Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4559 Group

Power-Down Function

1. Abstract

This document shows an example of how to set the power-down function of the 4559 group of Renesas microcomputers and an application example for using it.

2. Introduction

The application example explained in this document applies for use with the microcomputers and under the conditions described below.

• Microcomputer : 4559 group

Oscillator frequency
 System clock
 23.768 kHz as sub-clock f(XCIN), however
 Used in through mode (not frequency divided)

Please note that the sample program for the 4559 group may somewhere in it manipulate the bits of unused functions for reasons of bit arrangement in the control registers. The values of these bits in a user system should be set to suit the usage condition of the system.

3. Related Registers

3.1 Interrupt Control Register V2

Table 3.1 shows the bit configuration of Interrupt Control Register V2.

For write to the register V2, first set a value in the register A and then use the TV2A instruction.

Furthermore, the TAV2 instruction may be used to transfer the content of register V2 to the register A.

Table 3.1 Bit Configuration of Interrupt Control Register V2

Interrupt Control Register V2		W	hen reset: 00002	When powered down: 00002	R/W TAV2/TV2A	
V/2a	V23 Not used	0	This bit has no functions assigned, but can be read/written.			
V 23		1	This bit has no functions assigned, but can be read/written.			
V/22	V22 Not used	0	This bit has no functions assigned, but can be read/written.			
V Z Z		1	This bit has no functions assigned, but can be read written.			
V21	Not used	0	This bit has no functions assigned, but can be read/written.		n	
V Z I	Not used	1	This bit has no rui	This bit has no functions assigned, but can be read/whiten.		
V20	Timer 3 interrupt enable bit	0	Disables interrupt	Disables interrupt generation (SNZT3 instruction effective)		
V 20	Timer 3 interrupt enable bit	1	Enables interrupt	generation (SNZT3 instruction has no e	ffect)	

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: Unused bits during power-down function setting.

3.2 Interrupt Control Register I1

Table 3.2 shows the bit configuration of Interrupt Control Register I1.

For write to the register I1, first set a value in the register A and then use the TI1A instruction.

Furthermore, the TAI1 instruction may be used to transfer the content of register I1 to the register A.

Table 3.2 Bit Configuration of Interrupt Control Register I1

Interrupt Control Register I1		When reset: 00002		When powered down: State retained	R/W TAI1/TI1A	
113	INT pin input control bit Note 2	0	Disables input			
113	110 III III III III III III III III III	1	Enables input			
112	INT pin interrupt active waveform/return	0	Falling waveform/low level (SNZI0 instruction recognizes low level on pin)			
112	level select bit Note 2	1	Rising wavefo INT pin)	rm/high level (SNZI0 instruction recogniz	es high level on	
I1 ₁	INT pin edge detection circuit control bit	0	Detects one e	Detects one edge		
111	in pin eage detection circuit control bit	1	Detects both e	Detects both edges		
I1 0	INT pin timer 1 count start synchronizing	0	Deselects timer 1 count start synchronizing circuit			
110	circuit select bit	1	Selects timer	Selects timer 1 count start synchronizing circuit		

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: When the contents of these bits (I12 or I13) are changed, the external interrupt request flag (EXF0) may be set.

Note 3: : Unused bits during power-down function setting.

3.3 LCD Control Register L1

Table 3.3 shows the bit configuration of LCD Control Register L1.

For write to the register L1, first set a value in the register A and then use the TL1A instruction.

Furthermore, the TAL1 instruction may be used to transfer the content of register L1 to the register A.

Table 3.3 Bit Configuration of LCD Control Register L1

LCD Control Register L1		When reset:		t: 00002	When powered dow	n: State retained	R/W TAL1/TL1A
L13	LCD power supply internal dividing resistor		0 2r × 3, 2r × 2				
LIS	select bit Note 2	1	1 r×3,r×2				
L12	LCD control bit	0 Stop (turned off)					
LIZ	ECD CONTROL DIE	1	Start				
		L11	L10		Duty cycle	В	ias
L11		0	0	Use proh	ibited	Use prohibited	
	LCD duty cycle/bias select bit	0	1	1/2		1/2	
L1 0		1	0	1/3		1/3	
L10		1	1	1/4		1/3	

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: When 1/3 bias is selected, a "x3" resistor is used; when 1/2 bias is selected, a "x2" resistor is used.

3.4 LCD Control Register L2

Table 3.4 shows the bit configuration of LCD Control Register L2.

For write to the register L2, first set a value in the register A and then use the TL2A instruction.

Table 3.4 Bit Configuration of LCD Control Register L2

	LCD Control Register L2		hen reset: 00002	When powered down: State retained	W TL2A		
1 22	L23 SEG ₀ /V _{LC3} pin function select bit Note 2	0	SEG ₀				
LZ3		1	1 VLC3				
1.22	L22 SEG ₁ /V _{LC2} pin function select bit Note 3	0	SEG1	SEG ₁			
LZZ		1	VLC2				
L21	SEG2/VLC1 pin function select bit Note 3	0	SEG ₂				
LZI	SEG2/VLC1 pin function select bit	1	VLC1				
L20	LCD power supply internal dividing resistor	0	Enables internal of	dividing resistor			
L 20	control bit	1	Disables internal	dividing resistor			

Note 1: The letter W denotes "writable."

Note 2: When SEG0 pin is selected, VLC3 is connected to VDD internally in the chip.

Note 3: When SEG1 and SEG2 pins are selected, always be sure to use the internal dividing resistor.

3.5 LCD Control Register L3

Table 3.5 shows the bit configuration of the LCD Control Register L3.

For write to the register L3, first set a value in the register A and then use the TL3A instruction.

Table 3.5 Bit Configuration of LCD Control Register L3

LCD Control Register L3		When reset: 11112		When powered down: State retained	W TL3A			
132	L33 P23/SEG ₂₇ pin function select bit	0	SEG27	SEG27				
LJ3		1	P23					
L32	P22/SEG26 pin function select bit	0	SEG ₂₆	SEG26				
L32	P22/3EG26 pin function select bit	1	P22					
L31	P21/SEG25 pin function select bit	0	SEG ₂₅					
LSI	F21/3LG25 piii lunction select bit	1	P21					
L30	P20/SEG24 pin function select bit	0	SEG ₂₄					
L30	F20/3EG24 piri function select bit	1	P20					

Note 1: The letter W denotes "writable."

3.6 LCD Control Register C1

Table 3.6 shows the bit configuration of the LCD Control Register C1.

For write to the register C1, first set a value in the register A and then use the TC1A instruction.

Table 3.6 Bit Configuration of LCD Control Register C1

LCD Control Register C1		When reset: 11112		When powered down: State retained	W TC1A		
C13 P03/SEG19 pin function select bit	0	SEG ₁₉	SEG ₁₉				
013	C13 F03/3EG19 pin function select bit	1	1 P03				
C12	DOS/SEC to hin function color hit	0	SEG ₁₈				
C12	P02/SEG ₁₈ pin function select bit	1	P02				
C11	P01/SEG17 pin function select bit	0	SEG17				
CII	POI/SEG17 piri function select bit	1	P01				
C10	DOS/SEC 40 pin function color hit	0	SEG ₁₆				
C10	P00/SEG ₁₆ pin function select bit	1	P00				

Note 1: The letter W denotes "writable."

3.7 LCD Control Register C2

Table 3.7 shows the bit configuration of the LCD Control Register C2.

For write to the register C2, first set a value in the register A and then use the TC2A instruction.

Table 3.7 Bit Configuration of LCD Control Register C2

LCD Control Register C2		When reset: 11112		When powered down: State retained	W TC2A		
C23 P13/SEG23 pin function select bit	0	SEG23	SEG ₂₃				
023	OZS 1 13/OZ OZS pili function solect bit	1	1 P13				
C22	P12/SEG22 pin function select bit	0	SEG22				
022	12/3EG22 pin function select bit	1	P12				
C21	P14/SEC34 pin function coloct bit	0	SEG21				
021	P11/SEG21 pin function select bit	1	P11				
C20	P10/SEG20 pin function select bit	0	SEG ₂₀				
020	F 10/3EG20 piri function select bit	1	P10				

Note 1: The letter W denotes "writable."

3.8 LCD Control Register C3

Table 3.8 shows the bit configuration of the LCD Control Register C3.

For write to the register C3, first set a value in the register A and then use the TC3A instruction.

Table 3.8 Bit Configuration of LCD Control Register C3

LCD Control Register C3		When reset: 11112		When powered down: State retained	W TC3A				
Can	C33 P33/SEG31 pin function select bit	0	SEG31	SEG31					
CS3	P33/3EG31 pin function select bit	1							
C32	P32/SEG30 pin function select bit	0	SEG30						
U32	32/3EG30 pin function select bit	1	P32						
C31	P24/SEG20 pin function colort hit	0	SEG29						
031	P31/SEG29 pin function select bit	1	P31						
C30	P2a/SECas pin function colors hit	0	SEG ₂₈						
C30	P30/SEG28 pin function select bit	1	P30						

Note 1: The letter W denotes "writable."

3.9 Timer Control Register W3

Table 3.9 shows the bit configuration of Timer Control Register W3.

For write to the register W3, first set a value in the register A and then use the TW3A instruction.

Furthermore, the TAW3 instruction may be used to transfer the content of register W3 to the register A.

Table 3.9 Bit Configuration of Timer Control Register W3

Timer Control Register W3 Wh		Whe	When reset: 00002		When powered down: State retained	R/W TAW3/TW3A		
\/\/3°	W33 Timer 3 count source select bit	0	Xcin i	Хсім input				
VV.33		1	Presc	Prescaler output (ORCLK) divided by 2				
W32	Timer 3 control bit	0	Stop (Stop (initial state)				
VV32	Timer 3 control bit	1	Start	Start				
		W31			Count value			
W31		0	0	Generate	es underflow every 8,192 counts			
	Timer 3 count value select bit	0	1	1 Generates underflow every 16,384 counts				
W30		1	0	Generate	es underflow every 32,768 counts			
VV30		1	1	1 Generates underflow every 65,536 counts				

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

3.10 Timer Control Register W4

Table 3.10 shows the bit configuration of Timer Control Register W4.

For write to the register W4, first set a value in the register A and then use the TW4A instruction.

Furthermore, the TAW4 instruction may be used to transfer the content of register W4 to the register A.

Table 3.10 Bit Configuration of Timer Control Register W4

	Timer Control Register W4	W	hen reset: 00002	When powered down: State retained	R/W TAW4/TW4A			
W43	W43 Timer LC control bit		Stop (state retained	i)				
VV-13		1	Start					
WAs	W42 Timer LC count source select bit	0	Bit 4 of timer 3 (T34	Bit 4 of timer 3 (T34)				
VV-12		1	System clock (STCK)					
W41	CNTR pin output auto control circuit	0	Deselects CNTR pi	n output auto control circuit				
VV-11	select bit	1	1 Selects CNTR pin output auto control circuit					
W40	CNTR pin input count edge select bit	0	Falling edge					
***	Civity piir input count eage select bit	1	Rising edge					

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

Note 2: : Unused bits during power-down function setting.

3.11 Key-on Wakeup Control Register K2

Table 3.11 shows the bit configuration of Key-on Wakeup Control Register K2.

For write to the register K2, first set a value in the register A and then use the TK2A instruction.

Furthermore, the TAK2 instruction may be used to transfer the content of register K2 to the register A.

Table 3.11 Bit Configuration of Key-on Wakeup Control Register K2

	Key-on Wakeup Control Register K2		hen reset: 00002	When powered down: State retained	R/W TAK2/TK2A		
K2 2	Port P3 ₂ and P3 ₃ Note ³ key-on wakeup		Disables key-on wakeup				
1122	control bit	1	Enables key-on wakeup				
K2a	K22 Port P3 ₀ and P3 ₁ Note 2 key-on wakeup control bit	0	Disables key-on wakeup				
NZ2		1	Enables key-on wakeup				
K21	INT pin return condition select bit	0	Level returned				
INZ I	invi pin return condition select bit	1	Edge returned				
K20	INT pin key-on wakeup control hit	0	Disables key-on v	vakeup			
1120	IT pin key-on wakeup control bit	1	Enables key-on w	akeup			

Note 1: The letter R denotes "readable," and the letter W denotes "writable."

3.12 Port Output Mode Control Register FR2

Table 3.12 shows the bit configuration of Port Output Mode Control Register FR2.

For write to the register FR2, first set a value in the register A and then use the TFR2A instruction.

Table 3.12 Bit Configuration of Port Output Mode Control Register FR2

Р	Port Output Mode Control Register FR2		hen reset: 00002	When powered down: State retained	W TFR2A	
FR23	FR23 Port P32 and P33 output mode select bit	0	0 N-channel open-drain output			
11(23		1	1 CMOS output			
ED22	FR22 Port P30 and P31 output mode select bit	0	N-channel open-drain output			
11122		1	CMOS output			
FR21	Port D ₅ output mode select bit	0	0 N-channel open-drain output			
111121	Tort Do output mode select bit	1	CMOS output			
ED20	Port D4 output mode select bit	0	N-channel open-o	Irain output		
11(20	Fort D4 output mode select bit	1	CMOS output			

Note 1: The letter W denotes "writable."

Note 2: : Unused bits during power-down function setting.

Note 2: To disable the key-on wakeup function of ports P30 and P31 (K22 = 0), set the values of registers K30 and K31 to 0.

Note 3: To disable the key-on wakeup function of ports P32 and P33 (K23 = 0), set the values of registers K32 and K33 to 0.

Note 4: : Unused bits during power-down function setting.

3.13 Clock Control Register RG

Table 3.13 shows the bit configuration of the Clock Control Register RG. For write to the register RG, first set a value in the register A and then use the TRGA instruction.

Table 3.13 Bit Configuration of Clock Control Register RG

	Clock Control Register RG	W	/hen reset: 0002	When powered down: State retained TRGA				
RG ₂	Sub-clock (f(Xcin)) control bit Note 2		Enables sub-clock (f(Xcin)) to oscillate, with ports D6 and D7 unselected					
INGZ			Stops sub-clock (f(Xcin)) from oscillating, with ports D6 and D7 selected					
RG ₁	Main clock (f(XIN)) control bit Note 2		Enables main clock (f(XIN)) to oscillate					
ING	Main Clock (I(XIN)) Control bit	1	Stops main clock (f(XIN)) from oscillating					
RG ₀	On-chip oscillator (f(RING)) control bit Note 2		Enables on-chip oscillator (f(RING)) to oscillate					
1000			Stops on-chip osc	sillator (f(RING)) from oscillating				

Note 1: The letter W denotes "writable."

Note 2: Any oscillator circuit that is selected for the system clock cannot be turned off.

4. Application Example for the Power-Down Function

4.1 Time-of-Day Clock Mode

A combined use of a 32.768 kHz crystal resonator for the sub-clock and the POF instruction makes it possible to produce a low power, yet highly accurate time-of-day clock.

Point : Use of the POF instruction helps to reduce the power consumption in the chip. Specification : An LCD and a 32.768 kHz crystal resonator are used to show the time of day.

Figure 4.1 shows an example of an LCD display panel. Figure 4.2 shows an example of RAM arrangement for LCD display. Figure 4.3 shows an example of a segment arrangement for an LCD display panel.

Figure 4.4 shows a state transition diagram. Figure 4.5 shows an example of how to set the registers for operation in time-of-day clock mode (example 1). Figure 4.6 shows an example of how to set the registers for operation in time-of-day clock mode (example 2).

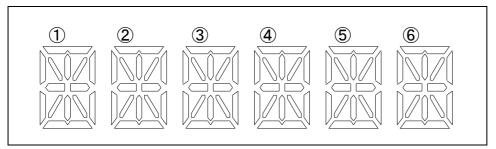


Figure 4.1 Example of an LCD Display Panel

Register Z	Z 1															
Register X	0			1				2				3				
Register Y bit	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG ₀	SEG ₀	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8	SEG ₁₆	SEG ₁₆	SEG ₁₆	SEG ₁₆	SEG24	SEG24	SEG24	SEG24
9	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG9	SEG9	SEG9	SEG9	SEG17	SEG ₁₇	SEG17	SEG17	SEG25	SEG25	SEG25	SEG25
10	SEG ₂	SEG ₂	SEG ₂	SEG ₂	SEG ₁₀	SEG ₁₀	SEG ₁₀	SEG ₁₀	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEG26
11	SEG3	SEG3	SEG3	SEG3	SEG ₁₁	SEG ₁₁	SEG ₁₁	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEG27
12	SEG4	SEG4	SEG4	SEG4	SEG ₁₂	SEG ₁₂	SEG ₁₂	SEG ₁₂	SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEG28
13	SEG ₅	SEG ₅	SEG ₅	SEG ₅	SEG13	SEG13	SEG13	SEG13	SEG21	SEG21	SEG21	SEG21	SEG29	SEG29	SEG29	SEG29
14	SEG ₆	SEG ₆	SEG ₆	SEG ₆	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22	SEG30	SEG30	SEG30	SEG30
15	SEG7	SEG7	SEG7	SEG7	SEG ₁₅	SEG ₁₅	SEG ₁₅	SEG ₁₅	SEG23	SEG23	SEG23	SEG23	SEG31	SEG31	SEG31	SEG31
COM	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀

Figure 4.2 Example of RAM Arrangement for LCD Display

Register Z	1												
Register X		()		1				2				
Register Y bit	3	2	1	0	3	2	1	0	3	2	1	0	
8	①-d	①-c	①-b	①-a	③-d	③-c	3-b	③-a	⑤-d	⑤-c	⑤-b	⑤-a	
9	①-h	①-g	①-f	①-е	③-h	③-g	③-f	3-е	⑤-h	⑤-g	⑤-f	⑤ -е	
10	①-k	①-j		①-i	③-k	3 -j		3 -i	⑤-k	⑤-j		⑤-i	
11	①-n	①-I		①-m	③-n	3 -I		③-m	⑤-n	⑤ -I		⑤-m	
12	②-d	②-c	②-b	②-a	4 -d	4 -c	4 -b	4 -a	6 -d	6 -c	6 -b		
13	②-h	②-g	②-f	②-е	4 -h	4 -g	4)-f	4 -e	6 -h	6 -g	6 -f	6 -е	
14	②-k	②-j		②-i	4 -k	4 -j		4 -i	6 -k	6 -j		6 -i	
15	②-n	2 -I		②-m	4 -n	4 -I		4 -m	⑥ -n	6 -I		6 -m	
СОМ	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	

Figure 4.3 Example of a Segment Arrangement for an LCD Display Panel

4.2 RAM Backup Mode

Use of the POF2 instruction permits clock oscillations to be stopped while retaining the RAM and reset circuit functions and states intact, making it possible to reduce the power consumption in the chip without a possibility of losing RAM data.

Point : Use of the POF2 instruction helps to reduce the power consumption in the chip.

Specification: The microcomputer is waked up with the press of a switch (key-on wakeup), and the number of

wakeup times is displayed up to 9 times on an LCD. When 9 times is exceeded, the count recycles to 0 and starts over. This application uses the same LCD panel that is used in Section 4.1, "Time-of-

Day Clock Mode."

Figure 4.7 shows an example of how to set the registers for RAM backup mode (example 1). Figure 4.8 shows an example of how to set the registers for RAM backup mode (example 2). Figure 4.9 shows an example of how to set the registers for RAM backup mode (example 3).

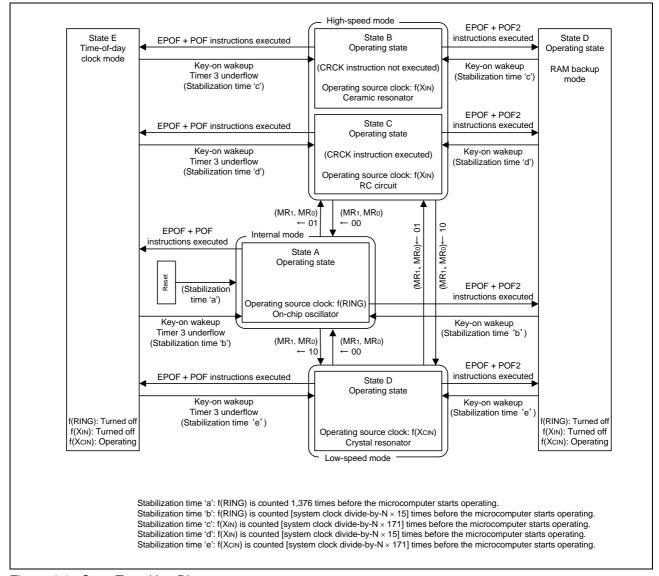


Figure 4.4 State Transition Diagram

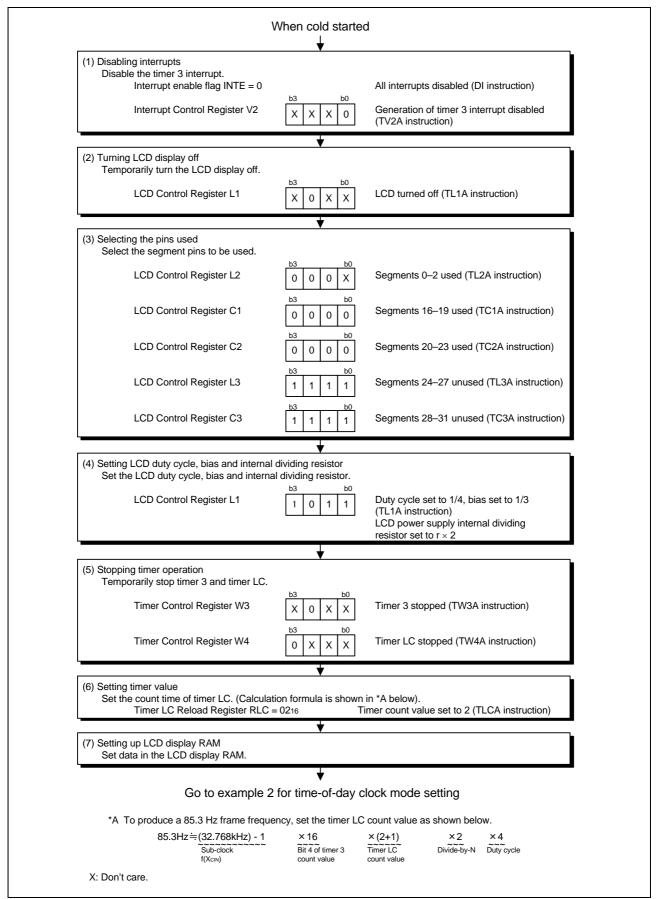


Figure 4.5 Example 1 for Time-of-Day Clock Mode Setting

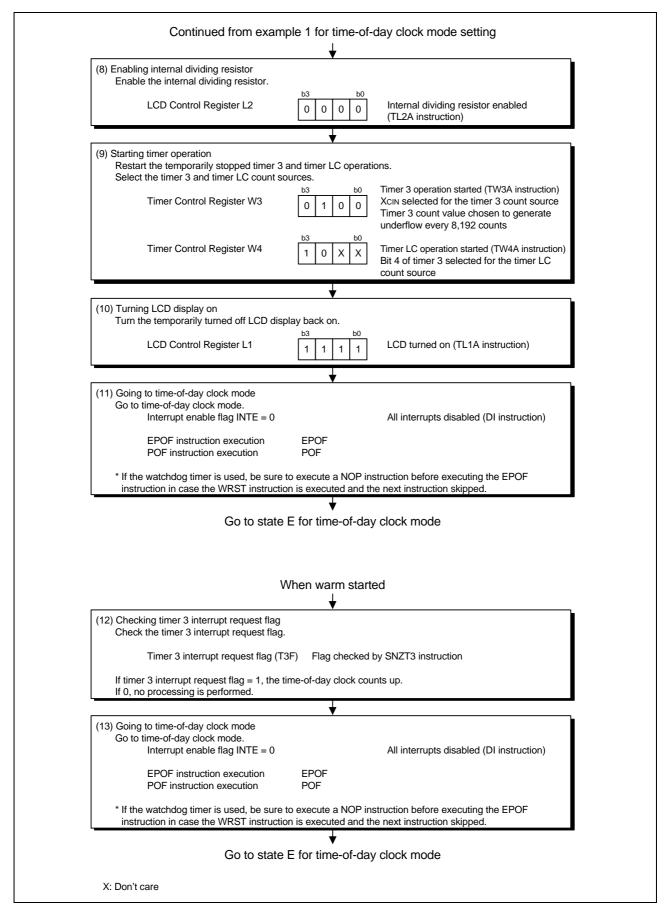


Figure 4.6 Example 2 for Time-of-Day Clock Mode Setting

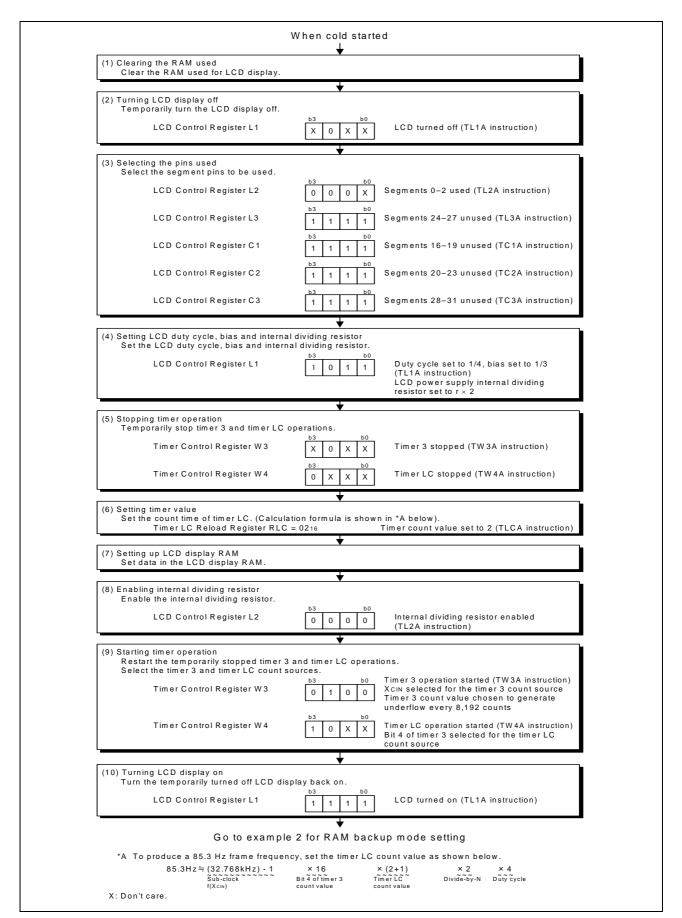


Figure 4.7 Example 1 for RAM Backup Mode Setting

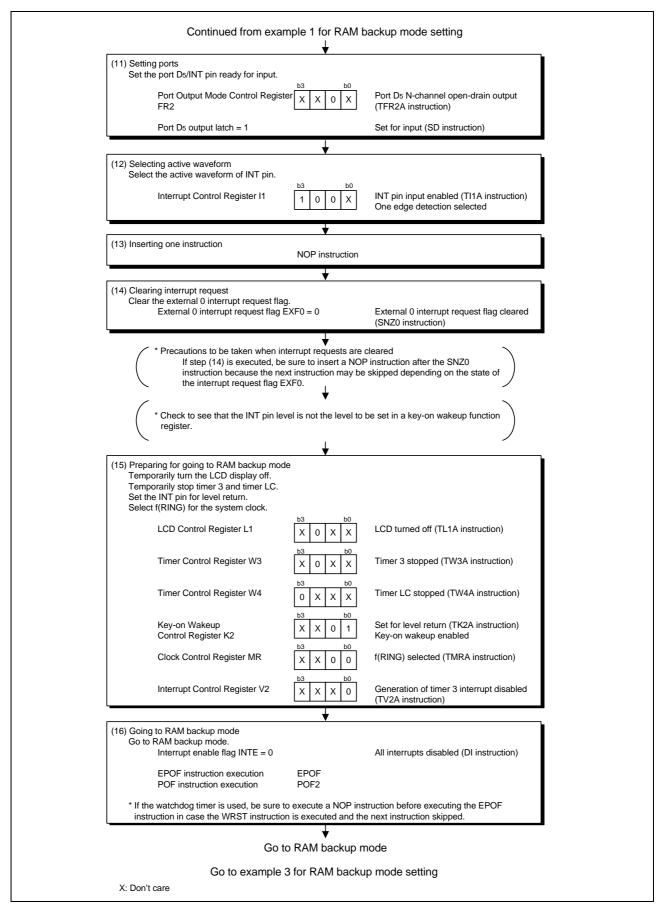


Figure 4.8 Example 2 for RAM Backup Mode Setting

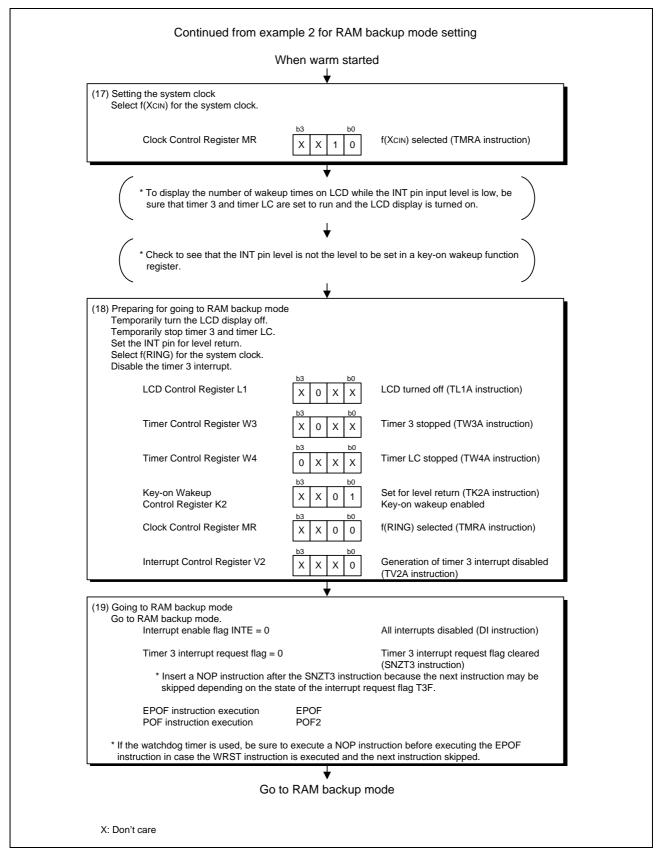


Figure 4.9 Example 3 for RAM Backup Mode Setting

5. Sample Programs

Sample programs are available from the Renesas Technology Web site. To download one, click the screen menu "Application Note" on the left side of 4559 group Web page.

6. Reference Documents

Data sheet 4559 Group Data sheet

The latest version is available from the Renesas Technology Web site.

7. Renesas Web Site and Where to Contact

Renesas Technology Web site: http://japan.renesas.com/

Where to contact:

http://japan.renesas.com/inquiry csc@renesas.com

Revision history	4559 Group Power-Down Function Application Note

Rev.	Date	Description								
Nev.		Page	Points							
1.00	2006.11.01	_	First edition issued							

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.