Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

Application Note

78K0S/Kx1+

Sample Program (16-bit Timer/Event Counter 00)

PPG Output

This document describes an operation overview of the sample program and how to use it, as well as how to set and use the PPG output function of 16-bit timer/event counter 00. In the sample program, a rectangular wave with an arbitrary cycle and pulse width is output by using the PPG output function of 16-bit timer/event counter 00. Furthermore, the LED brightness is changed by changing the PPG output duty in accordance with the number of switch inputs.

Target devices 78K0S/KA1+ microcontroller 78K0S/KB1+ microcontroller 78K0S/KU1+ microcontroller 78K0S/KY1+ microcontroller CONTENTS

CHAPTER 1 OVERVIEW	3
1.1 Main Contents of the Initial Settings	3
1.2 Contents Following the Main Loop	3
CHAPTER 2 CIRCUIT DIAGRAM	5
2.1 Circuit Diagram	5
2.2 Peripheral Hardware	5
CHAPTER 3 SOFTWARE	6
3.1 File Configuration	6
3.2 Internal Peripheral Functions to Be Used	
3.3 Initial Settings and Operation Overview	7
3.4 Flow Charts	
CHAPTER 4 SETTING METHODS	10
4.1 Setting the PPG Output Function of 16-bit Timer/Event Counter 00	10
4.2 Setting and Changing the PPG Output Duty	22
4.2.1 Setting the PPG output duty	22
4.2.2 Changing the CR010 setting value (PPG output duty)	23
4.3 Setting the Chattering Detection Time	27
CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+	29
5.1 Building the Sample Program	
5.2 Operation with SM+	31
CHAPTER 6 RELATED DOCUMENTS	36
APPENDIX A PROGRAM LIST	37
APPENDIX B REVISION HISTORY	53

Document No. U18890EJ2V0AN00 (2nd edition) Date Published September 2008 NS

© NEC Electronics Corporation 2007 Printed in Japan

- The information in this document is current as of July, 2008. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

CHAPTER 1 OVERVIEW

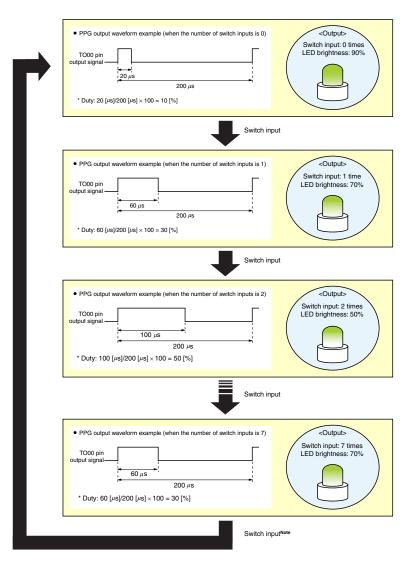
An example of using the PPG output function of 16-bit timer/event counter 00 is presented in this sample program. The PPG output duty is controlled to change the LED brightness in accordance with the number of switch inputs.

1.1 Main Contents of the Initial Settings

The main contents of the initial settings are as follows.

- Selecting the high-speed internal oscillator as the system clock source^{Note}
- Stopping watchdog timer operation
- Setting VLVI (low-voltage detection voltage) to 4.3 V ± 0.2 V
- Generating an internal reset (LVI reset) signal when it is detected that VDD is less than VLVI, after VDD (power supply voltage) becomes greater than or equal to VLVI
- Setting the CPU clock frequency to 8 MHz
- Setting the I/O ports
- Setting 16-bit timer/event counter 00
 - Setting CR000 and CR010 as compare registers
 - Setting one PPG output cycle to 200 μ s (0.5 μ s × 400)
 - Setting the PPG output pulse width to 20 μ s (0.5 μ s × 40)
 - Setting the count clock to $f_{XP}/2^2$ (2 MHz)
 - Enabling timer output reversal caused upon a match between CR000 and TM00, or CR010 and TM00
 - Setting the initial timer output value to 1 (setting (1) the timer output F/F)
 - Enabling timer output (TO00 pin output)
 - Setting the operation mode to clear & start upon a match between TM00 and CR000
- Setting the valid edge of INTP1 (external interrupt) to the falling edge
- Enabling INTP1 interrupts

Note This is set by using the option byte.


1.2 Contents Following the Main Loop

The LED is turned on at a fixed brightness by the PPG output of 16-bit timer/event counter 00, after completion of the initial settings.

An INTP1 interrupt is serviced when the falling edge of the INTP1 pin, which is generated by switch input, is detected. Chattering is identified when INTP1 is at high level (switch is off), after 10 ms have elapsed since a fall of the INTP1 pin was detected. The LED brightness is changed by changing the PPG output duty in accordance with the number of switch inputs when INTP1 is at low level (switch is on), after 10 ms have elapsed since an edge was detected.

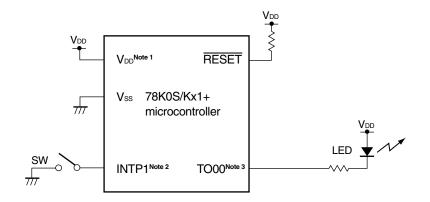
	∕►							
Number of switch inputs ^{Note}	0 times	1 time	2 times	3 times	4 times	5 times	6 times	7 times
PPG output duty	10%	30%	50%	70%	90%	70%	50%	30%
LED brightness	90%	70%	50%	30%	10%	30%	50%	70%

In this sample program, the active level of the PPG output is set to high level, and "LED brightness = 100 – PPG output duty" results because the LED is turned on when it is at low level.

Note The PPG output duty from the zeroth switch input is repeated after the eighth switch input.

Caution For cautions when using the device, refer to the user's manual of each product (<u>78K0S/KU1+</u>, <u>78K0S/KY1+</u>, <u>78K0S/KA1+</u>, <u>78K0S/KB1+</u>).

[Column] Chattering


Chattering is a phenomenon in which the electric signal repeats turning on and off due to a mechanical flip-flop of the contacts, immediately after the switch has been pressed.

CHAPTER 2 CIRCUIT DIAGRAM

This chapter describes a circuit diagram and the peripheral hardware to be used in this sample program.

2.1 Circuit Diagram

A circuit diagram is shown below.

- Notes 1. Use this in a voltage range of $4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$.
 - INTP1/TxD6/P43: 78K0S/KA1+ and 78K0S/KB1+ microcontrollers INTP1/P32: 78K0S/KY1+ and 78K0S/KU1+ microcontrollers
 TO00/TI010/INTP2/P31: 78K0S/KA1+ and 78K0S/KB1+ microcontrollers TO00/TI010/INTP0/ANI1/P21: 78K0S/KY1+ and 78K0S/KU1+ microcontrollers
- Cautions 1. Connect the AVREF pin directly to VDD (only for the 78K0S/KA1+ and 78K0S/KB1+ microcontrollers).
 - 2. Connect the AVss pin directly to GND (only for the 78K0S/KB1+ microcontroller).
 - 3. Leave all unused pins open (unconnected), except for the pins shown in the circuit diagram and the AVREF and AVss pins.

2.2 Peripheral Hardware

The peripheral hardware to be used is shown below.

(1) Switch (SW)

A switch is used as an input to control the LED brightness.

(2) LED

An LED is used as an output corresponding to the PPG output function of 16-bit timer/event counter 00 and switch inputs.

CHAPTER 3 SOFTWARE

This chapter describes the file configuration of the compressed file to be downloaded, internal peripheral functions of the microcontroller to be used, and initial settings and operation overview of the sample program, and shows a flow chart.

3.1 File Configuration

The following table shows the file configuration of the compressed file to be downloaded.

File Name	Description	Compres	sed (*.zip) File	e Included
		訇	РМ 2104 I. 4 = <mark>32</mark>	
main.asm (Assembly language version)	Source file for hardware initialization processing and main processing of microcontroller	Note 1	Note 1	
main.c (C language version)				
op.asm	Assembler source file for setting the option byte (sets the system clock source)	•	•	
tm00ppg.prw	Work space file for integrated development environment PM+		•	
tm00ppg.prj	Project file for integrated development environment PM+		•	
tm00ppg.pri tm00ppg.prs tm00ppg.prm	Project files for system simulator SM+ for 78K0S/Kx1+		Note 2	
tm00ppg0.pnl	I/O panel file for system simulator SM+ for 78K0S/Kx1+ (used for checking peripheral hardware operations)		Note 2	•
tm00ppg0.wvo	Timing chart file for system simulator SM+ for 78K0S/Kx1+ (used for checking waveforms)			•

Notes 1. "main.asm" is included with the assembly language version, and "main.c" with the C language version.

2. These files are not included among the files for the 78K0S/KU1+ microcontroller.

Remark

ZIP

: Only the source file is included.

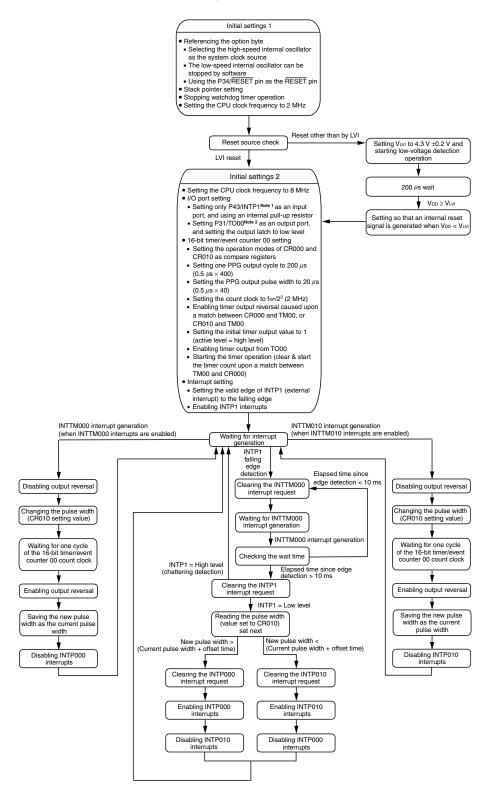
- : The files to be used with integrated development environment PM+ and 78K0S/Kx1+ system simulator SM+ are included.
- : The microcontroller operation simulation file to be used with system simulator SM+ for 78K0S/Kx1+ is included.

3.2 Internal Peripheral Functions to Be Used

The following internal peripheral functions of the microcontroller are used in this sample program.

- PPG output function: 16-bit timer/event counter 00
- VDD < VLVI detection: Low-voltage detector (LVI)
- Switch input: INTP1^{Note 1} (external interrupt)
- PPG output (LED output): TO00^{Note 2} (timer output)

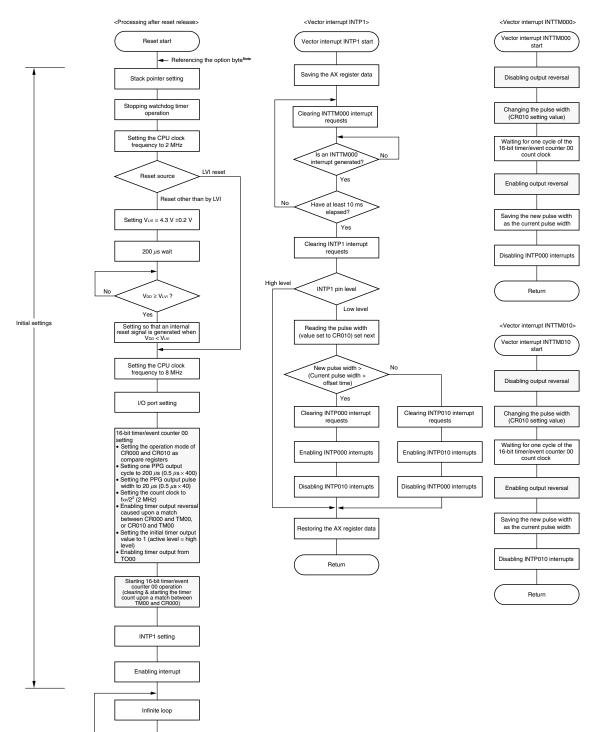
Notes 1.	INTP1/TxD6/P43:	78K0S/KA1+ and 78K0S/KB1+ microcontrollers
	INTP1/P32:	78K0S/KY1+ and 78K0S/KU1+ microcontrollers
2.	TO00/TI010/INTP2/P31:	78K0S/KA1+ and 78K0S/KB1+ microcontrollers
	TO00/TI010/INTP0/ANI1/P21:	78K0S/KY1+ and 78K0S/KU1+ microcontrollers


3.3 Initial Settings and Operation Overview

In this sample program, initial settings including the setting of the low-voltage detection function, selection of the clock frequency, setting of the I/O ports, setting of 16-bit timer/event counter 00 (PPG output function), and setting of interrupts are performed.

The LED is turned on at a fixed brightness by the PPG output of 16-bit timer/event counter 00, after completion of the initial settings.

An INTP1 interrupt is serviced when the falling edge of the INTP1 pin, which is generated by switch input, is detected. Chattering is identified when INTP1 is at high level (switch is off), after 10 ms have elapsed since a fall of the INTP1 pin was detected. The LED brightness is changed by changing the PPG output duty in accordance with the number of switch inputs when INTP1 is at low level (switch is on), after 10 ms have elapsed since an edge was detected.


The details are described in the status transition diagram shown below.

- Notes 1. INTP1/P43: 78K0S/KA1+ and 78K0S/KB1+ microcontrollers INTP1/P32: 78K0S/KY1+ and 78K0S/KU1+ microcontrollers
 - TO00/P31: 78K0S/KA1+ and 78K0S/KB1+ microcontrollers TO00/P21: 78K0S/KY1+ and 78K0S/KU1+ microcontrollers

3.4 Flow Charts

The flow charts for the sample program are shown below.

- **Note** Referencing the option byte is automatically performed by the microcontroller after reset release. In this sample program, the following contents are set by referencing the option byte.
 - Using the high-speed internal oscillation clock (8 MHz (TYP.)) as the system clock source
 - The low-speed internal oscillator can be stopped by using software
 - Using the P34/RESET pin as the RESET pin

CHAPTER 4 SETTING METHODS

This chapter describes the PPG output function of 16-bit timer/event counter 00.

For other initial settings, refer to the <u>78K0S/Kx1+ Sample Program (Initial Settings) LED Lighting Switch</u> <u>Control Application Note</u>. For interrupt, refer to the <u>78K0S/Kx1+ Sample Program (Interrupt) External Interrupt</u> <u>Generated by Switch Input Application Note</u>. For low-voltage detection (LVI), refer to the <u>78K0S/Kx1+ Sample</u> <u>Program (Low-Voltage Detection) Reset Generation During Detection at Less than 2.7 V Application Note</u>.

For how to set registers, refer to the user's manual of each product (<u>78K0S/KU1+</u>, <u>78K0S/KY1+</u>, <u>78K0S/KA1+</u>, <u>78K0S/KB1+</u>).

For assembler instructions, refer to the 78K/0S Series Instructions User's Manual.

4.1 Setting the PPG Output Function of 16-bit Timer/Event Counter 00

The following nine types of registers are used when using the PPG output function of 16-bit timer/event counter 00.

- Capture/compare control register 00 (CRC00)
- 16-bit timer capture/compare register 000 (CR000)
- 16-bit timer capture/compare register 010 (CR010)
- Prescaler mode register 00 (PRM00)
- 16-bit timer output control register 00 (TOC00)
- 16-bit timer mode control register 00 (TMC00)
- Port register x (Px)^{Note}
- Port mode register x (PMx)^{Note}
- Port mode control register x (PMCx)^{Note}
- **Note** Set the Px, PMx, and PMCx registers as follows, because the PPG output function uses the TO00 pin for timer output.

	Px Register	PMx Register	PMCx Register
78K0S/KA1+ and 78K0S/KB1+ microcontrollers	P31 = 0	PM31 = 0	Setting not required
78K0S/KY1+ and 78K0S/KU1+ microcontrollers	P21 = 0	PM21 = 0	PMC21 = 0

<Example of the basic operation setting procedure when using 16-bit timer/event counter 00 as a PPG output>

- <1> Setting the CRC00 register
- <2> Setting arbitrary values (0000H < CR010 < CR000 ≤ FFFFH) to the CR000 and CR010 registers
- <3> Setting the count clock using the PRM00 register
- <4> Setting the TOC00 register
- <5> Setting the TMC00 register: starting operation

Caution Steps <1> to <4> may be performed randomly.

(1) Setting the CRC00 register

This register controls the operation of the CR000 and CR010 registers.

Figure 4-1. Format of Capture/Compare Control Register 00 (CRC00)

CRC00												
0	0	0	0	0	CRC002	CRC001	CRC000					
								CR000) operation mode selection			
								0	Operates as a compare register.			
								1	Operates as a capture register.			
								CR000	capture trigger selection			
								0	Captures at the valid edge of the TI010 pin.			
								1	Captures at the reverse phase of the valid edge of the TI000 pin.			
							CR010 operation mode selection					
								0	Operates as a compare register.			
								1	Operates as a capture register.			

Cautions 1. The timer operation must be stopped before setting the CRC00 register.

2. Do not specify the CR000 register as a capture register when the clear & start mode has been selected upon a match between TM00 and CR000 by using the TMC00 register.

(2) Setting the CR000 register

This register has the functions of both a capture register and a compare register.

Figure 4-2. Format of 16-bit Timer Capture/Compare Register 000 (CR000)

|--|

													1
													-

When using CR000 as a compare register

The value set to CR000 is constantly compared with the 16-bit timer counter 00 (TM00) count value, and an interrupt request (INTTM000) is generated if they match.

- Cautions 1. Set a value other than 0000H to the CR000 register in the clear & start mode entered on a match between TM00 and CR000. When 0000H is set to the CR000 register in the free-running mode or the clear & start mode entered by the valid edge of the Tl000 pin, an interrupt request (INTTM000) is generated when 0000H turns to 0001H, after an overflow (FFFFH) occurs.
 - 2. If the new value of the CR000 register is less than the value of 16-bit timer counter 00 (TM00), the TM00 register continues counting, overflows, and then starts counting from 0 again. If the new value of the CR000 register is less than the old value, therefore, the timer must be reset and restarted after the CR000 register value is changed.
 - 3. The value of the CR000 register after the TM00 counter has been stopped is not guaranteed.
 - 4. Capture operation may not be performed for the CR000 register set to the compare mode, even if a capture trigger is input.
 - 5. Changing the CR000 register setting during TM00 counter operation may cause a malfunction.

(3) Setting the CR010 register

This register has the functions of both a capture register and a compare register.

Figure 4-3. Format of 16-bit Timer Capture/Compare Register 010 (CR010)

CR010							

When using CR010 as a compare register

The value set to CR010 is constantly compared with the 16-bit timer counter 00 (TM00) count value, and an interrupt request (INTTM010) is generated if they match.

- Cautions 1. When 0000H is set to CR010 in the free-running mode or the clear & start mode entered by the valid edge of the TI000 pin, an interrupt request (INTTM010) is generated when 0000H turns to 0001H, after an overflow (FFFFH) occurs.
 - 2. If the new value of the CR010 register is less than the TM00 counter value, the TM00 counter continues counting, overflows, and then starts counting from 0 again. If the new value of the CR010 register is less than the old value, therefore, the timer must be reset and restarted after the CR010 register value is changed.
 - 3. The value of the CR010 register after the TM00 counter has been stopped is not guaranteed.
 - 4. Capture operation may not be performed for the CR010 register set to the compare mode, even if a capture trigger is input.
 - 5. Changing the CR010 register setting during TM00 counter operation may cause a malfunction.

(4) Setting the PRM00 register

This register is used to set the count clock of the TM00 counter and the valid edges of the TI000 and TI010 pin inputs.

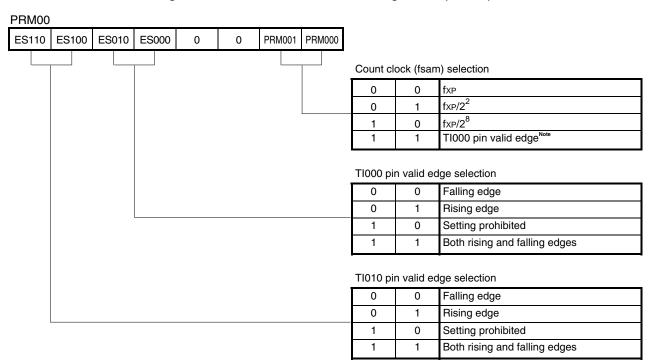
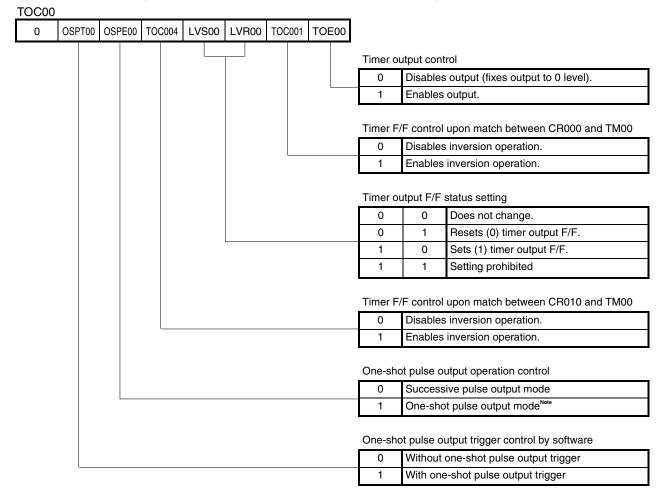


Figure 4-4. Format of Prescaler Mode Register 00 (PRM00)

Note The external clock requires a pulse longer than two cycles of the internal clock (fxp).

Remark fxp: Oscillation frequency of the clock supplied to peripheral hardware

Cautions 1. Always set data to the PRM00 register after stopping timer operation.


- 2. When setting the valid edge of the TI000 pin as the count clock, do not set the clear & start mode with the valid edge of the TI000 pin and the TI000 pin as the capture trigger.
- 3. In the following cases, note with caution that the valid edge of the TI0n0 pin (n = 0, 1) is detected.
 - <1> A high level is input to the TI0n0 pin and the TM00 operation is enabled immediately after a system reset.
 - → If the rising edge or both the rising and falling edges are specified as the valid edge of the TI0n0 pin, a rising edge is detected immediately after the TM00 operation is enabled.
 - <2> The TM00 operation is stopped while the TI0n0 pin is at high level and it is then enabled after a low level is input to the TI0n0 pin.
 - → If the falling edge or both the rising and falling edges are specified as the valid edge of the TI0n0 pin, a falling edge is detected immediately after the TM00 operation is enabled.
 - <3> The TM00 operation is stopped while the TI0n0 pin is at low level and it is then enabled after a high level is input to the TI0n0 pin.
 - \rightarrow If the rising edge or both the rising and falling edges are specified as the valid edge of the TI0n0 pin, a rising edge is detected immediately after the TM00 operation is enabled.

- Cautions 4. To use the valid edge of TI000 with the count clock, it is sampled with fxP to eliminate noise. The capture operation is not performed until the valid edge is sampled and the valid level is detected twice, thus eliminating noise with a short pulse width.
 - 5. When the TI010/TO00/Pxx pin is used as the input pin (TI010) of the valid edge, it cannot be used as a timer output pin (TO00). When it is used as a timer output pin (TO00), it cannot be used as the input pin (TI010) of the valid edge.

(5) Setting the TOC00 register

This register controls the operation of the 16-bit timer/event counter 00 output controller. It is used to set/reset the timer output F/F, enable or disable output inversion, timer output (TO00 pin output), and one-shot pulse output operation, and set the one-shot pulse output trigger by software.

Figure 4-5. Format of 16-bit Timer Output Control Register 00 (TOC00)

Note The one-shot pulse output mode operates normally only in the free-running mode and the clear & start mode set with the valid edge of the TI000 pin. In the clear & start mode set upon a match between TM00 and CR000, one-shot pulse output is not possible, because an overflow does not occur.

Cautions 1. The timer operation must be stopped before setting bits other than OSPT00.

- 2. If LVS00 and LVR00 are read, 0 is read.
- 3. OSPT00 is automatically cleared after data is set, so 0 is read.
- 4. Do not set OSPT00 to 1 other than in one-shot pulse output mode.
- 5. A write interval of at least two cycles of the count clock that has been selected by using the PRM00 register is required to set (1) successively to OSPT00.
- 6. When TOE00 is 0, set TOE00, LVS00, and LVR00 at the same time with the 8-bit memory manipulation instruction. When TOE00 is 1, LVS00 and LVR00 can be set with the 1-bit memory manipulation instruction.
- 7. When the TI010/TO00/Pxx pin is used as the input pin (TI010) of the valid edge, it cannot be used as a timer output pin (TO00). When it is used as a timer output pin (TO00), it cannot be used as the input pin (TI010) of the valid edge.

(6) Setting the TMC00 register

This register sets the 16-bit timer/event counter 00 operation mode, TM00 counter clear mode, and output timing, and detects overflows.

MC00									or Register ou	(111000)	
0	0	0	0	TMC003	TMC002	TMC001	OVF00	Overflov	w detection of 16-I	hit timer counter (
								0	Overflow not det		0 (11000)
								1	Overflow detected	ed.	
									Operation mode and clear mode selection	TO00 inversion timing selection	Interrupt request generation
						0	0	0	Operation stop	No change	Not generated
						0	0	1	(TM00 cleared to 0)		
						0	1	0	Free-running mode	Match between TM00 and CR000 or match between TM00 and CR010	<when a<br="" used="">compare register> Generated upon match between TM0</when>
						0	1	1		Match between TM00 and CR000, match between TM00 and CR010, or valid edge of TI000 pin	and CR000, c match betwee TM00 and CR010 <when used<br="">capture register></when>
						1	0	0	Clear & start	-	Generated at
						1	0	1	occurs at valid edge of TI000 pin		valid edge of TI000 pin or TI010 pin
						1	1	0	Clear & start occurs upon match between TM00 and CR000	Match between TM00 and CR000 or match between TM00 and CR010	
						1	1	1		Match between TM00 and CR000, match between TM00 and CR010, or valid edge of	

Figure 4-6. Format of 16-bit Timer Mode Control Register 00 (TMC00)

TI000 pin

- Cautions 1. The operation of the TM00 counter starts when values other than 0 and 0 (operation stop mode) are set to TMC002 and TMC003, respectively. To stop the operation, set TMC002 and TMC003 to 0 and 0, respectively.
 - 2. Write to the bits other than the OVF00 flag after stopping the timer operation.
 - 3. When the timer is stopped, timer counts and timer interrupts do not occur, even if a signal is input to the TI000/TI010 pin.
 - 4. Except when the valid edge of the TI000 pin is selected as the count clock, stop the timer operation before setting to the STOP mode or system clock stop mode; otherwise the timer may malfunction when the system clock starts.
 - 5. Set the valid edge of the TI000 pin with bits 4 and 5 of the PRM00 register after stopping the timer operation.
 - 6. If the clear & start mode is set upon a match between TM00 and CR000 or at the valid edge of the Tl000 pin, or the free-running mode is selected, when the set value of the CR000 register is FFFFH and the TM00 counter value changes from FFFFH to 0000H, the OVF00 flag is set to 1.
 - 7. Even if the OVF00 flag is cleared before the next count clock is counted (before the TM00 counter becomes 0001H) after the TM00 counter overflows, it is re-set and clearing is disabled.
 - 8. Capture operation is performed at the fall of the count clock. An interrupt request (INTTM0n0: n = 0, 1), however, occurs at the rise of the next count clock.

[Example] When setting one PPG output cycle to 200 μs and the pulse width to 20 μs, and performing PPG output

(Count clock: $f_{XP}/2^2$ ($f_{XP} = 8$ MHz)) (Same contents as in this sample program source)

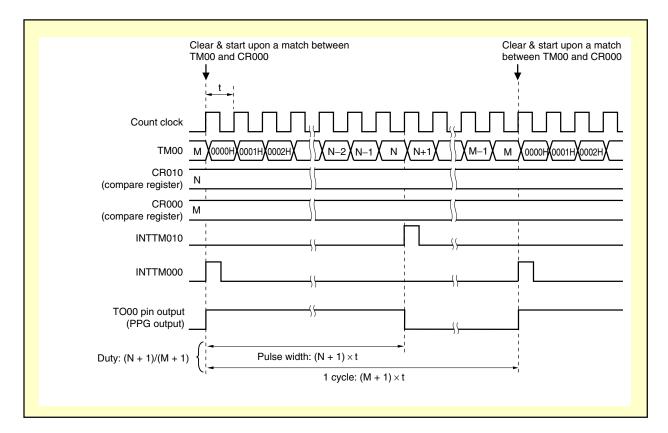
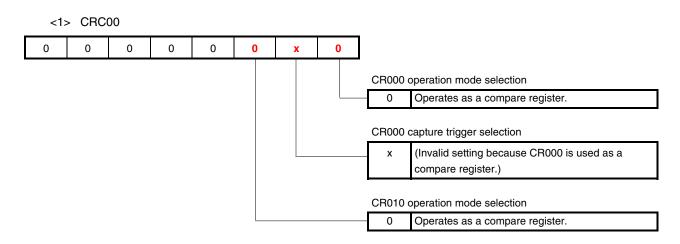
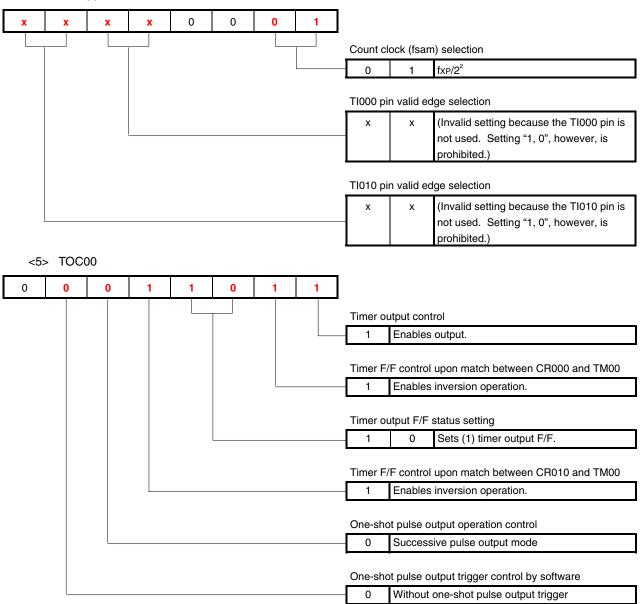
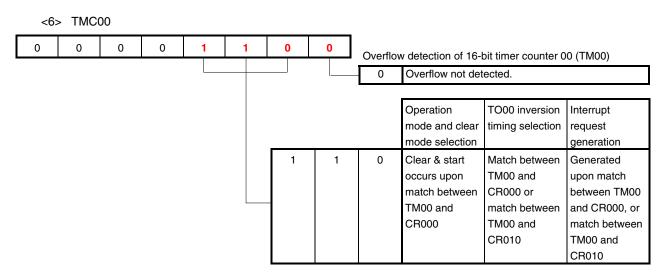



Figure 4-7. PPG Output Timing Example

(1) Register settings


- <2> CR010
 - Setting value (N): 39
 - Count clock fsam = 8 $[MHz]/2^2$ = 2 [MHz]
 - Pulse width 20 [µs] = (N + 1)/2 [MHz]
 - \rightarrow N = 20 [μ s] \times 2 [MHz] 1 = 39
- <3> CR000


Setting value (M): 399

- Count clock fsam = 8 [MHz]/2² = 2 [MHz]
- 1 cycle 200 [µs] = (M + 1)/2 [MHz]
- \rightarrow M = 200 [μ s] \times 2 [MHz] 1 = 399

Caution Set values within the following range to CR000 and CR010. $0000H < CR010 < CR000 \le FFFFH$

<4> PRM00

<7> Px, PMx, PMCx

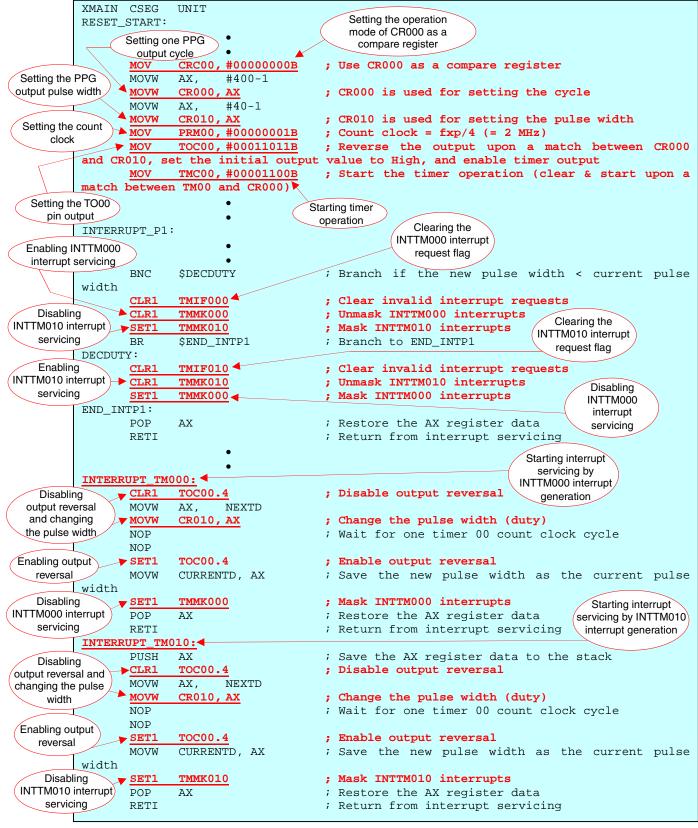
	Px Register	PMx Register	PMCx Register
78K0S/KA1+ and 78K0S/KB1+ microcontrollers	P31 = 0	PM31 = 0	Setting not required
78K0S/KY1+ and 78K0S/KU1+ microcontrollers	P21 = 0	PM21 = 0	PMC21 = 0

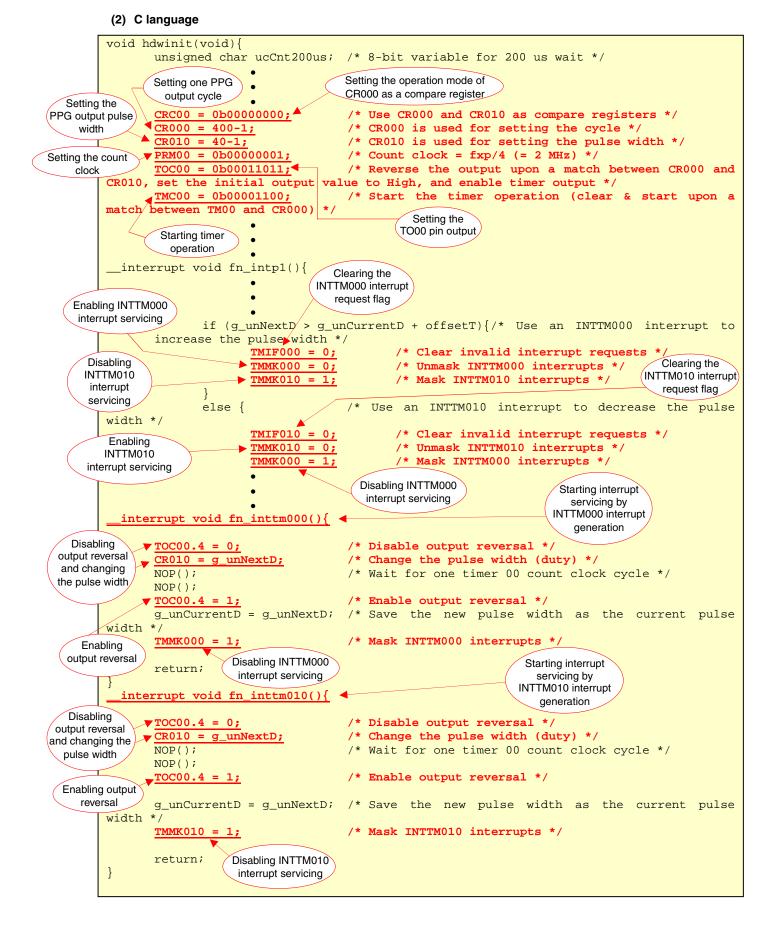
(2) Sample program

In the example below, "x" in (1) Register settings is set to "0".

<1> Assembly language (when using the 78K0S/KA1+ and 78K0S/KB1+ microcontrollers)

```
CLR1
      P3.1
CLR1
      PM3.1
      CRC00, #0000000B
MOV
MOVW
      CR000, #399
MOVW
      CR010, #39
      PRM00, #0000001B
MOV
MOV
      TOC00, #00011011B
MOV
      TMC00, #00001100B
```


<2> C language (when using the 78K0S/KA1+ and 78K0S/KB1+ microcontrollers)


```
P3.1 = 0;
PM3.1 = 0;
CRC00 = 0b0000000;
CR000 = 399;
CR010 = 39;
PRM00 = 0b0000001;
TOC00 = 0b00011011;
TMC00 = 0b0001100;
```

[Excerpt from this sample program source]

An excerpt from <u>APPENDIX A PROGRAM LIST</u>, which is related to the 16-bit timer/event counter 00 function, is shown below (same contents as in [<u>Example</u>] mentioned above).

(1) Assembly language

4.2 Setting and Changing the PPG Output Duty

4.2.1 Setting the PPG output duty

The PPG output function of 16-bit timer/event counter 00 is used to output a pulse from the TO00 pin in this sample program.

- Pulse width = (N + 1)/fsam
- 1 cycle = (M + 1)/fsam
- PPG output duty = $(N + 1)/(M + 1) \times 100$

Calculation example: When the CR010 register setting value is 39 and the CR000 register setting value is 399 (during fsam = 2 MHz operation)

- Pulse width = (N + 1)/fsam = (39 + 1)/2 [MHz] = 20 [µs]
- 1 cycle = (M + 1)/fsam = (399 + 1)/2 [MHz] = 200 [µs]
- PPG output duty = $(N + 1)/(M + 1) \times 100 = (39 + 1)/(399 + 1) \times 100 = 10$ [%]

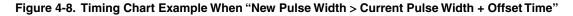
Furthermore, the CR010 register setting value and PPG output duty are changed according to the number of switch inputs.

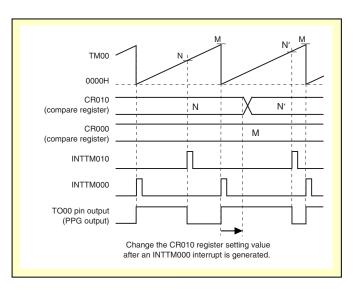
No. of Switch Inputs ^{∾te}	CR010 Register Setting Value	CR000 Register Setting Value	PPG Output Duty
0	39	399	10% ((39 + 1)/(399 + 1) × 100)
1	119		30% ((119 + 1)/(399 + 1) × 100)
2	199		50% ((199 + 1)/(399 + 1) × 100)
3	279		70% ((279 + 1)/(399 + 1) × 100)
4	359		90% ((359 + 1)/(399 + 1) × 100)
5	279		70% ((279 + 1)/(399 + 1) × 100)
6	199		50% ((199 + 1)/(399 + 1) × 100)
7	119		30% ((119 + 1)/(399 + 1) × 100)

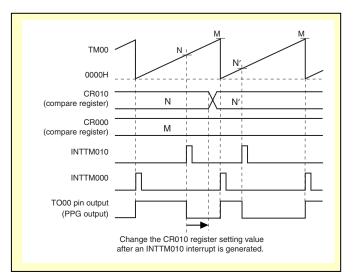
Note The PPG output duty from the zeroth switch input is repeated after the eighth switch input.

4.2.2 Changing the CR010 setting value (PPG output duty)

To increase and decrease the PPG output duty in this sample program, basically, the CR010 register value is changed during an INTTM000 interrupt and during an INTTM010 interrupt, respectively. The following is performed, however, in consideration of the offset time "from INTTM010 interrupt generation, via changing the CR010 register value, to enabling timer output reversal".

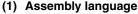

- When "new pulse width > current pulse width + offset time": Changed during INTTM000 interrupt servicing
- When "new pulse width < current pulse width + offset time": Changed during INTTM010 interrupt servicing

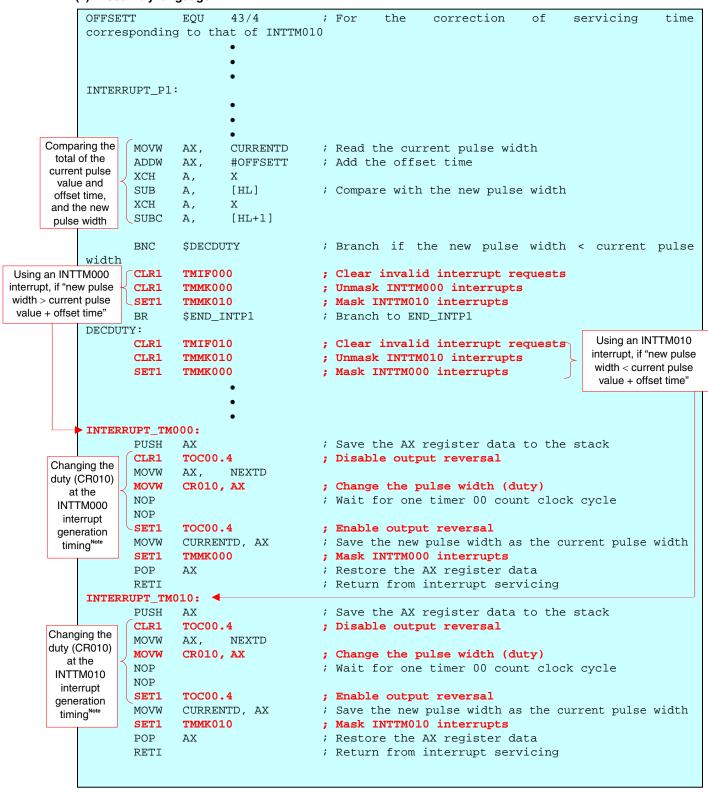

If the CR010 register value is not changed by using the above-mentioned method, a match between CR010 and TM00 may not occur within the period of one PPG output cycle, or multiple matches between CR010 and TM00 may occur and the TO00 pin output level may be reversed for every match.


Use the following procedure to change the CR010 register value during INTTM0x0 (x = 0, 1) interrupt servicing.

- <1> Disable timer output reversal operation upon a match between TM00 and CR010 (TOC004 = 0).
- <2> Rewrite CR010.
- <3> Wait for one cycle of the TM00 count clock.
- <4> Enable timer output reversal operation upon a match between TM00 and CR010 (TOC004 = 1).

Next, a timing chart example is shown for when the CR010 register value is changed.





For details of how to change compare registers during timer operation and cautions, refer to **6.5 Cautions Related to 16-bit Timer/Event Counter 00** in the user's manual of each product (<u>78K0S/KU1+</u>, <u>78K0S/KY1+</u>, <u>78K0S/KA1+</u>, <u>78K0S/KB1+</u>).

[Excerpt from this sample program source]

An excerpt from **APPENDIX A PROGRAM LIST**, which is related to changing the CR010 register, is shown below.

Note In this sample program, the interrupt servicing to be used is not required to be disabled or enabled when changing the setting value, because the CR010 register setting value is changed during interrupt servicing.

```
(2) C language
```

```
#define offsetT 56/4
                                           /* For the correction of servicing time corresponding
      to that of INTTM010 */
        _interrupt void fn_intp1(){
Comparing the
 total of the
                     if (g_unNextD > g_unCurrentD + offsetT){/* Use an INTTM000 interrupt to
current pulse
 value and
              increase the pulse width */
                                                                                               Using an INTTM000
offset time, and
                            TMIF000 = 0;
                                                                                                interrupt, if "new
                                                  /* Clear invalid interrupt requests */
the new pulse
                                                                                                  pulse width >
                            TMMK000 = 0;
                                                 /* Unmask INTTM000 interrupts */
   width
                                                                                               current pulse value
                            TMMK010 = 1;
                                                  /* Mask INTTM010 interrupts */
                                                                                                  + offset time"
                      }
                                            /* Use an INTTM010 interrupt to decrease the pulse
                     else {
      width */
                            TMIF010 = 0;
                                                  /* Clear invalid interrupt requests */
       Using an INTTM010
                            TMMK010 = 0;
                                                  /* Unmask INTTM010 interrupts */
      interrupt, if "new pulse
                            TMMK000 = 1;
    width < current pulse value
                                                  /* Mask INTTM000 interrupts */
         + offset time"
        _interrupt void fn_inttm000(){ 🗲
 Changing the
              TOC00.4 = 0;
                                            /* Disable output reversal */
 duty (CR010)
              CR010 = g_unNextD;
                                           /* Change the pulse width (duty) */
    at the
  INTTM000
              NOP();
                                           /* Wait for one timer 00 count clock cycle */
  interrupt
              NOP();
  generation
              TOC00.4 = 1;
                                            /* Enable output reversal */
  timing<sup>Note</sup>
              g_unCurrentD = g_unNextD; /* Save the new pulse width as the current pulse
      width */
              TMMK000 = 1;
                                           /* Mask INTTM000 interrupts */
              return;
      }
        _interrupt void fn_inttm010(){
 Changing the
              TOC00.4 = 0;
                                            /* Disable output reversal */
 duty (CR010)
              CR010 = g_unNextD;
                                           /* Change the pulse width (duty) */
   at the
              NOP();
                                            /* Wait for one timer 00 count clock cycle */
  INTTM010
  interrupt
              NOP();
  generation
              TOC00.4 = 1;
                                           /* Enable output reversal */
  timina<sup>Note</sup>
              q_unCurrentD = q_unNextD; /* Save the new pulse width as the current pulse
      width */
              TMMK010 = 1;
                                           /* Mask INTTM010 interrupts */
              return;
      }
```

Note In this sample program, the interrupt servicing to be used is not required to be disable or enabled when changing the setting value, because the CR010 register setting value is changed during interrupt servicing.

4.3 Setting the Chattering Detection Time

The generation of 16-bit timer/event counter 00 interrupts (INTTM000) is counted to remove chattering of 10 ms or less, in order to handle chattering during switch input (INTP1 interrupt generation) in this sample program.

• Chattering detection time $(Tc) = T' + T \times (M - 1)$

Remark T: INTTM000 interrupt cycle

- T': Time from the start of INTP1 edge detection until the first INTTM000 is generated after INTP1 edge detection (0 < T' \leq T)
- M: Number of INTTM000 interrupts after INTP1 edge detection

```
When set such that T \times (M - 1) = 10 \text{ ms},

Tc = T' + 10 \text{ ms}

0 < T' \le T, therefore,

10 \text{ ms} < Tc \le T + 10 \text{ ms}

\downarrow

Chattering detection time (Tc) > 10 ms
```

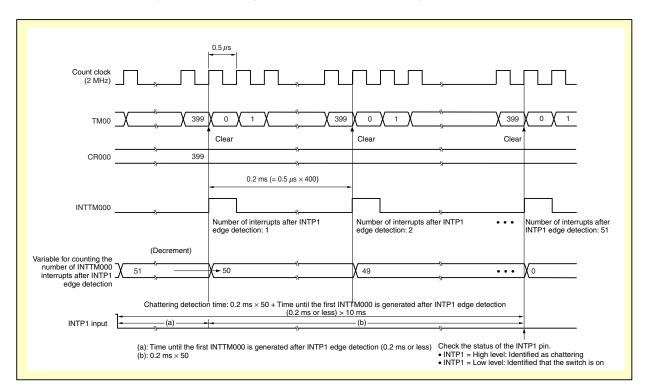
Calculation example: When the INTTM000 interrupt cycle (T) is 200 μ s (refer to <u>4.2 Setting and Changing the</u> <u>PPG Output Duty</u>), and the number of INTTM000 interrupts after INTP1 edge detection (M)

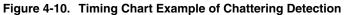
```
is 51

Tc = T' + T \times (M - 1)

= T' + 200 [\mu s] \times (51 - 1)

= T' + 10000 [\mu s]


= T' + 10 [ms]


0 < T' ≤ 200 µs, therefore,

10 ms < Tc ≤ 10.2 [ms]

↓

Chattering detection time (Tc) > 10 ms
```


CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

This chapter describes how the sample program operates with system simulator SM+ for 78K0S/Kx1+, by using the assembly language file (source files + project file) that has been downloaded by selecting the icon.

<R> Caution System simulator SM+ for 78K0S/Kx1+ is not supported with the 78K0S/KU1+ microcontroller (as of July 2008). The operation of the 78K0S/KU1+ microcontroller, therefore, cannot be checked by using system simulator SM+ for 78K0S/Kx1+.

<R>

5.1 Building the Sample Program

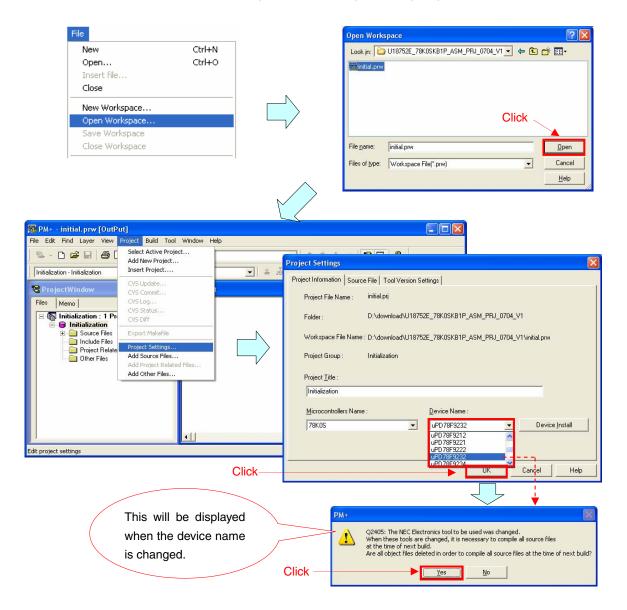
To check the operation of the sample program by using system simulator SM+ for 78K0S/Kx1+ (hereinafter referred to as "SM+"), SM+ must be started after building the sample program. This section describes how to build a sample program by using the assembly language sample program (source program + project file) downloaded by clicking the icon. See the <u>78K0S/Kx1+ Sample Program Startup Guide Application Note</u> for how to build other downloaded programs.

For the details of how to operate PM+, refer to the PM+ Project Manager User's Manual.

[Column] Build errors

Change the compiler option setting according to the following procedure when the error message "A006 File not found 'C:\NECTOOLS32\LIB78K0S\s0sl.rel'" or "*** ERROR F206 Segment '@ @DATA' can't allocate to memory - ignored." is displayed, when building with PM+.

<1> Select [Compiler Options] from the [Tool] menu.


- <2> The [Compiler Options] dialog box will be displayed. Select the [Startup Routine] tab.
- <3> Uncheck the [Using Fixed Area of Standard Library] check box. (Leave the other check boxes as they are.)

A RAM area of 118 bytes that has been secured as a fixed standard library area will be enabled for use when the [Using Fixed Area of Standard Library] check box is unchecked; however, the standard libraries (such as the getchar function and malloc function) will be disabled for use.

The [Using Fixed Area of Standard Library] check box is unchecked by default when the file that has been downloaded by clicking the **Figure** icon is used in this sample program.

- (1) Start PM+.
- (2) Select "tm00ppg.prw" by clicking [Open Workspace] from the [File] menu and click [Open]. A workspace into which the source file will be automatically read will be created.
- (3) Select [Project Settings] from the [Project] menu. When the [Project Settings] window opens, select the name of the device to be used (the device with the largest ROM or RAM size will be selected by default), and click [OK].
- Remark Screenshots of the Sample Program (Initial Settings) LED Lighting Switch Control are shown below.

- (4) Click [Build] button). When the source files are built normally, the message "I3500: Build completed normally," will be displayed.
- (5) Click the [OK] button in the message dialog box. A HEX file for flash memory writing will be created.

Remark Screenshots of the Sample Program (Initial Settings) LED Lighting Switch Control are shown below.

🚟 PM+ - initial.prw [OutPut]	
<u>File Edit Find Layer View Project Build Too</u>	Window Help
🍬 - 🗅 🚅 🖬 🎒 🖪 🖇 👘	· + + + − · · · · · · · · · · · · · · ·
Initialization - Initialization	id 🔄 🕹 🕹 🕹 🗰
ProjectWindow Files Memo Initialization : 1 Project(s) Initialization Include Files Project Related Files Other Files	Click Click Click Click Click Click Click Click Click Click Click Click Click Click Click Click Click Click Click Click
	A HEX file for flash memory writing will be generated.

5.2 Operation with SM+

This section describes examples of checking the operation on the I/O panel window or timing chart window of SM+. For the details of how to operate SM+, refer to the <u>SM+ System Simulator Operation User's Manual</u>.

(1) When SM+ for 78K0S/Kx1+ W1.02 ("SM+" hereafter) is used in the environment of PM+ Ver. 6.30, SM+ cannot be selected as the debugger. In this case, start SM+ via method (a) or (b) described below, while keeping PM+ running after completing building a project.

(a) When starting SM+ in PM+

<1> Select [Register Ex-tool] from the [Tool] menu and register "SM+ for 78K0S/Kx1+".

<2> Select [Ex-tool Bar] from the [View] menu and add the SM+ icon to the PM+ toolbar.

<3> Click the SM+ icon and start SM+.

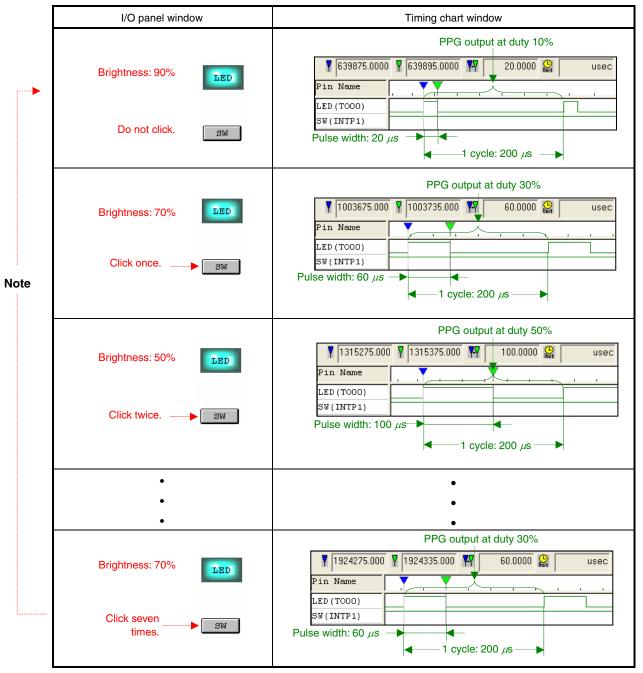
(See the PM+ help for details on how to register external tools.)

(b) When not starting SM+ in PM+Start SM+ from the Windows start menu.

(2) The following screen will be displayed when SM+ is started. (This is a sample screenshot of when an assembly language source file downloaded by clicking the icon was used.)

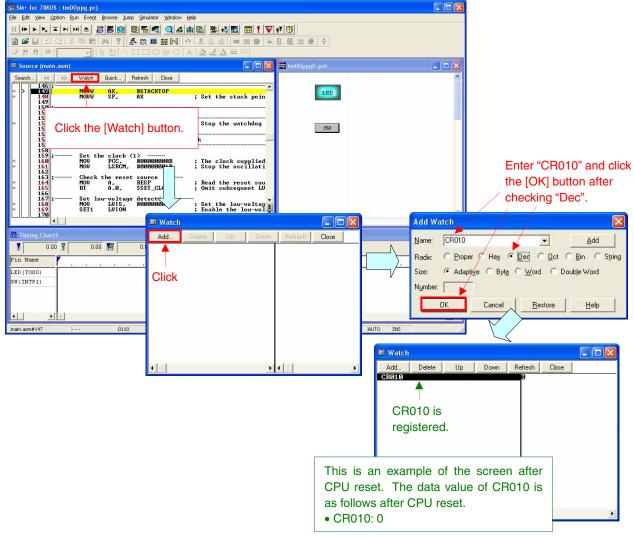
5M+ for 78K0S : tm00ppg.prj	
Elle Edit View Option Run Event Browse Jump Simulator Window Help	
∏▶▶▶,▼▶)▲ ØØØ D¶≪ QAAD \$ 405 \$? ₹30	
Search << >> Watch Quick Refresh Close	^
Image: state bit is a state bit is	-
151; Initialize the watchdog timer	
152; MOU WDTM, #01110111B ; Stop the watchdog SW 153 MOU WDTM, #01110111B ; Stop the watchdog SW	
155 156 : Detect low-voltage + set the clock 157	
156 159 159 159 159 160 MOU PCC, H8060600B ; The clock supplied 161 MOU LSRCH, H8060600B ; Stop the oscillati 162 163 163	
 I64 MOU A, RESF ; Read the reset sou I65 BT A. B, SET_CLOCK ; Omit subsequent LU 	
166 * 168 MOU LUIS, #00000000B ; Set the low-voltage * 169 SET1 LUION ; Enable the low-voltage * 169 SET1 LUION ; Enable the low-voltage	
	> .::
Timing Chart1	
T 0.00 T 0.00 T 0.00 & MainClk	
Pin Name	-
	<u>, 21</u>
LED(T000) SW(INTP1)	E
	+
main.asm#147 0110 AUTO INS	

(3) Click 🕩 ([Restart] button). The program will be executed after the CPU is reset and the following screen will be displayed.


	SM+ for 78KOS	: tm00ppg.prj			
	File Edit View Option Run Event Browse Jump Simulator Window Help				
.		· > > ▲ B8 0 8 1 1 1 1 1 1 1 1 1 1			
Click /	1 🚔 🖬 🗅	은 김 哈 砲 혀 ? 💰 쭚 💷 妞 [네] 숀 초 조 忠] 💻 🙂 ※ 8. 월, 표 ⑨ 후			
	Ø ₱ ₱ •*+				
	🔲 Source (main	asm) 🔲 🗖 🔀 im00ppg0.pnl			
	Search <<	>> Watch Quick Refresh Close	<u>^</u>		
	* > 146; 147 * 148 149	MOUN AX, HSTACKTOP MOUN SP, AX ; Set the stack poin			
	150;- 151;	Initialize the watchdog timer			
	* 152;- * 153 154	MOU WDIM, #01110111B ; Stop the watchdog			
	155;- 156; 157;-	Detect low-voltage + set the clock	LED blinks due to		
	* 160 * 161 * 162	Set the clock <1> MOU PCC, #00000000B ; The clock supplied MOU LSRCM, #00000001B ; Stop the oscillati	PPG output		
	163;- * 164 * 165	Check the reset source MOU A, RESF ; Read the reset sou BT A.0, \$SET_CLOCK ; Omit subsequent LU			
	166 167;- * 168 * 169	Set low-voltage detection MOU LUIS, #00000000B ; Set the low-voltag SETI LUION ; Enable the low-vol≨			
	170				
	Timing Chart1				
	Y 0.00	NainClk 0.00			
	Pin Name				
	LED (T000)		<u> </u>		
	SW(INTP1)				
	· ·	<u> </u>			
	main.asm#147	0110 RUN	AUTO INS		

This turns red during program execution.

(4) Click the [SW] button in the I/O panel window, during program execution.


Change the PPG output duty according to the number of [SW] button inputs.

Check that the brightness of [LED] in the I/O panel window and the waveforms in the timing chart window change, depending on the number of [SW] button inputs.

Note The PPG output duty from the zeroth switch input is repeated after the eighth switch input.

- [Supplement 1] The changes in the data value of the CR010 register can be checked by using the SM+ watch function.
 - <1> Click the [Watch] button in the source window to open the [Watch] window.
 - <2> Click [Add] to open the [Add Watch] window. (At this time, the [Watch] window is kept opened.)
 - <3> Enter "CR010" in the [Name] field and click the [OK] button after checking "Dec" under Radix. "CR010" will be registered in the [Watch] window and the [Add Watch] window will be closed.

<4> Execute the program and click the [SW] button in the I/O panel window. Check that the data value of CR010 in the [Watch] window changes, depending on the number of [SW] button inputs.

Number of [SW] Button Inputs ^{Note}	Data Value in [Watch] Window	
0	CR010: 39	
1	CR010: 119	
2	CR010: 199	
3	CR010: 279	
4	CR010: 359	
5	CR010: 279	
6	CR010: 199	
7	CR010: 119	

Note The PPG output duty from the zeroth switch input is repeated after the eighth switch input.

- [Supplement 2] The [SW] button hold time can be set to less than 10 ms to check whether chattering is being detected.
 - <1> Select on the toolbar.
 - <2> Right-click the [SW] button in the I/O panel window and select [Properties].
 - <3> Enter "9" for the Hold Time and click the [OK] button.

🗱 tm00ppg0.pnl	
Cut Copy	Parts Button Properties 🛛 🛛 🔀
Paste Delete Group Order Properties	Button Connection Style Label: SW Pin Name: P43/TXD6/INTP1 Active Level: C LOW C HIGH Type: Push C Toggle C Group Group Name: Hold Time: 9 msec
Enter "9", then click the [OK] button.	OK Cancel Apply Help

- <4> Select 💮 on the toolbar.
- <5> Execute the program and click the [SW] button. Even if the [SW] button is clicked, chattering will be identified and the PPG output duty will not change, because the button hold time is 9 ms.

CHAPTER 6 RELATED DOCUMENTS

Document Name			Japanese/English
78K0S/KU1+ User's Manual			<u>PDF</u>
78K0S/KY1+ User's Manual			<u>PDF</u>
78K0S/KA1+ User's Manual			<u>PDF</u>
78K0S/KB1+ User's Manual			<u>PDF</u>
78K/0S Series Instructions User's Manual			<u>PDF</u>
RA78K0S Assemb	ler Package User's Manual	Language	<u>PDF</u>
		Operation	<u>PDF</u>
CC78K0S C Compiler User's Manual Language			<u>PDF</u>
		Operation	<u>PDF</u>
PM+ Project Manager User's Manual			<u>PDF</u>
SM+ System Simulator Operation User's Manual			<u>PDF</u>
Flash Programming Manual (Basic) MINICUBE2 version 78K0S/KU1+			<u>PDF</u>
		78K0S/KY1+	<u>PDF</u>
78K0S/KA1+			<u>PDF</u>
	78K0S/KB1+		
78K0S/Kx1+	Sample Program Startup Guide	<u>PDF</u>	
Application Note	Sample Program (Initial Settings) LED Lighting	<u>PDF</u>	
	Sample Program (Interrupt) External Interrupt	<u>PDF</u>	
	Sample Program (Low-Voltage Detection) Res Detection at Less than 2.7 V	PDF	
	Sample Program (16-bit Timer/Event Counter (<u>PDF</u>	
	Sample Program (16-bit Timer/Event Counter (<u>PDF</u>	
	Sample Program (16-bit Timer/Event Counter (<u>PDF</u>	
	Sample Program (16-bit Timer/Event Counter (<u>PDF</u>	

<R>

APPENDIX A PROGRAM LIST

As a program list example, the 78K0S/KB1+ microcontroller source program is shown below.

main.asm (Assembly language version)

```
;
    NEC Electronics
                  78K0S/KB1+
 ;
 78K0S/KB1+ Sample program
 ;
 16-bit timer 00 (PPG output)
 ;<<History>>
    2007.7.-- Release
 ;
 ;<<Overview>>
 ;
 ;This sample program presents an example of using the PPG output function
 ; of 16-bit timer 00. Perform PPG output at a 200 us cycle and change the
 ;duty width by 20% for every switch input.
 ;
 ;
 ; <Principal setting contents>
 ;
 ; - Stop the watchdog timer operation
 ; - Set the low-voltage detection voltage (VLVI) to 4.3 V +-0.2 V
 ; - Generate an internal reset signal (low-voltage detector) when VDD <
VLVI after VDD >= VLVI
 ; - Set the CPU clock to 8 MHz
 ; - Set the clock supplied to the peripheral hardware to 8 MHz
 ; - Set the valid edge of external interrupt INTP1 to falling edge
 ; - Set the chattering detection time during switch input to 10 ms
 ; - Use the HL register for interrupt servicing (similarly as a global
variable)
 ;
 ;
 ; <16-bit timer 00 settings>
 ; - Operation mode: Clear & start the timer count upon a match between TM00
and CR000
 ; - Count clock = fxp/4 (2 MHz)
 ; - Use CR000 and CR010 as compare registers
 ; - Initialize the cycle of CR000 to 200 us
 ; - Initialize the pulse width of CR010 to 20 us
```

```
; - Reverse the output upon a match between CR000 and CR010 (PPG output)
  - Set the initial output value (= active level) to High
 ;
  - Set the output latch of P31 to Low (to use the TO00 output)
 ;
  - Set P31 to the output mode (to use the TO00 output)
 ;
 ;
 ;
   <Number of switch inputs and PPG output duty>
 ;
    +----+
 ;
      SW Inputs | PPG Output | LED
 ;
            Duty | Brightness |
    |-----
 ;
    0 times
              10%
                       90%
 ;
     1 time
              30%
                      70%
 ;
                    ;
    2 times 50%
                      50%
    3 times
              70%
                       30%
 ;
     4 times
              90%
                      10%
 ;
 ;
    5 times
              70%
                       30%
      6 times
               50%
                       50%
 ;
     7 times
              30%
                      70%
 ;
                    +----+
 :
    # The PPG output duty from the zeroth switch input is repeated after
 ;
the eighth switch input.
 ;
 ;<<I/O port settings>>
 ;
 ; Input: P43
 ; Output: P00-P03, P20-P23, P30-P33, P40-P42, P44-P47, P120-P123, P130
 ; # All unused ports are set as the output mode.
 ;
  Define the symbol
 ;
 43/4
                     ; For the correction of servicing time
 OFFSETT
       EQU
corresponding to that of INTTM010
 ;
   Vector table
 ;
 XVCTCSEG AT 0000H
```

;(00) RESET DW RESET_START DW RESET START ;(02) --DW RESET_START ;(04) --DW RESET_START ;(06) INTLVI ;(08) INTPO DW RESET_START ;(OA) INTP1 DW INTERRUPT P1 DW RESET_START ;(OC) INTTMH1 DW INTERRUPT_TM000 ;(0E) INTTM000 DW INTERRUPT_TM010 ;(10) INTTM010 DW RESET_START ;(12) INTAD RESET START ;(14) --DW DW RESET START ;(16) INTP2 ;(18) INTP3 DW RESET_START RESET_START ;(1A) INTTM80 DW DW RESET START ;(1C) INTSRE6 ;(1E) INTSR6 DW RESET_START RESET_START ;(20) INTST6 DW ; Define the ROM data table ; XROMCSEG AT 0100н PWIDTH: DW 40-1 ; Pulse width 20 us (duty 10%) 40*3-1 ; Pulse width 60 us (duty 30%) DW 40*5-1 ; Pulse width 100 us (duty 50%) DW 40*7-1 ; Pulse width 140 us (duty 70%) DW DW 40*9-1 ; Pulse width 180 us (duty 90%) 40*7-1 ; Pulse width 140 us (duty 70%) DW ; Pulse width 100 us (duty 50%) DW 40*5-1 DW 40*3-1 ; Pulse width 60 us (duty 30%) ; Define the RAM ; XRAMDSEG SADDRP NEXTD: DS 2 ; For storing the new pulse width (duty) CURRENTD: DS 2 ; For storing the current pulse width (duty) ; Define the memory stack area ; XSTKDSEG AT OFEEOH

STACKEND: 20H ; Memory stack area = 32 bytes DS ; Start address of the memory stack area = FF00H STACKTOP: ; Initialization after RESET ; XMAIN CSEG UNIT RESET START: ;------Initialize the stack pointer ;------MOVW AX, #STACKTOP MOVW SP, AX ; Set the stack pointer ;______ Initialize the watchdog timer WDTM, #01110111B ; Stop the watchdog timer operation MOV Detect low-voltage + set the clock ;------;----- Set the clock <1> -----MOV PCC, #0000000B ; The clock supplied to the CPU (fcpu) = fxp (= fx/4 = 2 MHz) MOV LSRCM, #00000001B ; Stop the oscillation of the low-speed internal oscillator ;---- Check the reset source -----A, ; Read the reset source MOV RESF A.0, \$SET CLOCK ; Omit subsequent LVI-related processing and go BTto SET_CLOCK during LVI reset ;----- Set low-voltage detection -----LVIS, #00000000B ; Set the low-voltage detection level (VLVI) to MOV 4.3 V +-0.2 V SET1 LVION ; Enable the low-voltage detector operation MOV A, #40 ; Assign the 200 us wait count value ;----- 200 us wait -----WAIT 200US: DEC Α BNZ \$WAIT_200US ; 0.5[us/clk] x 10[clk] x 40[count] = 200[us]

```
;----- VDD >= VLVI wait processing -----
 WAIT_LVI:
   NOP
   BT
      LVIF, $WAIT_LVI ; Branch if VDD < VLVI
   SET1 LVIMD
                 ; Set so that an internal reset signal is
generated when VDD < VLVI
 ;----- Set the clock <2> -----
 SET_CLOCK:
      PPCC, #0000000B ; The clock supplied to the peripheral hardware
   MOV
(fxp) = fx (= 8 MHz)
                 ; -> The clock supplied to the CPU (fcpu) = fxp
= 8 MHz
 ;------
   Initialize the port 0
 ; - - - - - -
               _____
          #0000000B ; Set output latches of P00-P03 as low
   MOV
      P0,
   MOV
      PMO, #11110000B ; Set P00-P03 as output mode
 ;------
   Initialize the port 2
 ;------
   MOV
       P2,
          #0000000B ; Set output latches of P20-P23 as low
      PM2, #11110000B ; Set P20-P23 as output mode
   MOV
 Initialize the port 3
 ;------
          #0000000B ; Set output latches of P30-P33 as low
   MOV
       Ρ3,
      PM3, #11110000B ; Set P30-P33 as output mode
   MOV
 Initialize the port 4
 MOV
       P4,
          #0000000B ; Set output latches of P40-P47 as low
      PU4, #00001000B ; Connect on-chip pull-up resistor to P43
   MOV
       PM4, #00001000B ; Set P40-P42 and P44-P47 as output mode, P43 as
   MOV
input mode
 Initialize the port 12
 ;------
       P12, #0000000B ; Set output latches of P120-P123 as low
   MOV
   MOV
      PM12, #11110000B ; Set P120-P123 as output mode
```

Initialize the port 13 ; ;------MOV P13, #00000001B ; Set output latch of P130 as high ;------Set 16-bit timer 00 MOV CRC00, #0000000B ; Use CR000 and CR010 as compare registers MOVW AX, #400-1 MOVW CR000, ; CR000 is used for setting the cycle AX MOVW AX, #40-1 MOVW CR010, ; CR010 is used for setting the pulse AX width #00000001B ; Count clock = fxp/4 (= 2 MHz) MOV PRM00, MOV TOC00, #00011011B ; Reverse the output upon a match between CR000 and CR010, set the initial output value to High, and enable timer output #00001100B ; Start the timer operation (clear & start MOV TMC00, upon a match between TM00 and CR000) Initialize the RAM and general-purpose register ;-----MOVW CURRENTD, AX ; Save the initial pulse width value as the current pulse width MOVW HL, #PWIDTH ; Specify the pulse width table address ;______ Set the interrupt ;------MOV INTMO, #00000000B ; Set the valid edge of INTP1 to falling edge MOV IFO, #00H ; Clear invalid interrupt requests in advance CLR1 PMK1 ; Unmask INTP1 interrupts ΕI ; Enable vector interrupt Main loop ; MAIN LOOP: NOP BR \$MAIN LOOP ; Go to the MAIN LOOP ; External interrupt INTP1 ;

; INTERRUPT_P1: PUSH AX ; Save the AX register data to the stack ;----- 10 ms wait to handle chattering -----#50+1 ; 200 us x 50 = 10 ms MOV A, WAIT_CHAT: CLR1 TMIF000 ; Clear the INTTM000 interrupt request flag WAIT_INT: BFTMIF000, \$WAIT_INT; Wait for the INTTM000 interrupt DEC A ; Decrement the A register by 1 BNZ \$WAIT CHAT ; Branch if not A = 0CLR1 PIF1 ; Clear the INTP1 interrupt request ;----- Identification of chattering detection -----BT P4.3, \$END_INTP1 ; Branch if there is no switch input ;---- Read the new pulse width -----Α, L ; Read the table address MOV ; Increment the table address by 2 ADD Α, #2 AND A, #00001111B ; Mask bits other than bits 0 to 3 MOV L, A [HL] MOV Α, ; Read the lower 8 bits of the pulse width XCH A, Х A, [HL+1] ; Read the higher 8 bits of the pulse width MOV MOVW NEXTD, AX ; Save the new pulse width ;---- Compare with the current pulse width -----MOVW AX, CURRENTD ; Read the current pulse width ADDW AX, #OFFSETT ; Add the offset time XCH A, X SUB A, [HL] ; Compare with the new pulse width XCH A, Х SUBC A, [HL+1] ;---- Specify the interrupt servicing that changes the pulse width -----; Branch if the new pulse width < current pulse BNC SDECDUTY width CLR1 TMIF000 ; Clear invalid interrupt requests CLR1 TMMK000 ; Unmask INTTM000 interrupts SET1 TMMK010 ; Mask INTTM010 interrupts \$END INTP1 BR ; Branch to END INTP1 DECDUTY: CLR1 TMIF010 ; Clear invalid interrupt requests CLR1 TMMK010 ; Unmask INTTM010 interrupts SET1 TMMK000 ; Mask INTTM000 interrupts

```
END INTP1:
  POP AX
               ; Restore the AX register data
                ; Return from interrupt servicing
  RETI
;
;
   Interrupt INTTM000
INTERRUPT TM000:
  PUSH AX
               ; Save the AX register data to the stack
  CLR1 TOC00.4 ; Disable output reversal
  MOVW AX,
           NEXTD
  MOVW CR010, AX ; Change the pulse width (duty)
  NOP
               ; Wait for one timer 00 count clock cycle
  NOP
  SET1 TOC00.4 ; Enable output reversal
  MOVW CURRENTD, AX; Save the new pulse width as the current pulse width
  SET1 TMMK000 ; Mask INTTM000 interrupts
  POP
       AX
               ; Restore the AX register data
  RETI
                ; Return from interrupt servicing
;
   Interrupt INTTM010
INTERRUPT TM010:
  PUSH AX
               ; Save the AX register data to the stack
  CLR1 TOC00.4
               ; Disable output reversal
  MOVW AX,
           NEXTD
  MOVW CR010, AX ; Change the pulse width (duty)
  NOP
                ; Wait for one timer 00 count clock cycle
  NOP
  SET1 TOC00.4
               ; Enable output reversal
  MOVW CURRENTD, AX; Save the new pulse width as the current pulse width
  SET1 TMMK010 ; Mask INTTM010 interrupts
  POP
       AX
               ; Restore the AX register data
               ; Return from interrupt servicing
  RETI
```

This sample program presents an example of using the PPG output function of 16-bit timer 00. Perform PPG output at a 200 us cycle and change the duty width by 20% for every switch input.

<Principal setting contents> - Declare a function run by an interrupt: INTP1 -> fn_intp1() - Declare a function run by an interrupt: INTTM000 -> fn_inttm000() - Declare a function run by an interrupt: INTTM010 -> fn_inttm010() - Stop the watchdog timer operation - Set the low-voltage detection voltage (VLVI) to 4.3 V +-0.2 V - Generate an internal reset signal (low-voltage detector) when VDD < VLVI after VDD >= VLVI - Set the CPU clock to 8 MHz - Set the clock supplied to the peripheral hardware to 8 MHz - Set the valid edge of external interrupt INTP1 to falling edge - Set the chattering detection time during switch input to 10 ms <16-bit timer 00 settings> - Operation mode: Clear & start the timer count upon a match between TM00 and CR000 - Count clock = fxp/4 (2 MHz) - Use CR000 and CR010 as compare registers

- Initialize the cycle of CR000 to 200 us
- Initialize the pulse width of CR010 to 20 us
- Reverse the output upon a match between CR000 and CR010 (PPG output)
- Set the initial output value (= active level) to High
- Set the output latch of P31 to Low (to use the TOOO output)
- Set P31 to the output mode (to use the TO00 output)

<Number of switch inputs and PPG output duty>

+			+
SW I	nputs	PPG Output	LED
		Duty	Brightness
0 t	imes	10%	90%
1 t	ime	30%	70%
2 t	imes	50%	50%
3 t	imes	70%	30%
4 t	imes	90%	10왕
5 t	imes	70%	30%
6 t	imes	50%	50%
7 t	imes	30%	70%
+			+

 $\ensuremath{\texttt{\#}}$ The PPG output duty from the zeroth switch input is repeated after the eighth switch input.

<<I/O port settings>> Input: P43 Output: P00-P03, P20-P23, P30-P33, P40-P42, P44-P47, P120-P123, P130 # All unused ports are set as the output mode. /*-----Preprocessing directive (#pragma) ----*/ #pragma SFR /* SFR names can be described at the C source level */ /* EI instructions can be described at the #pragma EI C source level */ #pragma DI /* DI instructions can be described at the

C source level */ #pragma NOP /* NOP instructions can be described at the C source level */ #pragma interrupt INTP1 fn_intp1 /* Interrupt function declaration:INTP1 */ #pragma interrupt INTTM000 fn_inttm000 /* Interrupt function declaration:INTTM000 */ #pragma interrupt INTTM010 fn_inttm010 /* Interrupt function

declaration:INTTM010 */

```
#define offsetT 56/4
                          /* For the correction of servicing time
corresponding to that of INTTM010 */
 Define the global variables and constant table
 */
 sreg unsigned char g_ucSWcnt = 0; /* 8-bit variable for counting the number
of switch inputs */
 sreg unsigned int g_unNextD = 40-1; /* 16-bit variable for saving the
new pulse width (duty) */
 sreg unsigned int g_unCurrentD = 40-1; /* 16-bit variable for saving the
current pulse width (duty) */
 const unsigned int g_unOutData[8] = {40-1,40*3-1,40*5-1,40*7-1,40*9-1,40*7-
1,40*5-1,40*3-1}; /* Output duty table */
 Initialization after RESET
 void hdwinit(void){
    unsigned char ucCnt200us; /* 8-bit variable for 200 us wait */
 /*-----
    Initialize the watchdog timer + detect low-voltage + set the clock
 -----*/
    /* Initialize the watchdog timer */
    WDTM = 0b01110111;
                         /* Stop the watchdog timer operation */
    /* Set the clock <1> */
    PCC = 0b0000000;
                         /* The clock supplied to the CPU (fcpu) =
fxp (= fx/4 = 2 MHz) */
    LSRCM = 0b0000001;
                         /* Stop the oscillation of the low-speed
internal oscillator */
    /* Check the reset source */
    if (!(RESF & 0b00000001)) { /* Omit subsequent LVI-related processing
during LVI reset */
         /* Set low-voltage detection */
        LVIS = 0b00000000; /* Set the low-voltage detection level
(VLVI) to 4.3 V +-0.2 V */
        LVION = 1;
                    /* Enable the low-voltage detector operation */
```

```
about 200 us */
          NOP();
       }
      while (LVIF){
                   /* Wait for VDD >= VLVI */
          NOP();
       }
      LVIMD = 1;
                    /* Set so that an internal reset signal is
generated when VDD < VLVI */
   }
   /* Set the clock <2> */
   PPCC = 0b0000000;
                    /* The clock supplied to the peripheral
hardware (fxp) = fx (= 8 MHz)
                      -> The clock supplied to the CPU
(fcpu) = fxp = 8 MHz */
 /*_____
            _____
   Initialize the port 0
 */
   P0 = 0b0000000;
                    /* Set output latches of P00-P03 as low */
   PM0 = 0b11110000;
                    /* Set P00-P03 as output mode */
 /*-----
   Initialize the port 2
 -----*/
   P2 = 0b0000000;
                    /* Set output latches of P20-P23 as low */
                    /* Set P20-P23 as output mode */
   PM2 = 0b11110000;
 /*_____
   Initialize the port 3
 */
                    /* Set output latches of P30-P33 as low */
   P3 = 0b0000000;
   PM3
     = 0b11110000;
                    /* Set P30-P33 as output mode */
 /*_____
   Initialize the port 4
 */
                    /* Set output latches of P40-P47 as low */
   P4 = 0b0000000;
   PU4 = 0b00001000;
                    /* Connect on-chip pull-up resistor to P43
*/
   PM4 = 0b00001000;
                   /* Set P40-P42 and P44-P47 as output mode,
P43 as input mode */
 /*_____
```

```
Initialize the port 12
```

```
-----*/
   P12 = 0b0000000;
                    /* Set output latches of P120-P123 as low
* /
   PM12 = 0b11110000;
                    /* Set P120-P123 as output mode */
 /*_____
   Initialize the port 13
 */
   P13 = 0b0000001;
                     /* Set output latch of P130 as high */
 /*_____
   Set 16-bit timer 00
 -----*/
                    /* Use CR000 and CR010 as compare
   CRC00 = 0b0000000;
registers */
   CR000 = 400-1;
                     /* CR000 is used for setting the cycle */
   CR010 = 40-1;
                     /* CR010 is used for setting the pulse
width */
                     /* Count clock = fxp/4 (= 2 MHz) */
   PRM00 = 0b0000001;
   TOC00 = 0b00011011;
                     /* Reverse the output upon a match between
CR000 and CR010, set the initial output value to High, and enable timer output
*/
   TMC00 = 0b00001100;
                     /* Start the timer operation (clear &
start upon a match between TM00 and CR000) */
 /*_____
   Set the interrupt
 */
   INTMO = Ob0000000;
                     /* Set the valid edge of INTP1 to falling
edge */
   IF0 = 0x00;
                     /* Clear invalid interrupt requests */
                     /* Unmask INTP1 interrupts */
   PMK1 = 0;
   return;
 }
 Main loop
 void main(void){
   EI();
                     /* Enable vector interrupt */
   while (1) {
       NOP();
   }
```

```
}
 Interrupt INTP1
 __interrupt void fn_intp1(){
    unsigned char ucChat;
                           /* 8-bit variable for removing chattering
*/
    for (ucChat = 0; ucChat <50+1; ucChat++) { /* Loop for a 10 ms wait */</pre>
         TMIF000 = 0;
                           /* Clear the INTTM000 interrupt flag */
         NOP();
         }
    }
    PIF1 = 0;
                            /* Clear the INTP1 interrupt request */
    if (!P4.3) { /* Processing performed if SW is on for 10 ms or more
*/
         g_ucSWcnt += 1; /* Increment the number of switch inputs
by 1 */
         g_ucSWcnt &= 0b00000111; /* Mask bits other than bits 0 to 2
*/
         g_unNextD = g_unOutData[g_ucSWcnt]; /* Save the new pulse width */
         if (g_unNextD > g_unCurrentD + offsetT){ /* Use an INTTM000
interrupt to increase the pulse width */
              TMIF000 = 0;
                                /* Clear invalid interrupt requests
*/
              TMMK000 = 0;
                                /* Unmask INTTM000 interrupts */
              TMMK010 = 1;
                                /* Mask INTTM010 interrupts */
         }
                           /* Use an INTTM010 interrupt to decrease
         else {
the pulse width */
              TMIF010 = 0;
                                /* Clear invalid interrupt requests
*/
              TMMK010 = 0;
                                /* Unmask INTTM010 interrupts */
              TMMK000 = 1;
                                /* Mask INTTM000 interrupts */
         }
    }
    return;
 }
```

```
Interrupt INTTM000
 __interrupt void fn_inttm000(){
    TOC00.4 = 0;
                          /* Disable output reversal */
    CR010 = g_unNextD;
                          /* Change the pulse width (duty) */
    NOP();
                          /* Wait for one timer 00 count clock cycle
* /
    NOP();
    TOC00.4 = 1;
                          /* Enable output reversal */
                         /* Save the new pulse width as the current
    q unCurrentD = q unNextD;
pulse width */
    TMMK000 = 1;
                          /* Mask INTTM000 interrupts */
    return;
 }
 Interrupt INTTM010
 __interrupt void fn_inttm010(){
    TOC00.4 = 0;
                          /* Disable output reversal */
    CR010 = g_unNextD;
                          /* Change the pulse width (duty) */
    NOP();
                          /* Wait for one timer 00 count clock cycle
* /
    NOP();
    TOC00.4 = 1;
                          /* Enable output reversal */
    g_unCurrentD = g_unNextD; /* Save the new pulse width as the current
pulse width */
    TMMK010 = 1;
                          /* Mask INTTM010 interrupts */
    return;
 }
• op.asm (Common to assembly language and C language versions)
```

```
; -----; ; Option byte ;
```

OPBTCSEG AT 0080H DB 10011100B ; Option byte area ; |||+----- Low-speed internal oscillator can be ; stopped by software |++----- High-speed internal oscillation clock (8 ; MHz) is selected for system clock source +---- P34/RESET pin is used as RESET pin ; DB 11111111B ; Protect byte area (for the self programming mode) ; ; ++++++++ All blocks can be written or erased

end

APPENDIX B REVISION HISTORY

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what." field.

Edition	Date Published	Page	Revision
1st edition	December 2007	-	_
2nd edition	September 2008	p.29	CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+
			Modification of description in Caution
			((as of September 2007) \rightarrow (as of July 2008))
		pp.29 to 31	Modification of 5.1 Building the Sample Program
		p.31	5.2 Operation with SM+
			Addition of (1)
		p.36	CHAPTER 6 RELATED DOCUMENTS
			Addition of Flash Programming Manual (Basic) MINICUBE2 version

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111

http://www.necel.com/

[America]

NEC Electronics America, Inc. 2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A.

Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH Arcadiastrasse 10

40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/ Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française 9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex

France Tel: 01-3067-5800

Sucursal en España Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0706