111";

CONSTANT SWRITE : std_logic_vector(0 to 3) := "0110";

CONSTANT SREAD : std_logic_vector(0 to 3) := "1000";

CONSTANT BEAT0 : std_logic_vector(0 to 3) := "1001";

CONSTANT BEAT1 : std_logic_vector(0 to 3) := "1010";

CONSTANT BEAT2 : std_logic_vector(0 to 3) := "1011";

CONSTANT BEAT3 : std_logic_vector(0 to 3) := "1100";

CONSTANT BEAT4 : std_logic_vector(0 to 3) := "1101";

CONSTANT BUSGRANT : std_logic_vector(0 to 3) := "1110";

CONSTANT LAST : std_logic_vector(0 to 3) := "1111";
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



24
   

SIGNAL slow_L : std_logic;-- Set if address to slow I/O

SIGNAL reg_L : std_logic;-- Set if address to register I/O

SIGNAL sram_L : std_logic;-- Set if address may be to SRAM I/O

SIGNAL go_L : std_logic;-- Triggered on LBS bus grant.

 

SUBTYPE state_type IS std_logic_vector(0 to 3);

-- State vector declaration

ATTRIBUTE state_vector : string;

ATTRIBUTE state_vector OF BEHAVIOR : architecture IS "dbsm" ;

-- Declare current and next state signals

SIGNAL dbsm, next_dbsm : state_type ;

BEGIN

clocked : PROCESS( clk, rst_L )

BEGIN

IF (rst_L = '0') THEN

 dbsm <= IDLE;-- Reset Values

 ELSIF (clk'EVENT AND clk = '1') THEN

 dbsm <= next_dbsm;-- Default Assignment To Internals

END IF;

END PROCESS clocked;

nextstate : PROCESS ( dbglb_L, dbsm, doit_L, go_L, reg_L, slow_L, sram_L,

 tbst_L, tt_rw_L )

BEGIN

CASE dbsm IS

WHEN IDLE =>

IF ((sram_L = '0'  AND  go_L = '0'  AND  tt_rw_L = '1')) THEN

next_dbsm <= SREAD;

ELSIF ((sram_L = '0'  AND  go_L = '0'  AND  tt_rw_L = '0')) THEN
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



25
next_dbsm <= SWRITE;

ELSIF ((reg_L = '0'  AND  go_L = '0')) THEN

next_dbsm <= LAST;

ELSIF ((slow_L = '0'  AND  go_L = '0')) THEN

next_dbsm <= SB1;

ELSIF ((dbglb_L = '0')) THEN

next_dbsm <= BUSGRANT;

ELSE

next_dbsm <= IDLE;

END IF;

WHEN BEAT0 =>

next_dbsm <= BEAT1;

WHEN BEAT1 =>

IF ((tbst_L = '1')) THEN

next_dbsm <= DESEL;

ELSE

next_dbsm <= BEAT2;

END IF;

WHEN BEAT2 =>

next_dbsm <= BEAT3;

WHEN BEAT3 =>

next_dbsm <= BEAT4;

WHEN SREAD =>

next_dbsm <= BEAT0;

WHEN BEAT4 =>

next_dbsm <= IDLE;

WHEN LAST =>

next_dbsm <= IDLE;

WHEN SB1 =>

next_dbsm <= SB2;

WHEN SB2 =>

next_dbsm <= SB3;

WHEN SB3 =>

next_dbsm <= SB4;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



26
WHEN SB4 =>

next_dbsm <= SB5;

WHEN SB5 =>

next_dbsm <= LAST;

WHEN BUSGRANT =>

IF ((sram_L  = '0'  AND  doit_L = '0'  AND  tt_rw_L = '1')) THEN

next_dbsm <= SREAD;

ELSIF ((sram_L  = '0'  AND  doit_L = '0'  AND  tt_rw_L = '0')) THEN

next_dbsm <= SWRITE;

ELSIF ((reg_L  = '0' AND  doit_L = '0')) THEN

next_dbsm <= LAST;

ELSIF ((slow_L  = '0'  AND  doit_L = '0')) THEN

next_dbsm <= SB1;

ELSIF ((doit_L = '1'  AND  dbglb_L = '1')) THEN

next_dbsm <= IDLE;

ELSE

next_dbsm <= BUSGRANT;

END IF;

WHEN DESEL =>

next_dbsm <= IDLE;

WHEN SWRITE =>

IF ((tbst_L = '1')) THEN

next_dbsm <= DESEL;

ELSE

next_dbsm <= BEAT2;

END IF;

WHEN OTHERS =>

next_dbsm <= IDLE;

END CASE;

END PROCESS nextstate;

-- Concurrent Statements

-- Do chip selects here, since they're so easy.
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



27
reg_L <= '0'WHEN( a(10) = '0'  AND  a(11) = '0' )ELSE '1';

slow_L <= '0'WHEN( a(10) = '0'  AND  a(11) = '1' )ELSE '1';

sram_L <= '0'WHEN( a(10) = '1')ELSE '1';

-- Implement the state machine transition triggers.

    go_L <= '0'WHEN (dbglb_L = '0'  AND  doit_L = '0')ELSE '1';

-----------------------------------------------------------------------------

-- Now the outputs of the state machine.

-- Assert TA* (the most important LBS signal).

    ta_L <= 'L'WHEN ( dbsm = SWRITE

ORdbsm = BEAT1ORdbsm = BEAT2

OR dbsm = BEAT3ORdbsm = BEAT4

ORdbsm = LAST

)

ELSE 'H';

-- Drive 'done_L' when a cycle completes.

    done_L <= '0'WHEN (dbsm = LAST   OR  dbsm = BEAT4

ORdbsm = DESEL

)

ELSE '1';

-- Drive we_L low while running any kind of write cycle.  Drive oe_L low

-- when running any sort of read cycle.

    we_L <= '0'WHEN (tt_rw_L = '0'

ANDdbsm /= IDLE AND dbsm /= BUSGRANT)

ELSE '1';

    oe_L <= '0'WHEN (tt_rw_L = '1'

AND  dbsm /= IDLE AND dbsm /= BUSGRANT)
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



28
ELSE '1';

-- Drive chip selects with copies of internal logic.

    iocs_L <= slow_LWHEN (dbsm = SB1  OR  dbsm = SB2  OR  dbsm = SB3

ORdbsm = SB4  OR  dbsm = SB5  OR  dbsm = LAST)

ELSE '1';

    fcs_L <= reg_LWHEN (dbsm = LAST)

ELSE '1' ;

    scs_L <= sram_LWHEN (dbsm = SREAD  OR  dbsm = SWRITE)

ELSE '1';

-- Special signals for burst-mode accesses.

    adsc_L <= '0'WHEN (dbsm = SREAD  OR  dbsm = SWRITE OR  dbsm = DESEL)                                     
ELSE '1';

    baa_L <= '0'WHEN (dbsm = BEAT0  OR  dbsm = BEAT1  OR  dbsm = BEAT2

ORdbsm = BEAT3  OR  dbsm = BEAT4)

ELSE '1';

END BEHAVIOR;

-----------------------------------------------------------------------------

1.9  Cycle Completion
Another design issue for the AEIOU is that the TA signal must be actively negated at the end of the LBS data
cycle (see Figure 8 to see this event at the end of the assertion of TA by the AEIOU).

There are two methods to achieve this requirement. The first is to use a half-phase (or inverted) clock signal to
delay the negation of TA by one half-clock. While the AEIOU drives the TA signal high (internally) on
completion of the transaction, the TA output enable is removed half-way into the cycle, allowing the signal to
tri-state in preparation for the next device to assert TA (which may or may not be the AEIOU). This extension
method is shown in the last three waveforms of Figure 8.
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



29
Figure 8. LBS Transaction with TA Enabling.

-----------------------------------------------------------------------------

-- VHDL Entity AEIOU.TADRIVE

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE behavior OF TADRIVE IS

SIGNAL ta_delay_L : std_logic;

SIGNAL ta_oen_L  : std_logic;

BEGIN

PROCESS ( clk, rst_L )

BEGIN

Bus Clock 

TS

AACK 

A[0–31]

LBCLAIM

DBGLB

D[0-63]

TA

Internal  TA and TA

Enable

Delayed TA Enable
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



30
IF (rst_L = '0') THEN

ta_delay_L <= 'H';

ELSIF (falling_edge( clk )) THEN

ta_delay_L <= ta_internal_L;

END IF;

END PROCESS;

ta_oen_L <= '0' WHEN (ta_delay_L = 'L'  OR ta_internal_L = 'L')

ELSE '1';

ta_L <= ta_internal_LWHEN (ta_oen_L = '0')

ELSE 'Z';

END behavior;

-----------------------------------------------------------------------------

An alternate method is to use a strong pull-up in conjunction with accurate models of all devices that attach to
the TA signal. If the pull-up is strong enough to achieve the timing requirements for TA precharge without
violating the output current ratings of all the devices, the pull-up may be used instead. The only way to
compute the proper pull-up value is to use SPICE modeling; no single specific resistance value guarantees that
the system will work perfectly.

1.10  Byte Write Enable
An additional set of signals is needed for those devices that span multiple byte lanes (for example, DH(0-7), 
DH(8-15)) on the system bus. In most cases, IDT does not recommend requiring that a 64-bit-wide SRAM, for
example, could be written to in 64-bit quantities only while disallowing byte writes or smaller sizes. For such
devices, it is necessary to use a write enable that is conditional on the size and address of the transfer, instead of
a global write (WE) as provided by the DBSM logic. 

As the 60x bus ignores any data placed on bytes lanes that are not needed on a read operation, the BYTEW
logic is specific to write operations only. Note that this entire logic block is not needed if all the devices
attached to the AEIOU are 8 bits, or if they are only written to in their natural sizes (defined as the number of
data bits connected to the 60x bus). For example, a 16-bit FIFO does not need the BYTEW module, because
FIFOs are read or written only as 16-bit quantities. For those devices that require byte lane enables, the logic
shown in the following VHDL entity is needed.

------------------------------------------------------------------------------

-- VHDL Entity AEIOU.BYTEW

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



31
-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF BYTEW is

BEGIN      

   -- Copy 'we_L' to 'bwe_L(x)' as indicated by transfer size and address.

   bwe_L(0) <= we_L WHEN (  (tsiz = "001"  and  a = "000")    -- byte

                         or (tsiz = "010"  and  a = "000")    -- half-word

                         or (tsiz = "100"  and  a = "000")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "000")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

   bwe_L(1) <= we_L WHEN (  (tsiz = "001"  and  a = "001")    -- byte

                         or (tsiz = "010"  and  a = "000")    -- half-word

                         or (tsiz = "100"  and  a = "000")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "000")    -- three-byte

                         or (tsiz = "011"  and  a = "001")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

   bwe_L(2) <= we_L WHEN (  (tsiz = "001"  and  a = "010")    -- byte

                         or (tsiz = "010"  and  a = "010")    -- half-word

                         or (tsiz = "100"  and  a = "000")    -- word
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



32
                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "000")    -- three-byte

                         or (tsiz = "011"  and  a = "001")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

   bwe_L(3) <= we_L WHEN (  (tsiz = "001"  and  a = "011")    -- byte

                         or (tsiz = "010"  and  a = "010")    -- half-word

                         or (tsiz = "100"  and  a = "000")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "001")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

   bwe_L(4) <= we_L WHEN (  (tsiz = "001"  and  a = "100")    -- byte

                         or (tsiz = "010"  and  a = "100")    -- half-word

                         or (tsiz = "100"  and  a = "100")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "100")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

   bwe_L(5) <= we_L WHEN (  (tsiz = "001"  and  a = "101")    -- byte

                         or (tsiz = "010"  and  a = "100")    -- half-word

                         or (tsiz = "100"  and  a = "100")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "100")    -- three-byte

                         or (tsiz = "011"  and  a = "101")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



33
   bwe_L(6) <= we_L WHEN (  (tsiz = "001"  and  a = "110")    -- byte

                         or (tsiz = "010"  and  a = "110")    -- half-word

                         or (tsiz = "100"  and  a = "100")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "100")    -- three-byte

                         or (tsiz = "011"  and  a = "101")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

   bwe_L(7) <= we_L WHEN (  (tsiz = "001"  and  a = "111")    -- byte

                         or (tsiz = "010"  and  a = "110")    -- half-word

                         or (tsiz = "100"  and  a = "100")    -- word

                         or (tsiz = "000"  and  a = "000")    -- double-word

                         or (tsiz = "011"  and  a = "101")    -- three-byte

                         or (tbst_L = '0')                    -- burst

                         )

                    ELSE '1';

END BEHAVIOR;

------------------------------------------------------------------------------

The values for the VHDL code for the BYTEW module are directly derived from the data alignment tables in
the processor user’s manuals, for example, the MPC750 RISC Microprocessor User’s Manual. Burst transfers
enable all byte lanes, while all other transfers enable only the byte lanes based on the address and transfer size.

The three-byte cycles arise from the requirement that 60x bus masters handle misaligned transfers by breaking
them into two separate cycles. See the MPC750 RISC Microprocessor User’s Manual for details on this
process. These cycles do not occur unless the program generates misaligned transfers; therefore, the three-byte
logic elements could conceivably be eliminated. Note, though, that because I/O spaces are usually designated
as non-cacheable, the L1 cache of the processor does not filter these misaligned accesses. If they occur, the
program fails. However, IDT recommends retaining the three-byte cases if possible.

1.11  Internal Peripherals
To show the capabilities of the non-burst capabilities, an additional module is included to implement some
general-purpose I/O and a register file. The GPIO module contains an 8-bit output port, an 8-bit input port, and
eight 8-bit registers. The register file implements an array of 8 locations (all upper-byte aligned); the first
location is read-only and contains a version ID; the remainder locations are read/write.

Although a UART or other complex function might be more desirable, it is beyond the scope of this application
note to examine the internals of a UART. Implementing such devices is often device- or vendor-specific. 
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



34
-- VHDL Entity AEIOU.GPIO

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF GPIO is

SIGNAL gout_L: std_logic; -- GPIO Write strobe.

SIGNAL rout_L: std_logic; -- Reg Write strobe.

TYPE regfileIS ARRAY (0 to 7)

OF std_logic_vector(0 to 7); -- Regfile array.

SIGNAL regs     : regfile;

BEGIN

--------------------------------------------------------------------------------

-- GPIO Ports:

-- The output latch stores data whenever writes occur to GPIO space at address

-- 'xx_xxx0'.  We do not check the transfer size, so any size write can be used

-- (though byte is more typical).

gout_L <= '0' WHEN (we_L = '0'  AND  gpiocs_L = '0'  AND  a = "000")

ELSE '1';

gr: PROCESS ( gout_L, rst_L, d_in )

BEGIN

IF (rst_L = '0') THEN

gpio_out <= (OTHERS => '1');
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



35
ELSIF (gout_L = '0') THEN

gpio_out <= d_in;

END IF;

END PROCESS;

-- Input devices are handled a little differently; we have to share the data bus

-- at the top level, so here we provide the data as-is and supply an 

-- output enable strobe that does most of the work.

gpiorden_L <= '0' WHEN (oe_L = '0'  AND  gpiocs_L = '0'  AND  a = "000")

ELSE '1';

gpiord_out <= gpio_in;

------------------------------------------------------------------------------

-- Register File

rout_L <= '0' WHEN (we_L = '0'  AND  regcs_L = '0'  AND  a /= "000")

ELSE '1';

rw: PROCESS ( rout_L, rst_L, d_in, a, regs )

BEGIN

IF (rst_L = '0') THEN

regs(0) <= CONV_STD_LOGIC_VECTOR( 16#41#, 8 ); -- Register 0 : "A".

regs(1) <= CONV_STD_LOGIC_VECTOR( 16#45#, 8 ); -- Register 1 : "E".

regs(2) <= CONV_STD_LOGIC_VECTOR( 16#49#, 8 ); -- Register 2 : "I".

regs(3) <= CONV_STD_LOGIC_VECTOR( 16#4F#, 8 ); -- Register 3 : "O".

regs(4) <= CONV_STD_LOGIC_VECTOR( 16#55#, 8 ); -- Register 4 : "U".

regs(5) <= CONV_STD_LOGIC_VECTOR( 16#5F#, 8 ); -- Register 5 : "_".

regs(6) <= CONV_STD_LOGIC_VECTOR( 16#30#, 8 ); -- Register 6 : "0".

regs(7) <= CONV_STD_LOGIC_VECTOR( 16#31#, 8 ); -- Register 7 : "1".

ELSIF (rout_L = '0') THEN

CASE a IS

WHEN "000"  =>    regs(0)  <= d_in;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



36
WHEN "001"  =>    regs(1)  <= d_in;

WHEN "010"  =>    regs(2)  <= d_in;

WHEN "011"  =>    regs(3)  <= d_in;

WHEN "100"  =>    regs(4)  <= d_in;

WHEN "101"  =>    regs(5)  <= d_in;

WHEN "110"  =>    regs(6)  <= d_in;

WHEN "111"  =>    regs(7)  <= d_in;

WHEN OTHERS=>    NULL;-- Shouldn't be possible..

END CASE;

END IF;

END PROCESS;

-- Reading is similar to GPIO case (except there's lots more).

regrden_L <= '0' WHEN (oe_L = '0'  AND  regcs_L = '0')

ELSE '1';

rr: PROCESS ( rout_L, rst_L, d_in, a )

BEGIN

CASE a IS

WHEN "000"  =>    regrd_out  <= regs(0);

WHEN "001"  =>    regrd_out  <= regs(1);

WHEN "010"  =>    regrd_out  <= regs(2);

WHEN "011"  =>    regrd_out  <= regs(3);

WHEN "100"  =>    regrd_out  <= regs(4);

WHEN "101"  =>    regrd_out  <= regs(5);

WHEN "110"  =>    regrd_out  <= regs(6);

WHEN "111"  =>    regrd_out  <= regs(7);

WHEN OTHERS =>  NULL; -- Shouldn't be possible...

END CASE;

   END PROCESS;

   

END BEHAVIOR;

----------------------------------------------------------------------------
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



37
In addition, the following code snippet merges the GPIO data bus at the top-most level of the design to avoid
the use of tri-state devices inside the FPGA/ASIC, which some manufacturers shun for causing test difficulties. 

----------------------------------------------------------------------------

-- Create the bidirectional data bus. The following way makes it

-- easier to analyze (no timing loops) but makes the wiring a little more

-- difficult.

D <= gpiord_out WHEN (gpiorden_L = '0')ELSE (OTHERS => 'Z');

D <= regrd_out WHEN (regrden_L = '0')ELSE (OTHERS => 'Z');

d_in <= D;

----------------------------------------------------------------------------

1.12  The AEIOU
Finally, the AEIOU entity can be created from the previously created modules. The AEIOU block has no logic
functions; it only connects instances of the AIM, BYTWE, DBSM, GPIO and TADRIVE modules to the I/O
pins.

------------------------------------------------------------------------------

-- VHDL Entity AEIOU.AEIOU

--

-- Copyright 1999, by Tundra or its license source.

-- All rights reserved. No warranty, expressed or implied, is made as to the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ENTITY AEIOU IS

   PORT( 

      AACK_L    : IN     std_logic  ;

      A_HIGH    : IN     std_logic_vector (0 to 2) ;

      A_LOW     : IN     std_logic_vector (10 to 31) ;

      BUSY_L    : IN     std_logic  ;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



38
      CLK       : IN     std_logic  ;

      DBGLB_L   : IN     std_logic  ;

      GPIO_IN   : IN     std_logic_vector (0 to 7) ;

      RST_L     : IN     std_logic  ;

      TBST_L    : IN     std_logic  ;

      TSIZ      : IN     std_logic_vector (0 to 2) ;

      TS_L      : IN     std_logic  ;

      TT1       : IN     std_logic  ;

      ADSC_L    : OUT    std_logic  ;

      BAA_L     : OUT    std_logic  ;

      BWE_L     : OUT    std_logic_vector (0 to 7) ;

      GPIO_OUT  : OUT    std_logic_vector (0 to 7) ;

      IOA       : OUT    std_logic_vector (12 TO 31) ;

      LBCLAIM_L : OUT    std_logic  ;

      OE_L      : OUT    std_logic  ;

      SRAM_CS_L : OUT    std_logic  ;

      TA_L      : OUT    std_logic  ;

      D         : INOUT  std_logic_vector (0 to 7)

   );

END AEIOU ;

LIBRARY AEIOU;

----------------------------------------------------------------------------

ARCHITECTURE BEHAVIOR OF AEIOU IS

-- Architecture declarations

SIGNAL ta_oen_L : std_logic;

-- Internal signal declarations

SIGNAL d_in          : std_logic_vector(0 to 7);

SIGNAL doit_L        : std_logic;

SIGNAL done_L        : std_logic;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



39
SIGNAL fastcs_L      : std_logic;

SIGNAL ff_IOA        : std_logic_vector(10 TO 31);

SIGNAL ff_tbst_L     : std_logic;

SIGNAL ff_tsiz       : std_logic_vector(0 to 2);

SIGNAL gpiord_out    : std_logic_vector(0 to 7);

SIGNAL gpiorden_L    : std_logic;

SIGNAL iocs_L        : std_logic;

SIGNAL regrd_out     : std_logic_vector(0 to 7);

SIGNAL regrden_L     : std_logic;

SIGNAL ta_internal_L : std_logic;

SIGNAL tt_rw_L       : std_logic;

SIGNAL we_L          : std_logic;

-- Implicit buffer signal declarations

SIGNAL OE_L_internal : std_logic ;

-- Component Declarations

COMPONENT AIM

   PORT (

      a_high    : IN     std_logic_vector (0 to 2);

      a_low     : IN     std_logic_vector (10 to 31);

      aack_L    : IN     std_logic ;

      clk       : IN     std_logic ;

      done_L    : IN     std_logic ;

      rst_L     : IN     std_logic ;

      tbst_L    : IN     std_logic ;

      ts_L      : IN     std_logic ;

      tsiz      : IN     std_logic_vector (0 to 2);

      tt1       : IN     std_logic ;

      doit_L    : OUT    std_logic ;

      ff_a_low  : OUT    std_logic_vector (10 TO 31);

      ff_tbst_L : OUT    std_logic ;

      ff_tsiz   : OUT    std_logic_vector (0 to 2);

      ff_tt1    : OUT    std_logic ;
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



40
      lbclaim_L : OUT    std_logic 

   );

END COMPONENT;

COMPONENT BYTEW

   PORT (

      a      : IN     std_logic_vector (29 to 31);

      tbst_L : IN     std_logic ;

      tsiz   : IN     std_logic_vector (0 to 2);

      we_L   : IN     std_logic ;

      bwe_L  : OUT    std_logic_vector (0 to 7)

   );

END COMPONENT;

COMPONENT DBSM

   PORT (

      a       : IN     std_logic_vector (10 to 31);

      busy_L  : IN     std_logic ;

      clk     : IN     std_logic ;

      dbglb_L : IN     std_logic ;

      doit_L  : IN     std_logic ;

      rst_L   : IN     std_logic ;

      tbst_L  : IN     std_logic ;

      tt_rw_L : IN     std_logic ;

      adsc_L  : OUT    std_logic ;

      baa_L   : OUT    std_logic ;

      done_L  : OUT    std_logic ;

      fcs_L   : OUT    std_logic ;

      iocs_L  : OUT    std_logic ;

      oe_L    : OUT    std_logic ;

      scs_L   : OUT    std_logic ;

      ta_L    : OUT    std_logic ;

      we_L    : OUT    std_logic 

   );

END COMPONENT;

COMPONENT GPIO
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



41
   PORT (

      a          : IN     std_logic_vector (26 to 28);

      d_in       : IN     std_logic_vector (0 to 7);

      gpio_in    : IN     std_logic_vector (0 to 7);

      gpiocs_L   : IN     std_logic ;

      oe_L       : IN     std_logic ;

      regcs_L    : IN     std_logic ;

      rst_L      : IN     std_logic ;

      we_L       : IN     std_logic ;

      gpio_out   : OUT    std_logic_vector (0 to 7);

      gpiord_out : OUT    std_logic_vector (0 to 7);

      gpiorden_L : OUT    std_logic ;

      regrd_out  : OUT    std_logic_vector (0 to 7);

      regrden_L  : OUT    std_logic 

   );

END COMPONENT;

COMPONENT TADRIVE

   PORT (

      clk           : IN     std_logic ;

      rst_L         : IN     std_logic ;

      ta_internal_L : IN     std_logic ;

      ta_L          : OUT    std_logic 

   );

END COMPONENT;

-- Optional embedded configurations

--synopsys translate_off

FOR ALL : AIM USE ENTITY AEIOU.AIM;

FOR ALL : BYTEW USE ENTITY AEIOU.BYTEW;

FOR ALL : DBSM USE ENTITY AEIOU.DBSM;

FOR ALL : GPIO USE ENTITY AEIOU.GPIO;

FOR ALL : TADRIVE USE ENTITY AEIOU.TADRIVE;

--synopsys translate_on
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



42
BEGIN

-- Architecture concurrent statements

-- HDL Embedded Text Block 1 eb1

-- Create the bidirectional data bus.  The following way makes it easier to analyze

-- (no timing loops) but makes the wiring a little more difficult.

D <= gpiord_out WHEN (gpiorden_L = '0')ELSE (OTHERS => 'Z');

D <= regrd_out WHEN (regrden_L = '0')ELSE (OTHERS => 'Z');

d_in <= D;

-- HDL Embedded Text Block 2 buscp1

IOA(12 TO 31) <=

   ff_IOA(12 TO 31);

-- Instance port mappings.

   AIz : AIM

      PORT MAP (

         a_high    => A_HIGH,

         a_low     => A_LOW,

         aack_L    => AACK_L,

         clk       => CLK,

         done_L    => done_L,

         rst_L     => RST_L,

         tbst_L    => TBST_L,

         ts_L      => TS_L,

         tsiz      => TSIZ,

         tt1       => TT1,

         doit_L    => doit_L,

         ff_a_low  => ff_IOA(10 TO 31),

         ff_tbst_L => ff_tbst_L,

         ff_tsiz   => ff_tsiz,

         ff_tt1    => tt_rw_L,

         lbclaim_L => LBCLAIM_L
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



43
      );

   BEz : BYTEW

      PORT MAP (

         a      => ff_IOA(29 TO 31),

         tbst_L => ff_tbst_L,

         tsiz   => ff_tsiz,

         we_L   => tt_rw_L,

         bwe_L  => BWE_L

      );

   DBz : DBSM

      PORT MAP (

         a       => ff_IOA(10 TO 31),

         busy_L  => BUSY_L,

         clk     => CLK,

         dbglb_L => DBGLB_L,

         doit_L  => doit_L,

         rst_L   => RST_L,

         tbst_L  => ff_tbst_L,

         tt_rw_L => tt_rw_L,

         adsc_L  => ADSC_L,

         baa_L   => BAA_L,

         done_L  => done_L,

         fcs_L   => fastcs_L,

         iocs_L  => iocs_L,

         oe_L    => OE_L_internal,

         scs_L   => SRAM_CS_L,

         ta_L    => ta_internal_L,

         we_L    => we_L

      );

   GPz : GPIO

      PORT MAP (

         a          => ff_IOA(26 TO 28),

         d_in       => d_in,

         gpio_in    => GPIO_IN,
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



44
         gpiocs_L   => iocs_L,

         oe_L       => OE_L_internal,

         regcs_L    => fastcs_L,

         rst_L      => RST_L,

         we_L       => we_L,

         gpio_out   => GPIO_OUT,

         gpiord_out => gpiord_out,

         gpiorden_L => gpiorden_L,

         regrd_out  => regrd_out,

         regrden_L  => regrden_L

      );

   TDz : TADRIVE

      PORT MAP (

         clk           => CLK,

         rst_L         => RST_L,

         ta_internal_L => ta_internal_L,

         ta_L          => TA_L

      );

   -- Implicit buffered output assignments

   OE_L <= OE_L_internal;

END BEHAVIOR;

------------------------------------------------------------------------------

1.13  Conclusion
The LBS interface represents an easy means of connecting high-speed peripherals to the 60x bus. By using the
facilities of the Tsi107, a high-performance interface can be created in an ASIC or FPGA without the need to
design a 60x bus master. 
Desiging a Local Bus Slave Interface

80C2000_AN004_02

Integrated Device Technology

www.idt.com



Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most 
up-to-date version of a document, or your nearest sales 
office, please visit www.renesas.com/contact-us/. 

Trademarks
Renesas and the Renesas logo are trademarks of Renesas 
Electronics Corporation. All trademarks and registered 
trademarks are the property  of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL 
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING 
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND 
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) 
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) 
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These 
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an 
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is 
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims 
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, 
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and 
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise 
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Titlepage

