カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

H8/300H Tiny シリーズ

タイマ Z コンペアマッチ 0/1 出力

要旨

タイマ Z のタイマカウンタ 0 (TCNT0) がコンペアマッチしたとき、0 または1を出力します。

動作確認デバイス

H8/3687

目次

1.	仕様	. 2
2.	使用機能説明	. 2
3.	動作説明	. 5
4.	ソフトウェア説明	. 6
5.	フローチャート	. 8
6.	プログラムリスト	. 9

1. 仕様

- 1. 9イマZの9イマカウン90 (TCNT0) がコンペアマッチしたとき、0または1を出力します。
- 2. FTIOA0 端子は通常時 1 を出力し、TCNT0 と GRA0 のコンペアマッチ時に 0 を出力します。
- 3. FTIOB0 端子は通常時 0 を出力し、TCNT0 と GRB0 のコンペアマッチ時に 1 を出力します。

2. 使用機能説明

- 1. 本タスク例では、タイマ Z のタイマカウンタ O (TCNTO) が、コンペアマッチしたとき、出力端子から O または I を 出力します。タイマ Z のブロック図を図 I に示します。以下にタイマ I のブロック図について説明します。
- システムクロック (φ)

16MHz のクロックで、CPU および周辺機能を動作させるための基準クロックです。

- プリスケーラ **S** (PSS)
 - φを入力とする 13 ビットのカウンタで、1 サイクルごとにカウントアップします。
- タイマコントロールレジスタ 0 (TCR0)

TCNT0 の入力クロック、クリア方法を選択します。本タスク例では、 $\phi/2$ の立ち上がりエッジでカウント、TCNT0 をクリアしない設定にしています。

● タイマ I/O コントロールレジスタ A0 (TIORA0)

GRA0、GRB0 を制御します。本タスク例では、GRA0、GRB0 をアウトプットコンペアレジスタとし、FTIOA0 端子は、GRA0 のコンペアマッチで 0 を出力、FTIOB0 端子は、GRB0 のコンペアマッチで 1 を出力します。

● タイマカウンタ 0 (TCNT0)

16 ビットのリード/ライト可能なアップカウンタです。入力する内部クロック/外部クロックによりカウントアップされます。本タスク例では、 $\phi/2$ の立ち上がりエッジでカウントします。

• ジェネラルレジスタ A0 (GRA0)

16 ビットのリード/ライト可能なレジスタです。GRA0 の内容は TCNT0 と常に比較されております。本タスク例では、GRA0 の値を 0x4000 に設定しています。

• ジェネラルレジスタ B0 (GRB0)

16 ビットのリード/ライト可能なレジスタです。GRB0 の内容は TCNT0 と常に比較されております。本タスク例では、GRB0 の値を 0x8000 に設定しています。

- タイマスタートレジスタ (TSTR)
 - TCNT0、TCNT1の動作/停止を選択します。本タスク例では、TCNT0、TCNT1をカウント動作に設定しています。
- タイマモードレジスタ (TMDR)

TCNT0、TCNT1 のタイマ同期/独立を選択します。本タスク例では、TCNT0 と TCNT1 は、独立動作に設定しています。

● タイマ PWM モードレジスタ(TPMR)

出力端子の通常動作/PWM モードを設定します。本タスク例では、全ての出力端子を通常動作に設定しています。

- タイマファンクションコントロールレジスタ (TFCR)
 - 各動作モードの設定や出力レベルを選択します。本タスク例では、チャネル 0、チャネル 1 を通常動作に設定しています。
- タイマアウトプットプットマスタイネーブルレジスタ(TOER)

チャネル 0、チャネル 1 の出力許可/禁止を選択します。本タスク例では、FTIOA0、FTIOB0 の出力を許可にしています。

● タイマアウトプットコントロールレジスタ (TOCR)

コンペアマッチが最初に起こるまでの初期出力を設定します。本タスク例では、FTIOA0 の初期出力を 1、FTIOB0 の初期出力を 0 にしています。

- インプットキャプチャ/アウトプットコンペア A0 端子 (FTIOA0)
 - アウトプットコンペア出力端子に設定し、TCNT0と GRA0のコンペアマッチ時に0を出力します。
- インプットキャプチャ/アウトプットコンペア B0 端子 (FTIOB0)
 - アウトプットコンペア出力端子に設定し、TCNT0と GRB0 のコンペアマッチ時に1を出力します。

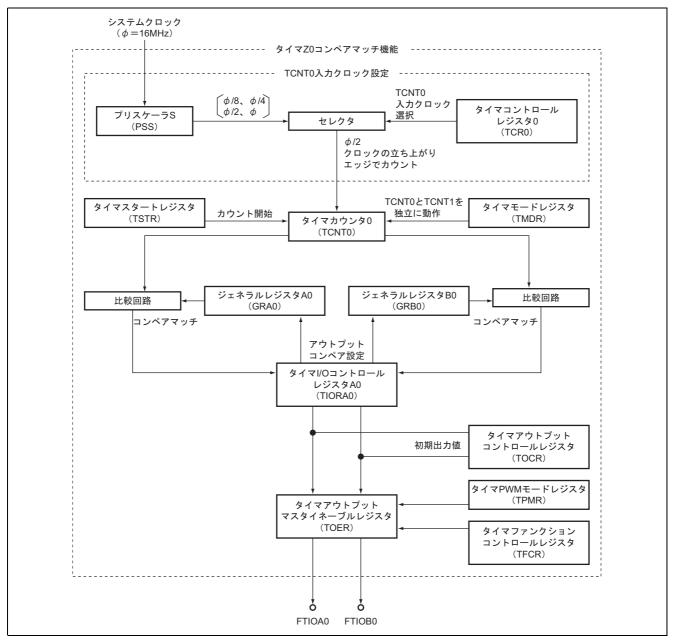


図 2.1 タイマ Z0 コンペアマッチ 0/1 出力のブロック図

2. 本タスク例の機能割り付けを表 2.1 に示します。表 2.1 に示すように機能を割り付け、タイマ Z コンペアマッチによる 0/1 出力を行います。

表 2.1 機能割り付け

機能	機能割り付け
PSS	システムクロックを入力とする 13 ビットのカウンタ
TCR0	TCNT0 の入力クロックを設定
TIORA0	FTIOA0 端子、FTIOB0 端子の設定
TCNT0	16 ビットカウンタ
GRA0	TCNT0 との比較
GRB0	TCNT0 との比較
TSTR	TCNT0 のカウントスタート
TMDR	TCNT0 と TCNT1 を独立に動作
TPMR	全ての出力端子を通常動作に設定
TFCR	チャネル 0、チャネル 1 を通常動作に設定
TOER	FTIOA0 端子、FTIOB0 端子の出力を許可
TOCR	FTIOA0 端子、FTIOB0 端子の初期出力値を設定
FTIOA0 端子	GRA0 コンペアマッチで 0 を出力
FTIOB0 端子	GRB0 コンペアマッチで 1 を出力

3. 動作説明

動作説明を図 3.1 に示します。図 3.1 に示すようなハードウェア処理、およびソフトウェア処理により、タイマ Z コンペアマッチによる 0/1 出力を行います。

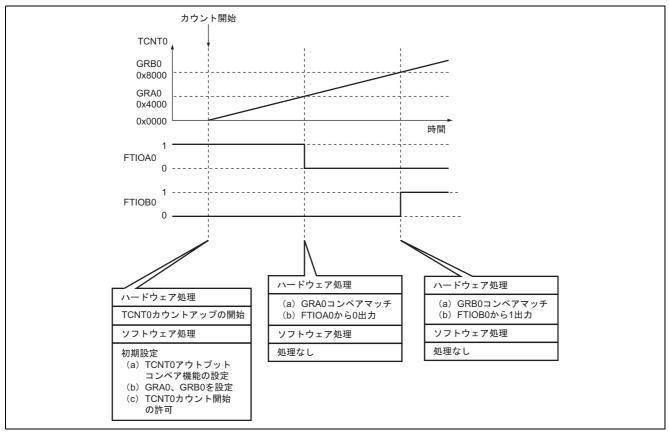


図 3.1 動作説明

4. ソフトウェア説明

4.1 モジュール説明

本タスク例のモジュールを表 4.1 に示します。

表 4.1 モジュール説明

モジュール名	ラベル名	機能
メインルーチン	main	タイマ Z コンペアマッチ機能の設定、カウンタ開始、コンペアマッチ出力端子の設定を行う。

4.2 引数の説明

本タスク例では、引数を使用しません

4.3 使用内部レジスタ説明

本タスク例の使用内部レジスタを以下に示します。

• TCR0 タイマコントロールレジスタ 0 アドレス: 0xF700

ビット	ビット名	設定値	機能
7	CCLR2	CCLR2=0	カウンタクリア 2~0
6	CCLR1	CCLR1=0	CCLR2=×、CCLR1=0、CCLR0=0: TCNT0 のクリア禁止
5	CCLR0	CCLR0=0	(×: Don't care)
4	CKEG1	CKEG1=0	クロックエッジ 1~0
3	CKEG0	CKEG0=0	CKEG1=0、CKEG0=0:立ち上がりエッジでカウント
2	TPSC2	TPSC2=0	タイマプリスケーラ 2~0
1	TPSC1	TPSC1=0	TPSC2=0、TPSC1=0、TPSC0=1:φ/2 でカウント
0	TPSC0	TPSC0=1	

• TIORA0 タイマ I/O コントロールレジスタ A0 アドレス: 0xF701

ビット	ビット名	設定値	機能
6	IOB2	IOB2=0	I/O コントロール B2~0
5	IOB1	IOB1=1	IOB2=0、IOB1=1、IOB0=0
4	IOB0	IOB0=0	: GRB0 をアウトプットコンペアレジスタとし、FTIOB0 端子は、
			GRB0 のコンペアマッチで 1 を出力する
2	IOA2	IOA2=0	I/O コントロール A2~0
1	IOA1	IOA1=0	IOA2=0、IOA1=0、IOA0=1
0	IOA0	IOA0=1	: GRA0 をアウトプットコンペアレジスタとし、FTIOA0 端子は、
			GRA0 のコンペアマッチで 0 を出力する

• TCNT0 タイマカウンタ 0 アドレス: 0xF706

機能: φ/2 の立ち上がりエッジでカウントする 16 ビットのアップカウンタ

設定值: 0x0000

• GRAO ジェネラルレジスタ AO アドレス: 0xF708

機能: GRAO の設定値と TCNTO のカウンタ値が一致すると、コンペアマッチが発生

設定值: 0x4000

• GRB0 ジェネラルレジスタ B0 アドレス: 0xF70A

機能: GRB0 の設定値と TCNT0 のカウンタ値が一致すると、コンペアマッチが発生

設定値: 0x8000

• TSTR タイマスタートレジスタ アドレス: 0xF720

ビット	ビット名	設定値	機能
0	STR0	0	チャネル 0 カウンタスタート
			STR0=0:TCNT0は、カウント動作停止
			STR0=1 : TCNT0 は、カウント動作開始

● TMDR タイマモードレジスタ アドレス: 0xF721

ビット	ビット名	設定値	機能
0	SYNC	0	タイマ同期
			SYNC=0:TCNT0、TCNT1は、独立動作
			SYNC=1: TCNT0、TCNT1は、同期動作

• TPMR タイマ PWM モードレジスタ アドレス: 0xF722

ビット	ビット名	設定値	機能
0	PWMB0	0	PWM モード B0
			PWMB0=0 : FTIOB0 は、通常動作
			PWMB0=1:FTIOB0は、PWMモード

• TFCR タイマファンクションコントロールレジスタ アドレス: 0xF723

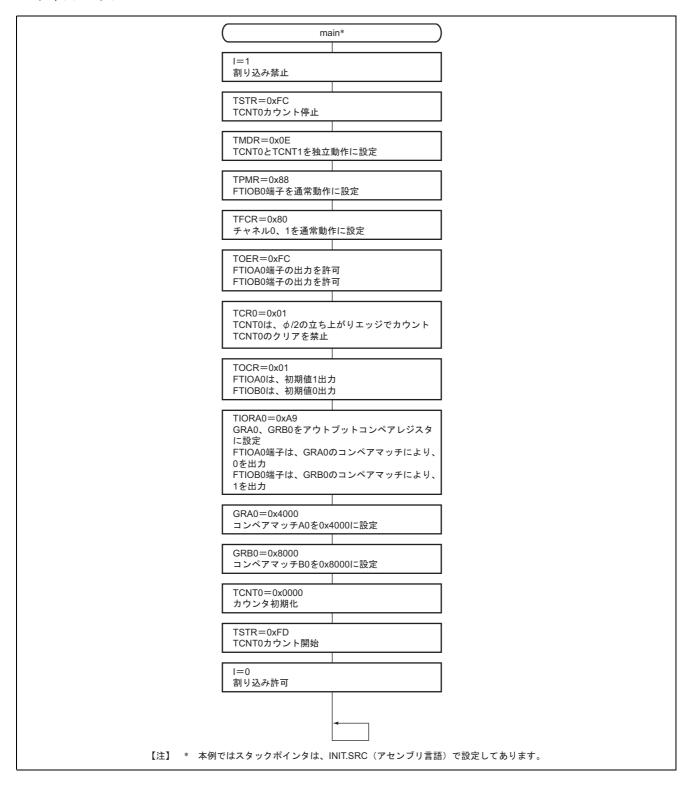
ビット	ビット名	設定値	機能
1	CMD1	CMD1=0	コンビネーションモード 1~0
0	CMD0	CMD0=0	CMD1=0、CMD0=0 : チャネル 0、1 は、通常動作

• TOER タイマアウトプットマスタイネーブルレジスタ アドレス: 0xF724

ビット	ビット名	設定値	機能	
1	EB0	0	マスタイネーブル B0	
			EB0=0:FTIOB0 端子の出力を許可	
			EB0=1: FTIOB0 端子の出力を禁止	
0	EA0	0	マスタイネーブル A0	
			EA0=0:FTIOA0 端子の出力を許可	
			EA0=1:FTIOA0 端子の出力を禁止	

• TOCR タイマアウトプットコントールレジスタ アドレス: 0xF725

ビット	ビット名	設定値	機能	
1	TOB0	1	出力レベルセレクト B0	
			TOB0=0:FTIOB0 端子の初期出力を 0 に設定	
			TOB0=1 : FTIOB0 端子の初期出力を 1 に設定	
0	TOA0	0	出カレベルセレクト A0	
			TOA0=0:FTIOA0 端子の初期出力を 0 に設定	
			TOA0=1 : FTIOA0 端子の初期出力を 1 に設定	


4.4 使用 RAM 説明

本タスク例では、RAM を使用しません。

5. フローチャート

メインルーチン

6. プログラムリスト

```
H8/300HN Series -H8/3687-
   Application Note
                                                                                           * /
  'Output 0 and 1 by output compare function'
  Function
   : Timer Z output compare function
   External Clock: 16MHz
  Internal Clock : 16MHz
  Sub Clock :
                32.768kHz
#include <machine.h>
struct BIT {
                        /* bit7 */
   unsigned char b6:1;
                        /* bit6 */
                       /* bit5 */
   unsigned char b5:1;
   unsigned char b4:1;
                       /* bit4 */
                       /* bit3 */
   unsigned char b3:1;
   unsigned char b2:1;
                       /* bit2 */
                        /* bit1 */
   unsigned char b1:1:
   unsigned char b0:1;
                        /* bit0 */
};
#define
         TCR0
                    *(volatile unsigned char *)0xF700
                                                          /* Timer control register_0
#define
         TIORA0
                    *(volatile unsigned char *)0xF701
                                                           /* Timer I/O Control Register A_0
#define
         TCNT0
                    *(volatile unsigned short *)0xF706
                                                           /* Timer counter_0
#define
         GRA0
                    *(volatile unsigned short *)0xF708
                                                           /* General register A 0
#define
         GRB0
                    *(volatile unsigned short *)0xF70A
                                                           /* General register B_0
                     *(volatile unsigned char *)0xF710
                                                           /* Timer control register_1
                     *(volatile unsigned char *)0xF711
#define
          TIORA1
                                                           /* Timer I/O Control Register A 1
#define
          TSTR
                     *(volatile unsigned char *)0xF720
                                                           /* Timer start register
#define
                     *(volatile unsigned char *)0xF721
          TMDR
                                                           /* Timer mode register
#define
          TPMR
                     *(volatile unsigned char *)0xF722
                                                           /* Timer PWM mode register
                     *(volatile unsigned char *)0xF723
                                                           /* Timer function control register
                                                                                           */
#define
          TFCR
#define
          TOER
                     *(volatile unsigned char *)0xF724
                                                           /* Timer output master enable register
#define
                     *(volatile unsigned char *)0xF725
                                                           /* Timer output control register
/* Function define
extern void INIT ( void );
                                                           /* SP Set
void main ( void );
```



```
#pragma section V1
                                                           /* VECTOR SECTOIN SET
                                                           /* 0x00 - 0x0f
void (*const VEC_TBL1[])(void) = {
                                                           /* 00 Reset
                                                           /* P
/* Main Program
                                                                                           */
   set_imask_ccr(1);
                                                           /* Interrupt Disable
   TSTR = 0xFC;
                                                            /* TCNT0 count stop
   TMDR = 0x0E;
                                                            /* TCNT0,TCNT1 Single Mode
   TPMR = 0 \times 88:
                                                            /* FTIOBO is Normal Mode
   TFCR = 0x80;
                                                            /* Chanel 0,1 is Normal Mode
                                                            /* FTIOA0,FTIOB0 Output Enable
   TOER = 0xFC;
   TCR0 = 0x01;
                                                            /* Rising edge, phi/2 Clock count
   TOCR = 0x01;
                                                            /* First level set FTIOA0:1 FTIOB0:0
   TIORA0 = 0xA9;
                                                            /* 0 output by GRA compare match
                                                            /* 1 output by GRB compare match
   GRA0 = 0x4000;
                                                            /* Set GRA0
   GRB0 = 0x8000;
                                                            /* Set GRB0
   TCNT0 = 0x0000;
                                                            /* Set TCNT0
   TSTR = 0xFD;
                                                            /* TCNT0 count start
                                                                                           */
   set_imask_ccr(0);
                                                           /* Interrupt Enable
   while(1);
```

リンクアドレス指定

セクション名	アドレス
CV1	0x0000
Р	0x0100

改訂記録

		改訂内容	
Rev.	発行日	ページ	ポイント
1.00	2003.09.24	_	初版発行

安全設計に関するお願い -

1. 弊社は品質、信頼性の向上に努めておりますが、半導体製品は故障が発生したり、誤動作する場合があります。弊社の半導体製品の故障又は誤動作によって結果として、人身事故、火災事故、社会的損害などを生じさせないような安全性を考慮した冗長設計、延焼対策設計、誤動作防止設計などの安全設計に十分ご留意ください。

■ 本資料ご利用に際しての留意事項 ■

- 1. 本資料は、お客様が用途に応じた適切なルネサステクノロジ製品をご購入いただくための参考資料であり、本資料中に記載の技術情報についてルネサステクノロジが所有する知的財産権その他の権利の実施、使用を許諾するものではありません。
- 2. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例の使用に起因する損害、第三者所有の権利に対する侵害に関し、ルネサステクノロジは責任を負いません。
- 3. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他全ての情報は本資料発行時点のものであり、ルネサステクノロジは、予告なしに、本資料に記載した製品または仕様を変更することがあります。ルネサステクノロジ半導体製品のご購入に当たりましては、事前にルネサステクノロジ、ルネサス販売または特約店へ最新の情報をご確認頂きますとともに、ルネサステクノロジホームページ(http://www.renesas.com)などを通じて公開される情報に常にご注意ください。
- 4. 本資料に記載した情報は、正確を期すため、慎重に制作したものですが万一本資料の記述誤りに起 因する損害がお客様に生じた場合には、ルネサステクノロジはその責任を負いません。
- 5. 本資料に記載の製品データ、図、表に示す技術的な内容、プログラム及びアルゴリズムを流用する場合は、技術内容、プログラム、アルゴリズム単位で評価するだけでなく、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。ルネサステクノロジは、適用可否に対する責任は負いません。
- 6. 本資料に記載された製品は、人命にかかわるような状況の下で使用される機器あるいはシステムに 用いられることを目的として設計、製造されたものではありません。本資料に記載の製品を運輸、 移動体用、医療用、航空宇宙用、原子力制御用、海底中継用機器あるいはシステムなど、特殊用途 へのご利用をご検討の際には、ルネサス テクノロジ、ルネサス販売または特約店へご照会ください。
- 7. 本資料の転載、複製については、文書によるルネサステクノロジの事前の承諾が必要です。
- 8. 本資料に関し詳細についてのお問い合わせ、その他お気付きの点がございましたらルネサステクノロジ、ルネサス販売または特約店までご照会ください。