F1102 – Extended Frequency Testing

- September 22, 2015
- AT0249

Michael J. Virostko
Principal Product Application Engineer

The Analog and Digital Company™

Agenda

- ➤ Customer had seen a previous test results of the F1102 mixer in which the frequency range was extended.
- They would like to know if it would work in the following bands:

Band		out MHz)			tput MHz)	
1	150	680	806	956	1486	$f_{\rm IF} = f_{\rm LO} + f_{\rm RF}$
2	863	866	806	1669	1672	$f_{\rm IF} = f_{\rm LO} + f_{\rm RF}$
3	276	282	806	530 524		$f_{\rm IF} = f_{\rm LO} - f_{\rm RF}$
4	136	318	1105	969	787	$f_{\rm IF} = f_{\rm LO} - f_{\rm RF}$
5	55	566	1105	1160	1671	$f_{\rm IF} = f_{\rm LO} + f_{\rm RF}$
6	575	581	1105	530	524	$f_{\rm IF} = f_{\rm LO} - f_{\rm RF}$

Circuit Modifications

- The previous report, AT0225-F1102 Extended Frequency Range R01.pdf, modified the three ports for operation.
- > Key Components
 - RF Path
 - ✓ C8=C10 = 18 pF
 - ✓ Added Shunt 3.0 pF
 - ✓ Tuned for 400 MHz
 - LO Path
 - \checkmark C11 = 6.8 pF
 - IF Path
 - ✓ T1=T2 = TC4-6TG2+ (1.5-600 MHz)

LO Return

F1102 - LO Port Return Loss +5 V, + 25 C, LO Power = 0 dBm Data is measured to the evaluation board connector

RF Port Return Loss Comparison

F1102 - RF Port Return Loss Standard Current Mode, +5 V, + 25 C, LO Power = 0 dBm Data is measured to the evaluation board connector

IF Port Return Loss Comparison

F1102 - IF Port Return Loss Standard Current Mode, +5 V, + 25 C, LO Power = 0 dBm Data is measured to the evaluation board connector

Comments

- ➤ The LO port modification was not added since the return loss using the standard 150 pF capacitor had a good return loss over the band of 600 to 1300 MHz.
- ➤ The modification for the RF Port shows a steep increase below 400 MHz. This may show poor performance for these frequencies.
- ➤ The addition of the high frequency IF transformer does add bandwidth but does show poor performance above 800 MHz.
- > The original design of the F1102 has the
 - RF: 400 to 1000 MHz
 - IF: 50 to 300 MHz

F1102 - Gain LO = 806 MHz, 0 dBm, +5 V, =25 C Data Measured to connectors

F1102 - Gain LO = 806 MHz, 0 dBm, +5 V, =25 C Data Measured to connectors

F1102 - Gain LO = 806 MHz, 0 dBm, +5 V, =25 C Data Measured to connectors

F1102 - Gain LO = 1105 MHz, 0 dBm, +5 V, =25 C Data Measured to connectors

F1102 - Gain LO = 1105 MHz, 0 dBm, +5 V, =25 C Data Measured to connectors

F1102 - Gain LO = 1105 MHz, 0 dBm, +5 V, =25 C Data Measured to connectors

Comments

> The F1102 mixer does not work properly for most of the bands.

Е	Band			LO (MHz)	Output [IF] (MHz)		Comment
	1	150	680	806	956	1486	RF is out band, IF is out of band. This is a upconverter application.
	2	863	866	806	1669	1672	IF is out of band. This is a upconverter application.
	3	276	282	806	530	524	RF is out band but shows promise since the gain is 0 dB. Further RF tuning might increase the gain.
	4	136	318	1105	969	787	RF is out band, IF is out of band. This is a upconverter application.
	5	55	566	1105	1160	1671	RF is out band, IF is out of band. This is a upconverter application.
	6	575	581	1105	530	524	RF is out band but shows promise since the gain is 5 dB. Further RF tuning might increase the gain.

Comments

- ➤ For the upcoverter applications our downconverters can not be expanded into these bands.
- ➤ IDT does building blocks for an upconverter and if you contact Sales we could investigate a design.

