
 2002 Integrated Device Technology, Inc.

Notes

RC32438 Application
Note AN-368

Migrating RC32332/RC32334
Software to the RC32438 Device

By Harpinder Singh and Nebojsa Bjegovic
Introduction
Operating system kernels, board support packages, and other processor-aware system software

created for systems based on RC3233x devices can be modified to execute in systems based on the
RC32438, permitting significant code reuse. This application note offers specific guidelines to software
developers undertaking such a porting effort. It is assumed that the individual undertaking such an effort is
familiar with the architecture of both parts, since this note is intended to supplement existing technical docu-
mentation. The intent of this note is to offer the developer an opportunity to estimate the extent of the
porting effort prior to starting. It may also serve as a checklist during the actual porting process.

Porting from RC3233x Devices to RC32438
The 79RC3233x components consist of the RISCore32300 CPU core and a number of peripheral inter-

faces, including an SDRAM memory controller, local memory controller, PCI interface, direct memory
access (DMA) controller and a number of other generic peripherals including serial port(s), an interrupt
controller, and timers. The RC32438 also incorporates a similar set of peripheral modules, some of which
incorporate enhanced capabilities when compared to their counterparts in the RC3233x devices, as well as
new modules not present in either of the RC3233x components. In addition, the CPU core used in the
RC32438 integrated processor is the 4Kc core, based on the MIPS32 instruction set architecture (ISA),
supplied by MIPS Technologies.

The table below summarizes the key feature differences between the RC32332, RC32334 and
RC32438 integrated processors.

Feature
Integrated Processor

RC32438 RC32334 RC32332

Maximum CPU Frequency (MHz) 266 150 133

Theoretical Main Memory Bandwidth (MBps) 1064 300 266

On-chip Cache Size [I/D] (kB) 16/16 8/2 8/2

SDRAM Memory Controller No Yes (x32) Yes (x32)

DDR Memory Controller Yes (x32 / x16) No No

Dedicated Pins for Memory I/O Controller Yes No No

PCI Bus Interface Yes Yes Yes

Number of Bus Masters Supported by Arbiter 6 3 2

Sustained Bandwidth Across PCI (MBps) 160 40 40

Number of Ethernet Ports 2 0 0

I2C Hardware Module Yes No No

Table 1 Feature Comparison Between RC32438, RC32334, and RC32332 (Page 1 of 2)
1 of 8 June 4, 2002
DSC 6150

IDT RC32438 Application Note AN-368

Notes
A major part of the software migration effort is expected to be related to "initialization" code, both for the
CPU core and the peripheral interfaces. For the peripheral interfaces that were not present in the RC32332
or RC32334 devices, IDT will provide device drivers. IDT offers drivers for both VxWorks® and Linux oper-
ating systems and is also able to provide software written for its low-level monitor program (IDT SIM). In
addition, IDT's products are supported by a number of other real-time operating systems (RTOS). For a
complete list of supported operating environments, please contact your local IDT sales representative or
visit IDT's web site at www.idt.com.

 Guidelines to help porting software related to both the CPU core as well as the peripheral interfaces
are covered within this application note.

CPU Core Initialization

Instruction Set Differences between RISCore32300 CPU Core and MIPS
4Kc

The primary differences between the two are in the following instructions:
– RISCore32300 CPU Core does not include the SSNOP instruction
– Slight differences in the capabilities of the prefetch instruction

The SSNOP instruction on RISCore32300 CPU Core is treated as a NOP because it is a single-issue
processor. For Prefetch, the MIPS32 specification has a hint field for load, store, load_streamed,
store_streamed, load_retained, store_retained writeback_invalidate, and other reserved hint fields. The
RISCore32300 CPU core only implements a hint field for load, store, and ignore_hit.

Effectively therefore, the ISA in the 4Kc is a slightly larger superset from the ISA implemented in the
RISCore32300, so there should be no issues for legacy code.

Privileged Resource Architecture
There are several differences between the CP0 registers of the RC3233x and RC32438 devices.

However, the most frequently used bit fields in registers are located at the same locations within the same
registers in both parts. If existing code follows the read/modify/write method for changing the contents of
CP0 registers, and if the modifications to the bit settings are done using masks defined as macros in a
single header file, code porting will be relatively straightforward since it will be primarily limited to the header
file. Debug registers between the two parts are significantly different; however, this is only expected to
impact a very small number of users including those developing EJTAG probes. Cache attributes are stored
in a new register called CONFIG1.

Refer to Table 2 at the end of this application note for more specific information regarding the differences
between register sets of RC3233x and RC32438.

Caches
Size: the RC32438 device incorporates 16kB each of data cache and instruction cache, as compared

with 2kB data cache and 8kB instruction cache in the RC3233x devices. Any code written with hard-coded
values of cache sizes will need to be modified. Any code written to employ intelligent algorithms to deter-
mine cache sizes may also be replaced completely with simple reading of the new CONFIG1 register in the
RC32438.

SPI Interface Yes Yes Yes

Number of Serial Ports 2 2 1

Package Description 416BGA 256BGA 208QFP

Feature
Integrated Processor

RC32438 RC32334 RC32332

Table 1 Feature Comparison Between RC32438, RC32334, and RC32332 (Page 2 of 2)
2 of 8 June 4, 2002

IDT RC32438 Application Note AN-368

Notes
 Sets: The data cache in the RC32438 can be initialized in a single pass, as there is no address gap
between associative sets. This is different from the RISCore32300 CPU core where a gap exists. Code for
flushing or invalidating cache will need to address this difference as well. The caches in the RC32438 are
4-way-set-associative compared with the RC3233x caches, which are 2-way-set-associative. Therefore,
the code will typically experience less cache thrashing in the RC32438. Any code specifically organized to
minimize cache thrashing in the RC3233x parts will probably need to be reviewed to make it suitable for the
caches in the RC32438.

Modes: For cache modes, the RC32438 only supports the "Write Through No Write Allocate" mode.
However, the RC3233x devices support both "Write Through Write Allocate" and "Write Back" modes.
Considering the fact that the highly integrated device interfaces within the RC32438 use DMA to transfer
data to and from the CPU main memory in uncached space, the lack of a "Write Back" mode in the
79RC32438 is not seen as a huge handicap. However, code written with this mode in mind will need to be
modified, which will result in simplified code. This is illustrated in the following example.

In the case of a device driver design that uses cached buffers for better performance, data handling will
be different in the RC32438 compared to the RC3233x in the following areas:

Transmit
RC32438 device implementation: The device driver or the protocol stack prepares an outgoing packet

using cached memory buffers and sets up a DMA channel to transmit the packet. Cache flush/invalidate
operations are not required since the cache is "Write Through".

RC3233x devices implementation: The device driver or the protocol stack prepares the outgoing packet
using cached buffers; but prior to setting up the DMA channel, the device driver is required to flush the
cache to ascertain coherency with the memory. After the flush, the driver enables the DMA channel for
transfer of the data.

Receive
For both the RC3233x and RC32438 devices, cache needs to be invalidated before processing the

received packet in cached buffer mode, since the DMA engine always delivers the packet into uncached
memory.

As seen above, the software design for the transmit path in the device drivers for the RC32438 inte-
grated processor tends to be more efficient and simpler in the case of cached memory buffers.

Memory Management (TLB)
The 4Kc CPU core has a hidden bit, which flags a TLB entry for comparison only after that entry has

been written to by software. On power-up or reset, none of the TLB entries will participate in memory
mapping. Therefore, it is not necessary to initialize the TLB entries to a known state after reset. However, in
the RC3233x devices, such an initialization is required.

Filling two entries with the same data generates a new Machine Check Exception in the RC32438,
which prevents TLB shutdown. Change in cache policies impact the possible values for "cacheability" field
in TLB entries in the RC32438.
3 of 8 June 4, 2002

IDT RC32438 Application Note AN-368

Notes
 Peripheral Initialization

Device Controller
The differences outlined below between the device controllers in the two parts will result in a few

changes, primarily enhancements, to the initialization code:
– Timing Control Register for programmable postread/postwrite and hold times. This is new in the

RC32438.
– The Base and Mask registers in the RC32438 are in general more flexible and do not come up

with fixed predefined values as in the case of the RC3233x.
– Decoupled access used for slow devices: Code for programming the device controller on the

RC3233x components can be reused and can be enhanced to include the decoupled access
feature offered by the RC32438 for slow devices. For decoupled read/write, you need to write to
3 registers to initialize transfer and then to read the device status register to check for a finished
flag before initializing the next transfer. Multi-byte decoupled access must be within a word
boundary.

DDR SDRAM Controller
The RC32438 device supports 2GB of DDR SDRAM with 2 chip selects and 4 banks per chip select.

Devices can be 8, 16, or 32 bits wide with densities of 64Mb, 128Mb, 256Mb, 512Mb, and 1Gb. New Alter-
nate Base, Mask, and Map registers allow a board to boot via the PCI interface.

Interrupt Controller
Implementation of the interrupt controller is substantially different between the RC32438 device and the

RC3233x devices. For the RC32438 device, interrupts from the integrated device interfaces are routed on
distinct CPU interrupt lines IP[2-6], and a pair of interrupt pending/mask registers is allocated to each. This
is different from the implementation in the RC3233x devices where a single line is multiplexed for a number
of interrupts. Therefore, the interrupt handler, which de-multiplexes the interrupt sources, will need to be
modified.

The RC32438 device provides an Interrupt Test Register to test the interrupt mechanism during software
development. This should prove to be extremely valuable to a large majority of software developers.

Interrupts in the RC32438 device have a much higher priority (right after resets, EJTAG and Machine
Check) than in the 79RC3233x devices (lowest). This allows interrupts to have precedence in being
serviced, resulting in improved performance for time-critical applications. Some of the handler logic may be
affected by this change in priority. TLB exceptions now have lower priority than interrupts and may require
changes in the handling of TLB exceptions if TLB is used.

Due to these changes, this is an area where the best approach is probably one of rewriting new code
optimized for the RC32438 device, rather than porting legacy code.

Timer Controller
The main difference between the two devices is in the control register, which now has a timeout bit used

to clear an interrupt. Code written for the RC3233x devices is reusable for the RC32438 as long as this
change is addressed.

UART Controller
No code change required.

GPIO Controller
The GPIO controller in the RC32438 device is the same as in the RC3233x devices with the following

exceptions:
– Different pin assignments for alternate functions
– Increased number of pins in the RC32438 (32 instead of 16), and with a
– New feature in the RC32438 whereby any GPIO pin, configured as an input, can generate an NMI

if enabled.
4 of 8 June 4, 2002

IDT RC32438 Application Note AN-368

Notes
 The difference in alternate functions can typically be addressed by making small changes to a header
file if the original code is relatively well written and devoid of hard-coded values within the source code.

DMA Controller
The RC32438 device includes 10 dedicated DMA channels assigned as follows: Two for the PCI inter-

face, 4 for the Ethernet interfaces, 2 for external peripherals, and 2 for memory-to-memory transactions.
The RC3233x devices include 4 DMA channels. In addition, the RC32438 device provides the concept of
DMA chaining that is not present in the RC3233x.

The DMA engine in the RC32438 device is substantially different and advanced compared to that in the
RC3233x parts. Rewriting the code for the RC32438 will be prudent.

PCI Controller
The PCI bus interface has been enhanced in the RC32438 device, incorporating several new features.

The PCI interface included in the RC32438 device has the capability of sustaining significantly higher
throughput than in the RC3233x devices. Any code specifically fine-tuned for the RC3233x will probably
have to be revisited if porting that code to the RC32438.

Even though the RC32438 device offers a significantly advanced PCI engine as compared to the
RC3233x devices, there are enough similarities between the two architectures to allow an easy port of the
PCI-related code. Some software modules, such as Messaging and decoupled CPU PCI master transac-
tions, will need to be written from scratch in order to benefit from enhancements. Some of the other
enhanced features that could be added to code during the porting effort are:

Arbiter parking: Allows parking the bus on the last master granted the bus.
Idle Grant Mode: Provides static and dynamic grant modes. In static grant mode, once a grant is
asserted when the PCI bus is idle, the grant will remain asserted until the requested transaction
completes. When using dynamic idle grant mode, when the PCI bus is idle, the arbiter may take
away the grant from one master and pass it to another.

PCI operating modes selected at boot time are similar to RC3233x devices but with slightly different
options. Code may need to be changed to accommodate these operations. PCI Base Address Control and
Mapping registers are part of the PCI configuration register space, allowing the host to read/modify based
on system-specific requirements. PCI configuration registers have a PCI Management register that can be
used to reset or raise NMI exception to the CPU. PCI address space can also be mapped in Kseg1/Kseg0,
requiring no memory mapping through TLB.

Ethernet Controller
The RC32438 device includes two identical and independent Ethernet interfaces with associated MAC

and MII pin level interface. Since this interface did not exist in the RC3233x, code porting is not possible.
IDT will provide sample Ethernet drivers for a few operating systems.

I2C Interface

The I2C interface is also new in the RC32438 device, with support for both Master and Slave modes. It
complies with the I2C bus specification v2.0. IDT will provide sample I2C device drivers for a few operating
systems.

SPI Interface
The SPI interface in the RC32438 device is slightly different from the module included in the RC3233x

devices. In the RC32438, the chip select signal needs to be explicitly generated at the beginning of a trans-
action using one of the GPIO pins. Additionally, MICROWIRE transactions can be generated using the new
dedicated registers in the RC32438. SPI code written for the RC3233x devices is largely reusable for the
RC32438, with the above considerations.
5 of 8 June 4, 2002

IDT RC32438 Application Note AN-368

Notes
 On-Chip Memory
The RC32438 device includes a 4kB On-Chip memory module organized as 1k x 32 bits, which can be

mapped using the TLB. This memory may be used for IPBus Monitor recordings, for storing intermediate
results from application code, or as general-purpose memory.

Debugging And Performance Monitoring
The IPBus Monitor, a new feature in the RC32438 device, provides an on-chip "logic analyzer" for hard-

ware and software enhanced debugging of transactions on the IPBus. It consists of 24-bit statistics
counters, triggers, and filters. Recorded transactions are stored in On-Chip Memory in which data is not
reset during a warm reset. Any code to take advantage of this new feature or to aid in the debug process
will need to be written by the user, although there is a high probability that IDT may provide some low-level
code along with an API that software developers may be able to use.

EJTAG/ICE Interface
The 4Kc CPU core incorporates an in-circuit emulator interface compatible with the EJTAG version 2.5

specification. The RISCore32300 supports version 1.5.3 of the EJTAG specification. A new CPU core
register file specific to the 4Kc core must be used for existing EJTAG probes, after the probes are made
compatible with version 2.5. Version 2.5 of the specification also includes slightly different implementation
and control register bit fields.

Summary
The RC3233x and RC32438 integrated communications processors include a similar set of high level

features. The strong compatibility between the CPU cores in each of the devices, and the substantial reuse
of existing peripheral modules between the two devices, makes the software transition to the RC32438
device a straightforward process.

Features
Differences

RC32438 RC32334/RC32332

CP0 Registers

Status (12) 27 - Reduced power mode
24 - Reserved (0)
23 - Reserved (0)

21 - TLB shut-down (TS)
19 - NMI

17 - Reserved (0)

16 - Reserved (0)

27 - Reserved (0)
24 - D-cache lock enable
23 - I-cache lock enable

21 - Reserved (0)
19 - Reserved (0)

17 - CE bit. When set, ECC contents
modify check bit of the caches

16 - Cache parity exception enable

Cause (13) 26 - Reserved (0)
25 - Reserved (0)
24 - Reserved (0)

22 - WP: Watch exception
6:2 - New exception code (=24)

called Machine check

26 - IPE, imprecise exception indicator
25 - DWatch matched
24 - IWatch matched

22 - Reserved (0)

Table 2 CP0 Registers: Bit level differences between RC3233x and RC32438 (Page 1 of 3)
6 of 8 June 4, 2002

IDT RC32438 Application Note AN-368

Notes
Config (16) 31 - Presence of Config1 (1)
30:28 - Reserved (011)
27:25 - Reserved (011)

23 - Reserved (0)
18:17 - Merge mode

16 - Burst order
14:13 - Reserved (00)
11:10 - Reserved (00)
9:7 - MMU Type (001)

6 - Reserved (0)
5 - Reserved (0)
4 - Reserved (0)

31 - ICE present
30:28 - External clock multiplier

27:25 - Reserved (000)
23 - Non-blocking load pending

18:17 - Reserved (01)
16 - Reserved (0)

14:13 - Reserved (11)
11:9 - I-cache size (100)
8:6 - D-cache size (010)

5 - I-cache line size (0)
4 - D-cache line size (0)

Config1 (16) select 1 30:25 - MMU size (001111)
24:22 - I-cache sets per way (010)

21:19 - I-cache line size (011)
18:16 - I-cache associativity (011)
15:13 - D-cache sets per way(010)

30:25 - MMU size (001111)
24:22 - I-cache sets per way (010)

21:19 - I-cache line size (011)
18:16 - I-cache associativity (011)

15:13 - D-cache sets per way (010)
12:10 - D-cache line size (011)

9:7 - D-cache associativity (011)
4:0 - Miscellaneous (01010)

NA

LLAddr (17) 27:0 - Physical address read by the
most recent Load Linked instruction

(Diagnostics purpose only)

NA

IWatch (18) NA 31:2 - Instruction Virtual address that
causes a Watch exception

0 - Instruction Watch enable

DWatch (19) NA 31:3 - Data Virtual address that causes
a Watch exception

2 - Data Watch enable for loads
1 - Data Watch enable for stores

WatchLo (18) 31:3 - Virtual address that causes a
Watch exception

2 - Instruction Watch enable
1 - Data Watch enable for loads
0 - Data Watch enable for stores

NA

WatchHi (19) 30 - Global
23:16 - ASID

11:3 - Bit Mask address

NA

DebugEPC (23) For RC32438, this is register #24

Features
Differences

RC32438 RC32334/RC32332

Table 2 CP0 Registers: Bit level differences between RC3233x and RC32438 (Page 2 of 3)
7 of 8 June 4, 2002

IDT RC32438 Application Note AN-368

Notes
Debug (24) For RC32438, this is register #23
28 - Control access between dseg and

remaining memory
27 - Indicates Low power mode when

exception occurs
26 - Indicates Internal system bus clock

stopped when exception occurs
25 - Indicates behavior of Count regis-

ter in debug mode
24 - Instruction fetch Bus Error excep-

tion pending
21 - Data Bus Error exception Pending
20 - Imprecise Error exception Inhibit

17:15 - EJTAG version
14:10 - Exception Code (as is in

Cause)

8 - Debug single step enabled
7 - Reserved (0)
6 - Reserved (0)

0 - Debug single step occurred

28 - Reserved (0)

27 - Reserved (0)

26 - Reserved (0)

25 - Reserved (0)

24 - Reserved (0)

21 - Reserved (0)
20 - Reserved (0)
17 - Reserved (0)

16 - Interrupt when Cause.IV set
15 - Cache error status

14 - NMI status
13 - TLB refill miss status

12 - Other exception status
11 - TLB exception flag

10 - Bus error exception flag
8 - Reserved (0)
7 - JTAG reset

6 - Debug boot bit
0 - Reserved (0)

ECC (26) NA 7:0 - Parity bits in primary cache

CacheErr (27) NA 31 - Instruction or data
30 - Primary cache
29 - Data field error
28 - Tag field error

25 - Instruction AND data error
21:3 - Physical address

0:1 - Virtual address

TagLo (28) 31:10 - PA (31:10)

7:4 - Valid

1 - LRF
0 - Reserved (0)

30:8 - If D-cache PA (31:9)
If I-cache PA (31:11)

7:6 - Cache state
5:4 - Reserved (00)

1 - FIFO refill
0 - Tag even parity

DataLo (28) select 1 31:0 - Data
Read only for diagnostic purposes

NA

DeSave (31) Implemented as register at
0xFFFF_E210

Features
Differences

RC32438 RC32334/RC32332

Table 2 CP0 Registers: Bit level differences between RC3233x and RC32438 (Page 3 of 3)
8 of 8 June 4, 2002

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Introduction
	Porting from RC3233x Devices to RC32438
	Table 1 Feature Comparison Between RC32438, RC32334, and RC32332 (Page 1 of 2)

	CPU Core Initialization
	Instruction Set Differences between RISCore32300 CPU Core and MIPS 4Kc
	Privileged Resource Architecture
	Caches
	Memory Management (TLB)

	Peripheral Initialization
	Device Controller
	DDR SDRAM Controller
	Interrupt Controller
	Timer Controller
	UART Controller
	GPIO Controller
	DMA Controller
	PCI Controller
	Ethernet Controller
	I2C Interface
	SPI Interface
	On-Chip Memory
	Debugging And Performance Monitoring
	EJTAG/ICE Interface

	Summary
	Table 2 CP0 Registers: Bit level differences between RC3233x and RC32438 (Page 1 of 3)
	By Harpinder Singh and Nebojsa Bjegovic

	RC32438 Application Note AN-368
	Migrating RC32332/RC32334 Software to the RC32438 Device

