To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Application Note

78K0/Kx2-L

RENESANS

Settings for Low Power Consumption Operation

This document describes the setting contents in order to achieve microcontroller operation with low power consumption
using the low power consumption mode and standby function of the 78K0/Kx2-L microcontrollers.

Target devices
78K0/KY2-L microcontroller
78K0/KA2-L microcontroller
78K0/KB2-L microcontroller
78K0/KC2-L microcontroller

Document No. U19612EJ1VOANOO (1st edition)
Date Published October 2009 N

© NEC Electronics Corporation 2009
Printed in Japan

CONTENTS
CHAPTER 1 OVERVIEW 3
1.1 Background Required for Low Power Consumption and Features of
78KO/KX2-L MICroCONTIONIErS ..ot 4
CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS................ 6

2.1 ClOCK GENEIAION ... ittt
2.2 Standby Function
2.3 Comparison of Total Current of Standby Function
2.4 Comparison of Return Times through Interrupt of Standby Function........ 17
2.5 Return through Reset of Standby Function
2.6 Cautions on Clock Generator and Standby Function
CHAPTER 3 REGULATOR
3.1 ReguIator OVEIVIEW..........eiiiiiiiiiiieeee ettt
3.2 Register Controlling Regulatorccccevieieeiieseeeeeeseeeeee e
3.3 Cautions on Self Programmingccoceeeevininenieeieseeeeee e
CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES.
4.1 Specifications and Overall FIOWccccoviiiiiiiiiiniieeneeceee e
4.2 |Initial Settings and Work Areas .
4.3 Main Processing........cccccceeveiiiciiicninenne
4.4 Real-Time Counter Interrupt Servicing.....
4.5 INTP1, INTP4 Interrupt Servicing.............
4.6 Low Voltage Detection Interrupt Servicing
CHAPTER 5 RELATED DOCUMENTS

EEPROM is a trademark of NEC Electronics Corporation.

* The information in this document is current as of July, 2009. The information is subject to change without notice. For actual

design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date

specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an

NEC Electronics sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC

Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the

use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual

property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in

semiconductor product operation and application examples. The incorporation of these circuits, software and information in

the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no

responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and

information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree

and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property

or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient

safety measures in their design, such as redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The

"Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality

assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its

quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in

a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-
crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and
medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data

sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics,

they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a

given application.

(Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned

subsidiaries.
(Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined
above).

(M8E0909E)

2 Application Note U19612EJ1VOAN

CHAPTER 1 OVERVIEW

This application note describes the settings to achieve low power consumption operation of the 78K0/Kx2-L
microcontrollers and is intended to give the reader an understanding of how to reduce the power consumption of these
microcontrollers.

Chapter 1 provides the background required mainly for low power consumption operation and gives an overview of
the functions for low power consumption of the 78K0/Kx2-L microcontrollers.

Target devices:
78K0/KY2-L: 4PD78F0550, uPD78F0551, 4PD78F0552, PD78F0555, uPD78F0556, /PD78F0557
78K0/KA2-L: PD78F0560, uPD78F0561, 4/PD78F0562, 4PD78F0565, 1PD78F0566, 4/PD78F0567

78K0/KB2-L: £PD78F0571, PD78F0572, 1PD78F0573, 1/PD78F0576, 1PD78F0577, 1/PD78F0578
78K0/KC2-L: 1PD78F0581, PD78F0582, PD78F0583, PD78F0586, 1PD78F0587, 1PD78F0588

Application Note U19612EJ1VOAN 3

CHAPTER 1 OVERVIEW

1.1 Background Required for Low Power Consumption and Features of 78K0/Kx2-L
Microcontrollers

With the spread of portable devices and the expansion of the security devices market, long battery life is
increasingly becoming a key requirement. Further, as environmental awareness increases, lowering the power
consumption of semiconductors and various other devices is being demanded.

The 78K0/Kx2-L microcontrollers were developed to answer needs to fill the need for products in fields requiring
battery operation and maintenance free operation, as well as energy-saving products.

The various functions for realizing low power consumption of the 78K0/Kx2-L microcontrollers are introduced below.

(1) Standby functions
The internal circuits of a microcontroller are operated by inputting a clock signal, and a current passes in the
microcontroller during operation. When the clock supply is stopped, the operation of the internal circuits also
stops, as does the flow of current.
The standby functions are functions that allow stopping of the clock signal flow by executing the standby
instruction by program, or stopping of the operation of the clock oscillator itself.
Power consumption can be efficiently reduced by executing a standby instruction while processing is not being
performed, such as during external event wait, in order to set the microcontroller in the standby status (in which
the clock signal flow is stopped, or in which the oscillation of the clock oscillator itself is stopped and the
microcontroller is in a stopped status).
The 78K0/Kx2-L microcontrollers have two standby functions, the HALT mode and the STOP mode.

STOP mode: The microcontroller is made to enter this mode by executing the STOP instruction.
The clock oscillator itself is stopped in this mode.

HALT mode: The microcontroller is made to enter this mode by executing the HALT instruction.
The clock oscillator continues to operate in this mode, but clock signal supply to the CPU is
stopped.

Power consumption decreases in the following order: Normal operation mode > HALT mode > STOP mode.

Figure 1-1. Standby Functions and Clock Generator

In the STOP mode, the internal high-speed oscillator and high-speed system clock circuit
are stopped.

N

Peripheral hardware clock (fers)

Internal high-speed oscillator —— > | Peripheral hardware
Controller, selector,

— prescaler
Xi/pi21 High-speed system clock .
X2/EXCLK —» oscillator _ > CPU
/P122

CPU clock (fcpu)

N

In the HALT mode, the CPU clock is not supplied to the CPU.

4 Application Note U19612EJ1VOAN

CHAPTER 1 OVERVIEW

(2) Low power consumption mode through regulator setting
Each 78K0/Kx2-L microcontroller incorporates a regulator circuit for supplying stable power to the circuits
inside the microcontroller from the power supply voltage outside the microcontroller. The regulator can control
the voltage output inside the microcontroller by setting the regulator mode register (RMC) that controls this
regulator circuit.
The regulator supplies 2.4 V (typ.) in the normal mode, and 2.0 V (typ.) in the low power consumption mode.
The power consumption is the same even when the power supply voltage is higher than the voltage supplied
by the regulator.

Figure 1-2. Regulator

78K0/Kx2-L

VDD _T_

REGC [Regulator In the normal mode, 2.4 V (typ.), and in the low power
I 9 consumption mode, 2.0 V (typ.) is supplied to the internal circuits.
VSS —|_

The output power of the regulator is switched
with the regulator mode control register (RMC).

\IQ/ [Column] Handling of unused port pins to further lower power consumption
Setting unused I/O ports to the input status and leaving them unconnected can cause the occurrence of
through current, which increases the power consumption. This problem can be avoided by setting port mode
registers to output and making them open. In the case of input-only ports, the occurrence of through current
can be minimized by either pulling up or pulling down these ports.

Application Note U19612EJ1VOAN 5

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

The standby function controls the clock generator. The power consumption of the microcontroller is largely
influenced by the frequency, in addition to whether the clock is operating or is stopped.

The power consumption can be reduced by having a good understanding regarding the flow of the clock signal
from the clock generator, selecting the best frequency clock for the processing, and stopping the clock when it is not
needed.

This chapter explains the clock generator and standby functions of the 78K0/Kx2-L microcontrollers.

2.1 Clock Generator

(1) Clock generator after reset release
After reset release, the internal high-speed oscillator (8 MHz (typ.) or 4 MHz (typ.) can be selected by option
byte setting) and internal low-speed oscillator (30 kHz (typ.)) operate.
The signal of the internal high-speed oscillator is supplied to the main system clock, is divided in half by a
prescaler, and the main system clock (fxr/2) is supplied to the CPU clock (fcpu).
The internal high-speed oscillator is used as the clock source of the peripheral hardware.
The internal low-speed oscillator (30 kHz (typ.)) is used as the clock source of the watchdog timer and timer H1.

Figure 2-1. Clock Generator After Reset Release (Red Frames and Lines Indicate Operation)

Internal high-speed oscillator

(4 MHz (typ.)/8 MHz (typ.)) Internal high-speed oscillation clock (fi) W Peripheral hardware clock (fers
4 MHz or 8 MHz is -
selected with an p|Peripheral hardware > Peripheral
option byte clock switch hardware
Main system clock (fxp)
High-speed system clock
oscillator (1 to 10 MHz) Main system Prescaler
clock switch
Crystal/ceramic || T
X1/P121@— oscillation tof2 fol2? fip/2® fpl2®
I—— Controller

x2/excLk @ | External input clock > gir
S P High-speed system clock (fxH) > Selector _»

CPU clock (fcpu)

78K0/KC2-L only

Subsystem clock oscillator
(32.768 kHz)

12

Crystal/ceramic
oscillation

=(Real-time counter)
XT2/EXCLK@—| External input clock
APz Subsystem clock frequency (fsus)

Internal low-speed
oscillator

XT1/P123 @—

(30 kHz (typ.)) Internal low-speed oscillation clock (fi)
Whether can be stopped -
or not is selected > Watchdog timer
by software 8-bit timer H1
with an option byte

6 Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

(2) Flow of the CPU clock (fcru) and switching of the clock source

The CPU clock (fcru) is a clock signal that is used for reading/executing instructions supplied to the CPU, and

reading/writing internal registers and memory.

The supply source of the CPU clock (fcru) can be selected from the main system clock (no division, or divided
by 2, 4, 8, or 16 by prescaler) and the subsystem clock divided by 2 (fsus/2). The supply source of the CPU

clock is switched with the processor clock control register (PCC).

The supply source of the main system clock (fxp) can be switched from the internal high-speed oscillator to the
high-speed system clock oscillator. Only one switch can be done following reset release. Switching is done by

setting the main clock mode register (MCM).

Figure 2-2. Flow of CPU Clock (fcru) from Each Clock Generator (Red Frames) and Registers for Switching

clock mode re?|ster (MC
(can be set on

Switching is selected and checked with the main

y once after reset release)

Internal high-speed oscillator
(4 MHz (typ.)/8 MHz (typ.))

/

Main system clock (fxp)

— -
Main system
—— | ClOCK gwitch
High-speed system clock ' ' ' '
oscillator (1 to 10 MHz) CPU clock (fory)
clock (fcpu
- bsyst lock (f
78K0/KC2-L only Subsystem clock (fsus) Selector o cru
Subsystem clock oscillator 12
(32.768 kHz) o
=

Switching is selected and checked with the
processor clock control register (PCC)

Main clock mode register (MCM) After reset: 0000 0000B

0 0 0 0 0 | xsEL| mcs [mcMmo
XSEL | MCMo Main system clock (fxe) clock source Peripheral hardware clock (fers) clock source
0 0 Internal high-speed oscillation clock (fi)
0 1 Internal high-speed oscillation clock (fiH) (default)
(default)
1 0
- High-speed system clock (fx+)
1 1 High-speed system clock (fx+)
MCS Main system clock (fxe) status (clock source)
0 Internal high-speed oscillation clock (fit) (default)
1 High-speed system clock (fxH)

Processor clock control register (PCC) After reset: 0000 0001B

* * *
0 |XSTART| cLs | css| (Q |Pccz|pcct|Pcco| * 78K0/KC2-L only
css| pccz| pcc1| Pccol CPU clock (feru) clock source css| pcc2| pcci| Pcco| CPU clock (feru) clock source

1 0 0 0 |Main system clock, undivided (fxp) 0 0 0 0

0 0 1 z\(/:l‘zélfr;ji/)stem clock divided by 2 (fxr/2) 0 0 1 Subsystem clock divided by 2

0 1 0 (fsus/2)
0 1 0 | Main system clock divided by 22 (fxp/22) 0 1 1
0 1 1 | Main system clock divided by 22 (fxr/2%) 1 0 0
- — . "
1 0 0 | Main system clock divided by 2* (fxe/2%) Other than above: Setting prohibited

Other than above: Setting prohibited

CLS

CPU clock (fcru) status (clock source)

0

Main system clock (fxp) (default)

1

Subsystem clock divided by 2 (fsus/2)

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

When the supply source of the main system clock (fxp) or CPU clock (fcpu) is switched, the clock prior to the switch
continues to be supplied for a few clocks.

In the case of the main system clock, whether the switch is complete can be checked with the MCS bit of the main
clock mode register (MCM).

If the CPU clock (fcru) has been switched from the main system clock (fxp) to the subsystem clock divided by 2
(fsus/2), or vice-versa, whether the switch is complete can be checked with the CLS bit of the processor clock control
register (PCC).

If the division ratio of the main system clock has been switched by changing the setting of the processor clock
control register (PCC), a wait period equal to the times listed below is required.

Table 2-1. Maximum Time Required for Switching CPU Clock When Division Ratio of Main System Clock Has
Been Switched

Division Ratio Division Ratio After Switching
Before Switching Undivided 1/2 122 1/2° 1/2*
Undivided 16 clocks 16 clocks 16 clocks 16 clocks
1/2 8 clocks 8 clocks 8 clocks 8 clocks
1/2° 4 clocks 4 clocks 4 clocks 4 clocks
1/2° 2 clocks 2 clocks 2 clocks 2 clocks
1/2* 1 clock 1 clock 1 clock 1 clock

Remark The number of clocks is the number of CPU clocks (fcpu) before switching.

(3) Flow of the peripheral hardware clock and switching of the clock source
The peripheral hardware clock is supplied to the peripheral hardware, which uses it as the operating clock.
The supply source of the peripheral hardware clock can be switched from the internal high-speed oscillator to
the high-speed system clock oscillator. Only one switch can be done following reset release. Switching is
done by setting the main clock mode register (MCM). (For details about the main clock mode register (MCM),
refer to Figure 2-2.)

Figure 2-3. Flow of Peripheral Hardware Clock (frrs) from Each Clock Generator (Red Lines)

Switching is selected with the main clock mode register (MCM)
(can be set only once after reset release)

Internal high-speed oscillator / Peripheral hardware clock (frrs)

(4 MHz (typ.)/8 MHZ (typ.)) | e [
Peripheral hardware - (Peripheral hardware
clock switch

High-speed system clock
oscillator (1 to 10 MHz)

8 Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

(4) Stopping and starting clock generators
In the case of clock generators whose signals are not supplied anywhere, or if the function at the supply
destination is not used, the clock generator can be stopped (The internal low-speed oscillator can be stopped if

“Can be stopped by software” has been set with an option byte). Before a clock generator is stopped, whether
its signal is supplied to currently operating functions (CPU, peripheral hardware) must be checked.
When the operation of a clock generator that was stopped is started again, before supplying that signal to the

CPU clock, peripheral hardware clock, and real-time counter clock, the lapse of the oscillation stabilization time

must be waited for.

<1> Internal high-speed oscillator and internal low-speed oscillator
The oscillation of the internal oscillators is started or stopped with the internal oscillation mode register
(RCM). Oscillation stabilization of the internal high-speed oscillator can be checked with the RSTS bit.

Figure 2-4. Internal Oscillation Mode Register

Internal oscillation mode register (RCM) After reset: 1000 0000B

rsTs| O

0

OO

O |LSRSTOP| RSTOP

LSRSTOP| Internal low-speed oscillator oscillating/stopped

0 Internal low-speed oscillator oscillating (default)

Internal low-speed oscillator stopped

RSTOP | Internal high-speed oscillator oscillating/stopped RSTS | Status of internal high-speed oscillator

0 Internal high-speed oscillator oscillating (default) 0 Waiting for accuracy stabilization of internal high-speed oscillator

1 Internal high-speed oscillator stopped 1 Stability operating of internal high-speed oscillator (default)

Caution The RSTS bit is 0 immediately after a reset but changes to 1 after internal high-speed oscillator

has been stabilized.

<2> High-speed system clock oscillator
The oscillation of the high-speed system clock oscillator is started or stopped with the MSTOP bit of the
main OSC control register (MOC).
In the case of the X1 oscillation mode, the oscillation stabilization time wait can be measured with the X1

oscillation stabilization time counter. The stabilization time is set to the oscillation stabilization time select

register (OSTS), and whether the time set with the oscillation stabilization time counter status register
(OSTC) has elapsed can be checked. Set a sufficient length of time according to the resonator that is
used. (The X1 oscillation stabilization time counter measures only the time that has been set, and does

not check whether the X1 oscillation is stable.)
The oscillation stabilization time select register (OSTS) is set to the longest measurement time (2'%/fx)
after reset is released.

Figure 2-5. Main OSC Control Register

Main OSC control register (MOC) After reset: 1000 0000B

mstorl 0| O O O] O o]0
Control of high-speed system clock operation
MSTOP — -
X1 oscillation mode External clock input mode
0 X1 oscillator operating External clock from EXCLK pin is enabled
1 X1 oscillator stopped (default) | External clock from EXCLK pin is disabled (default)

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

10

Figure 2-6. Registers of X1 Oscillation Stabilization Time Counter

Oscillation stabilization time select register (OSTS) After reset: 0000 0101B

0 0 0 0 0 |OSTS2|0OSTS1|OSTS0

0sTs2[0sTS1[0sTS0| sCiation stabilization = ———="g -
o [o | 1|2 204.8 us
0 1 0 | 2"« 819.2 us
0 1 1 2"/fx 1.64 ms
1 0 0 | 2%/ 3.27 ms
1 | o | 1 [2%x(defauly | 6.55ms

Other than above: Setting prohibited

Oscillation stabilization time counter status register (OSTC) After reset: 0000 0000B

0 0 0 [MOST11|MOST13| MOST14|MOST15|MOST16

MOST11{MOST13MOST14MOST15MOST16| Pscilaton stabiization =7y
1 0 0 0 0 2'1/fx min. 204.8 ps min.
1 1 0 0 0 2'%/fx min. 819.2 us min.
1 1 1 0 0 2"%/fx min. 1.64 ms min.
1 1 1 1 0 2'%/fx min. 3.27 ms min.
1 1 1 1 1 2'¢/fx min. 6.55 ms min.

»- Becomes 1 with the lapse of time

<3> Subsystem clock oscillator (78K0/KC2-L only)
The oscillation of the subsystem clock oscillator is started or stopped with each bit of the processor clock
control register (PCC) and clock operation mode select register (OSCCTL).
Following the start of operation in the XT1 oscillation mode, the stabilization time must be waited for
according to the resonator that is used.

Figure 2-7. Registers of Subsystem Clock Oscillator

Processor clock control register (PCC) After reset: 0000 0001B

*_ % _[x
0 |xsTART|CLS|Css| o |pcce|pccilpccol % 78Ko/KC2-L only

Clock operation mode select register (OSCCTL) After reset: 0000 0000B

* * * *
EXCLK|OSCSEL|EXCLKS|OSCSELS| O |RSWOSC|AMPHXT| 0 * 78K0/KC2-L only

XSTART|EXCLKS|OSCSELS| Subsystem clock operating mode
0 0 1 XT1 oscillation mode (a crystal or ceramic resonator must be
1 x x connected to P123/XT1 and P124/XT2)
0 1 1 External clock input mode (external clock must be input to P124/EXCLKS)

To stop the subsystem clock, set OSCSELS to 0 (default = stopped) x:don't care

RSWOSC | AMPHXT [XT1 oscillator oscillation mode selection
0 0 Low power consumption oscillation (default)
0 1 Normal oscillation
1 X Ultra-low power consumption oscillation

X :don't care

CLS| CPU clock (fcru) status (clock source)
0 | Operates with main system clock (fxe)

1 | Operates with subsystem clock (fsus)

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

2.2 Standby Function

Using the standby function, the power consumption can be reduced by controlling the clock at an arbitrary timing of
the program, by executing the HALT instruction or the STOP instruction to enter the HALT mode or the STOP mode,
respectively. The normal operation mode can be returned to from the HALT mode or STOP mode by issuing an
unmasked interrupt request signal or reset signal.

The HALT mode does not reduce the operating current as much as the STOP mode, but since the clock is
oscillating, the time to return to the normal operation mode is shorter. Compared to the HALT mode, the STOP mode
reduces the operating current to a greater extent, but the oscillator of the clock stops, so the time to return to the
normal operation mode takes longer.

Which mode to use for standby is determined based on the delay concomitant to the frequency of intermittent
program operation and the power consumption requirements. For a comparison of operating currents, refer to 2.3
Comparison of Total Current of Standby Function, and for a comparison of the return times, refer to 2.4
Comparison of Return Times through Interrupt of Standby Function.

(1) STOP mode
When the STOP instruction is executed, the internal high-speed oscillator and the high-speed system clock
oscillator stop. The operation continues if the subsystem clock oscillator and the internal low-speed oscillator
are operating.

Figure 2-8. Clock Generator in STOP Mode

STOP mode

The internal high-speed oscillator and high-speed system |

clock circuit are stopped.
Internal high-speed oscillation clock (fiH) [Peripheral hardware clock (frrs)
Peripheral hardware Peripheral

(4 MHz (typ.)/8 MHz (typ.))

Internal high-speed oscillator
_—
clock switch hardware

te (always
t release)

7

In the operation mode,
either one of these
oscillators is operating.

High-speed system clock |-> -
\ oscillator (1 1o 10 MHz) J’ Main system Prescaler
N 4

Main system clock (fxp)

clock switch

[T
xp/2 fxp/22 fxp/2° fxp/2*

Controller *
High—speed system clock (fx) ~ > Selector CPU
|\

/\ CPU clock (fcru)

==

78K0/KC2-L only

Subsystem clock oscillator (32.768 kHz) The STOP mode cannot be
12 used while the subsystem
Start/stop as clock is supplied to the CPU
needed Crystal/ceramic |, | clock

/

oscillation
:C Real-time counter)
External input clock [+
Subsystem clock frequency (fsus)

Internal low-speed

Start/stop as
needed

oscillator (30 kHz (typ.)) Internal low-speed oscillation clock (fi)
§ Start or stop after reset -
release is selected > C Watth_iog timer)
with an option byte 8-bit timer H1

Application Note U19612EJ1VOAN 11

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

<1> CPU clock (fcpu) conditions
The STOP mode can be entered only when the main system clock (fxp) has been selected as the CPU
clock (fcru). The subsystem clock (fsus: 78K0/KC2-L only) does not stop even when the STOP instruction
is executed, so the STOP mode cannot be entered when the CPU clock is selected.

<2> CPU and peripheral hardware status

* The CPU is stopped because the internal high-speed oscillator (fiH) and the high-speed system clock
oscillator (fxH) are stopped.

¢ The functions of the peripheral hardware that uses the peripheral hardware clock (frrs) as the source
are stopped. However, the functions that use the external clock input from a pin, the internal low-speed
oscillation clock (fiL), or subsystem clock (fsus) as the source in the peripheral hardware remain in the
same status as immediately before the STOP instruction was executed (if they were operating, they
continue to operate). Before executing the STOP instruction, the peripheral hardware that will use the
peripheral hardware clock (frrs) as the source must be stopped if it is operating.

* The various registers of the CPU, RAM, and peripheral hardware maintain their status before the
execution of the STOP instruction.

* If “Internal low-speed oscillator can be stopped by software” is selected by option byte setting, clock
supply from the internal low-speed oscillator to the watchdog timer stops.

Table 2-2. Peripheral Hardware in STOP Mode

Peripheral Hardware Status in STOP Mode
16-bit timer/event counter 00 Operation stopped
8-bit timer/event counter 50 Operable only when TI50 is selected as the count clock
51 Operable only when T151 is selected as the count clock
8-bit timer HO Operable only when TM50 output is selected as the count clock during 8-
bit timer/event counter 50 operation
H1 Operable only when fi, fi/2°, or fi/2" is selected as the count clock
Real-time counter Operable
Watchdog timer Operable. Clock supply to watchdog timer stops when “Internal low-speed

oscillator can be stopped by software” is set by option byte.

Clock output Operable only when subsystem clock is selected as the count clock

A/D converter Operation stopped

Operational amplifiers 0, 1 Operation stopped

Serial interface UART6 Operable only when TM50 output is selected as the serial clock during 8-

bit timer/event counter 50 operation

CSI10, CSIt1 Operable only when external clock is selected as the serial clock
IICA Wakeup (interrupt signal generation) by address match operable
Key interrupt Operable

Power-on-clear function

Low-voltage detection function

External interrupt

12 Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

<3> Operation of oscillation stabilization time counter upon return from STOP mode
The clock generator includes a counter for measuring the stabilization time of the X1 resonator. If the X1
resonator of the high-speed system clock is oscillated, the oscillation stabilization time can be measured
by setting the oscillation stabilization time select register (OSTS) and reading the oscillation stabilization
time counter status register (OSTC).
The OSTC register starts counting from when the X1 oscillator starts oscillating (MSTOP = 0), while the
CPU clock (fcru) is supplied from either the internal high-speed oscillator or subsystem clock oscillator.
However, counting starts immediately in the following case only: after return from the STOP mode when
the STOP instruction is executed and return is effected upon occurrence of an unmasked interrupt
request signal, while the CPU clock (fcpu) is supplied from the X1 resonator of the high-speed system
clock. While counting is executed, the operating status is the HALT status during which the clock source
is not supplied to the CPU clock (fcru), and after the time set to the OSTS register has been measured,
the operation mode (normal status) is returned to. Therefore, set an appropriate value to the oscillation
stabilization time select register (OSTS) before executing the STOP instruction.

Figure 2-9. Operation of X1 Oscillation Stabilization Time Counter When STOP Instruction Is Canceled

Interrupt request
signal generation

STOP instruction

Standby release signal

Count starts when STOP
mode is canceled

Oscillation stabilization |~ Normal operation
wait (HALT mode status)| (nigh-speed system clock)

Normal operation
(high-speed system clock) STOP mode

Status of CPU - > </ >
Oscillation
stabilization time Stopped < Counts > Stopped
counter status

High-speed system clock Oscillates Oscillation stopped Oscillates
x) (STOP > >
(x) () | N)
Y
Oscillation stabilization time
(set by OSTS)

Application Note U19612EJ1VOAN 13

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

14

(2) HALT mode
When the HALT instruction is executed, the operation continues if the various oscillators are operating, and the
CPU clock (fcru) supply to the CPU is stopped.
The HALT mode can be entered even when either the main system clock (fxp) or the subsystem clock divided
by 2 (fsue/2) is selected as the CPU clock (fcru).

Figure 2-10. Clock Generator in HALT Mode (Internal Low-Speed Oscillator Is Omitted)

When the main system clock is selected as the CPU clock

Internal high-speed oscillator
(4 MHz (typ.)/8 MHz (typ.)) [k IR e el e)

4 MHz or 8 MHz is selected , Perioheral
with an option byte (always Peripheral hardware
7 | operate after reset release) clock switch hardware

Either one of
these oscillators|
is operating.

Main system clock (fxp)

High-speed system clock
oscillator (1 to 10 MHz)

Main system AN
clock switch @! Prescaler

Crystal/ceramic
oscillation

2 A A

[
fxp/2 fxp/22 fxp/2° fxp/2*

Selector

External input clock

When the main
system clock is
supplied
to the CPU clock

| The CPU clock is not supplied to |
the CPU.

HALT mode

When the subsystem clock divided by 2 is selected as the CPU clock (78K0/KC2-L only)

Start/stop as|Internal high-speed oscillator
needed (CRVrACTNELYF AWM Internal high-speed oscillation clock (fiH) B Peripheral hardware clock (fers
d

§ 4 MHz or 8 MHz is selecte: o~ - Peripheral
with an option byte (always i Penp?erzl ha{dr\:vare hargware
operate after reset release Clock Switc
Start/stop as Main system clock (fxp)
needed .
High-speed system clock -
oscillator (1 to 10 MHz) Main system Prescaler
clock switch
Crystal/ceramic || I 1
oscillation fxp/2 fxp/22 fxp/2° fxp/2*
Controller + + + +
External input clock| > [T gy [~ Selector
= o 5
Operating When the subsystem
78KO/KC2-L only clogukpdplkligjde?ok; e2 ' |I™The CPU clock is not supplied |
ubsystem clock oscillator _
(82.768 kHz) 1 HALT mOde
Crystal/ceramic ||
oscillation
> Real-time counter
External input clock
Subsystem clock frequency (fsus)

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

<1> CPU clock conditions
The HALT mode can be entered even when either the main system clock (fxp) or the subsystem clock
divided by 2 (fsus2) is selected as the CPU clock (fcpu).
When the subsystem clock divided by 2 (fsue/2) is selected as the CPU clock (fcpu), the power
consumption in the HALT mode can be further reduced by stopping both the internal high-speed
oscillator and the high-speed system oscillator (refer to Table 2-5).

<2> CPU and peripheral hardware status

¢ The CPU is stopped because the CPU clock (fcru) is not supplied to the CPU.

¢ The status before the HALT instruction was executed is maintained because the peripheral hardware
clock (frrs) is supplied to the peripheral hardware. (The peripheral hardware continues to operate if it
was operating.)

* The various registers of the CPU, RAM, and peripheral hardware maintain their status before the
execution of the HALT instruction.

¢ If “Internal low-speed oscillator can be stopped by software” is selected by option byte setting, clock
supply from the internal low-speed oscillator to the watchdog timer stops.

(3) Return through unmasked interrupt (common to STOP mode and HALT mode)
If, upon return through an unmasked interrupt request signal, the interrupt enable flag (IE) is enabled (IE = 1),
interrupt servicing is executed, and if it is disabled (IE = 0), interrupt servicing is not executed and the next
instruction is executed instead. In this case, the interrupt request signal is not automatically cleared and is
held pending instead, so that interrupt is serviced when it is enabled (IE = 1). (An inadvertent program loop
occurs if there is no program at the address that corresponds to the interrupt vector.)
To not execute interrupt servicing upon return from the STOP mode or HALT mode through an unmasked
interrupt, the interrupt request flag must be cleared before the interrupt is enabled (IE = 1) after the return.

Table 2-3. Operation upon Return in Response to Interrupt Request (STOP and HALT Modes)

Release MKXX (Mask Flag) PRXXX (Priority IE ISP Operation
Source Specification Flag)
Maskable 0 (Enable) 0 (High) 0 X Next address execution (interrupt
interrupt request flag held)
request 1 X Interrupt servicing execution
1 (Low) 0 1 Next address execution (interrupt
« 0 request flag held)
1 1 Interrupt servicing execution
1 (Disable) X X X STOP and HALT modes held
Reset - - X X Reset processing

\IQ’ [Column] Use of HALT mode during event wait of peripheral hardware
If the occurrence of peripheral hardware events such as conversion wait of an A/D converter is being
detected through software polling, use of the HALT mode instead should be considered. The return time
from the HALT mode through an interrupt is sometimes faster than detection through polling. Moreover,
since the microcontroller continues to execute instructions during polling, placing the microcontroller be in
standby in the HALT mode reduces the power consumption.

Application Note U19612EJ1VOAN 15

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

2.3 Comparison of Total Current of Standby Function

The following tables list the total current (by regulator setting) that flows in the internal power supplies (Vop, AVREF)
during normal operation, in the HALT mode, and in the STOP mode, under various conditions.

Table 2-4. CPU Clock (fcru) Supplied from Internal High-Speed Oscillation Clock (fiH) or High-Speed System

Clock (fxH)
Operating Conditions Operation Mode HALT Mode STOP Mode
(Normal Operation)
fit = 4 MHz (Internal high-speed oscillation 0.5 mA (TYP), 0.2 mA (TYP), 0.3 A (TYP),
clock), 1.4 mA (MAX.) 0.5 mA (MAX.) 5.5 uA (MAX.)
Vob=3.0V (Clock generator is stopped, so
RMC = 56H (Low power consumption mode) frequency is not included in
conditions)
fit = 8 MHz (Internal high-speed oscillation 1.3 mA (TYP), 0.3mA (TYP), -
clock), 2.5 mA (MAX.) 1.2 mA (MAX.)
Voo =5.0V
RMC = 00H
fxi = 10 MHz (External input clock), 1.6 mA (TYP), 0.4 mA (TYP), -
Voo =5.0V 2.8 mA (MAX.) 1.3 mA (MAX.)
RMC = 00H
fx1 = 10 MHz (Crystal/ceramic oscillation), 2.3 mA (TYP), 1.0 mA (TYP), -
Voo =5.0V 3.9 mA (MAX.) 2.4 mA (MAX.)
RMC = 00H

Table 2-5. CPU Clock (fcpu) Supplied from Subsystem Clock Divided by 2 (fsus/2) (78K0/KC2-L Only)

Operating Conditions Operation Mode HALT Mode STOP Mode
(Normal Operation)
fsus = 32.768 MHz (Crystal/ceramic oscillation), | 3 A (TYP.), 0.8 1A (TYP), 0.3 A (TYP),
Voo =3.0V 9.7 uA (MAX.) 6.7 uA (MAX.) 5.5 uA (MAX.)
RMC = 56H (Low power consumption mode) (Clock generator is stopped, so

frequency is not included in
conditions)

16

Cautions 1.

Tables 2-4 and 2-5 have been excerpted from CHAPTER 28 ELECTRICAL SPECIFICATIONS of
the 78K0/Kx2-L User’s Manual.

The current value of Tables 2-4 and 2-5 includes the input leakage current flowing when the
level of the input pin is fixed to Voo or Vss. However, the current flowing into the pull-up
resistors, the pull-down resistors, and the output current of the port are not included.

The current value of the normal mode and HALT mode does not include the current flowing
into the oscillator other than the circuit which generates the clock supplied to CPU. It does
not include the current flowing into the LVI circuit, A/D converter, operational amplifier,
watchdog timer, real-time counter, and 8-bit timer H1 (when using the 30 kHz internal low-
speed oscillation clock as the count clock).

The current value of the STOP mode does not include the current flowing into the LVI circuit,
A/D converter, operational amplifier, watchdog timer, real-time counter, and 8-bit timer H1
(when using the 30 kHz internal low-speed oscillation clock as the count clock).

The current value of the STOP mode is for the conditions of Voo = 3.0 V, RMC = 56H. Clock
generator is stopped, so frequency is not included in conditions.

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

2.4 Comparison of Return Times through Interrupt of Standby Function

In the case of return through an unmasked maskable interrupt request signal, the return time differs between return
from the HALT mode and return from the STOP mode. This is because in the HALT status, the internal high-speed

oscillator and the high-speed system clock oscillator operate, while in the STOP status, they are stopped.

Upon occurrence of an interrupt request signal, the standby release signal (internal signal: H = release status) is

released, and return from each mode is effected.

In the case of return from the STOP mode, the return time differs depending on which clock (internal high-speed
oscillator (fiH), high-speed system clock oscillator (both fx and fexcLk), subsystem clock oscillator divided by 2 (fsus/2))
is supplied to the CPU clock (fcpu). (The return time is longest when the X1 resonator (fx) of the high-speed system
clock oscillator is supplied.) In the case of return from the HALT mode, the return time is the same regardless of the

clock that is supplied to the CPU clock (fcpu).
Unless specified otherwise, the values in the table below are for RMC = 00H (fixed 2.4 V supply).

(1) When the CPU clock (fcru) is supplied from the internal high-speed oscillation clock (fiH)

Figure 2-11. Return through Interrupt Request Signal (fcpu < fiH)

Standby release signal

Status of CPU

Internal high-speed
oscillation clock (HALT)

Internal high-speed
oscillation clock (STOP)

HALT/STOP
instruction

Interrupt request
signal generation

The broken line indicates the
case when the interrupt request
that has released the standby
mode is acknowledged.

Iy

Normal operation
(internal high-speed
oscillation clock)

<
-

\

HALT/STOP mode

A

»
L

Normal operation
(internal high-speed
oscillation clock)

A\

Oscillates

<
|

Oscillates

Oscillation stopped

Oscillates

Y

<%

-

—

Wait for oscillation
accuracy stabilization

Table 2-6. Return Times in Case of Return from HALT and STOP Modes (fcru « fiH)

Source

HALT Mode
(fcru = 8 MHz)

STOP Mode
(fcru = 8 MHz)

Wait

When vectored interrupt servicing is carried out

11 or 12 clocks
(1.375t0 1.5 us)

17 or 18 clocks
(2.125 t0 2.25 us)

When vectored interrupt servicing is not carried out

4 or 5 clocks
(1.375t0 1.5 us)

11 or 12 clocks
(1.375t0 1.5 us)

Wait for oscillation accuracy stabilization

102 to 407 us (RMC = 00H)
120 to 481 us (RMC = 56H)

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

(2) When the CPU clock (fcru) is supplied from the X1 resonator (fx) of the high-speed system clock
If the CPU clock (fcru) is supplied from the X1 crystal/ceramic resonator and return from the STOP mode is
effected, the system waits for the oscillation stabilization time set to the OSTS register by the user according to

the resonator. During this time, the microcontroller is in the HALT mode status, in which no clock is supplied to
the CPU clock (fcru).

Figure 2-12. Return through Interrupt Request Signal (fcpu « fxH « fx)

The broken line indicates the
.) Interrupt request case when the interrupt request

HALT instruction signal generation that has released the standby

; mode is acknowledged.
l [/
Standby release signal | /
Normal operation Normal operation
(high-speed system clock) HALT mode Wait (high-speed system clock)
Statusof CPU ————————————— - [¢— >
High-speed system clock Oscillates

(X1)

The broken line indicates the
.) Interrupt request case when the interrupt request

STOP instruction signal generation that has released the standby

? mode is acknowledged.
l [/
Standby release signg| —mMmM™————@@@ el
Normal operation Oscillation stabilization wait Normal operation
(high-speed system clock) STOP mode (HALT mode status) (high-speed system clock)
Status of CPU > >| >
High-speed system clock Oscillates Oscillation stopped Oscillates
(X1) > |
\)
Y

Oscillation stabilization time (set by OSTS)

Table 2-7. Return Times in Case of Return from HALT and STOP Modes (fcpu « fxH « fx)

Source HALT Mode STOP Mode
(fcru = 10 MHz) (fcru = 10 MHz)
Wait When vectored interrupt servicing is carried out 11 or 12 clocks -

(1.1t0 1.2 us)
When vectored interrupt servicing is not carried out 4 or 5 clocks

(0.4 t0 0.5 us)
Oscillation stabilization time (set by OSTS) - Wait time set to OSTS

register

2""/ix (204.8 us)
2%ix (819.2 us)
2"/tx (1.64 ms)
2"/fx (3.27 ms)
2'%/fx (6.55 ms)

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

(3) When the CPU clock (fcru) is supplied from the X2 external clock (fexcLk) of the high-speed system

clock

Figure 2-13. Return through Interrupt Request Signal (fcru « fxH « fexcLk)

Standby release signal

Status of CPU

High-speed system clock
(X2) (HALT)

High-speed system clock
(X2) (STOP)

HALT/STOP
instruction

Interrupt request
signal generation

i

The broken line indicates the
case when the interrupt request
that has released the standby
mode is acknowledged.

Normal operation
(high-speed system clock)

HALT/STOP mode

»l -
-1 '

A

Wait

Normal operation

(high-speed system clock)

Oscil

lates

»|
Lt Bl

Oscillates

Oscillation stopped

Y

A

Oscillates

-¢

Table 2-8. Return Times in Case of Return from HALT and STOP Modes (fcru < fxH « fexcLk)

Source

HALT Mode
(fcru = 8 MHz)

STOP Mode
(fcru = 8 MHz)

Wait

When vectored interrupt servicing is carried out

11 or 12 clocks
(1.375t0 1.5 us)

17 or 18 clocks
(2.125 t0 2.25 us)

When vectored interrupt servicing is not carried out

4 or 5 clocks
(1.375t0 1.5 us)

11 or 12 clocks
(1.375t0 1.5 us)

(4) When the CPU clock (fcru) is supplied from the subsystem clock (fsus/2 < fxr, fexcLks)
Only the HALT instruction is enabled for both the XT1 input (fxT: crystal resonator/ceramic resonator) and the
XT2 input (fexcLks: external clock). (Execution of the STOP instruction is prohibited.) The return timing chart
and the return time are the same as in the case of return from the HALT instruction, sections (1) to (3).

Application Note U19612EJ1VOAN

19

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

2.5 Return through Reset of Standby Function

In the case of return through reset signal generation, all the clock generators stop during the reset period, so the
return time is the same in the STOP status and in the HALT status.

(1) Return through reset signal
In the case of return through reset signal, all the clock generators stop during the reset period, so the return
time is the same in the HALT mode and in the STOP mode.

<1> When the CPU clock (fcru) is supplied from the internal high-speed oscillation clock (fiH)

Figure 2-14. Return through Reset Signal (fcpu < fiH)

HALT/STOP Reset signal
instruction generation
_— Y
Reset signal | |
Normal operation Reset Normal operation
(internal high-speed Reset period) (internal high-speed
oscillation clock) HALT/STOP mode P processing oscillation clock)
Status of CPU >t > > =|<
Oscillation
i stopped i
Internal high-speed Oscillates | < pp >l < Oscillates
oscillation clock (HALT) \)
Wait for oscillation
accuracy stabilization
o Oscillation
Internal high-speed Oscillates . ‘OSCI”atIOH stopped‘ B stopped | Oscillates
oscillation clock (STOP) T T g

Wait for oscillation
accuracy stabilization

Table 2-9. Return Times in Case of Return from HALT and STOP Modes (fcru « fiH)

Source HALT Mode/STOP Mode
Reset processing 12to 51 us
Wait for oscillation accuracy stabilization 102 to 407 us

20 Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

<2> When the CPU clock (fcpu) is supplied from the X1 resonator (fx) of the high-speed system clock

Figure 2-15. Return through Reset Signal (fcru < fxH < fx)

HALT/STOP
instruction

Reset signal
generation

Y

7

Reset signal | |
_ Normal operation Reset period Reset (img:?;ﬁgﬁfggggd
st fCPU(hlgh-speed system clock) | HALT/STOP mode p processing oscillation clock)
atus o > > > >
: Oscillation Oscillation |)
High-speed system clock Oscillates o | < Stopped stopped | Oscillates
fx) (HALT ol >
() () \ J
Y
Oscillation stabilization time
(set by OSTS)
o Oscillation Oscillation
High-speed system clock Oscillates Oscillation stopped stopped stopped Oscillates
(fx) (STOP) \ J
Y
Oscillation stabilization time
T (set by OSTS)

Starting X1 oscillation
is set by software.

Table 2-10. Return Times in Case of Return from HALT and STOP Modes (fcru « fxH « fx)

Source

HALT Mode/STOP Mode

Reset processing

12to 51 us

Oscillation stabilization time (set by OSTS)

Wait time set to OSTS register (fcru = 10 MHz)

2""/fx (204.8 us)
2%/fx (819.2 us)
2"/fx (1.64 ms)
2%/fx (3.27 ms)
2"/fx (6.55 ms)

Application Note U19612EJ1VOAN

21

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

<3> When the CPU clock (fcpu) is supplied from the X2 external clock (fexcLk) of the high-speed system clock

Figure 2-16. Return through Reset Signal (fcpu < fxH < fexcLk)

HALT/STOP Reset signal
instruction generation
—_— Y ;
Reset signal | |
_ Normal operation Reset period Reset (Ir’:ltg:’rr?:lll’?lgﬁtggggd
st fCF’U(hlgh-speed system cIockl ‘HALT/STOP mode‘ ! p | processing | " ocillation clock)
atus o > > > >
Oscillation Oscillation
High-speed system clock Oscillates P stopped | stopped | Oscillates
(fexcik) (HALT) T g T
o Oscillation Oscillation
High-speed system clock Oscillates ‘Oscnlatlon stopped stopped _ stopped -~ Oscillates
(fexcik) (STOP) "‘ N N T

!

Starting X2 oscillation
is set by software.

Table 2-11. Return Times in Case of Return from HALT and STOP Modes (fcpu < fxH < fExcLk)

Source HALT Mode/STOP Mode
Reset processing 12to 51 us

Application Note U19612EJ1VOAN

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

<4> When the CPU clock (fcru) is supplied from the subsystem clock divided by 2 (fsus/2)
Only the HALT instruction is enabled for both the XT1 input (fxT: crystal resonator/ceramic resonator) and
the XT2 input (fexciks: external clock). (Execution of the STOP instruction is prohibited.)
The oscillation stabilization time of the XT1 input is the wait time measured by the user with a timer, etc.,

according to the resonator that is used.

Reset signal

Status of CPU

Subsystem clock
(fexcik) (HALT)

Subsystem clock
(fx) (HALT)

Figure 2-17. Return through Reset Signal (fcru « fsus/2)

HALT instruction

Reset signal
generation

7

I

Normal operation

~_stopped | _ stopped

Y

Normal operation Reset internal high-speed
(subsystem dlock) | HALTmode | Resetperiod | processing | ("62ion oo
Oscillation Oscillation
Oscillates stopped stopped Oscillates
) Oscillation Oscillation .
Oscillates Oscillates

<%

N

\

J

easured by user)

T Oscillation stabilization time
(m

Starting XT1 or XT2 osc

is set by software.

illation

Table 2-12. Return Times in Case of Return from HALT Mode (fcpu « fsus/2 « fxr, fExcLks)

Source

HALT Mode/STOP Mode

Reset processing

12to 51 us

Oscillation stabilization time (measured by user)
(fcpu « fsue/2 « fxt only)

The system waits for the wait time suitable for
the resonator that is used, as measured with a
timer, etc.

Application Note U19612EJ1VOAN

23

CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS

2.6 Cautions on Clock Generator and Standby Function

* If the subsystem clock divided by 2 (fsus/2) is supplied to the CPU clock (fcru), the self programming function of

the flash memory cannot be used. The self programming function can be used if the internal high-speed
oscillation clock or the high-speed system clock is supplied to the CPU clock (fcpu).

* If the peripheral hardware clock (frrs) is stopped through execution of the STOP instruction or by program, be

sure to stop the peripheral hardware that uses the peripheral hardware clock as the clock source.

NV
Q [Column] Self programming function

The 78K0/Kx2-L microcontrollers have a self programming function that allows flash memory rewriting via a
user program. When using the self programming function, use the self programming library provided by
NEC Electronics. For details about the self programming library, refer to the About the EEPROM™
emulation library and self programming library (1) column in 4.2 Initial Settings and Work Areas of
CHAPTER 4.

24

Application Note U19612EJ1VOAN

CHAPTER 3 REGULATOR

3.1 Regulator Overview

The 78K0/Kx2-L microcontrollers contain a circuit for operating the device with a constant voltage. At this time, in
order to stabilize the regulator output voltage, connect the REGC pin to Vss via a capacitor (0.47 to 1 uF). However,
when using the STOP mode that has been entered since operation of the internal high-speed oscillation clock and
external main system clock, 0.47 uF is recommended. Also, use a capacitor with good characteristics, since it is used
to stabilize internal voltage.

The regulator output voltage is normally 2.4 V (typ.), and in the low power consumption mode, 2.0 V (typ.).

3.2 Register Controlling Regulator
(1) Regulator mode control register (RMC)
This register sets the output voltage of the regulator.
RMC is set with an 8-bit memory manipulation instruction.
Reset input sets this register to 00H.

Figure 3-1. Format of Regulator Mode Control Register (RMC)

Address: FF3DH After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0
RMC
RMC[7:0] Control of output voltage of regulator
56H Fixed to low power consumption mode (2.0 V)
00H Switches normal power mode (2.4 V) and low power consumption mode (2.0 V) according to

the condition (refer to Table 3-1)

Other than | Setting prohibited
above

Cautions 1. To change the RMC register setting value from 56H to 00H and use a CPU operating
frequency of 5 MHz or more, change the PCC and RCM registers when 10 ys or more has
elapsed after the RMC register was set.

2. When using the setting fixed to the low power consumption mode, the RMC register can be
used in the following cases.
<When X1 clock is selected as the CPU clock>
fx <5 MHz and fcpu < 5 MHz
<When the internal high-speed oscillation clock, external input clock, or subsystem clock is
selected as the CPU clock>
fcpu <5 MHz

Application Note U19612EJ1VOAN 25

CHAPTER 3 REGULATOR

3.3

26

Table 3-1. Regulator Output Voltage Conditions

Mode Output Voltage Condition

Low power consumption 20V In STOP mode
mode

When both the high-speed system clock (fx+) and the internal high-speed
oscillation clock (fin) are stopped during CPU operation with the
subsystem clock (fxt)

When both the high-speed system clock (fx+) and the internal high-speed
oscillation clock (fi) are stopped during the HALT mode when the CPU
operation with the subsystem clock (fxt) has been set

Normal power mode 24V Other than above

Cautions on Self Programming

1. When executing self programming or EEPROM emulation, fix the mode of the regulator output voltage.

The power supply voltage range in which the flash memory can be rewritten in the normal power mode is Vop >

2.5 V. Moreover, in the case of the normal power mode, the program area can be rewritten by using the self

programming library.

Observe the following points when rewriting the flash memory in low power consumption mode.

The data area can be rewritten in low power consumption mode, but the program area cannot.

The flash memory cannot be rewritten in low power consumption mode if the power supply voltage is equal to
or lower than the output voltage of the regulator (2.0 V).

Flash memory that has been written and erased in the low power consumption mode cannot be accessed in
the normal power mode. To use this data in the normal power mode, switch to the low power consumption
mode and transfer the flash memory contents to RAM.

When executing rewrite during EEPROM emulation, overwriting the same block is possible. However, when
executing rewrite by using the self programming library, overwriting the same block is not possible, so be sure
to erase a block first before rewriting data to it.

A wait time of 2 ms is required before executing self programming after switching from the normal power
mode to the low power consumption mode.

Remark For details about the self programming function and the self programming library, refer to the 78K0

Microcontrollers Self Programming Library Type01 User’s Manual (U18274E) and 78K0 Self
Programming Library TypeO1 User’s Manual 78K0/Kx2-L, 78K0/Ix2 Specification Differences
(ZBB-CB-09-0019).

For details about the EEPROM emulation, refer to the 78K0 Microcontrollers EEPROM Emulation
Library Type01 User’'s Manual (U18275E) and 78K0 EEPROM Emulation Library Type01 User’s
Manual 78K0/Kx2-L, 78K0/Ix2 Specification Differences (ZBB-CB-09-0020).

Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

This chapter introduces sample programs that use the various low power consumption functions of the 78K0/KC2-L
microcontroller.

The program lists in this chapter consist mainly of programs related to the standby function and the regulator. For
all the programs, refer to the C source code.

4.1 Specifications and Overall Flow

A clock function is realized by using a real-time counter. The display mode (hours, minutes, seconds, and 12-/24-
hour display) can be changed by using switches.

Upon detection of a low voltage (2.53 V +0.1 V) by the low-voltage detector, a warning LED lights up and the
current display mode (hours, minutes, seconds, and 12-/24-hour display) is self programmed to the flash memory by
using the EEPROM emulation library.

By cutting off the power once and then reapplying it after a low voltage has been detected, the display mode is
regenerated and the data written to the flash memory can be checked.

Figure 4-1. Program Operation (Image)

The display switches between
Hour — Minute — Second each time \/\
this switch is pressed. Hour/Minute/ \/\

Second switch
The display switches between
12 hours < 24 hours each time
this switch is pressed.

Displays the clock data

(hours, minutes, and seconds).

Current display mode

12/24 switch \

Clock display
7-segment LED

—— Clock, EEPROM /
‘ ' 4 ' emulation programs/ |
L'. L'. The time is measured

Flash memory with the timer and upon
detection of low voltage,

. the clock data is saved,
Warning LED 78KO0/KC2-L microcontroller&

Lights upon detection
of low voltage.

Target system

Application Note U19612EJ1VOAN 27

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

The status transition diagram of the sample program is shown below.

Following the execution of the startup routine, the low power consumption mode is set and the display mode is read
using the EEPROM emulation library. Then the CPU clock is switched to clock supply from the subsystem clock and
the HALT mode is entered.

The HALT mode is returned from and the mode becomes the operation mode (normal operating status) upon
generation of an interrupt by the real-time counter, interrupt generation through switch input, or generation of a low
voltage detection interrupt.

During the low voltage detection interrupt servicing, the CPU clock is switched to clock supply from the main
system clock, and the display mode is written to the flash memory using the EEPROM emulation library.

Figure 4-2. Program Status Transition Diagram

Reset release

CPU clock = main system clock

l Low power consumption mode

Flash memory read with
CPU clock = main system clock EEPROM emulation

Switch interrupt l

Real-time counter f ST

interrunt Low voltage
interrup CPU clock = subsystem clock detection interrupt

e\l

Operation mode Operation mode

CPU clock = subsystem clock

Startup routine
execution

CPU clock = main system clock

Flash memory written with
EEPROM emulation

28 Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

The interrupt servicing and data flow of the sample programs are shown below.

During real-time counter interrupt servicing, the hour, minute, and second data of the real-time counter is saved as
variable to RTC_Data. During INTP1 and INTP4 interrupt servicing, the display mode variables are rewritten to

Clock_Mode.

During low voltage detection interrupt servicing, the display mode is read and saved to the flash memory.

Figure 4-3. Interrupt Servicing and Data

Each second Each time switch is pressed ~ Upon low voltage detection

M

Low voltage
detection interrupt

Real-time counter
interrupt

INTP1 and INTP4
interrupts

A i v v
Write\ \F\Read and dISpIE}x - / Write _-” " Read and save

~ .
~ -,
~ .

to flash memory

N
PR -

Clock data -“ < Display mode -7
______________ Ss.acond L _ -Clock_Mode - - Second/Minute/Hour
| ___RTC_Data [Minute 12-hour display/24-hour display (during hour display)
Hour
\ J

Y
Global variables

Application Note U19612EJ1VOAN

29

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

In the sample programs, the CPU clock (fcpu) supply source is switched according to the processing.
The program flow and clock status are shown below. The red characters indicate the changes made as the result

of the program settings.

Disable
interrupt

A

30

Enable
interrupt

Low power
consumption

mode

Figure 4-4. Program Processing and Clock Status

Program processing flow

Startup routine

v

Initial settings (hdwinit())

e Switching clock (4 MHz — 8 MHz)
o Stopping internal low-speed oscillator
l

Initial settings
l

Main processing (main())

 Switching clock (8 MHz — 4 MHz)
o Setting low power consumption mode
(fixed to low power consumption)

» Reading display mode from flash memory | <.

o Starting subsystem clock oscillation
» Switching clock (subsystem clock)
 Stopping internal high-speed oscillator

»
>

Executing HALT instruction

|
' :

Real-time counter interrupt

(Int_RTC())
INTP interrupt (Int_INTP()))i
Low voltage detection interrupt 3
(Int_LVI())

» Operating internal high-speed oscillator

» Switching clock (internal high-speed
oscillator)

» Writing display mode to flash memory

» Switching clock (subsystem clock)
» Stopping internal high-speed oscillator

A 4.

\ Internal high-speed oscillator — Operating (8 MHz typ. by setting of option byte)

Clock status

Internal low-speed oscillator — Operating (can be stopped by software
by setting of option byte)
Internal high-speed oscillator — Operating (8 MHz typ. by setting of option byte)
Subsystem clock oscillator — Stopped
CPU clock (fcpu) — Supplied from internal high-speed oscillator (divided by 2 = 4 MHz)
Peripheral hardware clock (frrs) — Supplied from internal high-speed oscillator
(divided by 2 = 4 MHz)

Internal low-speed oscillator — Stopped

Internal high-speed oscillator — Operating (8 MHz typ. by setting of option byte)

Subsystem clock oscillator — Stopped

CPU clock (fcru) — Supplied from internal high-speed oscillator (undivided = 8 MHz)

Peripheral hardware clock (frrs) — Supplied from internal high-speed oscillator
(undivided = 8 MHz)

Internal low-speed oscillator — Stopped

Subsystem clock oscillator — Stopped

CPU clock (fcpu) — Supplied from internal high-speed oscillator (divided by 2 = 4 MHz)
Peripheral hardware clock (fers) — Supplied from internal high-speed oscillator
(divided by 2 = 4 MHz)

* Clock settings for lowest power consumption

Internal low-speed oscillator — Stopped
Internal high-speed oscillator — Stopped
Subsystem clock oscillator - Operating

CPU clock (fcpu) — Supplied from subsystem clock oscillator
(divided by 2 = 16.384 kHz)

Peripheral hardware clock (frrs) — Not supplied

=\ Internal low-speed oscillator — Stopped

Internal high-speed oscillator — Operating
Subsystem clock oscillator - Operating

CPU clock (fcru) — Supplied from internal high-speed oscillator (divided by 2 = 4 MHz)
Peripheral hardware clock (fers) — Supplied from internal high-speed oscillator
(divided by 2 = 4 MHz)

* Clock settings for lowest power consumption

Internal low-speed oscillator — Stopped
Internal high-speed oscillator — Stopped
Subsystem clock oscillator - Operating

CPU clock (fcru) — Supplied from subsystem clock oscillator
(divided by 2 = 16.384 kHz)

Peripheral hardware clock (frrs) — Not supplied

Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

Table 4-1. File Configuration of Program (Folder Name: U19612_Kx2L_LowPower_01_AN)

Folder Name

File Name

Description

U19612_Kx2L_LowPower_01_AN

Kx2L_LowPower.Imf

Load module file

Kx2L_LowPower.hex

HEX format object module file

Kx2L_LowPower.prw

Project file

Other generated files and project-related files

/src

initial.c Initial settings

main.c Main program

Int_RTC.c Real-time counter interrupt function
Int_Intp.c INTP edge detection interrupt function
Int_LVI.c Low voltage detection interrupt function
option.asm Option byte setting file

LowPower.h Header file

Kx2_eee.h Header file (for EEPROM emulation)

This sample program is designed for the TK-78K0/KC2L evaluation board of Tessera Technology Inc. (which

incorporates the uPD78F0588GA-GAM-AX).

78K0/KC2L documentation.
The I/Os and the special function registers (SFR) of the microcontroller that are used by the program are shown

below.

Table 4-2. TK-78K0/KC2L 1/0Os Used by Program

For the operation method of the TK-78K0/KC2L, refer to the TK-

I/0

Application

Connection Pin

7-segment LED

* Display “-” following power application.

* Display hours, minutes, and seconds of clock data.

e Switch display between Hour — Minute — Second each time the
Hour/Minute/Second switch is pressed.

* Switch display between 12 hours and 24 hours each time the 12/24 switch
is pressed.

* The default display is Second and 12-hour display, but in the case of startup
after a low-voltage interrupt has been input, the display used until then is
reproduced.

<Segment>

Port 2

P20 to P27 pins
<Digit switching>
Port 0

P00 and P01 pins

Hour/Minute/Second
switch (SW5)

Switch clock display between Hour — Minute — Second each time the
switch is pressed.

P30/INTP1 pin

AM/PM switch Switch display between 12 hours and 24 hours each time the switch is P33/T151/TO51/INTP4 pin
(SWe) pressed.
Warning LED Lights upon input of low voltage detection interrupt. (This LED is an addition Port O

to the TK-78KO0/KC2L.) P02 pin

Table 4-3. Microcontroller SFRs Used by Program

SFR

Application

Real-time counter

Realize clock function (interrupt).

Low-voltage detector

Detect low voltage of power supply voltage (interrupt).

Interrupt pins

INTP1: Detect switching of Hour/Minute/Second switch.
INTP4: Detect switching of 12/24 switch.

Ports

Port 2: Output to 7-segment LED.

Ports 0_0, 0_1: Switch display digit of 7-segment LED. (The clock signal is output to each latch.)

Application Note U19612EJ1VOAN

31

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

4.2 Initial Settings and Work Areas

Since the flash memory is written to using the EEPROM emulation library in the sample programs, the header of

EEPROM emulation must be included and the work areas for the libraries must be set.

Moreover, the path of the header file must be set using a compiler, and the EEPROM emulation library and the self

programming library files must be set using a linker.

List 4-1. Startup Routine Initial Setting Function (main.c)

/* ___

* Preprocessing directive (#pragma)

K e e e */

#pragma sfr /* SFR names can be described at the C source level */
#pragma di /* DI instructions can be described at the C source level */
#pragma ei /* EI instructions can be described at the C source level */
#pragma nop /* NOP instructions can be described at the C source level */
#pragma halt /* HALT instructions can be described at the C source level */
#pragma stop /* STOP instructions can be described at the C source level */
/* ___

* Header files | EEPROM emulation library header file

e T T T T */

#include "eeelib.h" /* EEPROM emulation library header */

/* Sample program header */

#include "Kx2_eee.h"
P /* Sample program header */

#include "LowPower.h"

/* ,,

* Global iabl —

o ovat variadbies /o . | For EEPROM emulation library |_________ Y

sreg UCHAR EntryRAM[100]; / /* Entry RAM for self programming library */
UCHAR EEPROM DataBuf [EEPROM_ BUFFLEN] ; /* Data buffer for EEPROM emulation library */
UCHAR Clock Mode [EEPROMiDATALEN]ﬂ—| Display mode written to flash memory

UCHAR RTC Data[3];
UCHAR / const LED Pattern[] = {0xcO, 0xf9, Oxad, 0xb0, 0x99, 0x92, 0x83, O0xf8, 0x80,
0x98, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e, Oxbf};

Clock data of real-time clock

/6 ok o ok kK kK ok ok ok kKKK K ok ok ok ok KKKk ko ok ok ok ok kKK ko ok ok ok ok XX K Kk ok ok ok ok ok XK K K K ok ok KK K K K ok ok ok kK X K K K

Initialization after RESET | Lighting pattern of 7-segment LED

kKKK K K o o K K KKK Kk ok ok K K K K K K K Kk kK K KK K K Kk kKKK KK K KKk KRR KKK KKk Kk ok kK KKK K Kk k kK [

void hdwinit(void) ——| Executed from startup routine
{

/* Disable interrupts */

DI();

/* Peripheral hardware initial settings */
Init_sfr();

/* ___

* Define macros

g */

#define NOP_4 NOP();NOP();NOP();NOP(); /* Execute NOP 4 times */

#define NOP_8 NOP_4 NOP_4 /* Execute 2 times the macro that executes NOP 4 times (4 X 2 = 8)
/* ,,,

*/

NV
Q [Column] About the EEPROM emulation library and self programming library (1)

flash memory from a user program.
Self programming libraries are used to write and erase flash memory.

erase of flash memory calls the self programming library from the EEPROM emulation library.

The EEPROM emulation and self programming libraries provided by NEC Electronics are for writing to the

EEPROM emulation libraries are used to realize operation as if data of any size were rewritten to flash
memory whose smallest write unit is 4 bytes and erase size is 1 block (= 1024 bytes). Actual write and

32 Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

All unconnected ports are set as output ports. After the subsystem clock is started, timer TMOO is started in order
to measure the oscillation stabilization time.

List 4-2. Initial Setting Function (main.c) (1)

[KKK K KKK KKK KR K KKK KKK KKK KKK KKK K KK KKK KK K KK K KR KK K KR K KKK KK K KK KKK KK K KK KKk KKk K KR K KR K KKK K KK
Init sfr()

[T N] -
[OUT] =
.***/

oid Init_sfr(void)

-~ <

/* For loop counter */
UCHAR i;

/* Specify the ROM and RAM sizes when using uPD78F0583 or uPD78F0588 */
IMS = 0xC8;

/* After reset release, set the internal high-speed oscillator to 8 MHz (typ.) by option byte setting */

/* After reset release, use main clock for internal high-speed oscillator, and main clock divided by 2 for CPU clock */
/* Switch CPU clock from main clock divided by 2 to undivided clock */

Change_CPUClk (MAINSYSCLK2_1);

/* 16-bit timer TMOO setting (Do not use subsystem clock's oscillation stabilization wait (approx. 2 s) interrupt) */

TMCO0 = 0b00000000; /* Disable 16-bit timer 00. Disable operating clock supply. Clear counter 00 */
TMMKO0O = 1; /* Set timer 00 interrupt mask (disable interrupt) */

TMIF000 = 0; /* Clear timer 00 interrupt request flag */

CRCO0 = 0b00000000; /* Set operation using CRO00 as compare register */

TOC00 = 0b00000000; /* Set output disable for T000 pin to output control register 00 */
PRMO0 = 0b00000010; /* Count clock for prescaler = 256 cycles (31.25 kHz (when source = 8 MHz)) */
CR0O00 = 62500-1; * *

CRO10 = OxFF; / BI'ij Start subsystem clock operation | 2s

/* 0 t bsyst lock */ — —
Stargegibgyzgeigik?,c oc '/l Start measurement of oscillation stabilization time (2 s) |

/* Start timer TMOO | Measure 2 s from here for subsystem clock oscillation stabilization */
Start_TMOO () ;

/* Stop internal low-speed oscillator */
LSRSTOP = 1;

/* Ports P00 to P02 */

PO = 0b00000100; /* P00 is left digit of 7-segment LED, POl is right digit, and P02 is low
voltage warning LED « Light out (expansion) */

PMO = 0b00000000; /* Set as output port */

/* Ports P10 to P17 */

ADPC1 = 0b00000111; /* P10 to P12 (ANI8 to ANI10): all digital I/O */

PUl = 0b00011000; /* P13 and P14: connect internal pull-up resistor */

P1 = 0b00000000; /* P13 and P1l4: TxD and RxD (connected to microcontroller), all others unconnected */

PM1 = 0b00011000; /* P13 and P1l4: input, set all others as output ports */

/* Ports P20 to P27 */ L.

ADPCO = 0b11111111; /* P20 to P27 (ANIO to ANI7): all digital I/O */

P2 = 0b10111111; /* P20 to P27: Segment outputs of 7-segment LED; Display "-" */

PM2 = 0b00000000; /* All set as output ports */

/* Ports P30 to P33 */

PU3 = 0b00001111; /* P30/INTP1 = SW5, P33/INTP4 = SW6, P31 = SW3-2, P32 = SW3-3 */

PM3 = 0b11111111; /* Set as input port T Connect internal pull-up resistor */

)o [Column] About the EEPROM emulation library and self programming library (2)
If the user program uses the EEPROM emulation library, the self programming library will be also used, so
make settings so that the library files of the EEPROM emulation library and self programming library are
linked using the linker.

Application Note U19612EJ1VOAN 33

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

List 4-2. Initial Setting Function (main.c) (2)

/* Ports P40 to P42 */

P4 = 0b00000000; /* P40 to P42: all unconnected */

PM4 = 0b00000000; /* All set as output ports */

/* Ports P60 to P63 */

P6 = 0b00000000; /* P60 to P63: all unconnected */

PM6 = 0b00000000; /* All set as output ports */

/* Ports P70 to P75 */ . .

PU7 = 0b00111111; /* P70 to P75: SW3-4 to SW3-8; Connect internal pull-up resistor */
PM7 = 0b11111111; /* Set as input ports */

/* Ports P120 to P125 */
PU12 = 0b00000000;
PM12 0b11111110;

/* P120:
/* P120:

unconnected */

= set as output port, P121 to P125: input pins (X1, X2, XT1,

/* Output data to D-FF of 7-segment LED */

LED LEFT = 1; /* Display to left digit (latch D-FF) */
LED _LEFT = 0;
LED RIGHT = 1; /* Display to right digit (latch D-FF) */
LED_RIGHT = 0;

XT2,

RESET) */

/* Low-voltage detector (interrupt generated at 2.53 V #0.1 V) LVIM = All 0 with option byte (operation disabled) */

Expand NOP 4 times
through macro definition

Supply contro@—»

Stop control
clock supply
I T

———

LVIS = 0b00001011; /* Set detection voltage to 2.53 V #1 */

LVION = 1; /* Set operation of low-voltage detector to enable */

for(l:O; A8y &) /* During 8 MHz operation with wait of approx. 10 us: 1 clock =
v s . =

> NOP_4 /* Since this loop lasts 90 clocks, actually 90 X 125 ns 11.25

}
/* TDuring 8 MHz operation, 1 clock = 125 ns NOP = 2 clocks 10 us/ (125 *

LVIMK = 1; /* Mask LVI interrupt (disable interrupt) */

LVIIF = 0; /* Clear LVI interrupt request flag */

/* Set INTPO and INTP4 interrupts */

EGNCTLO = 0b00010010; /* Set INTP1l and INTP4 as falling edge detection interrupts */
EGPCTLO = 0p00000000; /* Set INTP1l and INTP4 as falling edge detection interrupts */
PMK1 = 1; /* Mask INTPl interrupt (disable interrupt) */

PIF1l = 0; /* Clear INTPl interrupt flag */

g??j i é; /* Mask INTP4 interrupt (disable interrupt) */

/* Clear INTP4 interrupt flag */

/* Set real-time counter (interrupt used) */

RTCEN =1; /* Supply control clock for write access to real-time counter */
RTCE = 0; /* Stop operation of real-time counter */
RTCCO = RTCCO|0b00100010; /* Start counter operation. RTCCL pin 32.768 kHz output 1 s fixe

interrupt AMPM 12-hour system */

125 ns */
us */
2 ns) = 40 */

d interval

/* Enable output of RTCCL pin (32.768 kHz) */
/* Set real-time counter start time (comment time/yymmdd is default value of header file) */
SEC = SEC_INI; /* seconds: 50 */
MIN = MIN_INI; /* minutes: 59 */
HOUR = HOUR_INI; /* hours: 11 */
WEEK = WEEK_INI; /* day of the week: Saturday */
DAY = DAY_INI; /* day: 01 */
MONTH = MONTH_INI; /* month: 01 */
YEAR = YEAR INI; /* year: 00 */
RTCMK = 1; /* Mask fixed interval or alarm interrupt of real-time counter (disable interrupt) */
RTCIF = 0; /* Clear interrupt request flag after changing CTO to CT2 */
RTCEN = 0; /* Stop supplying control clock for write access to real-time counter */

The real-time counter operates with the subsystem clock (fsus), but related registers can be set even if the
subsystem clock (fsus) is stopped, as long as the CPU clock (fcru) is being supplied. Writing to related
registers requires control clock supply. (Control clock supply is not required for reading these registers.)

The control clock is supplied by setting RTCEN of peripheral enable register 0 (PERO) to 1. When not
performing write to related registers, stopping control clock supply (RTCEN = 0) reduces the power

consumption.

\Q/ [Column] Setting of registers related to real-time counter

34

Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

4.3 Main Processing

The main() function is called after the hdwinit() function has been executed in the startup routine and the memory
initialization settings, etc., have been performed.

Before the real-time counter is started, the display mode is read from the flash memory. If the display mode is
written through a low voltage detection interrupt, the previous display is reproduced.

Since the operation of the subsystem clock is started in the hdwinit() function and timer TMOO is started for 2
second measurement, whether 2 second measurement has been done or not is detected before the subsystem clock
is supplied to the CPU clock. If 2 seconds have not elapsed, the timer TMOO interrupt is enabled and the system
enters standby in the HALT mode. The interrupt enable flag is disabled (IE = 0), so the operation does not branch to
an interrupt vector. Therefore, when an interrupt request is generated, the interrupt request flag must be cleared
manually after the interrupt request has been generated.

List 4-3. Main Function (main.c)

1

Switch the CPU clock to the main clock divided by 2 to set the low power consumption mode.
(Since the main clock is the internal high-speed oscillator 8 MHz (typ.), the result is 4 MHz (typ.).)
(The low power consumption mode fixed setting is only if the CPU clock is 5 MHz or lower.)

T
If setting interrupt disable during the period that includes execution
of the' EEPROM émulation library is wished, the following sequence
must be followed: First set the interrupt mask flag, then execute the
EEPROM emulation library, next execute DI(), and then clear the
interrupt mask flag. At this point in time, the interrupt mask flag is
set, so only DI() is executed.
(For details, refer to 4.6 Low Voltage Interrupt Servicing.)

/

| Executed from startup routine
A.

void main(void)

/* Change CPU clock from undivided main clock [
Change_CPUCIK(MAINSYSCLK1_2);

/* Set low power consumption mode */
Set_LowPowerMode();

/* Read display mode from flash memory */
Read_ClockMode();

/*(Execute D1 after EEPROM emulation library execution */
DIQ;

/* Set 12-/24-hour display from the display mode to the real-time counter */
Set_ampm();

/* Is timer TMOO request flag set (2 second lapse)? */
%f(Wait_TMOO() == FALSE)

/* Clear timer 00 interrupt mask flag (enable interrupt) */
Clear_Tm0OIntMsk();

/* HALT mode until timer TMOO interrupt is generated */
HALTQ); < Execute HALT instruction |

¥

/* Clear timer 00 interrupt request flag */
Clear_Tm0OIntReq() ; < Be sure to clear the request flag
if interrupt servicing is not done.

/* Stop timer TMOO */
Stop_TM00(Q);

/* Set subsystem clock to CPU clock */
Change_CPUCIK(MAINSYSCLK_SUBCLK) ;

/* Stop internal high-speed oscillator */
Stop_HispeedIntClk(Q);

/* Start real-time counter */
Start_RTC(Q);

/* Release interrupt mask flags */
Clear_IntMask();

/* Enable interrupt */
EIO:

/* Infinite loop */
while(1)

/* HALT mode */
HALTQ; <—| Execute HALT instruction

Application Note U19612EJ1VOAN 35

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

(1) Setting clock generator operation/stop
When starting generation of the various clocks, the lapse of the oscillation stabilization time from when clock
generator operation starts must be waited for.
Whether the oscillation of the internal high-speed oscillator is stable can be checked by referencing the status
(RSTS = 1: Stable operation).
In the case of the subsystem clock using the XT1 resonator, the lapse of the oscillation stabilization time must
be waited for using a timer, etc. Timer TMOO measures 2 seconds in the program. (For the oscillation
stabilization time, contact the manufacturer of the resonator that is used.)
Prior to stopping the internal high-speed oscillator, check that another oscillation clock (high-speed system
clock or subsystem clock) is supplied to the CPU clock (fcpu).

List 4-4. Operating or Stopping Clock Generator (main.c)

[KKK o o o o K KK KKk ko K K K K KKK ok ok ok ok ok o KKK ok ok ok ok o o o KKKk ok ok ok ok o K KKk ok ok ok ok ok o K KKKk ok ok ok o K KKK ok ok ok ok ok o KK Kk ok ok ok ok ok o K

; Set_HispeedIntClk()

[I N] -

[OUT] =
B B S T
void Start HispeedIntClk(void)

/* Operate internal high-speed oscillator */
RSTOP = 0;

/* Oscillation stabilization wait for internal high-speed oscillator */
while (RSTS == 0)
{
NOP () ;
}

6 ok o o ok kKK ok o ok ok ok kKK K K ok ok ok ok kK Kk ko ok ok ok ok kX Kk ok ok ok ok ok ok XK Kk ok o ok ok ok XK Kk ok ok ok ok ok kKK ke ok ok ok ok kX Kk ke ok ok ok ok ok ok Kk ko ok ok ok ok ok kX Kk K ok ok ok ok

Stop_HispeedIntClk ()

; IN -

: %OUT% _ Prior to stopping the internal high-speed oscillator, check that

§rkkk koo oo o000 another oscillation clock is supplied to the CPU clock. DOV
void Stop_ HispeedIntClk(void)

{

/* Stop only if CPU clock is running on high-speed system clock or subsystem clock */
1f((CLS == 1) || (MCS == 1))
{
RSTOP = 1;
}
}

36 ok e Xk ko ok kK kK ok Kk o ok Kk ok ok o ok ok kKK ok ok ok ok Kk ok ok o ok ke Xk ok o ok ok Kk ok ok ok kXK ko ok ok ok ok kX Kk K o ok

Set_SubSystemClk ()

[OUT] =
;*****‘k*~)<*‘kk~k***~k******‘k*~k*‘k*~)<**********‘k***‘k************‘kk**‘k*************k**‘k********‘k***‘kk**********/
void Start SubSystemClk (void)

/* Set the subsystem clock to XT1l oscillation mode (connected to crystal resonator) */
XTSTART = 1;

\Q/ [Column] Startup routine

In the standard CC78K0 compiler startup routine, first the hdwinit() function is called, the initial settings of
the variables (both initial value and no initial value) are done, and then the main() function is called. After a
value is set to a variable in the hdwinit() function, initialization is performed, so caution is required.

36

Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

(2) Switching CPU clock (fcru)
When the supply source of the CPU clock or its division ratio has been switched, some time is required until
the switch takes full effect.
When the supply source is switched from the main system clock to the subsystem clock, or vice-versa, this can
be checked with the CLS bit, but when the clock is supplied from the main system clock and the division ratio
of the prescaler is switched, the system waits for the time required for the clock switch to take effect.

List 4-5. Switching CPU Clock (main.c)

/6 ok ok ok ok ok ok ok ok ok ok ok kK kK K K K ok ok ok ok ok ok ok ok ok ok ok ok kK K K K K o ok ok ok ok ok ok ok ok ok ok ok kK Kk K K o ok ok ok ok ok ok ok ok ok ok ok ok kK K K K ok ok ok ok ok ok ok ok ok ok ok ok kK K K K K K ok ok ok ok ok ok ok ok ok

Change_Clock ()

[T N]
[OUT]

P R

UCHAR clk

void Change_ CPUClk (UCHAR clk)
{
——switch (clk)
{
/* Change CPU clock from main system clock divided by 2 to undivided clock */
case MAINSYSCLK2_ 1:
{
/* PCC2, PCCl, PCCO = 0 (undivided) */
PCC = PCC & 0b11111000;
/* Wait for time required for clock switch (fXP/2 — fXP) (8 clocks) */
Expand NOP 4 times through /* NOP requires 2 clocks, so 8/2 = 4 */
macro definition [—> NOP_4 Wait for the required time when the division ratio of the main
system clock is switched.
break;
}
/* Change CPU clock from undivided main syst clock to main system clock divided by 2 */
case MAINSYSCLK1 2:
{
/* PCC2, PCC1l = 0, PCCO = 1 (divided by 2) */
PCC = PCC | 0b00000001;
/* Wait for time required for clock switch (fXP — fXP/2) (16 clocks) */
i /* NOP requires 2 clocks, so 16/2 = 8 */
Expand N.OE.SUmesthrough]
macro definition -

break;
}

/* Change CPU clock from main system clock to subsystem clock (32.768 kHz) divided by 2 */
case MAINSYSCLK_ SUBCLK:
{

/* Supply CPU clock from subsystem clock */

Css = 1;

/* Check status of CPU clock with CLS bit (1 = subsystem clock) */

while (CLS == 0)
{

|: NOP () ;
}

break;

In the case of main system clock <> subsystem clock switching,
check with CLS.

case SUBCLK _MAINSYSCLK:
{
/* PCC2, PCCl0 = 0, PCCO = 1 (divide =/
PCC = PCC | 0b00000001;

/* Supply CPU clock from main sygtem clock */
CSs = 0;

/* Check status of CPU clock with CLS bit (0 = main system clock) */

while (CLS == 1)
{

|: NOP () ;
}

Application Note U19612EJ1VOAN 37

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

(3) Setting low power consumption mode
The regulator mode control register (RMC) is set to 56H.

List 4-6. Setting Low Power Consumption Mode (main.c)

/***
Set LowPowerMode ()

[T N] -
[OUT] -

void Set LowPowerMode (void)
{

/* Set regulator (fix to low power consumption mode (2.0 V)) */
RMC = 0x56;

(4) Reading flash memory with EEPROM emulation
Whether the display mode has been written to the flash memory is read. If the display mode has been written
(if the low voltage detection interrupt has been generated), these contents are set to the variables. If the
display mode has not been written, the initial value (display seconds, 12-hour format) is set to the variables.

List 4-7. Reading Flash Memory (main.c)

/***
Read ClockMode ()

Read display mode (12-/24-format) with EEPROM emulation library

[T N] -
[OUT] =

void Read_ClockMode (void)
{
UCHAR Result;

/* Set FLMDPUP */
FLMDPUP = 1; =

|_FLMDPUP settings

/* Initial setting for EEPROM emulation */
Init EEPROM() ;

/* Read display mode with EEPROM emulation and set as initial |value */
Result = ucEEPROMReadEx_ A (EEPROMDATA NO, Clock_Mode) ;

/* Clear FLMDPUP */
FLMDPUP = 0; —=

/* Set initial value (second, 12-hour display) in case of read error */
if (Result != EEE NORMAL)
{

Clock Mode[MODE_HHMMSS] = SS;

Clock Mode[MODE AMPM] = MODE 12;

Ny

Q’ [Column] FLMDPUP bit
In the 78K0/Kx2-L Series microcontrollers, the FLMDPUP bit must be set to 1 to perform self programming.

To use the EEPROM emulation library, set the FLMDPUP bit to 1 prior to executing the library, and following
library execution, set the FLMDPUP bit back to 0.

Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

(5) Setting AMPM bit of real-time counter
In the main() function, the AMPM bit of the real-time counter is set after the display mode has been read from
the flash memory.
In the sample program, the value of 12-hour display is set to the hour count register HOUR in the initial setting,
so the setting value is modified if the display mode is changed from 12-hour display to 24-hour display.
Moreover, when the AMPM bit is changed from 12-hour display to 24-hour display, the value of the hour count
register becomes 0, so be sure to save this value beforehand.
For details on how to modify the setting values, refer to 4.5 INTP1, INTP4 Interrupt Servicing.

List 4-8. Setting AMPM Bit (main.c)

/***
; Set_ampm ()

[I N] -

[OUT] =
;*k****k***k************k********k***k********k***k****k***k***k****k***k***k****k***k********k***k****/
void Set ampm(void)

{
UCHAR tmp;

/* Supply control clock for write access to real-time counter */

RTCEN = ig Supply control clock

/* In the case of 12-hour display */
if(Clock_Mode[MODE_AMPM] == 0)
{
/* Set AMPM (3rd bit) to 0 (12-hour format) */
RTCCO = RTCCO & 0b11110111;

}

/* In the case of 24-hour display */
else

{
/* Read time register (save value of this register before changing AMPM bit) */
tmp = HOUR;

/* Set AMPM (3rd bit) to 1 (24-hour format) */
RTCCO = RTCCO | 0b00001000;

/* Change 12-hour display to 24-hour display and set */
/* If 12H, set 0O0H */
— if (tmp == 0x12)
{
HOUR = 0x00;
}
/* 1f 32H, set 12H */
— else if (tmp == 0x32)
{
HOUR = 0x12;
}
/* If 21H to 27H, 30H, and 31H, deduct OEH */
— else if ((0x21 <= tmp && tmp <= 0x27) || (tmp==0x30) | | (tmp==0x31))
{
HOUR = tmp - 0xOe;
}
/* If 28H and 29H, deduct 08H */
— else 1f ((tmp==0x28) || (tmp==0x29))
{

HOUR = tmp - 0x08;
= }

}
/* Stop supplying control clock for write access to real-time counter */

RTCEN = 0; ~—{ Stop control clock supply

Application Note U19612EJ1VOAN 39

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

4.4 Real-Time Counter Interrupt Servicing

In the sample program, the display is updated every second by using the alarm interrupt of the real-time counter.

When reading the hour, minute, and second count registers, the RWAIT bit of real-time counter control register 1
(RTCC1) must be set to 1 (counter stop setting, read/write mode) to stop the counter, and whether the counter is
stopped must be checked with the RWST flag. However, if the various registers are set while the real-time counter is
stopped (RTCE = 0), the RWAIT bit need not be set. When the real-time counter is stopped, the RWST flag remains
unchanged even when the RWAIT bit is set.

List 4-9. Real-Time Counter Interrupt (Int_RTC.c) (1)

W Preprocessing directive (#pragma)

#pragma sfr
#pragma nop
#pragma interrupt INTRTC Int_ RTC

/* ___
* Include header files

K e - */
#include "Kx2_eee.h" /* Sample program header */
#include "LowPower.h" /* Sample program header */

/* ,,,

void Set DisplayData by ssmmddMode(UCHAR *);

void Set_DisplayData_by_12_24Mode (UCHAR *);

void Display_ LED(UCHAR *);

/* ,,,

* External reference (variables)

K e e e e */

extern UCHAR Clock Mode[EEPROM DATALEN]; Display mode

extern UCHAR RTC Data[3];

extern UCHAR const LED_Pattern[]; Clock data
/**k********k**********************k********k**********************k********k**********************k****

; RTC_lsec() Real-time counter interrupt function

[T N] -
5 [OUT] =
;**k********k**********************k********k**********************k********k**********************k***/
void Int_RTC (void)
{

UCHAR display datal[2];

/* Stop counter, counter value read/write mode */
RWAIT = 1; ~—— | Set counter value read/write mode

/* Wait until counter value read/write mode is set */

while (RWST == 0)
{

[: NOP () 7
}

/* Read counter register value */

RTC Data[SS] = SEC; -
RTC Data[MM] m1N; | Read register

RTC_Data[HH] HOUR;

/* Counter operating mode */
RWALT = 0; <—| Return to counter operating mode

/* Set display data according to display mode (hour/minute/second) */
Set DisplayData by ssmmddMode (display data);

/* Display to 7-segment LED */
Display LED(display_data);

/* Clear interrupt request flag */
RTCIF = 0;

40 Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

The correspondence between the value of the hour count register and the display pattern of the 7-segment LED is
shown below.

In the case of the 24-hour format, the Dp of higher digits is lit, and in the case of the 12-hour format, the Dp of
lower digits is lit. Moreover, for pm hours in the 12-hour format, the Dp of higher digits is also lit.

In the case of the 12-hour format, 21H and higher values differ from the actual clock display, so they must be
processed prior to being displayed.

Figure 4-5. Correspondence Between Hour Count Register and Clock Display Pattern

Value of 24-hour Display of 24-hour | Value of 12-hour Display of 12-hour
format register format clock format register format clock
(T P
00H i, LI 12H rcC.
01H o, 01H ool
02H 02 02H o2,
m m
03H l_l':l' 03H l_l' _'.
04H 0.4 04H 04,
mn C mnC
am { 05H U5 05H o 3.
[C
06H ,_,_::, 06H U o,
07H 0 07H 0.
O [y
o8 U d o8k U .
[[Light Dp of
09H 09H 19 p O
[P L j- > lower digits
10H .o 10H 0.
[[
\ 11H o1 11H R
s 12H ,',_:' 32H I'E
13H (21H I
le 21 Lle lo
14H (22H o
I.Ll' L}.E.
15H .5 23H d.d.
164 = 241 a.H.
17H ! ',l 25H ,'"' C,
m
S 18H e I
[26H Lo
190 8= 27 a.i.
201 c.0 26H 0.4q.
21H 1:'_ |' 29H j':"._ .
22 c.c 304 .0,
23H | 31H (1
K ,:’.j ’O ’.
Light Dp of higher digits Deduct 20H from the register value

and light Dp of higher digits

Application Note U19612EJ1VOAN 41

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

List 4-9. Real-Time Counter Interrupt (Int_RTC.c) (2)

void Set_DisplayData by ssmmddMode (UCHAR *display data)

{

UCHAR tmp;

—— switch (Clock_Mode [MODE_HHMMSS])

{
/* Display minute */

case MM:

{
tmp = RTC_Data[MM];
display data[LOW] = LED Pattern[(tmp & 0x0f)];
display data[HIGH] = LED Pattern[((tmp & 0xf0)>>4)];
break;

}

/* Display hour */

case HH:

{
/* Set hour display data according to display mode (12-/24-hour display) */
Set DisplayData by 12 24Mode(display data);
break;

}

/* Display second if 0 or another value */

default:

{
tmp = RTC_Data[SS];
display data[LOW] = LED Pattern[(tmp & 0x0f)];
display data[HIGH] = LED Pattern[((tmp & 0xf0)>>4)];

List 4-9. Real-Time Counter Interrupt (Int_RTC.c) (3)

{

void Set_DisplayData by 12 24Mode(UCHAR *display data)

UCHAR tmp;
tmp = RTC_Data[HH];

/* Distinction of 12-/24-hour display */
— if (Clock Mode [MODE_AMPM] == 0)
{
/* Modify display data for PM12 to PM1l and light DP of higher digits */

If the register value is 21H or higher, deduct 20H

%f (tmp >= 0x21) and light Dp of higher digits
tmp = tmp - 0x20;
display_data[HIGH] = (LED_Pattern[((tmp & 0xf0)>>4)])& 0b01111111;
}
else
{
display data[HIGH] = LED_Pattern[((tmp & 0xf0)>>4)];

/* If 12-hour display, light DP of lower digits */
display data[LOW] = (LED_Pattern[(tmp & 0x0f)])& 0b01111111;

(| If 12-hour display, display Dp of lower digits

/* If 24-hour display, light DP of higher digits */
display data[LOW] = LED_Pattern[(tmp & 0x0f)];
display data[HIGH] = (LED_Pattern[((tmp & 0xf0)>>4)]) & 0b01111111;

L} ‘\
| It 24-hour display, display Dp of higher digits ||

\Q’ [Column] Rewriting port registers while peripheral hardware clock supply is stopped

During real-time counter, INTP1, and INTP4 interrupts, the internal high-speed oscillator is stopped so no
clock is supplied to the peripheral hardware, but port registers can be rewritten if the CPU clock (fcru) is
supplied.

42

Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

4.5 INTP1,INTP4 Interrupt Servicing
Switching of the hour/minute/second display by switch is done with
switching by switch is done with the INTP4 interrupt.

(1) INTP1 interrupt servicing
The display mode is switched each time an interrupt is input.
switched according to the display mode.

the INTP1 interrupt, and 12-/24-hour display

The display of the 7-segment LED is also

List 4-10. INTP1 Interrupt Servicing (Int_Intp.c)

#include "Kx2_eee.h"
#include "LowPower.h"

/* Sample program header */
/* Sample program header */

/* _______________________________________
* Preprocessing directive (#pragma)

K e o
#pragma sfr

#pragma nop

#pragma interrupt INTP1 SW_hhmmss

#pragma interrupt INTP4 SW_12_24

/* __

External reference (functions)

extern void Set_DisplayData_by ssmmddMode (UCHAR *);
void Set DisplayData by 12 24Mode (UCHAR *);

void Display_ LED(UCHAR *);

External reference (variables)

extern
extern

UCHAR Clock_Mode [EEPROM_DATALEN] ; Display mode
UCHAR RTC Datal[3];
Clock data

SW_ttmmss () INTP1 interrupt function

K K Kk o ok kK K kKK K K K K KRR KRR R R R R H R KK KKK KKK KKK AKX XXX XXX XXX XXX XXX XXX

[I N]
[OUT]

oid SW_hhmmss (void)

-~ <

UCHAR display_datal[2]; /* Display data */

/* See port status =/
— if (P3.0 0)
{

(SW chattering countermeasure)

switch (Clock Mode [MODE_HHMMSS])
— {

/* If second, then display minute */

case SS:
{
Clock_Mode [MODE_HHMMSS] = MM;
break;
}
/* If minute, then display hour */
case MM:
{
Clock_Mode [MODE_HHMMSS] = HH;

break;

}

/* If hour or other,
default:
{

Clock_Mode [MODE_HHMMSS] SS;

}
—}
/* Set display data according to display mode
Set_DisplayData by ssmmddMode(display data);

/* Display to 7-segment LED */
Display LED(display_data);

/* Clear interrupt request flag */
PIF1 0;

3K K o o o o o o o o o o o o o ok k[

then display second */

*/

(hour/minute/second)

Application Note U19612EJ1VOAN

43

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

(2) INTP4 interrupt

When the 12-hour format is switched to 24-hour display (the value of the AMPM bit is changed from 0 to 1), the
value of the hour count register HOUR becomes 0, so the register contents must be saved. Also, since 12-
hour display values and 24-hour format values differ, they must be converted and then return to the hour

counter register HOUR.

List 4-11. INTP4 Interrupt Servicing (Int_Intp.c) (1)

void SW_12_24(void)
{
UCHAR tmp;

/* See port status
[if(P3.3 ==
{

RTCEN =

RWAIT = 1;

{

{

UCHAR display data([2];

(SW chattering countermeasure)

/* Stop counter,

/* Set AMPM

RTCCO =

/* Temporary saving */
/* Display data */

*/

1;

/* Supply control clock for write access to real-time counter */

~——| Supply control clock

counter value read/write mode */

Set counter value read/write mode

while (RWST == 0)
{

|: NOP () ;
}

/* Save hour count register */

/* If 24, display using 12-hour display */
[if(Clock_Mode [MODE_AMPM] == MODE_12)

/* Switch 12 « 24 display */
Clock_Mode [MODE_AMPM] =

MODE_24;

(3rd bit) to 1
(24-hour display) */
RTCCO | 0b00001000;

/* Change 12-hour format to

24-hour display and return */

if (tmp == 0x12)

HOUR = 0x00;
}
else if (tmp == 0x32)
{
HOUR = 0x12;
}
else if ((0x21 <= tmp && tmp <= 0x27)
|| (tmp==0x
| (tmp==0x
{
HOUR = tmp - 0xOe;
}
else 1f ((tmp==0x28) || (tmp==0x29)
{
HOUR = tmp - 0x08;
}
else
{
HOUR = tmp;
RTC_Data[HH] = HOUR;

/* Wait until counter value read/write mode is set */

44

Application Note U19612EJ1VOAN

Value of 24-hour
format register
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
20H
21H
22H
23H

12H
01H
02H
03H
04H
05H
06H
07H
08H
09H
10H
11H
32H
21H
22H
23H
24H
25H
26H
27H
28H
29H
30H
31H

Value of 12-hour
format register

Convert
00H <> 12H

Not
processed

-

Convert
12H < 32H
N

Deduct
OEH

4

}
}

Deduct
08H

Deduct
OEH

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

List 4-11. INTP4 Interrupt Servicing (Int_Intp.c) (2)

}

/* Clear
PIF4 = 0;

/* If 24 or other, display using 12-hour display */
else
{

/* Switch 12 — 24 display */

Clock Mode[MODE AMPM] = MODE 12;

/* Set AMPM (3rd bit) to 0 (12-hour display) */
RTCCO = RTCCO & 0b11110111;

/* Change 24-hour format to 12-hour display and return */
— if (tmp == 0x00)

HOUR = 0x12;

— else if (tmp == 0x12)

HOUR = 0x32;

— else 1if((0x13 <= tmp && tmp <= 0x19) || (tmp==0x22) | | (tmp==0x23))
HOUR = tmp + 0x0e;

— else if ((tmp==0x20) || (tmp==0x21)

HOUR = tmp + 0x08;

HOUR = tmp;

RTC_Data[HH] = HOUR;
}

/* Counter operating mode */
RWAIT = 0; Return to counter operating mode |

/* Stop supplying control clock for write access to real-time counter */

RTCEN = 0/ < Stop control clock supply |

/* Set hour display data according to display mode (hour/minute/second) */
Set_DisplayData_by_ ssmmddMode (display data);

/* Display to 7-segment LED */
Display LED(display data);

interrupt request flag */

Application Note U19612EJ1VOAN

45

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

4.6 Low Voltage Detection Interrupt Servicing

Upon detection of a low voltage of 2.53 V £0.1 V, a low voltage detection interrupt is generated.

During interrupt servicing, in order to write the display mode to the flash memory with the EEPROM emulation
library, the internal high-speed oscillator must be operated and the CPU clock (fcpu) must be switched momentarily to
clock supply from the internal high-speed oscillation clock (4 MHz (typ.)). (To execute self programming of the flash
memory, a clock other than the subsystem clock must be supplied to the CPU clock (fcru).) Following the write
operation, return the CPU clock (fcpu) to supply from the subsystem clock (fsus) and stop the internal high-speed
oscillator.

To disable interrupts during EEPROM emulation library execution, the other interrupt mask flags must be set.

List 4-12. LVI Interrupt Servicing (Int_LVl.c) (1)

#pragma sfr
#pragma interrupt INTLVI LVI_vdd

VNSNS SV SV S SV S SR S S — -
/ . 1 EEPROM emulation library header file
* Include header files
Kk */
#include "eeelib.h" /* EEPROM emulation library header */
#include "Kx2_eee.h" /* Sample program header */

#include "LowPower 01.h" /* Sample program header */

2
G Declare prototypes

K */

UCHAR EEPROM Write (const UCHAR, const UCHAR *, UCHAR *);

[omescnscescsosescosescsasessssssesessesssesesses
L3 External reference (functions)

K */
extern void Write_ClockMode (void) ;

extern void Change_CPUClk (UCHAR clk);

extern void Set_ HispeedIntClk(void);

extern void Stop HispeedIntClk(void) ;

* External reference (variable)

extern UCHAR Clock Mode [EEPROM DATALEN]; Display mode

[K Kk KKK ko KK KKK K KKK KK KKK KK kK kK K K R KKK ok Kk Kk ok ok kK ko ok ko Kk ok Kk ko Kk ok K K ko KR kK R KR K Kk Kk K K

LVI_vdd ()

IN - - -
%OUT} _ If power supply voltage < LVI detection voltage, the voltage is
kR R KKK KK considered to have dropped. e
void LVI_vdd(void)
{ . X . Processing when wanting to disable interrupts during the period that includes
o i/f (E\‘?V{;rif“ﬁ’%’ly voltage < LVI detection voltage */ execution of the EEPROM emulation library (contents in red frames have
o been added)

{
/* Light warning LED */

LED_LVI = 0; A IE flag = 0

/* Operate internal high-speed oscillator */
Start_HispeedIntClk();

/* Switch CPU clock to internal high-speed oscillatof | — p—————e e - - = -
Change_CPUClk (SUBCLK_MAINSYSCLK) ; Disable interrupts using interrupt A
mask flag

/* Set other interrupt (RTC, INTPO, INTP4) mask flag
Set_IntMsk RTC_INTP();

/* Write display mode to flash memory */ X
Write ClockMode () ; Execute EEPROM emulation library

/* Disable interrupt */
DI();

/* Clear other interrupt (RTC, INTPO, INTP4) mal| Normal interrupt IEflag=0

Clear_IntMsk RTC_INTP(); disable setting
/* Change CPU clock to subsystem clock (32.768 Enable interrupts using
Change_CPUC1k (MAINSYSCLK_SUBCLK) ; interrupt mask flag Y

/* Stop internal high-speed oscillator */
Stop_HispeedIntClk();

-}

/* Clear interrupt request flag */
LVIIF = 0;

46 Application Note U19612EJ1VOAN

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

If the write block is full when write is executed using the EEPROM emulation library, data full is returned as the
return value. In this case, change the write block.

List 4-12. LVI Interrupt Servicing (Int_LVIl.c) (2)

% KKKk ok K o ok ok ok KKKk K ok ok ok kK KKk ok ok ok ok kX Kk ok ok ok ok ok kK Kk ok ok ok ok ok kK Kk ok ok ok ok ok kK Kk ok ok ok ok ok ok KKk ok ok ok ok ok ok kK Kk K ok ok ok ok ok kK Kk ok ok ok ok kX X

; Write_ ClockMode ()

; [I N] -

B [OUT] =
;**********k***k************k***k************k***k************k************k***k************k***k******/
void Write ClockMode (void)

{
UCHAR temp;

FLMDPUP = 1; < FLMDPUP settings
EEPROM Write (EEPROMData_ No,Clock_Mode, &temp) ;
FLMDPUP = 0; <&

}

%Kk ok ok ok ok ok o K KKKk ok ok ok ok o K Kk ok ok ok ok ok ok Kk ok ok ok ok ok ok o KK ko ok ok ok ok ok o KKk ok ok ok ok ok o K Kk ok ok ok ok ok o o o K Kk ok ok ok ok ok ok Kk ko ok ok ok ok K

H EEPROM Write ()

; Save data with EEPROM emulation library

8 [I N] const UCHAR ucEEPROMNo, const UCHAR *ucEEPROMBuf, UCHAR *ChangeBlock Count
; [OUT] UCHAR Result

B R R R B e R
UCHAR EEPROM Write(const UCHAR ucEEPROMNo, const UCHAR *ucEEPROMBuf, UCHAR *ChangeBlock_Count)
{

/* Local variables */

UCHAR g /* Loop counter */

UCHAR Result; /* Return value of EEPROM emulation library */

/* Write to flash memory with EEPROM emulation library */
Result = ucEEPROMWriteEx_ A (ucEEPROMNo, ucEEPROMBuf);

/* If data full */ e -
— if (Result == ERRFULL) If the block is full, change the block.

{

/* Change block with EEPROM emulation library */
Result = ucEEPROMChangeEx A();
— if ((Result == EEE_NORMAL) || (Result == NMLBLK))
{

/* Increment block change counter (counting from 0 to FF is possible) */
(*ChangeBlock_Count) = (*ChangeBlock_Count) + 1;

/* Once block has been changed, write to new effective block with EEPROM
emulation library */
Result = ucEEPROMWriteEx A (ucEEPROMNo, ucEEPROMBuf);

/* End in case of write error */
if (Result != EEE_NORMAL
{

return(Result);

}

/* Erase previous effective block with EEPROM emulation library */
Result = ucEEPROMEraseEx A();

— 1}
— }

return(Result);

Application Note U19612EJ1VOAN 47

CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES

The flash memory written with the EEPROM emulation library is shown below (checked with MINICUBE2). Since
the write block number is specified as 27 (1BH) by the Kx2_eee.h header file for the EEPROM emulation library,
writing is done from address 6CO0H. (In the case of the EEPROM emulation library, the 4 blocks from the specified
block number are used as the data write area.)

In the case of the EEPROM emulation library, the write data is written after data numbers and delimiters have been
added and the data has been adjusted to a length that is a multiple of 4 bytes, which is the smallest unit for flash
memory write. If only 2 bytes are to be written, adding a data number and delimiter results in four bytes, so the length
need not be adjusted to a multiple of 4. The data number is added at the front, and the delimiter (O0H) is added one
position at the penultimate byte.

Figure 4-6. Display Mode Written to Flash Memory

@l Memory

Search..]

<< | » | Refresh |

Cloze

Addr+0 +1 +2 +3 +4 45 +6 +7 +8 +9 +4 +B +C 4D +E +F

6BCO|F =Ll Ll Ll L Lo, B FF FF FF FF FF FF -
| Flag indicating that data can be written

B : ; FF s
r| to block El Written display mode | FE

I3 F FF FF FF FF FF FF FF FPFF FF FF FF FF FF
EGL GG G CL FF FF EF EF| FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF F¥F FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF F¥F FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

[Biock 27_]<

[4a]pr 4

<Format of write data using EEPROM emulation>

Display mode data of user RAM

. Clock_Mode[EEPROM_DATALEN]
Display 1

mode
Write Read

V i

Flash memory

Delimiter

Lo [foou[|

Data number Display mode

48 Application Note U19612EJ1VOAN

CHAPTER 5 RELATED DOCUMENTS

Document Name PDF/Document No.
RA78KO Ver. 3.80 Users Manual*™’ Operation PDF
Language PDF
Structured Assembly Language PDFE

RA78KO Ver. 4.01 Operating Precautions (Notification Document)"™" ZUD-CD-07-0181-E
CC78KO0 Ver. 3.70 Users Manual*** Operation PDF
Language PDFE

CC78KO0 Ver. 4.00 Operating Precautions (Notification Document)"®* ZUD-CD-07-0103-E
SM+ User’s Manual Operation PDE
User Open Interface PDF
ID78K0-QB Ver. 2.94 User’'s Manual Operation PDF
ID78K0-QB Ver. 3.00 User’'s Manual Operation PDF
PM plus Ver. 5.20"°° User's Manual PDF
PM+ Ver. 6.30""* User's Manual PDF

Notes 1. This document is installed into the PC together with the tool when installing RA78K0 Ver. 4.01. For

descriptions not included in “RA78K0 Ver. 4.01 Operating Precautions (Notification Document)”, refer to
the user’s manual of RA78K0 Ver. 3.80.

2. This document is installed into the PC together with the tool when installing CC78K0 Ver. 4.00. For
descriptions not included in “CC78K0 Ver. 4.00 Operating Precautions (Notification Document)”, refer to
the user’s manual of CC78K0 Ver. 3.70.

3. PM plus Ver. 5.20 is the integrated development environment included with RA78KO0 Ver. 3.80.

4. PM+ Ver. 6.30 is the integrated development environment included with RA78K0 Ver. 4.01. Software tool
(assembler, C compiler, debugger, and simulator) products of different versions can be managed.

Caution The related documents listed above are subject to change without notice. Be sure to use the
latest version of each document for designing.

Application Note U19612EJ1VOAN 49

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U17199%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U17198%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U17197%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U17201%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U17200%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U18601%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U18212%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U18330%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U18492%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U16934%2a&title=&andor=and&doccode=&limit_s=100
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&sort=litcode&kind=doc&lang=ja&article=&seriescode=&litcode=U18416%2a&title=&andor=and&doccode=&limit_s=100

Published by: NEC Electronics Corporation (http://www.necel.com/)
Contact: http://www.necel.com/support/

	COVER
	CHAPTER 1 OVERVIEW
	1.1 Background Required for Low Power Consumption and Features of 78K0/Kx2-L Microcontrollers

	CHAPTER 2 CLOCK GENERATOR AND STANDBY FUNCTIONS
	2.1 Clock Generator
	2.2 Standby Function
	2.3 Comparison of Total Current of Standby Function
	2.4 Comparison of Return Times through Interrupt of Standby Function
	2.5 Return through Reset of Standby Function
	2.6 Cautions on Clock Generator and Standby Function

	CHAPTER 3 REGULATOR
	3.1 Regulator Overview
	3.2 Register Controlling Regulator
	3.3 Cautions on Self Programming

	CHAPTER 4 LOW POWER CONSUMPTION PROGRAM EXAMPLES
	4.1 Specifications and Overall Flow
	4.2 Initial Settings and Work Areas
	4.3 Main Processing
	4.4 Real-Time Counter Interrupt Servicing
	4.5 INTP1, INTP4 Interrupt Servicing
	4.6 Low Voltage Detection Interrupt Servicing

	CHAPTER 5 RELATED DOCUMENTS

