
©2000 Integrated Device Technology, Inc.

 6.011
2684/2

MARCH 2000

C

D

G

H

G = C + e • D

H = C - e • DjΩ
e jΩ

jΩ

2684 drw 01

APPLICATION
NOTE
AN-42

USING THE IDT7052/7054
FOURPORT™ SRAMs
IN DSP AND MATRIX
PROCESSING APPLICATIONS

By Tao Lin, Julie Lin, and Yupling Chung

Introduction
Most digital signal processing (DSP) algorithms have inherent par-

allelism and may be pipelined. Usually, these algorithms are computa-
tion intensive. In real-time applications, multiprocessor or parallel dis-
tributed processor systems are commonly used to implement these
DSP algorithms. In these types of systems it is necessary for different
processors to randomly and independently access different locations at
the same time in the same memory space. The IDT7052 (2Kx8) and
IDT7054 (4Kx8) FourPort RAMs are powerful devices to efficiently
and compactly implement the memory space in these applications. More-
over, the IDT7052 and IDT7054 can increase the speed of these
types of systems since the FourPort SRAMs are as fast as conven-
tional SRAMs and eliminate the complex external logic which intro-
duces extra delay in these systems. In this application note, we will
demonstrate some examples of using the IDT7052 to implement a high
performance FFT processor and a matrix multiplication engine.

Using the IDT7052 in an FFT
Processor

The IDT7052 FourPort SRAM can dramatically simplify the design
of a high-speed pipelined FFT processor. The basic operation of any
FFT algorithm is the butterfly computation:

G = C + ejW • D
(1-1)

H = C - ejW • D

where C, D, G, and H are complex numbers. Figure 1 shows the
signal flow graph of the butterfly with one complex multiplication and
two complex additions. Given N = 2L input data samples x(0), x(1).....,
x(N-1), the FFT algorithm performs the Discrete Fourier Transform on
the input data to obtain the output data X(0), X(1)....., X(N-1) in L
stages of computation. Each stage consists of N/2 butterfly operations.
There are two basic versions of the FFT algorithm: decimation-in-time
(DIT) and decimation-in-frequency (DIF). Each version of the algo-
rithm can be implemented using two schemes: not-in-place computation
and in-place computation. A detailed discussion of the FFT algorithm
and its implementations is given in Reference (1).

Figure 2 shows the signal flow graph of the not-in-place computa-
tion of the DIT FFT algorithm for N = 8(L=3). A close look at Figure 2
will reveal the major strength of the not-in-place scheme. The signal

Figure 1. The signal flow graph of the butterfly

Figure 2. Signal Flow Graph of Not-In-Place Decimation-In-Time FFT for N=8

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)
Stage 1 Stage 2 Stage 3

W0

W1

W2 W3

W0

W0

W2 W2

W0

W0

W0

W0

W =k -j2πk/N
2684 drw 02

 6.01

Application Note AN-42Using The IDT7052/7054 FourPort™ SRAMs
in DSP and Matrix Processing Applications

2

Figure 3. I/O Buffers Implemented by Two Sets of Dual-Port SRAM

Data
Buffer 2

AddrAddr

Data

Address
Generator
IDT7381

Address
Generator
IDT7381

Address
Generator
IDT7381

C
D

G H

C
D

GH

G H

e jΩ

C D

Butterfly Unit
IDT7381
IDT7216

Address
Generator
IDT7381

Data
Buffer 1

AddrAddr

Data

MUX

Dual-Port
SRAM

IDT7132/42

MUX

2684 drw 03

Dual-Port
SRAM

IDT7132/42

paths from the initial inputs to the first intermediary step are repeated
between the first and second intermediary steps, and again between
the second and third. This means that three stages have identical data
access sequences. Therefore, the address generator can be very
easily implemented using the IDT7381/83, as compared with the in-
place scheme where more complex logic is required to generate the
addresses. On the other hand, from Figure 2 it is obvious that in each
stage of computation the output data is not in the same order as the
input data. For example, in the first stage the first and second inputs
x(0) and x(1) will go to the first and fifth locations after the butterfly
operation. Therefore, two separate buffers are needed to temporarily
store the input and output data in each stage computation.

A conventional implementation of the input and output buffers uses
two sets of dual-port SRAMs as illustrated in Figure 3. Suppose the
input data is already loaded into Buffer 1. Then, in the first stage of
computation the butterfly unit takes data from Buffer 1 and then loads
the results into Buffer 2. In the second stage of computation the butterfly
unit takes data from Buffer 2 and then loads the results into Buffer 1,
and so on. To switch between these two buffers, external logic such as
multiplexers and tri-state buffers are necessary as shown in Figure 3.
These devices not only occupy board space but also introduce extra
delay in the data path thus, decreasing the system performance. It
must be noted that C, D, G, H, and ejW in Figure 3 are all complex
numbers. Therefore, physically two groups of memories and buses

 6.01

Application Note AN-42Using The IDT7052/7054 FourPort™ SRAMs
in DSP and Matrix Processing Applications

3

Figure 4. I/O Buffer Implemented By The IDT7052 FourPort SRAM

Address
Generator
IDT7381

Address
Generator
IDT7381

Address
Generator
IDT7381

Address
Generator
IDT7381

Data

AddrAddr

Data

C

G

H
C D

G

H

e jΩ

D

Butterfly Unit

IDT7381
IDT7216

Data

AddrAddr

Data

The IDT7052 FourPort SRAM

2684 drw 04

are needed to store and transmit the real part and the imaginary part
separately.

The IDT7052 FourPort SRAM provides a much simpler and more
efficient way to implement the input and output buffers as shown in
Figure 4. In this implementation, the input buffer and output buffer are
merged into a single memory space. Since each of the four ports can
access the whole memory space, two of them can be dedicated to
sending the data C and D to the butterfly unit and the
other two can be dedicated to receiving the results G and H from the
butterfly unit. In this way, all external logic can be eliminated and the
system performance is greatly improved.

Using the IDT7052 in a Matrix
Multiplication Engine for
Graphics and DSP

Matrix multiplication is one of the most often used operations in DSP
algorithms. In addition, matrix multiplication is the basic operation at the
heart of computer graphics. For example, changing the position, orien-
tation, and size of objects in a drawing requires a geoetrical transfor-
mation M which is generally represented by a series of matrix multipli-
cations.

M = M1 • M2 • M3•......•Mn (2-1)

 6.01

Application Note AN-42Using The IDT7052/7054 FourPort™ SRAMs
in DSP and Matrix Processing Applications

4

Figure 5. Implementation of Matrix Multiplication Engine Using Standard SRAMs

Pipeline RegPipeline Reg Pipeline Reg

Pipeline RegPipeline Reg Pipeline Reg

Pipeline Reg Pipeline Reg

Multiplier/Accumulator
(MAC)

System
Bus

Addr
IDT6116 SRAM

Matrix A
I/O

Addr
IDT6116 SRAM

Matrix B
I/O

Addr
IDT6116 SRAM

Matrix C
I/O

Address
Generator

1

Address
Generator

2

Address
Generator

3

Main
Processor

Main
Memory

and
Peripherals

Data
Data
Data

CLK

IDT7210

Pipeline Reg

Initial Address and Controls

IDT
7382/81

2684 drw 05

where M1 is a scaling, translation, or rotation matrix.
In high performance systems, a matrix multiplication engine (MME)

is necessary to facilitate the operation. A typical pipelined MME has the
architecture shown in Figure 5 [2]. Since the MME operates in a
pipelined manner, three standard SRAMs (IDT6116 2Kx8 SRAMs)
are needed to store the multiplicand matrix A, multiplier matrix B, and
the product matrix C = A•B. The matrices A and B are preloaded into
the two SRAMs from the main memory or a peripheral. The MME then
performs the matrix multiplica-tion and loads the product matrix C into
the third SRAM. Finally, the multiplication result is sent back to the main

memory or the peripheral. This implementation has two drawbacks:
1. Three separate sets of SRAMs are needed. This results in a high

chip count and a complicated interface to the system bus.
2. The arithmetic unit (IDT7210) of the MME is sitting idle when the

data is transferred between the memory buffers and the system
main memory. This dramatically decreases the system performance
especially when the MME executes a series of matrix multiplications
as given in (2-1).
Now, with the advent of the IDT7052, system designers can con-

siderably improve the performance of the MME by using the FourPort

 6.01

Application Note AN-42Using The IDT7052/7054 FourPort™ SRAMs
in DSP and Matrix Processing Applications

5

Figure 6. New Implementation of Matrix Multiplication Engine Using The IDT7052 FourPort SRAM

Figure 7. Using FourPort SRAMs, the MME Can Perform Arithmetic Operation and Data Transfer in Parallel

Pipeline RegPipeline Reg Pipeline Reg

Pipeline RegPipeline Reg Pipeline Reg

Pipeline Reg Pipeline Reg

Multiplier/Accumulator
(MAC)

System
Bus

Address
Generator

1

Address
Generator

2

Address
Generator

3

Main
Processor

Main
Memory

and
Peripherals

CLK

IDT7210

Initial Address and Controls

Pipeline Reg

Address
Generator

3

Pipeline Reg

Pipeline Reg

A-P1 A-P2 A-P3 A-P4

I/O-P1 I/O-P2 I/O-P3 I/O-P4

FourPort™ SRAM IDT7052

IDT
7383/81

Data

2684 drw 06

Unused
Unused

M1

M2

M3

M 4

M1 M 1

M 2

M

M3

2684 drw 07

single-chip SRAM instead of the standard SRAM. As shown in Figure
6, the new implementation reduces the chip count and simplifies the
interface between the MME and the other part of the system. More-
over, when executing a series of matrix multiplications as given in (2-
1), the MME is able to perform the arithmetic operation and the data
transfer in parallel, as illustrated in Figure 7. First, the matrices M1 and
M2 are loaded into the FourPort SRAM. Then, while the arithmetic unit
performs the operation M1•M2, a new matrix M3 can be loaded into an
unused area of the FourPort SRAM through the 4-th I/O port. Then,
the MME will perform the multiplication M•M3 and the result will be
stored in the location originally occupied by M1. At the same time a

new matrix M4 can be loaded into the FourPort SRAM to replace M2

and so on. The operation sequence of the two implementations is
shown in Figure 8, where tL is the time to load a matrix into the
IDT7052, tE is the time for the arithmetic unit to perform a matrix multipli-
cation, and tM is the maximum of tL and tE. It can be readily seen from
Figure 8, where the total time to execute the operation given in (2-1) is
tL+(n-1)•(tL+tE) when conventional SRAMs are used. On the other
hand, the total time is 2tL+(n-1)•tM when the IDT7052 FourPort SRAM
is used. If we make tL and tE almost equal to each other then we can
almost double the system performance.

 6.01

Application Note AN-42Using The IDT7052/7054 FourPort™ SRAMs
in DSP and Matrix Processing Applications

6

Load
M1

Load
M2

M1 • M2
→M

Load
M3

M • M3
→M

Load
Mn

M • Mn
→M

M • Mn
→M

M • M3
→M

M1 • M2
→M

tL tL tE tL tE tL

tL tL tM tM tM

tE

Total = t L+(n-1)(tL+tE)

Total = 2t L+(n-1)tM

Load
M1

Load
M2

Load
M3

Load
Mn

Using
IDT7052
FourPort
SRAM

Using
Standard
SRAM

2684 drw 08

Figure 8. MME Operation Sequence of the Two Implementations

Conclusions
In this application note we have demonstrated some fundamental

architectures using the IDT7052 to implement DSP and matrix algo-
rithms. Since DSP algorithms cover a wide range of applications, there
are many more architectures in which the IDT7052 FourPort SRAM
can be used. The 2Kx8 FourPort SRAM and other members in the
FourPort SRAM family give system designers greater opportunity and
flexibility to improve system performance. The hardware designs that
result tend to be far less specialized and lend themselves to new tasks
with fewer hardware changes.

References
(1) Julie Lin and Danh Le Ngoc, “High-performance fixed-point fast

fourier transform processor,” IDT application note AN-23.
(2) Yuping Chung, “Address generator in matrix unit operation

engine,” IDT application note AN-35.

(a) Using Standard SRAMs, the arithmetic operation and the data transfer are executed alternately.

(b) Using FourPort SRAMS, the arithmetic operation and the data transfer are executed in parallel.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

