
Notes

®

By Craig Hackney

Application Note
AN-573

PCI Express® System Interconnect 
Software Architecture for 
PowerQUICCTM III-based Systems
Introduction
A multi-peer system using a standard-based PCI Express® multi-port switch as the System Interconnect

was described in an IDT white paper by Kwok Kong[1]. That white paper described the different address
domains existing in the Root Processor and the Endpoint Processor, memory map management, enumera-
tion and initialization, peer-to-peer communication mechanisms, interrupt and error reporting, and possible
redundant topologies. Since the release of the white paper, IDT has designed and implemented a multi-
peer system using either an x86 or PowerQUICC III[4] based system as the Root Processor (RP) and a
PowerQUICC III based system as the Endpoint Processor (EP) utilizing IDT's 89HPES24N3 multi-port
PCIe® switch as the System Interconnect. This application note presents the software architecture of the
multi-peer system as implemented by IDT. The architecture may be used as a foundation or reference to
build more complex systems.

System Architecture
A multi-peer system topology using PCIe as the System Interconnect is shown in Figure 1. There is only

a single Root Complex Processor (RP) in this topology. The RP is attached to the single upstream port (UP)
of the PCIe switch. The RP is responsible for the system initialization and enumeration process as in any
other PCIe system. A multi-port PCIe switch is used to allow multiple Endpoint Processors (EPs) to connect
to the system.

Figure 1  Multi-peer System Topology with a PCIe System Interconnect

Root Complex 
Processor 

 

Multi-port PCIe Switch 

UP

DP DP

Endpoint 
Processor 

Endpoint 
Processor 

UP: Upstream Port 
DP: Downstream Port 

DP 

Endpoint 
Processor • • •
1 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Because the endian-ness of the RP and EPs may differ, all addresses communicated between the RP
and EP’s via the PCIe interface should be little endian. It is the responsibility of each peer to convert
addresses from little endian to native endian format before using them.

Root Complex Processor
The x86 based RP uses an Intel Xeon CPU with the Intel 7520 chipset to support the PCIe interface.

One PCIe slot is used to connect to the multi-port PCIe switch. The system block diagram of the x86 RP is
shown in Figure 2.

Figure 2  RP System Block Diagram

The PowerQUICC III based RP uses an EP8548A[5] with its PCIe interface configured to be a root
complex. The RP’s PCIe interface is connected to the upstream port of the Multi-port PCIe switch. The
system block diagram of the RP is showin in Figure 4.

PCIe(x4) 

Root Complex Processor 

Intel® Xeon™ 
Processor 

Intel® 
E7520 
MCH 

DDR 

S 
L 
O 
T 
1 

S 
L 
O
T 
2

To PCIe Switch 

I/O I/O 

PCIe(x4) 
2 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 PCIe Switch

The IDT 89EBPES24N3 evaluation board[2] (referred to hereafter as EB24N3) is used as the multi-port
PCIe switch module. The system block diagram of an EB24N3 is shown in Figure 3. The EB24N3 contains
an IDT 89HPES24N3 PCIe switch[3] (referred to hereafter as PES24N3).

Figure 3   Multi-port PCIe Switch Module

Endpoint Processor
The EP Processor is an EP8548E with its PCIe interface configured to be an end point. Each EP

connects to one downstream port of the Multi-port PCIe switch. The system block diagram of the EP is
shown in Figure 4.

Figure 4  EP8548A System Block Diagram

EB24N3 Multi-port PCIe Switch Module 

PES24N3 PCIe Switch 

PCI to PCI 
Bridge 

PCI to PCI 
Bridge 

PCI to PCI 
Bridge 

Connect to RP 

Connect to EP Connect to EP 

MPC8548E 
PowerQUICC™ III DDR 

To PCIe Switch 

EP8548A 

PCIe(x8) 
3 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 General Software Architecture
The RP and EP software is very similar in design and implemented as loadable Linux modules. The soft-

ware is divided into three layers:
– Function Service Layer
– Message Frame Service Layer
– Transport Service Layer

RP Software Architecture
The software architecture for the RP is shown in Figure 5. The Function Service Layer provides the

device driver interface to the Linux kernel. In this example three function services are identified:
– Raw Data Function Service
– Ethernet Function Service
– Disk Function Service (Not supported in the current version of the software)

The Raw Data Function Service provides a service to exchange raw data between the RP and the EPs
and is used primarily for benchmarking. The Ethernet Function Service provides a virtual Ethernet interface
allowing the RP to transmit and receive Ethernet packets via PCIe, and the Disk Function Service provides
a virtual disk interface allowing the RP to access disk services via PCIe.

The Message Frame Service encapsulates data from the Function Service Layer before passing it to the
Transport Service Layer for transmission. Conversely data received by the Transport Service Layer and
passed to the Message Frame Service is de-capsulated and passed to the Function Service Layer for
further processing.

The Transport Service Layer is a hardware-dependent layer that provides the inbound and outbound
transport services to the EPs in the system.

The Local Architecture Service provides hardware-independent data transfer services to the Message
Frame Service Layer and the Transport Service Layer, as well as providing other services such as virtual to
physical and local to system domain address translation.

Figure 5   RP Software Architecture

EP Software Architecture
The EP software architecture shown in Figure 6 is essentially the same as the RP software architecture.

The only difference is the addition of an EP to RP Transport Service that provides the outbound transport
service to the RP as well as the inbound transport service from the RP and the other EPs in the system. 

Raw Data 
Function Service

Ethernet Function 
Service 

Disk Function 
Service Function 

Service Layer 

Message 
Frame 

Service Layer 
Message Frame Service 

MPC8548E Transport Service Transport 
Service Layer 

Local 
Architecture 

Service 
4 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 The EP-specific Transport Services implement the outbound transport service for the specific EP, i.e. the
MPC8548E Transport Service implements the outbound transport service for an MPC8548E EP. It should
be noted that all the inbound traffic goes through the EP to RP Transport Service while outbound traffic
goes through one of the EP-specific transport services.

Figure 6  EP Software Architecture

When a peer is added through a notification from the RP, the Message Frame Service layer should
immediately associate the newly added peer with its corresponding transport service. If the transport
service for the newly added peer does not yet exist, the association of the peer with its transport service will
be delayed until its transport service registers itself with the Message Frame Service. After the association
of a peer and its transport service, the Message Frame Service notifies the function services of the new
peer.

During the time when the association is being made between a new peer and its Transport Service, the
function services may receive messages from this new peer but they will be unable to respond. The func-
tion services may decide to delay the processing of these inbound messages, or process the messages
immediately and queue the responses for transmission later.

The case where a specific EP transport service is supported in some peers but not others is not a
supported configuration, thus it is not considered here.

Raw Data 
Function Service

Ethernet Function 
Service 

Disk Function 
Service Function 

Service Layer 

Message 
Frame 

Service Layer 

 
Message Frame Service 

MPC8548E Transport 
Service 

EP to RP Transport 
Service Transport 

Service Layer 

 
 

Local 
Architecture 

Service 
5 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Application Examples
In the I/O sharing example shown in Figure 7, the Root Processor and Endpoint Processor 2 both share

the Ethernet interface on Endpoint Processor 1.

Figure 7  I/O Sharing Example Application

The protocol diagram for the Ethernet sharing application is shown in Figure 8. The Ethernet Service
Function running on the Ethernet EP provides a virtual Ethernet interface to the Upper Layer application,
such as a TCP/IP protocol stack. As far as the Upper Layer is concerned, this is a physical Ethernet inter-
face. The Ethernet Function Service makes requests to the Message Frame Service to encapsulate the
Ethernet packet in a generic message frame. The remote Transport Service then transports the message
frame to its destination. 

The Ethernet Server EP provides the physical Ethernet connection to the network. It uses the Ethernet
Function Service on its PCIe interface to send/receive Ethernet packets to/from other EPs and the RP and
uses a Bridging Application to forward Ethernet packets between the Ethernet Function Service and the
physical Ethernet interface. The Ethernet Bridging Application may be replaced with an IP Routing Applica-
tion, such that IP packets are routed between the Ethernet Function Service and the physical Ethernet inter-
face. This type of system topology allows multiple EPs to share a single Ethernet Server and, therefore, the
physical Ethernet interface.

Root Complex 
Processor 

 
Multi-port PCIe Switch 

Endpoint 
Processor 1

Endpoint 
Processor 2 

Ethernet 
6 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
Figure 8  Ethernet Sharing Protocol Diagram

In the network router application example shown in Figure 9, each EP supports one or more network
interfaces. The network interfaces may be Ethernet, WAN interfaces such as DSL, T1, or OC-3. Each EP
runs a routing application to forward packets between its network interfaces and the interfaces on the other
EPs in the system.

Figure 9  Router Example Application

Ethernet EP Ethernet Server EP 

Bridging 

Ethernet 
Device 
Driver 

Ethernet 
Function 
Service 

Message 
Frame 
Service 

Transport 
Service 

Ethernet 

PCIe 

Upper 
Layer 

Ethernet 
Function 
Service 

Message 
Frame 
Service 

Transport 
Service 

Root Complex 
Processor 

Multi-port PCIe Switch 

Endpoint 
Processor 1

Endpoint 
Processor 2

Endpoint 
Processor 3 

Network Network Network 
7 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Figure 10 depicts the protocol diagram for the router application. In this example, packets are received
via an EP’s local network interface and are passed to the Network Services & Routing application. The
Network Services & Routing application decides if the destination for the received packet is a network inter-
face on the local EP or a network interface on another EP in the system. If the packet destination is a
network interface on the local EP, it is forwarded to the local network interface for transmission. If the packet
destination is a network interface on another EP in the system, it is sent to the Ethernet Function Service
where it is forwarded to the appropriate EP. Upon receiving this forwarded packet, the Network Service &
Routing application on the destination EP will forward the packet to the appropriate network interface for
transmission.

Figure 10  Router Protocol Diagram

Address Translation
There are two address domains in a multi-peer system using PCIe as the System Interconnect: the

System Domain and the Local Domain. The System Domain is the global address map as seen by the RP.
The Local Domain is the address map as seen by each EP. These two domains are independent of each
other. The RP is free to assign address space in the System Domain, and each EP can freely assign
address space in its Local Domain.

Address Translation is used to bridge between the two domains. Using Figure 11 as a reference, if Peer
#1 wanted to transfer data to/from Peer #2 it would access the outbound translation address window in its
Local Domain1 that corresponds to Peer #2. These accesses would be translated to the System Domain2

and, because this System Domain address matches the inbound translation address window defined by
Peer #2, the address is translated to the Local Domain3 of Peer #2.

EP 1 

Network Services & Routing 

Ethernet 
Function 
Service 

Message 
Frame 
Service 

Transport 
Service 

Network 
PCIe 

EP 2 

Network Services & Routing 

 
 
 

Network 
I/F 

Device 
Driver 

Ethernet 
Function 
Service 

Message 
Frame 
Service 

Transport 
Service 

 
 
 

Network 
I/F 

Device 
Driver 

 
 
 

Network 
I/F 

Device 
Driver 

 
 
 

Network 
I/F 

Device 
Driver 

Network 
8 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
Figure 11  Address Translation

When the RP boots, it scans the PCIe bus and enumerates the endpoints. 1MB of System Domain
address space is allocated to each endpoints BAR0.It is this System Domain address that is used, among
other things, for remote peers to access the EP’s doorbell registers. Another block of System Domain
address space is allocated to BAR1 of the EP. This address range represents the System Domain address
of the EP’s queue structures.

• 
• 

Peer #16 
0x81E00000 

Peer #1 
0x80000000 

System Domain 
Address Space

Peer #2
0x80200000 

 
 
 
 
 
 

EP RAM 

Inbound Translated 
Address 

Outbound Translated 
Address 

 
 
 
 
 
 
 

EP RAM 

Inbound Translated 
Address 

Outbound Translated 
Address 

Peer #2 Local 
Domain Address 

Space 

 
RP RAM 

1 

2 

3 

Peer #1 Local 
Domain Address 

Space 
9 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Inbound Address Translation
 Two inbound address translation windows are configured by each EP. Inbound Window Base Address

Register 0 (IWBAR0) is configured to map 1MB of System Domain address space to the internal registers
of the MPC8548E. IWBAR1 is configured to map the System Domain address space pre-allocated by the
RP to local data space. The local data space contains the queue structures and data buffers for the data
transport between the local EP and the remote EPs and RP. Any access to the system Domain Address
Space for Peer #2 will result in an access to the Local Domain Address Space for that peer as defined by
the Inbound Translation Address window.

Figure 12  EP Inbound Address Translation Windows

• 
• 

System Domain 
Address Space 

Local Domain 
Address Space 

 
 
 
 
 

EP RAM 

IWBAR1 

 
RP RAM 

IWBAR0 

Peer #2 
0x80200000 

Peer #1 
0x80000000 

Peer #16 
0x81E00000 
10 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Outbound Address Translation
Each EP requires three outbound address translation windows. The first specified by Outbound Window

Base Address Register 1 (OWBAR1) is 4KB in size and is mapped to the Message Signaled Interrupt (MSI)
register of the RP. The second specified by OWBAR2 is mapped to the local data space of the RP. The third
specified by OWBAR3 is 64MB in size and is mapped to the data space of the other EP’s in the system. An
example of the outbound address translation window setup is shown in Figure 13.

Figure 13  EP Outbound Address Translation Windows

• 
• 

Peer #16 
0x81E00000 

Peer #1 
0x80000000 

System Domain 
Address Space 

Local Domain 
Address Space 

 
 

 
EP RAM 

OWBAR1 Peer #2 
0x80200000 

RP MSI Register 

OWBAR2 

 
OWBAR3 

 
 
 

RP RAM 

RP Data Space 
11 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Data Transport
Each EP sets up one Inbound Queue Structure for every peer in the system. This Queue Structure is

used to receive data from the remote peer. Each queue structure consists of two queues, a PostQ and a
FreeQ. Each entry in the queue is the address of a data buffer called a Message Frame, the Buffer Size
entry in the queue structure specifies the length of the Message Frames for this queue. The Inbound Queue
Structure, PostQ, FreeQ, and associated Message Frames are allocated within the inbound translation
address window to allow access from remote peers. The total size of the inbound translation address
window required by the Queue Structures and Message Frames is specified by the Window Size entry in
the queue structure.

Figure 14  RP and EP Inbound Queue Structure

The beginning of the Inbound Translation Address window is used for the Inbound Queue Structures. A
total of 16 Inbound Queue Structures are supported. In the current design, Peer#0 Inbound Queue Struc-
ture is used by the RP to send data to the EP’s. All other remote EPs use the queue structure associated
with their peer index which is determined by the RP and assigned to a newly discovered peer.

The remaining memory is used for Message Frames and is divided equally between the 16 possible
peers. Figure 15 illustrates the usage of the EP Inbound Translation Address Window.

Similar to the EP, the RP allocates a block of memory to hold the Inbound Queue Structure and
Message Frames for each EP in the system.

 

Qend 

Qstart 

Qread 

Qwrite 

Qend 

Qstart 

Qread

Qwrite 

 
PostQ 

 
FreeQ 

Buffer Size 

Window Size 
12 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
Figure 15  EP Inbound Translated Address Usage

When transmitting data, the local peer must first obtain the address of a valid Message Frame from the
destination peer. This is done by popping the next entry from the destination peers FreeQ1. The local peer
then populates this Message Frame with the data to be transmitted before pushing its address onto the
PostQ2 of the destination peer and signaling to the destination peer that its PostQ needs processing.

Upon receiving a signal to process its PostQ, a peer will pop Message Frame addresses from its PostQ3

and process them. After each Message Frame is processed, its address is pushed on to the FreeQ4 at
which time it is free to be used again. See Figure 16.

Local Domain 
Address Space 

 
 
 
 
 
 

EP RAM 

Inbound Translated 
Address 

Queue 
Structures 

Message Frame

Message Frame

Message Frame

Message Frame

• 
•

• 
•

Peer #0 
Inbound Queue 

Structure

Peer #1 
Inbound Queue 

Structure 

Peer #15 
Inbound Queue 

Structure

Peer #0 freeQ 

Peer #0 postQ 

Peer #15 postQ 

Peer #15 freeQ 

• 
• 
13 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
Figure 16  EP Inbound Queue and Message Frame Layout

Message Frame #1 

Message Frame #2 

Message Frame #3 

Message Frame #4 

Message Frame #30 

• 
• 
• 
• 

#3 Address 

#4 Address 

#30 Address 

• 
FreeQ 

• 

#1 Address 

#2 Address 

 
PostQ 

 

1 

2 

3 

4 

Remote Peer 

Remote Peer 

Local Peer 

Local Peer 
14 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Data Movement Scenarios
A few examples are given to show the sequence of data transport between:

– a local EP to a remote EP
– a local EP to a remote RP
– a local RP to a remote EP.

From a Local EP to a Remote EP
Whenever a newly discovered EP is initialized successfully, all existing EPs in the system will be

informed of its Inbound Queue Structure base address, configuration space registers, and the peer index
associated with the new EP. The new EP will be informed of similar information associated with the other
EPs in the system. The procedure used to transfer data from a local EP to a remote EP is described below:

– As mentioned in the Data Transport section, the local EP needs to acquire a Message Frame
address from the remote EP’s FreeQ. The Message Frame address needs to be converted from
a System Domain physical address to a Local Domain virtual address before data can be written
to it. If there are no free Message Frames available, a timer will be started to initiate a retry at a
later time.

– After populating the Message Frame, the address of the Message Frame is placed in the remote
EP’s PostQ. The local EP then triggers an interrupt on the remote EP by setting the bit in the
remote EP’s Message Shared Interrupt Register 0 that corresponds to the local EP’s index.

– When the remote EP receives the interrupt, it checks the PostQ to see if there are Message
Frames waiting to be processed. If so, each Message Frame address is converted from a System
Domain physical address to a Local Domain virtual address before it is processed.

– The remote EP allocates a new buffer and copies the data from the Message Frame to the buffer.
The data buffer is then posted to the appropriate application for further processing.

– The peer index of source EP is determined and the Message Frame is inserted into the FreeQ for
the corresponding EP.

From a Local EP to a Remote RP
During system initialization, the RP’s Transport Service allocates data space for each EP in the system.

This data space holds the Inbound Queue Structure and Message Frames required by each EP in order for
them to transfer data to the RP. Each EP is informed of its Inbound Queue Structure address on the RP so
that an outbound address translation window can be configured, allowing the EP to access its Inbound
Queue Structure on the RP.

The procedure to transfer data from a local EP to the RP is similar to the EP to EP case except:
– The EP writes the value from the PCIe MSI Message Data register to the address specified by the

PCIe MSI Message Address register in order to generate an interrupt on the RP.
– When the RP receives an entry in its inbound PostQ, it converts the buffer address from System

Domain physical to System Domain virtual before accessing it.
– Before releasing a Message Frame to its FreeQ, the RP converts the buffer address from System

Domain virtual to System Domain physical.

From a Local RP to a Remote EP
The local RP uses the inbound queue structure of a remote EP to transfer data from a local RP to the

remote EP. The procedure is the same as transferring data from a local EP to a remote EP except:
– When the RP retrieves an entry in a remote EP’s inbound FreeQ, it converts the buffer address

from System Domain physical to System Domain virtual before accessing it.
– When the RP posts a Message Frame to a remote EP’s inbound PostQ, it converts the buffer

address from System Domain virtual to System Domain physical.
15 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Software Modules
All software components of the System Interconnect system are implemented as Linux-loadable

modules. There are five and six Linux-loadable modules for the RP and EPs, respectively. 
The modules for an x86 RP are:

– idt-mp-i386rp-msg.ko: Message Frame module
– idt-mp-i386rp-arch.ko: Local Architecture module
– idt-mp-i386rp-mpc8548Eep.ko: Transport module
– idt-mp-i386rp-eth.ko: Virtual Ethernet module
– idt-mp-i386rp-raw.ko: Raw Data Transfer module

The modules for an MPC8548E RP are:
– idt-mp-mpc8548Erp-msg.ko: Message Frame module
– idt-mp-mpc8548Erp-arch.ko: Local Architecture module
– idt-mp-mpc8548Erp-mpc8548Eep.ko: Transport module
– idt-mp-mpc8548Erp-eth.ko: Virtual Ethernet module
– idt-mp-mpc8548Erp-raw.ko: Raw Data Transfer module

The modules for EPs are:
– idt-mp-mpc8548Eep-msg.ko: Message Frame module
– idt-mp-mpc8548Eep-arch.ko: Local Architecture module
– idt-mp-mpc8548Eep-rp.ko: Transport module
– idt-mp-mpc8548Eep-mpc8548Eep.ko: Transport module to EPs
– idt-mp-mpc8548Eep-eth.ko: Virtual Ethernet module
– idt-mp-mpc8548Eep-raw.ko: Raw Data Transfer module

Please note that even though the statistic function is conceptually a function service, it is implemented in
the Message Frame module. This function sends and receives high priority messages in order to maintain
up-to-date statistical information. Also note that even though the RP and EPs have separate binary Linux-
loadable modules, some of them share the same source files. The complete layered picture is illustrated in
Figure 17.
16 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
Figure 17  Software Modules and Device Drivers

The MPC8548E Transport Module exists in both the RP and EPs, whereas the EP to RP Transport
Module only exists in the EPs.

Function Service Layer
There are currently two function services: the virtual Ethernet and the Raw Data Transfer. The RP and

all EPs share the same source files.

Virtual Ethernet Device Driver
The Ethernet module simulates a virtual Ethernet interface (mp0). The module initialization function

registers the virtual Ethernet interface with the Linux kernel and then registers itself with the Message
module. The MAC address of the virtual Ethernet interface may be specified either on the command line
when the module is loaded or when a locally administered MAC address is generated using the linux func-
tion call random_ether_address(). A MAC address to destination peer ID table is maintained in the driver.
The table is initially empty. Whenever an Ethernet packet is received, the source MAC address and peer ID
of the sender is added to the table. When a packet is sent, the destination MAC address is looked up in the
MAC address to destination peer ID table. If there is a match, the packet is sent to the corresponding peer
ID. If no match occurs, the packet is sent to the “broadcast” peer ID. The Message module sends a copy of
the packet to each peer in the system. In other words, the packet is sent to all other peers in the system.

 The Ethernet module’s transmit function allocates an mp_frame data structure, sets up the virtual
Ethernet function header, sets up any data fragments, looks up the destination MAC address for destination
peer ID, and then passes the frame down to the message service for transmission. 

The module’s receive function extracts the virtual Ethernet function header, allocates a Linux sk_buff
data structure, sets up the sk_buff fields, then calls mp_frame_sync to transfer the data into the sk_buff.
When the data transfer is complete, its callback function updates the MAC address to destination peer ID
Table with the source MAC address and the source peer ID, then passes the sk_buff to the Linux kernel and
releases the mp_frame data structure.

 

User Space 

Kernel Space 
Ethernet 

Device Driver 
Raw Data 

Device Driver 
Statistics 

Device Driver 

 
 
 
 

Local 
Architecture 

Module 

Message Frame Module 
Message 
Service 
Layer 

Transport 
Service 
Layer 

Function 
Service 
Layer 

Network 
Application 

EP to RP 
Transport 
Module 

Raw Data 
Application 

Statistics 
Application 

PCIe Interface 

RP to EP 
Transport 
Module 

EP to EP 
Transport 
Module 
17 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 Raw Data Service Module
The Raw Data Transfer module is used to transfer received data to a user specified remote peer. The

user interface to the Raw Data Transfer module utilizes the Linux 2.6 sysfs feature which allows information
to be passed to the driver via the Linux file system. The module initialization function sets up data buffers,
registers itself with the multi-peer Message module, and sets up the subsystem attributes in the sysfs used
to interface with the user.

In order to begin a data transfer using the Raw Data Transfer module, the ID of the destination peer
should be written into /sys/mp/forward followed by optionally writing the data to be transferred into /sys/mp/
buffer and the number of times the data should be transferred into /sys/mp/count before writing the number
of bytes to be transferred (in hexidecimal) into /sys/mp/send to begin the transfer. When the destination
peer receives the raw data, it automatically transfers the data to the peer identified in /sys/mp/forward. If a
peer ID has not been specified in /sys/mp/forward, the receiving peer terminates the transfer.

When /sys/mp/send is written to, the corresponding store function allocates an mp_frame data structure,
sets up the mp_frame data structure with the specified length, clones the frame the number of times speci-
fied /sys/mp/count (minus one), then passes the frames down to message service for transmission. 

The destination peers receive function allocates a buffer, then calls mp_frame_sync to transfer the data
to the new buffer. The callback function for the data transfer allocates a new mp_frame data structure, sets
up the mp_frame data structure, then passes the frame down to the message service for transmission.

Message Layer Service
The Message layer is the centerpiece of the multi-peer system. It connects and multiplexes the function

and transport services to transfer data frames between peers.

Message Module
The Message module provides the interface for the Function and Transport modules to register them-

selves and transfer data frames. The module initialization function initializes the peer management related
data structures, creates the mp workqueue for processing peer notification messages, and registers the mp
subsystem with the Linux sysfs system. On the RP, when a transport service adds a new peer, the message
service sends a notification of the new peer to each existing peer and a notification of each existing peer to
this new peer. On the EPs, when a peer notification is received, the message service notifies the corre-
sponding transport service of the new peer. In addition, when a peer is added, the message service creates
a peer ID attribute in the sysfs to represent the known peers and to interface with the user. When a function
service sends a data frame, the message service looks up the destination peer type and passes the data
frame to the corresponding transport service to transfer the data to the destination peer. When a transport
service receives a data frame, the message service peeks into the message header to determine which
function service should receive the data frame and passes the data frame accordingly.

The Message module can send messages to all other peers in the system. When the destination peer ID
is unknown or “Broadcast”, a message is duplicated and sent to each peer in the system.

Architecture Module
The Architecture module encapsulates the common architecture-specific functions, such as address

space conversion and DMA transfer routines. Each different type of RP and EP has its own architecture-
specific module. The address space conversion routines convert addresses between virtual, physical, bus,
and PCI addresses. The DMA transfer functions are used to perform memory to memory and memory to
PCIe transfers.

Transport Service Layer
The Transport service is responsible for detecting and setting up the hardware, managing the frame

buffers, and initiating the actual data transfers. There are three separate Transport modules which do not
share source files. One module runs on the RP and the other two run on the EPs.
18 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 RP to EP Transport Module
The RP to EP Transport Module running on the RP is implemented as a generic PCI driver. The module

initialization function initializes the transport data structure, registers itself with the message service, then
registers the PCI driver with the Linux kernel. When the Linux kernel detects an external endpoint, the
probe function of the PCI driver is called. The probe function allocates and initializes the peer related data
structures, enables the PCI device, requests the memory and interrupt resources associated with the PCI
device, then communicates with the EP to RP Transport module running on EPs to setup the memory
windows and data frame buffers.

The transmit function is called by the message service to transmit a data frame to an EP. The receive
function is triggered by the interrupt handler when an EP sends a data frame to the RP.

EP to RP Transport Module
The EP to RP Transport Module runs on the EPs. The module initialization function initializes the trans-

port data structure, registers itself with the message service, and initializes the hardware. It then communi-
cates with the RP to EP Transport Module running on the RP to setup the memory windows and data frame
buffers.

The transmit function is called by the message service to transmit a data frame to the RP. The receive
function is triggered by the interrupt handler when the RP or an EP sends a data frame to the local EP.

EP to EP Transport Module
The module initialization function of the EP to EP Transport Module running on EPs initializes the trans-

port data structure and registers itself with the message service.
When the message service on an EP receives a peer-add notification, it calls the peer_add function of

the EP to EP Transport Module. The peer_add function initializes and registers the peer data structure and
makes the new peer available for data transfers.

The transmit function is called by the message service to transmit a data frame to another EP. Note that
there is no receive function in the EP to EP Transport Module running on the EPs. All data reception is
handled by the EP’s EP to RP Transport Module.
19 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 System Initialization
In order for the RP to successfully detect the EPs connected to the system when the PCIe bus is

probed, all EPs should be powered on before the RP. Once the RP and all of the EPs have successfully
booted, the IDT System Interconnect modules may be loaded with the use of the Linux insmod (install
module) command.

Due to the interdependences between the modules that comprise the IDT System Interconnect software
the modules for an x86 RP should be installed in the order listed below.

– idt-mp-i386rp-msg.ko
– idt-mp-i386rp-arch.ko
– idt-mp-i386rp-mpc8548Eep.ko
– idt-mp-i386rp-eth.ko
– idt-mp-i386rp-raw.ko

Similarly the RP modules for an MPC8548E RP should be loaded in the following order.
– idt-mp-mpc8548Erp-msg.ko
– idt-mp-mpc8548Erp-arch.ko
– idt-mp-mpc8548Erp-mpc8548Eep.ko
– idt-mp-mpc8548Erp-eth.ko
– idt-mp-mpc8548Erp-raw.ko

and the MPC8548E EP modules should be loaded in the following order.
– idt-mp-mpc8548Eep-msg.ko
– idt-mp-mpc8548Eep-arch.ko
– idt-mp-mpc8548Eep-rp.ko
– idt-mp-mpc8548Eep-eth.ko
– idt-mp-mpc8548Eep-mpc8548Eep.ko
– idt-mp-mpc8548Eep-raw.ko

EP Initialization
When the EP to RP Transport Service module is installed, the following initialization is performed by the

EP before communicating with the RP.
– Memory is allocated for the EP data structure.
– Memory is allocated for the RP data structure.
– The EP device data structure is initialized, including peer specific data, timers, and spin locks, etc.
– Memory is allocated for the EP inbound queue structure and message frames.
– IWBAR1 is setup to point to the inbound queue structure.
– System Domain translation address of IWBAR1 is programmed from the value written to BAR1 by

the RP.
– Initialize the inbound queue structure.
– Allocate an interrupt for message register 0.
– Allocate and enable an interrupt for the Message Shared Interrupt Register 0.
– Enable interrupts for message register 0.
20 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 RP Initialization
When the Linux kernel detects an EP, the PCI probe sub-routine in the Transport Service module is

invoked. The following tasks are performed before communicating with the EP:
– Peer data structure is allocated for the EP.
– An ID is created based on the Bus#, Device#, and Function# of the peer.
– The EP device data structure is initialized, including peer specific data, timers, and spin locks, etc.
– The EP device is enabled via the Linux PCI API.
– MSI support is enabled for the EP via the Linux PCI API.
– An interrupt is allocated for the EP, one per EP.
– Memory is allocated and initialized for the inbound queue structure, one per EP.

RP to EP Initialization
When the EP and RP transport services have completed their individual initialization, the RP can begin

its initialization of the newly discovered EP. Figure 18 illustrates the initialization sequence between the RP
and the EP.

During the initialization phase, before the transport services are fully initialized, information is passed
between the RP and EPs using Message Registers 0-2. The RP transfers data to the EP by first writing the
data to Message Register 1 and then writing the data type to Message Register 0. When Message Register
0 is written by the RP, the EP is interrupted. The EP reads the data type written to Message Register 0 to
determine what action should be taken on the data written to Message Register 1. Similarly, when the EP
transfers data to the RP, it writes the data to Message Register 2 and then interrupts the RP by writing the
MSI data to the MSI address specified by the RP. 
21 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
Figure 18  RP to EP Initialization Sequence

Summary
The software architecture to support PCIe System Interconnect has been presented in this document.

This software has been implemented and is working under Linux with an x86 or an MPC8548E CPU as the
Root Processor and an MPC8548E CPU as the Endpoint Processors. Software source code is available
from IDT. 

The software is implemented as device drivers and modules running in the Linux Kernel space. There
are three layers in the software to separate the different software functions and to allow maximum reuse of
the software. 

 

Init Memory and 
Data Structures 
Program EP MSI 

Data Register 
Program EP MSI 
Address Register 

Signal MSI Init 
Done 

 

Send RP Inbound 
Queue Address 

 

Send Size of RP 
Inbound Queue 

 

Send Peer System 
Domain Address 

 

Init Memory and 
Data Structures 

 

Setup OWBAR1 
(RP MSI Register) 
Signal MSI Setup 

Done 
Begin Stage 1 

Setup 

ACK 

Setup OWBAR2 (RP 
Inbound Queue) 

ACK 

Setup OWBAR3 
(Peer Address) 

ACK 

Information Not 
Currently Used 

ACK 

Begin Stage 2 
Setup 

Init EP Structure to 
Access RP Queue 

Signal Stage 2 
Setup Done 

RP EP 

Send Size of Peer 
System Domain 

 

Signal Stage 1 
Setup Done 

 

Init RP Structure to 
Access EP Queue 

Set EP State 
Variable to OK 

 

Register EP with 
Message Service 

Set EP State 
Variable to OK 

ACK 

Inform New EP of 
its Slot & Peer ID 

Inform Other Peers 
of New EP 

Inform New EP of 
other Peers 
22 of 23 December 10, 2007



IDT    Application Note AN-573

Notes
 The Function Service Layer is the upper layer. It provides the function service that is visible to the Oper-
ation System and upper layer application. Multiple function services have been implemented in the current
release of the software: the Ethernet Function Service provides a virtual Ethernet interface to the system,
the Raw Data Function Service provides transfer of user data between EPs and the RP, and the Statistic
Function Service provides the function to collect traffic statistics for management and diagnostic purposes.

The Message Frame Layer contains the Message Frame Service which provides a common message
encapsulation and de-capsulation layer to all the function services. It also notifies all other Endpoint Proces-
sors whenever a new Endpoint Processors is discovered.

The Transport Service Layer deals with the actual data transport between Endpoint Processors and
Root Processors using the PCIe interface. The Transport service is Endpoint Processor specific. This
version of the System Interconnect software supports an x86 or MPC8548E based Root Processor and
MPC8548E Endpoint Processors.

Apart from the inter-processor communication application, this software demonstrates that I/O sharing
can now be implemented using a standard PCIe switch. The sharing of a single Ethernet interface by
multiple Endpoint Processors and the Root Processor has been implemented and functions properly. 

The address translation unit is used to isolate and provide a bridge between different PCIe address
domains. The FreeQ and PostQ structures are used as part of the message transport protocol.

This software release lays down the foundation to build more complex systems using the PCIe interface
as the System Interconnect. The software follows a modular design which allows the addition of function
services and other Endpoint Processor support without making changes to existing software modules.
Complex systems, such as embedded computing, blade servers supporting I/O sharing, and communica-
tion and storage systems, can be built today using PCIe as the System Interconnect.

Reference
[1] Enabling Multi-peer Support with a Standard-Based PCI Express multi-port Switch White Paper, Kwok Kong, IDT.
[2] IDT EB24N3 Evaluation Board Manual
[3] IDT PES24N3 Product Brief
[4] MPC8548E PowerQUICC IIITM Integrated Host Processor Family Reference Manual (MPC8548ERM)
[5] EP8548A User Manual (DES0212)
23 of 23 December 10, 2007



Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most 
up-to-date version of a document, or your nearest sales 
office, please visit www.renesas.com/contact-us/. 

Trademarks
Renesas and the Renesas logo are trademarks of Renesas 
Electronics Corporation. All trademarks and registered 
trademarks are the property  of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL 
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING 
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND 
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) 
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) 
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These 
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an 
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is 
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims 
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, 
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and 
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise 
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Introduction
	System Architecture
	Root Complex Processor
	PCIe Switch
	Endpoint Processor

	General Software Architecture
	RP Software Architecture
	EP Software Architecture

	Application Examples
	Address Translation
	Inbound Address Translation
	Outbound Address Translation

	Data Transport
	Data Movement Scenarios


	Software Modules

	
Function Service Layer

	Message Layer Service

	Transport Service Layer


	System Initialization

	Summary

	Reference


