

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 1 of 26

May 6, 2009

AN2018

Rev. 0.00

May 6, 2009

APPLICATION NOTE

ZL_PMBus API Overview

The ZL_PMBus API enables you to write applications using the Zilker Labs PMBus Interface. The Zilker

Labs PMBus Interface is a USB-to-PMBus converter available on evaluation boards such as the ZL2005EV-

1 Rev. 5. A block diagram showing how data flows from your computer to a PMBus device is shown in

Figure 1 below. PMBus traffic tests and GUI interfaces are some of the possible applications that can benefit

from the ZL_PMBus API.

Figure 1. Data Flow Diagram of the Zilker Labs PMBus Interface

A typical application using the ZL_PMBus API is

structured as follows. The top-level application

will need to link ZL_PMBus.dll either internally

using ZL_PMBus.lib and ZL_PMBus.h, or

externally using Microsoft Dynamic-Link Library

Functions. After linking, functions available in the

ZL_PMBus API can be called. It should be noted

that applications using the ZL_PMBus API must

include the FTDI FTD2XX driver (FTD2XX.dll).

This is because the Zilker Labs PMBus interface

uses an FT232BQ USB-to-UART converter. We

chose to do this such that the MCU responsible for

performing PMBus transmissions can be re-used

for standalone applications.

Figure 2. Hierarchy of Application

and Driver Calls

Zilker Labs PMBus Interface

MCU
Atmel

ATMega32

USB
UART
FTDI

FT232BQ

ZL2005

ZL2005 Evaluation Board Rev. 5

USB

UART

PMBus

Application
(Graphical Interface,

Configuration Loader,

Tester, etc.)

PMBus Interface API

(ZL_PMBus.dll)

USB Interface DLL

(FTD2XX.dll)

Zilker Device Command List
(ZLxxxx.h)

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 2 of 26

May 6, 2009

Table of Contents

Function Reference .. 3
ZL_DLLVersion .. 3

ZL_FWVersion .. 4

ZL_DeviceScan ... 5

ZL_DetectDevice .. 7

ZL_NumberOfDevices .. 8

ZL_OpenDeviceByName .. 9

ZL_OpenDeviceBySerial .. 10

ZL_CloseDevice .. 11

ZL_PMBUS_Write .. 12

ZL_PMBUS_Read .. 16

ZL_PMBUS_SetPEC .. 21

ZL_PMBUS_GetPEC .. 22

ZL_PMBus Structures, Types, and Values ... 23
PMBUS_RW_TRANSFER ... 23

ZL_HANDLE .. 24

ZL_STATUS ... 24

ZL_VERSION ... 25

ZL_FW_VERSION ... 25

ZL_SERIAL .. 25

Revision History ... 26

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 3 of 26

May 6, 2009

Function Reference

Below is an explanation of all the functions currently in the ZL_PMBus API. This includes the function

parameters, return values, and usage conditions.

ZL_DLLVersion
Gets the version of the ZL_PMBUS dll you are linking to.

ZL_VERSION ZL_DLLVersion(void)

Parameters

None.

Return Values

The ZL_VERSION structure, which stores numbers for both the major and minor revision. (see “ZL_PMBus

Structures, Types, and Values” on page 21 for more details)

Example

ZL_VERSION myVersion;

myVersion = ZL_DLLVersion();

printf("ZL_PMBus version %d.%d.\n",

 myVersion.major, myVersion.minor);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 4 of 26

May 6, 2009

ZL_FWVersion
Gets the version of firmware running on the MCU.

NOTE: This command works only on firmware revisions 02 and greater.

ZL_STATUS ZL_FWVersion(const ZL_HANDLE deviceHandle,

 ZL_FW_VERSION *version);

Parameters

deviceHandle The handle of the device we want to retrive it’s firmware version from.

*version The firmware version, in the format of ZL_FW_VERSION, which is a structure that

contains a 3-byte long version string called versionStr.

Return Values

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

ZL_HANDLE myHandle; ZL_STATUS myStatus;

ZL_FW_VERSION fwversion;

int i;

myStatus = ZL_FWVersion(myHandle, &fwversion);

if(myStatus == ZL_PMBUS_OK)

{

 printf("Firmware version: ");

 for(i = 0; i < 3; i++)

 printf("%c", fwversion.versionStr[i]);

 printf("\n");

}

else {

 printf("Error in reading firmware version \n");

}

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 5 of 26

May 6, 2009

ZL_DeviceScan

Returns a listing of all Zilker Labs PMBus Interfaces attached to the computer. The list is composed of the

serial numbers for each device, such that one can choose to open a specific device from the list using

ZL_OpenDeviceBySerial.

ZL_STATUS ZL_DeviceScan(unsigned long *numDevices,

 ZL_SERIAL *deviceSerials,

 const char *deviceName)

Parameters
*numDevices Pointer that returns the number of devices attached to the computer

*deviceSerials Pointer to an array of ZL_SERIAL structures

*deviceName C-String pointer to the name of the devices we are trying to scan

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Comments

Because ZL_DeviceScan requires a pointer to the list of serials the function will return, one must allocate

enough space to include the list of serials in the first place. We recommend calling ZL_NumberOfDevices

first to see how many devices are attached, then use the return data from the prior function to allocate

memory for the list. This method is shown in the example below

Example

ZL_STATUS myStatus;

ZL_SERIAL* deviceSerials; //pointer to an array of serials

unsigned long numDevices, i;

// First, see how many devices are connected

myStatus = ZL_NumberOfDevices(&numDevices,

 "Zilker Labs PMBus Interface");

if(numDevices == 0) {

 printf("No Devices Found.\n");

 return 0;

}

// Knowing the number of devices, create a list

// of device serials.

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 6 of 26

May 6, 2009

// Allocate space for device serials

deviceSerials = (ZL_SERIAL*)malloc(sizeof(ZL_SERIAL) *

 numDevices);

// Generate List of detected devices

myStatus = ZL_DeviceScan(&numDevices,

 deviceSerials,

 "Zilker Labs PMBus Interface");

// Print List of devices

printf("Devices Found: \n");

for(i = 0; i < numDevices; i++) {

 printf("%s\n", deviceSerials[i].numStr);

}

// Open first device from list

myStatus = ZL_OpenDeviceBySerial(&myHandle,

 &deviceSerials[0]);

if(myStatus) { //Error in opening device

 printf("\nError in opening device \"%s\". \n",

 deviceSerials[0].numStr);

}

else { //Device Successfully opened

 printf("\nDevice \"%s\" Successfully Opened\n",

 deviceSerials[0].numStr);

}

// Close device

myStatus = ZL_CloseDevice(myHandle);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 7 of 26

May 6, 2009

ZL_DetectDevice

This function is used to see if a device handle is still open, and is typically used to report an error if an

invalid handle is passed, or to realize that a device needs to be re-opened.

ZL_STATUS ZL_DetectDevice(const ZL_HANDLE deviceHandle,

 const char *deviceName)

Parameters

deviceHandle The device handle you are testing

*deviceName The device name associated with the handle you are testing

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if the device handle still exists, otherwise a defined error code is

returned.

Example

ZL_HANDLE myHandle;

ZL_STATUS myStatus;

//Attempt to open the device

myStatus = ZL_OpenDeviceByName(&myHandle,

 "Zilker Labs PMBus Interface");

//see if device is already detected

if(!(ZL_DetectDevice(myHandle,

 "Zilker Labs PMBus Interface")))

{

 printf("Device Detected after handle open.(expected)\n");

}

else {

 printf("Device not detected after handle open!\n");

}

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 8 of 26

May 6, 2009

ZL_NumberOfDevices
Returns the number of devices currently attached to the computer.

ZL_STATUS ZL_NumberOfDevices(unsigned long *numDevices,

 const char *deviceName)

Parameters

*numDevices The returned number of attached devices

*deviceName C-String pointer to the name of the devices we are trying to scan

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

ZL_STATUS myStatus;

unsigned long numDevices;

// See how many devices are connected

myStatus = ZL_NumberOfDevices(&numDevices,

 "Zilker Labs PMBus Interface");

printf(“%d devices found.\n”, numDevices);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 9 of 26

May 6, 2009

ZL_OpenDeviceByName
Opens the first device found that matches the provided device name.

ZL_STATUS ZL_OpenDeviceByName(ZL_HANDLE *deviceHandle,

 char *deviceName)

Parameters

*deviceHandle Pointer to the opened device handle.

*deviceName C-String pointer to the name of the device we are

trying to open.

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

ZL_HANDLE myHandle;

ZL_STATUS myStatus;

//Attempt to open the device

myStatus = ZL_OpenDeviceByName(&myHandle,

 "Zilker Labs PMBus Interface");

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 10 of 26

May 6, 2009

ZL_OpenDeviceBySerial
Opens the device found with a matching serial number. This function is typically used after calling

ZL_DeviceScan.

ZL_STATUS ZL_OpenDeviceBySerial(ZL_HANDLE *deviceHandle,

 ZL_SERIAL *deviceSerial)

Parameters

*deviceHandle Pointer to the opened device handle.

*deviceSerial Pointer to the ZL_SERIAL structure containing the serial number of the device we

want to open.

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

See Pages 4-5.

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 11 of 26

May 6, 2009

ZL_CloseDevice
Closes the device associated with the provided handle.

ZL_STATUS ZL_CloseDevice(const ZL_HANDLE deviceHandle)

Parameters

deviceHandle The device handle we are trying to close.

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

See Pages 4-5.

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 12 of 26

May 6, 2009

ZL_PMBUS_Write
Performs a PMBus transmission in the form of a Quick Command, Send Byte, Write Byte, Write Word, or

Block Write transfer.

ZL_STATUS ZL_PMBUS_Write(const ZL_HANDLE deviceHandle,

 const unsigned char numDevices,

 PMBUS_RW_TRANSFER *pmTrans);

Parameters

deviceHandle The device handle we will use to perform the transmission.

numDevices The number of devices we will be addressing. This should always be passed 1 unless a

group command is being performed.

*pmTrans Pointer to the PMBUS_RW_TRANSFER structure, which includes the PMBus device

address, transfer type, command byte(s), and data we want to send.

Return Values

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example (Quick Command)

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Quick Command Write transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_QUICKCMD_WRITE;

myStatus = ZL_PMBUS_Write(deviceHandle,

 1, //numDevices

 &pmTrans);

Example (Send Byte)

//PMBus Command

const unsigned char restore_user_all = 0x16;

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Send Byte transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_SEND_BYTE;

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 13 of 26

May 6, 2009

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = restore_user_all;

myStatus = ZL_PMBUS_Write(deviceHandle,

 1, //numDevices

 &pmTrans);

Example (Write Byte)

const unsigned char operation = 0x01; //PMBus Command Definition

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Write Byte transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_WRITE_BYTE;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = operation;

pmTrans.paramLength = 1;

pmTrans.paramBytes[0] = 0x40; //Perform a "Soft-Off"

myStatus = ZL_PMBUS_Write(deviceHandle,

 1, //numDevices

 &pmTrans);

Example (Write Word)

const unsigned char vout_command = 0x21; //PMBus Command

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Write Byte transmission

pmTrans.address = DEVICE_ADDRESS_1;

pmTrans.transferType = TTYPE_PMBUS_WRITE_WORD;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = vout_command;

pmTrans.paramLength = 2;

pmTrans.paramBytes[0] = 0x3D; // NOTE: The purpose of these

pmTrans.paramBytes[1] = 0x6A; // parameter bytes are to

 // send 3.32 Volts = 0x6A3D.

// They are sent in the

 // little-endian format as

 // required by PMBus spec.

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 14 of 26

May 6, 2009

myStatus = ZL_PMBUS_Write(deviceHandle,

 1, //numDevices

 &pmTrans);

Example (Block Write – Writing an arbitrary sequence)

const unsigned char ZL2005_pid_taps = 0xD5; //PMBus Command

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Write Byte transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_BLOCK_WRITE;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = ZL2005_pid_taps;

pmTrans.paramLength = 9;

// Write PID_TAPS A=1634, B=-2799, C=1227

pmTrans.paramBytes[0] = 0x40; //Coefficient A –

 // mantissa, low-byte

pmTrans.paramBytes[1] = 0xCC; //Coefficient A –

 // mantissa, high-byte

pmTrans.paramBytes[2] = 0x7B; //Coefficient A –

 // exponent + sign

pmTrans.paramBytes[3] = 0xF0; //Coefficient B –

 // mantissa, low-byte

pmTrans.paramBytes[4] = 0xAE; //Coefficient B –

 // mantissa, high-byte

pmTrans.paramBytes[5] = 0xFC; //Coefficient B –

 // exponent + sign

pmTrans.paramBytes[6] = 0x60; //Coefficient C –

 // mantissa, low-byte

pmTrans.paramBytes[7] = 0x99; //Coefficient C –

 // mantissa, high-byte

pmTrans.paramBytes[8] = 0x7B; //Coefficient C –

 // exponent + sign

myStatus = ZL_PMBUS_Write(deviceHandle,

 1, //numDevices

 &pmTrans);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 15 of 26

May 6, 2009

Example (Block Write – Writing an ASCII string)

const unsigned char mfr_id = 0x99; //PMBus Command

char asciiData[] = "hello world!";

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Write Byte transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_BLOCK_WRITE;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = mfr_id;

strcpy(&pmTrans.paramBytes, &asciiData[0]);

pmTrans.paramLength = (unsigned char)

 strlen(&asciiData[0]);

myStatus = ZL_PMBUS_Write(deviceHandle,

 1, //numDevices

 &pmTrans);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 16 of 26

May 6, 2009

ZL_PMBUS_Read
Performs a PMBus transmission in the form of a Receive Byte, Read Byte, Read Word, or Block Read

transfer type.

ZL_STATUS ZL_PMBUS_Read(const ZL_HANDLE deviceHandle,

 PMBUS_RW_TRANSFER *pmTrans);

Parameters

deviceHandle The device handle we will use to perform the transmission.

*pmTrans Pointer to the PMBUS_RW_TRANSFER structure, which includes the PMBus device

address, transfer type, command byte(s), and stores the data we will receive.

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example (Receive Byte)

#define ALERT_RESPONSE_ADDRESS 0x0C

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for Receive Byte transmission

pmTrans.address = ALERT_RESPONSE_ADDRESS;

pmTrans.transferType = TTYPE_PMBUS_RECV_BYTE;

myStatus = ZL_PMBUS_Read(deviceHandle,

 &pmTrans);

if(myStatus) { //Exit if error occured

 printf("Error in Receive Byte Example.\n");

 printf("(This is likely due to no faults\

 present on any devices)\n\n");

 return;

}

//Otherwise, Print byte contents

printf("Receive Byte Contents: %#02x,\

 meaning a device at address %#02x has a fault.\n",

 pmTrans.paramBytes[0],

 (pmTrans.paramBytes[0]>>1) & ~(0x80));

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 17 of 26

May 6, 2009

Example (Read Byte)

const unsigned char operation = 0x01; //PMBus Command

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Read Byte transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_READ_BYTE;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = operation;

myStatus = ZL_PMBUS_Read(deviceHandle,

 &pmTrans);

if(myStatus) { //Exit if error occured

 printf("Error in Read Byte Example.\n\n");

 return;

}

//Otherwise, Print byte contents

printf("Read Byte Contents: %#02x.\n",

 pmTrans.paramBytes[0]);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 18 of 26

May 6, 2009

Example (Read Word)

const unsigned char vout_command = 0x21; //PMBus Command

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Read Word transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_READ_WORD;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = vout_command;

myStatus = ZL_PMBUS_Read(deviceHandle,

 &pmTrans);

if(myStatus) { //Exit if error occured

 printf("Error in Read Word Example.\n\n");

 return;

}

//Otherwise, Print byte contents

//NOTE: I print the second byte first since

// the data for VOUT_COMMAND is sent and received

// in little-endian.

printf("Read Word Contents: %#02x%02x.\n",

 pmTrans.paramBytes[1], pmTrans.paramBytes[0]);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 19 of 26

May 6, 2009

Example (Block Read of Arbitrary bytes)

const unsigned char ZL2005_pid_taps = 0xD5; //PMBus Command

const unsigned char ZL2005_pid_taps_length = 9;

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

//Setup PMBus transfer struct for a Read Word transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_BLOCK_READ;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = ZL2005_pid_taps;

myStatus = ZL_PMBUS_Read(deviceHandle,

 &pmTrans);

if(myStatus) { //Exit if error occured

 printf("Error in Block Read Example.\n\n");

 return;

}

else if(pmTrans.paramLength != ZL2005_pid_taps_length) {

 printf("Invalid parameter length returned.\n\n");

 return;

}

//Print out pid_taps coefficients

printf("Block Read Demo One - PID_TAPS readout:\n");

printf(" Coefficient A: %#02x%02x%02x\n",

 pmTrans.paramBytes[6],

 pmTrans.paramBytes[7],

 pmTrans.paramBytes[8]);

printf(" Coefficient B: %#02x%02x%02x\n",

 pmTrans.paramBytes[3],

 pmTrans.paramBytes[4],

 pmTrans.paramBytes[5]);

printf(" Coefficient C: %#02x%02x%02x\n",

 pmTrans.paramBytes[0],

 pmTrans.paramBytes[1],

 pmTrans.paramBytes[2]);

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 20 of 26

May 6, 2009

Example (Block Read of ASCII Characters)

//PMBus Command

const unsigned char ZL2005_device_id = 0xE4;

ZL_STATUS myStatus;

PMBUS_RW_TRANSFER pmTrans;

unsigned char i;

//Setup PMBus transfer struct for a Read Word transmission

pmTrans.address = 0x20;

pmTrans.transferType = TTYPE_PMBUS_BLOCK_READ;

pmTrans.cmdLength = 1;

pmTrans.cmdBytes[0] = ZL2005_device_id;

myStatus = ZL_PMBUS_Read(deviceHandle,

 &pmTrans);

if(myStatus) { //Exit if error occured

 printf("Error in Block Read Example.\n\n");

 return;

}

//print non null-terminated ASCII string

printf("Block Read Output: ");

for(i = 0; i < pmTrans.paramLength; i++) {

 printf("%c", pmTrans.paramBytes[i]);

}

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 21 of 26

May 6, 2009

ZL_PMBUS_SetPEC
Enables or disables Packet Error Checking (PEC) on the device.

NOTE: This command works only on firmware revisions 03 and greater.

ZL_STATUS ZL_PMBUS_SetPEC(const ZL_HANDLE deviceHandle,

 const unsigned char PECFlagIn);

Parameters

deviceHandle The device handle we will use to enable/disable PEC.

PECFlagIn Flag which takes on the definitions of either PEC_ENABLE or PEC_DISABLE

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

ZL_HANDLE myHandle;

ZL_STATUS myStatus;

myStatus = ZL_PMBUS_SetPEC(myHandle, PEC_ENABLE);

if(myStatus == ZL_PMBUS_OK)

{

 printf("Set pec\n");

}

else

{

 printf("Error in setting pec.\n");

}

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 22 of 26

May 6, 2009

ZL_PMBUS_GetPEC
Tells whether Packet Error Checking (PEC) is enabled/disabled.

NOTE: This command works only on firmware revisions 03 and greater.

ZL_STATUS ZL_PMBUS_GetPEC(const ZL_HANDLE deviceHandle,

 unsigned char * PECFlagOut);

Parameters

deviceHandle The device handle we will use to enable/disable PEC.

*PECFlagOut Pointer to unsigned character that returns with either PEC_ENABLE or

PEC_DISABLE

Return Value

ZL_STATUS is 0 (ZL_PMBUS_OK) if successful, otherwise a defined error code is returned.

Example

ZL_HANDLE myHandle;

ZL_STATUS myStatus;

unsigned char pecEnable;

myStatus = ZL_PMBUS_GetPEC(myHandle, &pecEnable) == 0

if(myStatus == ZL_PMBUS_OK)

{

 printf("Pec set to: %d\n", pecEnable);

}

else {

 printf("Error in reading pec.\n");

}

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 23 of 26

May 6, 2009

ZL_PMBus Structures, Types, and Values

The ZL_PMBus API makes use of a few special structures to make it easy to send and receive the data you

need. Below is a list of the structures and a description of how they work.

PMBUS_RW_TRANSFER
The PMBUS_RW_TRANSFER is a structure used with the ZL_PMBUS_Write and ZL_PMBUS_Read

commands. It contains the transfer type, address, command byte(s), and parameter byte(s) that will be used

to communicate with the device.

typedef struct PMBusRWStruct {

 unsigned char transferType;

 unsigned char address;

 unsigned char cmdLength;

 unsigned char cmdBytes[2];

 unsigned char paramLength;

 unsigned char paramBytes[256];

} PMBUS_RW_TRANSFER;

The transferType variable should be set to one of the predefined transfer types found in ZL_PMBus.h. The

transfer types are also listed below:

// Transfer Types used by ZL_PMBUS_Write

#define TTYPE_PMBUS_QUICKCMD_READ 1

#define TTYPE_PMBUS_QUICKCMD_WRITE 2

#define TTYPE_PMBUS_SEND_BYTE 4

#define TTYPE_PMBUS_WRITE_BYTE 7

#define TTYPE_PMBUS_WRITE_WORD 8

#define TTYPE_PMBUS_BLOCK_WRITE 10

// Transfer Types used by ZL_PMBUS_Read

#define TTYPE_PMBUS_RECV_BYTE 3

#define TTYPE_PMBUS_READ_BYTE 5

#define TTYPE_PMBUS_READ_WORD 6

#define TTYPE_PMBUS_BLOCK_READ 11

// Transfer Types used with ZL_PMBUS_ProcessCall

#define TTYPE_PMBUS_PROC_CALL 9

#define TTYPE_PMBUS_BLKWR_BLKRD_PROC 12

The address variable is passed as just the lower 7 bytes of an address byte in a PMBus transmission. This

means that for an address of 0x20 in PMBUS_RW_TRANSFER, 0x40 or 0x41 will be sent in an

Address+Write or Address+Read, respectively. The address is shifted left in the MCU code.

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 24 of 26

May 6, 2009

The cmdLength variable describes how many command bytes need to be sent. This value is typically 1

unless you are doing an extended command transfer, in which case it should be 2.

The cmdBytes array holds the command byte to be sent as well as an extended command byte. The bytes

must be put in the array in the order that they are sent. This means that for non-extended command

transmissions the command byte must be placed in cmdByte[0].

The paramLength variable is used to either describe the number of bytes to be sent, or to read the number of

bytes that were received.

The paramBytes array holds the parameter bytes we want to send, but can also contain the parameter bytes

we received. Parameter bytes should be put in the order they are sent.

ZL_HANDLE
The ZL_HANDLE type is a pointer that points to the instance of the FTDI USB-UART converter attached to

the computer.

ZL_STATUS
ZL_STATUS is a signed long variable that is typically used to return whether a command was successful or

not. DLL Versions 0.4 and greater include the following status codes:

API-Wide Error Codes

ZL_PMBUS_OK 0 // No Error

ZL_PMBUS_ERR_GENERIC -1

ZL_PMBUS_ERR_DEVHANDLE -2

ZL_PMBUS_ERR_TRANS_DATA_INV -3

ZL_PMBUS_ERR_TRANS_DATA_UNDERRUN -4

ZL_PMBUS_ERR_TRANS_DATA_OVERRUN -5

ZL_PMBUS_ERR_TRANS_TIMEOUT -6

Error codes related to sending PMBus data

ZL_PMBUS_ERR_SEND_START -100

ZL_PMBUS_ERR_SEND_REP_START -101

ZL_PMBUS_ERR_SEND_ADR -102

ZL_PMBUS_ERR_SEND_REP_ADR -103

ZL_PMBUS_ERR_SEND_CMD -104

ZL_PMBUS_ERR_SEND_PARAMLEN -105

ZL_PMBUS_ERR_SEND_PARAM -106

ZL_PMBUS_ERR_SEND_PEC -107

ZL_PMBUS_ERR_SEND_STOP -108

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 25 of 26

May 6, 2009

Error codes related to receiving PMBus data

ZL_PMBUS_ERR_RECV_PARAMLEN -140

ZL_PMBUS_ERR_RECV_PARAM -141

ZL_PMBUS_ERR_RECV_PEC -142

PMBus-specific user input errors

ZL_PMBUS_ERR_BAD_TTYPE -170

ZL_PMBUS_ERR_BAD_CMDLEN -171

ZL_PMBUS_ERR_NUMDEVICES_IS_ZERO -172

More information on these error codes can be found in the ZL_PMBus.h API header file.

ZL_VERSION
ZL_VERSION is a structure that contains the major and minor release numbers. The version of the dll you

are linking to can be found via the ZL_DLLVersion command.

typedef struct revision {

 long major;

 long minor;

} ZL_VERSION;

ZL_FW_VERSION
ZL_FW_VERSION is a structure that contains the firmware version. The version of firmware your MCU is

using can be found via the ZL_FWVersion command.

typedef struct fwRevision {

 char versionStr[3];

} ZL_FW_VERSION;

ZL_SERIAL
ZL_SERIAL contains a C-String buffer that holds a series of ASCII characters that serve as each device’s

serial number. The serial numbers retrieved via ZL_DeviceScan are stored in a small EEPROM used by the

FTDI USB-UART converter.

The ZL_PMBus API Programmer’s Guide

AN2018 Rev. 0.00 Page 26 of 26

May 6, 2009

Revision History

Date Rev. #

5/25/06 2.0 Initial Release

6/6/07 3.0 Added ZL_FWVersion,

ZL_SetPEC, &
ZL_GetPEC.

Added ZL_STATUS Error

Codes

5/01/09 AN2018.0 Assigned file number
AN2018 to app note as

this will be the first
release with an Intersil

file number. Replaced
header and footer with

Intersil header and

footer. Updated
disclaimer information to

read “Intersil and it’s
subsidiaries including

Zilker Labs, Inc.” No

changes to application
note content.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

