Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4559 Group

Timers

1. Abstract

This document shows an example of how to set the timers of the 4559 group of Renesas microcomputers and an application example for using those timers.

2. Introduction

The application example explained in this document applies for use with the microcomputers and under the conditions described below.

• Microcomputer : 4559 group

• Oscillation frequency : 4 MHz as f(XIN), however; 32.768 kHz as f(XCIN), however

• System clock : Used in through mode (not frequency divided)

Please note that the sample program for the 4559 group may somewhere in it manipulate the bits of unused functions for reasons of bit arrangement in the control registers. The values of these bits in a user system should be set to suit the usage condition of the system.

In this application note, explanation is made of an example of timer setting method and an application example with respect to the following:

CNTR output operation: Buzzer outputCNTR input operation: Event count

• Timer operation: Timer start by external input

• Timer operation: Fixed-cycle counter

• Watchdog timer

3. Related Registers

3.1 Interrupt Control Register V1

Table 3.1 shows the bit configuration of Interrupt Control Register V1.

For write to the register V1, first set a value in the register A and then use the TV1A instruction.

Furthermore, the TAV1 instruction may be used to transfer the content of register V1 to the register A.

Table 3.1 Bit Configuration of Interrupt Control Register V1

	Interrupt Control Register V1	W	/hen reset: 00002	When powered down: 00002	R/W TAV1/TV1A			
\/12	V13 Timer 2 interrupt enable bit		Disables interrupt g	eneration (SNZT2 instruction effective)				
V 13			Enables interrupt g	eneration (SNZT2 instruction has no effe	ect)			
V12	V12 Timer 1 interrupt enable bit		Disables interrupt generation (SNZT1 instruction effective)					
V 12	V12 Timer Finterrupt enable bit	1	Enables interrupt generation (SNZT1 instruction has no effect)					
V1 ₁	V11 Unused		This bit has no functions assigned, but can be read/written.					
V 11	VII Unused	1	- This bit has no functions assigned, but can be read/written.					
V10	V10 External 0 interrupt enable bit	0	Disables interrupt generation (SNZ0 instruction effective)					
10	External of memory chapte bit	1	Enables interrupt generation (SNZ0 instruction has no effect)					

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: : Unused bits during timer setting.

3.2 Interrupt Control Register V2

Table 3.2 shows the bit configuration of Interrupt Control Register V2.

For write to the register V2, first set a value in the register A and then use the TV2A instruction.

Furthermore, the TAV2 instruction may be used to transfer the content of register V2 to the register A.

Table 3.2 Bit Configuration of Interrupt Control Register V2

	Interrupt Control Register V2	W	/hen reset: 00002	When powered down: 00002	R/W TAV2/TV2A		
V23	Unused	0	This bit has no fund	tions assigned, but can be read/written.			
. 20	V23 Ulluseu		This bit has no functions assigned, but can be read/written.				
V22	Unused	0	This hit has no fund	no functions assigned, but can be read/written.			
V <u>Z Z</u>	VZZ Ulluseu	1	This bit has no functions assigned, but can be read written.				
V21	V21 Unused		This bit has no functions assigned, but can be read/written.				
V Z I	V21 Unused	1	- This bit has no functions assigned, but can be read/whiten.				
V20	V20 Timer 3 interrupt enable bit	0	Disables interrupt generation (SNZT3 instruction effective)				
V Z 0	Timor o interrupt enable bit	1	Enables interrupt g	eneration (SNZT3 instruction has no effe	ct)		

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: : Unused bits during timer setting.

3.3 Interrupt Control Register I1

Table 3.3 shows the bit configuration of Interrupt Control Register I1.

For write to the register I1, first set a value in the register A and then use the TI1A instruction.

Furthermore, the TAI1 instruction may be used to transfer the content of register I1 to the register A.

Table 3.3 Bit Configuration of Interrupt Control Register I1

	Interrupt Control Register I1	Wher	n reset: 00002	When powered down: State retained	R/W TAI1/TI1A			
110	I13 INT pin input control bit Note 2		Disables input					
113			Enables input					
l12	INT pin interrupt active waveform/		Falling wavefo	Falling waveform/low level (SNZI0 instruction recognizes low level)				
112	return level select bit Note 2	1	Rising wavefo	Rising waveform/high level (SNZI0 instruction recognizes high level)				
114	INT pin adda dataction circuit control bit	0	Detects one edge					
111	In In In edge detection circuit control bit	1	Detects both edges					
110	INT pin timer 1 count start synchronizing	0	Deselects timer 1 count start synchronizing circuit					
110	circuit select bit	1	Selects timer 1 count start synchronizing circuit					

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: When the contents of these bits (I12 or I13) are changed, the external interrupt request flag (EXF0) may be set.

3.4 Timer Control Register PA

Table 3.4 shows the bit configuration of Timer Control Register PA.

For write to the register PA, first set a value in the register A and then use the TPAA instruction.

Table 3.4 Bit Configuration of Timer Control Register PA

	Timer Control Register PA	When reset: 02		When powered down: 02	W TPAA
PA ₀	PAo Prescaler control bit	0	Stop (state reta	ained)	
17.0	FA0 Frescaler Control bit		Start		

Note 1: The letter W denotes "writable."

3.5 Timer Control Register W1

Table 3.5 shows the bit configuration of Timer Control Register W1.

For write to the register W1, first set a value in the register A and then use the TW1A instruction.

Furthermore, the TAW1 instruction may be used to transfer the content of register W1 to the register A.

Table 3.5 Bit Configuration of Timer Control Register W1

Timer Control Register W1 Whe		When reset: 00002		When powered down: State retained	R/W TAW1/TW1A			
W13	Timer 1 count auto stop circuit select bit		Desel	Deselects timer 1 count auto stop circuit				
VV 13	Note 2	1	Selec	ts timer 1	count auto stop circuit			
W/1a	W12 Timer 1 control bit	0	Stop (Stop (state returned)				
VV 12		1	Start	Start				
		W11	W10	W10 Count source				
W11		0	0	PWM sig	WM signal (PWMOUT)			
Timer 1	Timer 1 count source select bit Note 3	0	1	1 Prescaler output (ORCLK)				
		1	0	Timer 3 u	inderflow signal (T3UDF)			
		1	1	1 CNTR input				

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: This function is usable only when timer 1 count start synchronizing circuit is selected (I10 = 1).

Note 3: If CNTR input is selected for the timer 1 count source, port C output is disabled.

3.6 Timer Control Register W2

Table 3.6 shows the bit configuration of Timer Control Register W2.

For write to the register W2, first set a value in the register A and then use the TW2A instruction.

Furthermore, the TAW2 instruction may be used to transfer the content of register W2 to the register A.

Table 3.6 Bit Configuration of Timer Control Register W2

	Timer Control Register W2	Wh	en reset: 00002	When powered down: 00002	R/W TAW2/TW2A			
W23	WO CNITD air output control bit		Disables CNTR pin output					
VV23	W23 CNTR pin output control bit	1	Enables CNTR pin output					
\M2a	W22 PWM signal high period extend function control bit	0	Disables PWM signal high period extend function					
V V Z Z		1	Enables PWM signal high period extend function					
\N/2 ₁	W21 Timer 2 control bit	0	Stop (state retained)					
VVZI		1	Start					
W20	W20 Timer 2 count source select bit	0	XIN input					
VV20		1	Prescaler output (ORCLK) divided by 2					

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

3.7 Timer Control Register W3

Table 3.7 shows the bit configuration of Timer Control Register W3.

For write to the register W3, first set a value in the register A and then use the TW3A instruction.

Furthermore, the TAW3 instruction may be used to transfer the content of register W3 to the register A.

Table 3.7 Bit Configuration of Timer Control Register W3

Timer Control Register W3 Whe		en reset: 00002		When powered down: State retained	R/W TAW3/TW3A				
\/\/3°	W33 Timer 3 count source select bit	0	Xcin ii	Xcın input					
VV.33		1	Presc	Prescaler output (ORCLK) divided by 2					
W32	W32 Timer 3 control bit	0	Stop (Stop (initial state)					
VV32	Timer 3 control bit	1	Start						
			W30		Count value				
W31	Timer 3 count value select bit	0	0	Generate	s underflow every 8,192 counts				
		0	1	Generate	enerates underflow every 16,384 counts				
W30		1	0	Generate	erates underflow every 32,768 counts				
VV30		1	1	1 Generates underflow every 65,536 counts					

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

3.8 Timer Control Register W4

Table 3.8 shows the bit configuration of Timer Control Register W4.

For write to the register W4, first set a value in the register A and then use the TW4A instruction.

Furthermore, the TAW4 instruction may be used to transfer the content of register W4 to the register A.

Table 3.8 Bit Configuration of Timer Control Register W4

	Timer Control Register W4	W	/hen reset: 00002	When powered down: State retained	R/W TAW4/TW4A		
W43	W43 Timer LC control bit		Stop (state retained	1)			
VV-13	W43 Timer LC control bit	1	Start				
W42	W42 Timer LC count source select bit	0	Bit 4 of timer 3 (T34)				
VV-12	Timer LC Count Source Select bit	1	1 System clock (STCK)				
W41	CNTR pin output auto control circuit		Deselects CNTR pin output auto control circuit				
VV-1	select bit	1	Selects CNTR pin of	output auto control circuit			
W40	CNTR pin input count edge select bit	0	Falling edge				
VV40	CN IR pin input count eage select bit	1	Rising edge				

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: : Unused bits during timer setting.

3.9 Port Output Mode Control Register FR2

Table 3.9 shows the bit configuration of Port Output Mode Control Register FR2. For write to the register FR2, first set a value in the register A and then use the TFR2A instruction.

Table 3.9 Bit Configuration of Port Output Mode Control Register FR2

Р	ort Output Mode Control Register FR2	W	hen reset: 00002	When powered down: State retained W TFR2A			
FR23	Port P32 and P33 output mode select bit	0	N-channel open-o	Irain output			
11(23	FR23 Fort F32 and F33 output mode select bit	1	CMOS output				
FP22	FR22 Port P30 and P31 output mode select bit	0	N-channel open-drain output				
11122		1	CMOS output				
FR21	Port D ₅ output mode select bit	0	N-channel open-drain output				
111121	PRZ1 Port D5 output mode select bit	1	CMOS output				
FP20	Port D4 output mode select bit	0	N-channel open-c	rain output			
FN20 Fort D4 output mode select	1 on D4 output mode select bit	1	CMOS output				

Note 1: The letter W denotes "writable."

Note 2: : Unused bits during timer setting.

4. Timer Application Example

4.1 CNTR Output Operation: Buzzer Output

Point : The square wave output from timer 2 can be used for buzzer output as its application.

Specification: When system clock frequency = 4 4MHz, a square wave in frequency of approximately 4 kHz is

output from the CNTR pin. Also, a timer 2 interrupt is generated at the same time.

Figure 4.1 shows an example of a peripheral circuit. Figure 4.3 shows an example of how to set the registers for CNTR output.

Figure 4.1 Example of a Peripheral Circuit

4.2 CNTR Input Operation: Event Count

Point : A signal (rising waveform) input from the CNTR pin can be used as an event for count operation.

Specification: Low-frequency pulses are input as the count source for timer 1 from the outside to the CNTR pin, and a timer 1 interrupt is generated every 100 counts.

Figure 4.4 shows an example of how to set the registers for CNTR input.

4.3 Timer Operation: Timer Start by External Input

Point : A fixed length of time can be measured using external input.

Specification: Timer 1 is triggered to start counting by INT input and an interrupt is generated 1 ms later.

Figure 4.5 shows an example of how to set the registers for timer 1 to be started by external 0 input.

4.4 Timer Operation: Fixed-cycle Counter by Timer 3

Point : Exact time can be measured using a 32.768 kHz crystal resonator, making it possible to create a

highly accurate time-of-day clock.

Specification: A timer 3 interrupt is generated every 250 ms synchronously with the timing signal derived by

dividing the sub-clock frequency (f(XCIN) = 32.768 kHz) with timer 3.

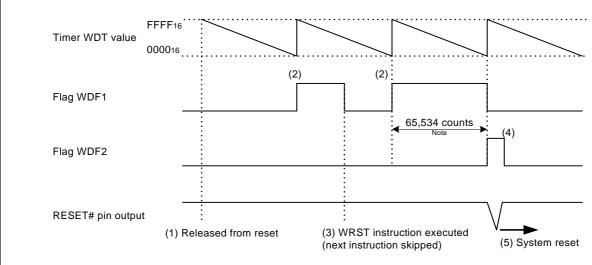
Figure 4.6 shows an example of how to set the registers for a fixed-cycle counter by timer 3.

4.5 Watchdog Timer

The watchdog timer function offers a means for restoring the chip into a reset state when, for example, a program has gone wild and could not be executed normally.

When the watchdog timer function is enabled, always be sure that the WRST instruction is executed at intervals equal to or less than 65,534 counts of a 16-bit timer (i.e., at intervals equal to or less than 65,534 machine cycles).

Point : While operating normally, the WRST instruction is always executed within 65,534 counts of a 16-


bit timer. If the program goes wild, the WRST instruction will no longer be executed, causing the

chip to be reset.

Specification: Using a system clock frequency of 4.0 MHz, this function detects program runaway by executing

the WRST instruction within 49 ms.

Figure 4.2 schematically shows the watchdog timer function. Figure 4.7 shows an example for using the watchdog timer.

- (1) After reset (after program start), the timer WDT starts counting down.
- (2) When the timer WDT underflows upon reaching the minimum count, the flag WDF1 is set to 1.
- (3) When the WRST instruction is executed, the flag WDF1 is cleared to 0 and the next instruction is skipped.
- (4) If the timer WDT underflows while the flag WDF1 = 1, the flag WDF2 is set to 1 and a watchdog reset signal is output.
- (5) The watchdog reset signal causes the output transistor of the RESET# pin to turn on, thereby generating a system reset.

Note: Since the count source for the timer WDT is the instruction clock, the number of counts is the same as the number of machine cycles.

Figure 4.2 Watchdog Timer Function

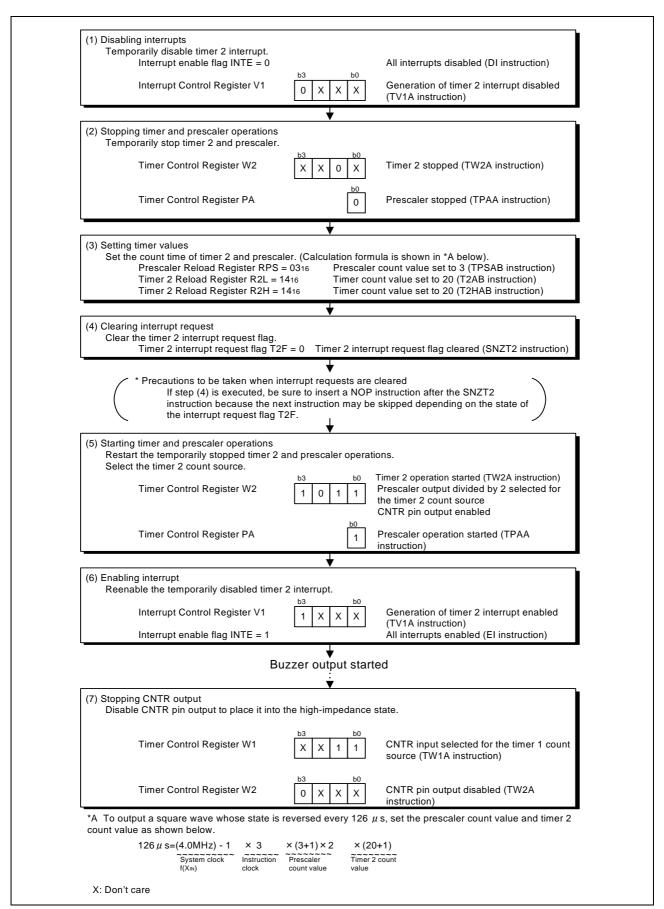


Figure 4.3 Example of CNTR Output Setting

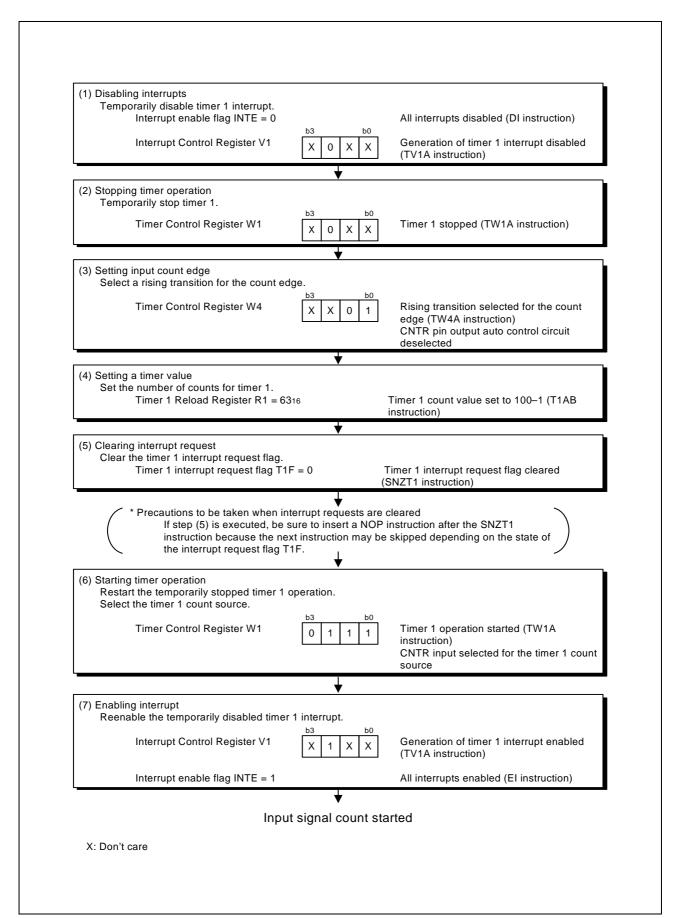


Figure 4.4 Example of CNTR Input Setting

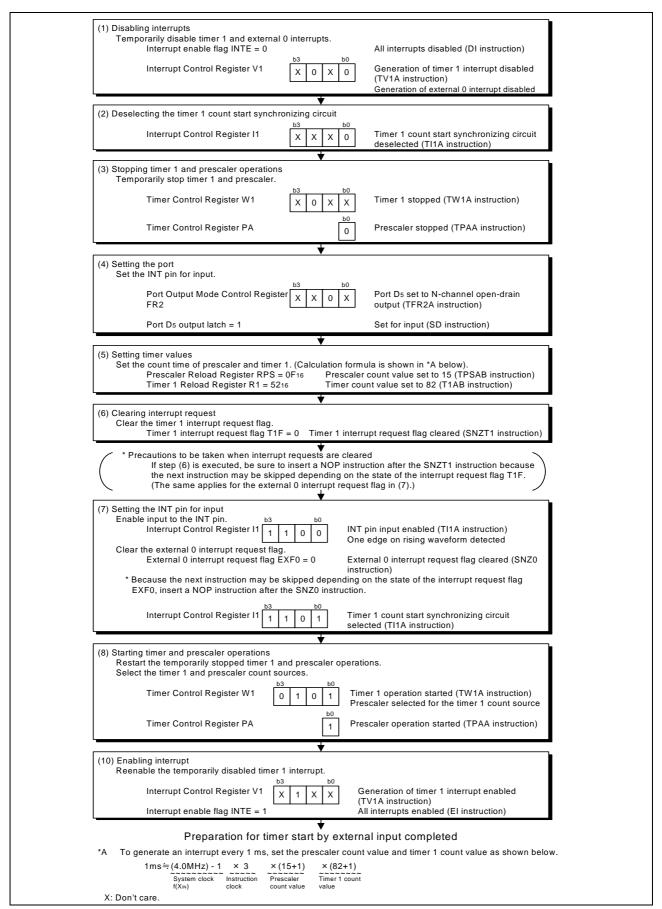


Figure 4.5 Example of Settings for Timer 1 Started by External 0 Input

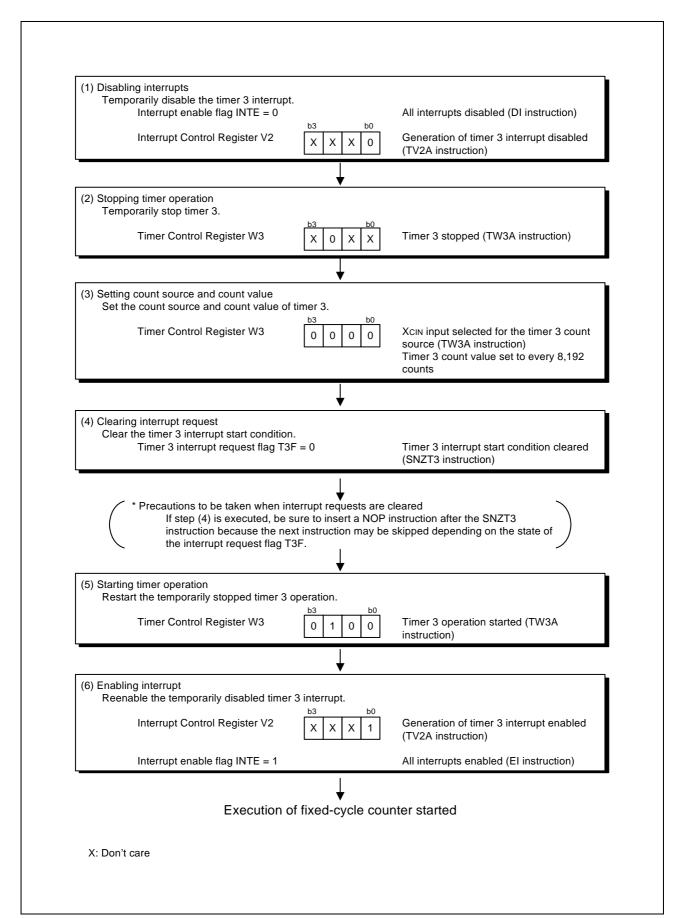


Figure 4.6 Example of Settings for Fixed-cycle Counter by Timer 3

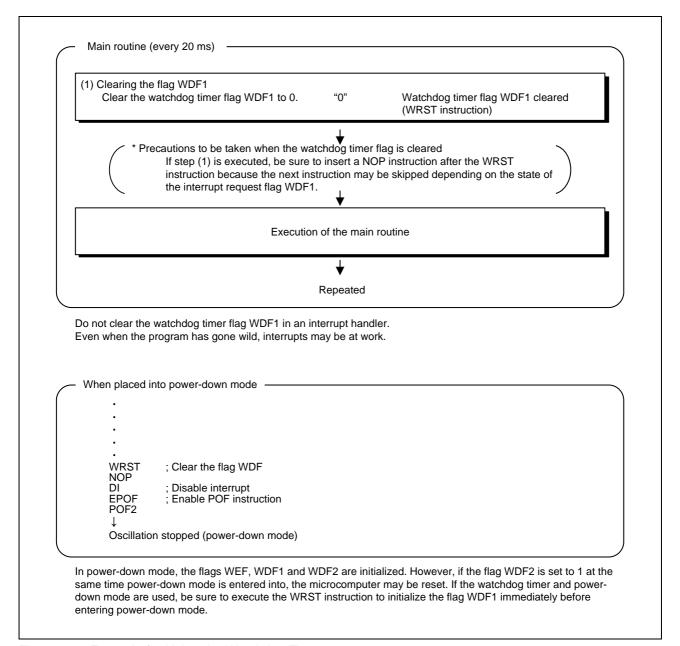


Figure 4.7 Example for Using the Watchdog Timer

5. Sample Programs

Sample programs are available from the Renesas Technology Web site. To download one, click the screen menu "Application Note" on the left side of 4559 group Web page.

6. Reference Documents

Data sheet 4559 Group Data Sheet

The latest version is available from the Renesas Technology Web site.

7. Renesas Web Site and Where to Contact

Renesas Technology Web site: http://japan.renesas.com/

Where to contact:

http://japan.renesas.com/inquiry csc@renesas.com

Revision history	4559 Group Timers Application Note
------------------	------------------------------------

Rev.	Date	Description						
ixev.	Date	Page	Points					
1.00	2006.11.01	_	First edition issued					

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.