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This application note illustrates the use of Spartan FPGA and an IDT RC32364 RISC ontroller CPU in a
handheld consumer electronics platform. Specifically the target application is an MP3 audio player with
advanced user interface features. 

In this application the Spartan device is used to implement the complex system level glue logic required
to interface and manage the memory and I/O devices. The RC32364 implements the MP3 decoding func-
tions, the graphical user interface, and various device control functions.

While the design is targeted at solving a specific problem, decoding and playing compressed audio
streams, it illustrates solutions to a number of general technical issues. These include:

◆ Supporting a graphical user interface in an embedded system.
◆ Implementing cost-effective interfaces to LCD displays, touch screens, USB, IRDA, and Compact-

Flash in an embedded system.
◆ Error handling when using NAND FLASH memory.
◆ Controlling SDRAM memory.
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MP3 Market

The MP3 player market emerged in late 1998, when Diamond Multimedia shipped its Rio MP3 audio
player. Like any new market, the feature set of MP3 players is likely to change as more users buy them. Key
dynamics in this market include:

◆ Copy Protection While the Secure Digital Music Initiative (SDMI) promises to make a wider variety
of music available in MP3 format, there is considerable technical uncertainty about implementation
timetables.

◆ Non-MP3 Formats While MP3 is the dominant format for music available on the Internet, other for-
mats are also available.

◆ Extended Features At $150 to $250 an MP3 player is a relatively expensive consumer electronics
purchase. The dominant component of that price is the FLASH memory that these devices use.
This cost component is more or less the same for all vendors, and constrains price point differentia-
tion. One way to increase the perceived value of an MP3 player is to add value-added features tai-
lored to the target market.

Due to these market dynamics, including the potential for rapid changes in feature requirements, the
best approach is a flexible high performance system. This flexibility manifests itself in two forms. The first is
the use of a high performance processor, which supports the addition of additional soft features without the
need to resort to optimized assembly language. The second is the use of a low cost, high density FPGA to
provide flexible I/O support for the processor.

MP3 Technology

MP3 refers to the MPEG Layer 3 audio compression scheme that was defined as part of the Interna-
tional Standards Organization (ISO) Moving Picture Experts Group (MPEG) audio/video coding standard.
MPEG-I defined three encoding schemes, referred to as Layer 1, Layer 2, and Layer 3. Each of these
schemes uses increasing sophisticated encoding techniques and gives correspondingly better audio quality
at a given bit rate. The three layers are hierarchical, in that a Layer 3 decoder decodes Layer 1, 2, and 3
bitstreams; a Layer 2 decoder decodes Layer 2, and 1 bitstreams; and a Layer 1 decoder decodes only
1 of 23 ��	
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Layer 1 bitstreams. Each of the layers support decoding audio sampled at 48, 44.1, or 32 kHz. MPEG 2
uses the same family of codecs but extends it by adding support for 24, 22.05, or 16 kHz sampling rates as
well as more audio channels for surround sound and multilingual applications.

All Layers use the same basic structure. The coding scheme can be described as "perceptual noise
shaping" or "perceptual subband / transform coding". The encoder analyzes the spectral components of the
audio signal by calculating a filterbank (transform) and applies a psycho-acoustic model to estimate the just
noticeable noise-level. In its quantization and coding stage, the encoder tries to allocate the available
number of data bits in a way to meet both the bitrate and masking requirements. In plain English, the algo-
rithm exploits the fact that loud sounds mask out the listener’s ability to perceive quieter sounds in the same
frequency range. The encoder uses this property to remove information from the signal that would not be
heard anyway.

Like all of the MPEG compression technologies, the algorithms are designed so that the decoder is
much less complex. Its only task is to synthesize an audio signal out of the coded spectral components. All
Layers use the same analysis filter bank (polyphase with 32 sub-bands). Layer-3 adds a MDCT transform
to increase the frequency resolution. 

All layers use the same header information in their bitstream, to support the hierarchical structure of the
standard.
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A key design objective for this application note was the creation of a solution with the lowest possible
cost, while at the same time providing support for value-added features. These features include the ability
to store contact information and record memos and other functions commonly found in Personal Digital
Assistants (PDAs).

Figure 1 gives an overview of the design. The key features of which are:
◆ 128 by 128 pixel graphical touch screen.
◆ USB interface for download music and network connectivity.
◆ IRDA compliant infra-red interface for exchanging data with other units.
◆ 32 MB of on board FLASH storage.
◆ CompactFlash interface for storage expansion using CompactFlash cards or MicroDrive hard

drives.

All of this is driven by a high performance IDT RC32364 32-bit RISC ontroller processor and interfaced
using a next generation Spartan II FPGA. Before we examine the functions implemented in the Spartan
device, and the software function running on the RC32364, let’s get a overview of the Application Specific
Standard Products (ASSPs) that are included in the design.
� �� �� ��	
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Figure 1  MP3 NG System Block Diagram

IDT RC32364 RISController™

The processor chosen for this design is the IDT RC32364. The features of this device that are leveraged
in this application are:

◆ Paged memory management unit
◆ High performance, 195 dhrystone MIPS @ 150 MHz
◆ Integer Multiply ACcumulate (MAC) support, 75 M MACs/second @ 150 MHz
◆ Separate, line lockable, instruction (8KB) and data (2KB) caches
◆ Power saving features including active power management, and a power-down operating mode.
◆ On-chip In Circuit Emulation (ICE) interface to provide access to internal CPU state (registers,

cache) and for debug control (breakpoints, single step, insert instructions into pipeline).

Figure 2 shows the block diagram for this device. The complete data sheet for the RC32364 can be
found at the following URL:

http://www.idt.com/products/pages/RISC-79RC32364.html

Figure 2  RC32364 Block Diagram
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The RC32364’s MMU consists of address translation logic and a Translation Lookaside Buffer (TLB)
capable of supporting demand paged virtual memory. In addition it includes several features that are valu-
able in an embedded application such as variable sized pages and lockable TLB entries. 

Figure 3 illustrates the virtual to physical address translation performed by the RC32364.

The variable page size lets each mapping independently represent memory regions that can range from
4KB to 16MB. This feature lets the system designer adjust the address mapping granularity for different
memory regions.

Locking TLB entries excludes entries from being recommended for replacement when there is an
address miss. This lets the system designer have mappings for critical regions of code and or data locked
into the TLB for predictable real time performance.

Figure 3  RC32364 Address Translation

The RC32364 interfaces to the system through a 32 bit multiplexed address/data bus. The bus offers a
rich set of signals to control transfers of which only a subset was required for this application. 

Figure 4 shows the timing for read transactions on this bus.
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Figure 4  RC32364 Read Timing

Crystal CS4343 Stereo DAC

The Digital to Analog Converter chosen for this design is the Crystal CS4343 from Cirrus Logic. This
device features:

◆ 1.8V to 3.3V operation
◆ 24 bit conversion at up to 96 kHz
◆ Digital volume control
◆ Digital bass and treble boost
◆ Built in headphone amplifier capable of delivering 5 mW into a 16 ohm load.

Figure 5 shows the block diagram for this device. 

Figure 5  CS4343 Block Diagram (Figure Courtesy Cirrus Logic)

The CS4343 provides three interfaces: the analog stereo headphone interface, the serial port used to
transfer digital audio data streams, and the control port used to configure the device.
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The control port is an industry standard I2C slave interface. I2C is a multidrop, two wire, serial interface
consisting of a clock (SCL) and data (SDA) and operating at up to 100 kHz. The control port is used to
configure device features such as volume, muting, equalization, power management, and the operating
mode of the serial port. 

Figure 6 gives an overview of control port timing. A detailed description of I2C operation can be found in
the I2C specification as described in the references.

Figure 6  Control Port Timing (Figure Courtesy Cirrus Logic)

The serial port can be configured for several operating modes. The mode of operation chosen for this
application is referred to in the CS4343 documentation as “Serial Audio Format 2”. Figure 7 gives an over-
view of serial port timing when in this mode.

Figure 7  Serial Port Timing (Figure Courtesy Cirrus Logic)

Samsung FLASH Memory

The FLASH memory chosen for this design is the KM29U64000T 8M x 8 device from Samsung semi-
conductor. This device is based on NAND FLASH technology and is popular in MP3 player applications due
to its high density and low cost per bit. 

Figure 8 shows the block diagram for this device. The complete data sheet for the KM29U64000T can
be found at the following URL:

http://www.usa.samsungsemi.com/products/prodspec/flash/km29u64000(i)t.pdf

t buf t hdst
t hdst

t
low

t r

t f

t
hdd

t high

t sud tsust

tsusp

Stop Start Start Stop
Repeated

SDA

SCL

t irs

RST

LRCK

SCLK

Left Channel Right Channel

SDATA 6 5 4 3 2 1 09 8 715 14 13 12 11 10 6 5 4 3 2 1 09 8 715 14 13 12 11 10
� �� �� ��	
��

 ��� ����



�������� ���
����

��� ��
Figure 8  KM29U64000T Block Diagram (Figure Courtesy Samsung Semiconductor)

Unfortunately this device also has two characteristics that present significant system level design chal-
lenges. The first of these is the narrow, highly multiplexed interface that is used to access the device. The
KM29U64000T interfaces to the system through an eight bit wide port that is used for both address and
data. Figure 9 illustrates the read timing for this device.

Figure 9  KM29U64000T Read Timing (Figure Courtesy Samsung Semiconductor)

The second and most challenging issue relates to data integrity, which is an issue common to most
devices using NAND technology. There are two aspects to this, the first of which is the fact that devices
when shipped may have memory blocks that may not be used due to data errors. The data sheet for the
device has a parameter called NVB that is the number valid blocks that the device contains. The value of
NVB varies from device to device and is specified to have a minimum of 1014, a maximum of 1024, and typi-
cally 1020. While the first block is guaranteed to be good, bad blocks can occur at any other location within
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the memory array. Invalid blocks are marked at the factory by storing a 0 value at location 0 in either the first
or second block of the page. The system level impact of this is that it must keep track of which blocks are
good within the device and that this results in a non-contiguous memory map.

The second issue is that while the device is guaranteed to provide at least the minimum number of valid
blocks over its operational lifetime these devices may experience failures in additional blocks throughout
their life. In order to ensure system integrity some form of error detection and correction must be imple-
mented.

The discussion of the FLASH memory interface will discuss how these issues were addressed in this
design.

Micron SDRAM Memory

The SDRAM memory chosen for this design is the MT48LC1M16A1S - 512K x 16 x 2 bank device from
Micron semiconductor. This device is available in speed grades from 125 to 166 MHz operating over an
LVTTL synchronous interface. Figure 10 shows the block diagram for this device. The complete data sheet for the
MT48LC1M16 can be found at the following URL:

http://www.micron.com/mti/msp/pdf/datasheets/16MSDRAMx16.pdf

Figure 10  MT48LC1M16A1 Block Diagram (Figure courtesy of Micron Technology, Inc.)
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Figure 11  MT48LC1M16A1 Read Timing (Figure courtesy of Micron Technology, Inc.)
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The USB interface in the design is based on a National Semiconductor USBN9602 controller. This
device, packaged in a 28 pin SOIC package, supports full speed USB function controller operation, and
includes an integrated USB transceiver. It contains seven endpoint FIFOs, two of which are 64 bytes deep.

http://www.national.com/ds/US/USBN9602.pdf

Figure 12 shows a block diagram of this device. The complete data sheet for the USBN9602 can be found
at the following URL:

http://www.national.com/ds/US/USBN9602.pdf

Figure 12  USBN9602 Block Diagram (Figure Courtesy National Semiconductor)
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System Implementation

MP3 NG
The system interface for the USBN9602 is a simple eight bit microprocessor bus that can be configured
to operate in a multiplexed or non-multiplexed mode. The multiplexed mode is more attractive from a soft-
ware perspective since it supports random access to the devices’ internal registers. This mode also
reduces the number of interface pins required. For both of these reasons this was chosen for this applica-
tion. Figure 13 shows read timing for the USBN9602 when operating in multiplexed mode.

Figure 13  USBN9602 Read / Write Cycle Timing g (Figure Courtesy National Semiconductor)
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At this point we are ready to discuss how all of these pieces are integrated into a complete system. First
we will describe the software architecture and the functionality of the key modules. Next we will describe the
architecture and implementation of the logic contained in the Spartan–II FPGA.
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The system software required to implement this device is shown in Figure 14. The software components
fall into four categories:

Figure 14  System Software Architecture
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System Implementation

MP3 NG
The functions that the RTOS provides are process scheduling and memory allocation. The RTOS could
be any of the commercially available packages. Probably more of a factor than any technical issue, is the
licensing model for the product. Since this is a product that is targeted at the high volume, cost sensitive,
consumer market, an RTOS that is licensed on an up front fee basis with no unit royalties is the most attrac-
tive.

The various BIOS components will be discussed later in the sections that describe the hardware imple-
mentation for each interface. The key application modules are as follows:

UI Manager

The User Interface (UI) manager is responsible for handling interaction between the user and the
system. This includes using the Screen BIOS to create the buttons and menus that the user sees, getting
user input through the Touch BIOS and using this information to coordinate activities such as downloading
and playing MP3 files. The UI manager would also spawn separate processes for value-added features
such as an appointment calendar, or a phone book, as needed.

MP3 Decoder and Audio ISR

The MP3 decoder runs as an independent process, controlled by the UI manager. When activated, it
uses the FLASH BIOS to fetch MP3 file data, decompresses it and places the audio data in a queue. The
audio Interrupt Service Routine (ISR) is activated by an interrupt from the Audio DAC block in the FPGA.
When activated, it reads data from this queue and writes it to FIFOs in the Audio DAC block.

The key to getting optimal performance from the MP3 decoder on the RC32364 lies in taking advantage
of the MAC instruction supported by the processor. The instruction is particularly valuable in the implemen-
tation of the Discrete Cosine Transform (DCT) for sub-band synthesis.

There are several sources for MP3 decoder code. A fixed point decoder (splay-0.81-fixpoint.tgz) that
was developed for the Linux ARM project can be downloaded from the following URL:

ftp://ftp.netwinder.org/users/n/nico

The reference code that was developed for the standard is available from the Fraunhofer Institute at the
following URL:

http://www.iis.fhg.de/amm/techinf/layer3/index.html

A commercial decoder is available from Xaudio. Information on the Xaudio product line is available from:

http://www.xaudio.com

Memory Manager

The Memory Manager handles the tasks required to mask NAND FLASH issues from the other software
in the system. Specifically these tasks are block mapping and code initialization.

Block Mapping

This involves maintaining a table of valid FLASH blocks and configuring the MMU to map them into a
linear address space. For the FLASH memory space the TLB entries are set to the same 8KB size to match
the block size of the FLASH itself, and the entries are not locked in the TLB. A single TLB entry is used to
map the SDRAM memory space. This entry is configured to map a 4MB memory space and is locked in the
TLB.

In the event that an error is detected in a valid block, this code is also responsible for copying the data to
an unused block and marking the block in which the error was detected as bad.

Code Initialization

Copying the code image from FLASH to RAM at boot time. This routine must also perform error detec-
tion on the image as it as copied. If an error is detected, error correction must be performed and the block
mapping code informed.
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System Implementation

MP3 NG
+"�"
, �-��	�
.�� ��/�

Figure 15 shows the architecture implemented in the Spartan device for this application. It consists of
eight major functional blocks:

◆ Inter-Module Bus (IMB) Controller
◆ CPU Interface
◆ LCD Controller
◆ Memory Datapath
◆ SDRAM Controller
◆ FLASH Controller
◆ CompactFlash Controller
◆ IRDA Controller
◆ DAC interface
◆ Touch screen interface

These blocks are interconnected by a simple non-multiplexed, multi-master, address data bus that we
will refer to as the Inter-Module Bus (IMB). While the IMB may appear to be a bus to the function blocks, it
is not a bus at all but instead uses multiplexers for gating data into the internal datapaths. This approach
eliminates the need for tristate drivers within the design. In this implementation the bus has two masters;
the CPU interface and the LCD Controller. 

Figure 15 shows a top level block diagram of the FPGA.

Figure 15  FPGA Logic Block Diagram
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The following sections will discuss the implementation of each of these functional blocks and outline the
hardware and software resources needed to support each.
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The IMB Controller block performs two functions: block address decoding, and IMB arbitration.

The address decode block generates device selects for the IP block that is the target of the transfer. It
also controls the multiplexers that select the response signals from the target of the transfer (ACK, DOUT
etc.).

IMB arbitration between access requests from the CPU Interface and the LCD controller are handled by
using a simple rotating priority scheme. The arbiter block also controls the multiplexers that select which set
of transfer control signals (RD, WR etc.) control the transfer.

The FPGA device resources used to implement this block include an estimated 32 CLBs but no I/O
pads. There is no software required to support this block.

��% �
	��)���

The CPU interface block performs three functions: protocol conversion, CPU initialization and address
de-multiplexing. Figure 16 shows a block diagram of this block.

Figure 16  CPU Interface Block Diagram

The CPU initialization block generates the required timing for the reset signals, and drives configuration
information onto bus grant and the interrupts. This configuration information configures the boot PROM
width and enables the CPU timer. After initialization is complete the block drives the IRDA and audio DAC
interrupts out onto the CPU interrupt signals.

The bus state machine converts the signaling on the CPU bus into the format used on the local  IMB, or
if the transaction is to the USB interface, the signaling accepted by the USBN9602.

The FPGA device resources used to implement this block include an estimated 46 CLBs and the fifty-
four I/O pads listed in Table 1.
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There is no software support required for this block per se, but the USB interface itself requires consid-
erable software for operation. This software consists of the USB protocol stack, which includes a USB inter-
rupt service routine. The USB stack itself consists of two parts. The first of these is the software required for
participating in the USB protocol and the plug and play. The second part is the application specific code
required to transfers MP3 files from the host system to the player.

 �� ��
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The LCD controller is responsible for refreshing the screen with an image stored in the SDRAM. In
general its operation is similar to that of a CRT display controller. Unlike most display controllers, the display
format generated by the LCD controllers is not programmable by the CPU. The raster format is fixed at 128
by 128 pixels and the display timing is fixed as well. This makes sense in an embedded system such as this
where the display is integrated into the unit. Although the display format cannot be changed in the system,
loading different FPGA configurations into the FLASH when the unit is manufactured can accommodate
different displays. Figure 17 shows the block diagram of the LCD Controller.

Signal Type Description

CPU_MASTERCLK Output All bus timing is relative to this clock. The CPU core frequency is derived by 
multiplying this clock.

CPU_AD[31:0] I/O High-order multiplexed address and data bits. 

CPU_ADDR[3:2] Input Non-multiplexed address lines. These serve as the word within block address 
for cache refills (Addr(3:2)). 

CPU_BE_N[3:0] Input Indicates which byte lanes are expected to participate in the transfer. 

CPU_ALE Input Address latch enable.

CPU_CIP_N Input Denotes that a cycle is in progress. Asserted in the address phase and is 
asserted until the ACK* for the last data is sampled.

CPU_RD_N Input This active-low signal indicates that the current transaction is a read.

CPU_WR_N Input This active-low signal indicates that the current cycle transaction is a write.

CPU_BUSGNT_N Output During the power-on reset (Cold Reset), BusGnt* is an input, and is used to 
load ModeBit(5).

CPU_ACK_N Output On read transactions, this signal indicates to the RC32364 that the memory 
system has placed valid data on the A/D bus, and that the processor may move 
the data into the on-chip Read Buffer. On a write transaction, this indicates to 
the RC32364 that the memory system has accepted the data on the A/D bus.

CPU_RESET_N Output This active-low signal is used for both power-on and warm reset.

CPU_COLDRESET_N Output This active-low signal is used for power-on reset.

CPU_INT_N[3:0] Output Active low interrupt signals to the CPU. During power-on, Int*(3:0) serves as 
ModeBit(9:6).

US_CS_N Output USB controller chip select

US_RD_N Output USB controller read strobe

US_WR_N Output USB controller write strobe

Table 1   CPU Interface Signal Summary 
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Figure 17  LCD Controller Block Diagram

The LCD controller is an Inter-Module Bus (IMB) master and fetches data for screen refresh indepen-
dently of CPU activities. The display data that is fetched is loaded into a FIFO using a block transfer across
the IMB. The shift register loads display data from the FIFO and shifts it out as a four-bit wide data stream
at 16 MHz the maximum shift rate supported by the display drivers. 

In order to prevent disruption of the display image, the FIFO must have a new data word available for
the shift register every time it empties. This occurs every 500 nS (1 / (16 mHz  / 8)). Since there is a signifi-
cant amount of overhead associated with each non-sequential access to the SDRAM memory, fetches are
made from it using multi word bursts. The size of these bursts is a compromise between different factors.
Longer bursts are more efficient since the SDRAM access overhead is amortized over a larger number of
data words. Smaller bursts reduce the size of the FIFO and also reduce bus latency by reducing the time
that the LCD controller ties up the Inter-Module Bus (IMB). For this application a two-word burst was
chosen. The result is a three word deep FIFO and display buffer fetches every 1 microsecond.

The FPGA device resources used to implement this block include an estimated TBD CLBs and the nine
I/O pads listed in Table 2.

 The only software support required for this block is the screen BIOS which consists of functions to
generate screen images by manipulating the frame buffer memory. This buffer appears as an array of 512,
32-bit words with each word containing 32 pixels of the screen image. The most significant bit of the word at

Signal Type Description

DI_XD[3:0] Output X driver data

DI_XSCL Output X driver data shift clock

DI_LP Output Latch pulse

DI_FR Output Frame signal

DI_YD Output Y driver scan start pulse

DI_YSCL Output Y driver shift clock

Table 2  LCD Controller Interface Signal Summary
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the base address appears as the pixel in the upper left-hand corner of the screen. The least significant bit of

that memory word appears as the 32nd pixel in the first row. The word and bit address of any pixel on the
screen can be calculated using the following formula:
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The memory interface block implements the data path required to map the eight and sixteen bit memory
devices to the 32-bit Inter-Module Bus. While the RC32364 is capable of fetching instructions and data from
devices with varying bus widths, having the FPGA build 32-bit words for the CPU reduces the number of
bus cycles. This increases performance and also reduces power consumption. Figure 16 shows a block
diagram of this block.

Figure 18  Memory Interface Block Diagram
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The SDRAM controller design is based on the design developed by Xilinx in application note XAPP 134.
The changes made in the original design are to adapt to the differences in the host interface. In the original
design the host interface is a multiplexed address data bus. In this application, the Inter-Module Bus (IMB)
is non-multiplexed. Another difference is that the original design supported a 32-bit wide memory configura-
tion with two MT48LC1M16 memory devices. In the design a 16-bit wide memory datapath and a single
MT48LC1M16 is used.

Memory Address = X * Y MOD 32

Bit Address = X * Y REM 32

Where: X and Y are the horizontal and vertical coordinates of the screen and assume that the 
origin (X = 0, Y = 0) is in the upper left-hand corner of the screen.

MOD the integer division.

REM is the remainder of the division
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Figure 19  SDRAM Controller Block Diagram

The estimated FPGA device resources used to implement this block include an estimated 200 CLBs,
two DLLs, two global clock buffers and the nine I/O pads listed in 

Table 3. There is no software support required for this block.
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The largest cost associated with this design is the large amount of FLASH memory, 32 MB or more, that
is required for storing MP3 audio files. In order to leverage this cost it is desirable to use this memory for all
non-volatile storage requirements within the system. This includes code storage for the CPU as well as
storage of the FPGA configuration.

Figure 20  FLASH Controller Block Diagram

When the architecture for this system was being planned, one issue that needed to be addressed was
whether to execute the program image directly from FLASH or to copy it to SDRAM. There were two key
issues that needed to be considered when making this decision.

Signal Type Description

SD_BA Output Bank address

SD_CS Output Chip select

SD_CLK Output Transfer clock

SD_CKE Output Clock enable

SD_RAS Output Row address strobe

SD_CAS Output Column address strobe

SD_WE Output Write enable

SD_DQML Output Lower byte data mask

SD_DQMH Output Higher byte data mask

Table 3  SDRAM Controller Interface Signal Summary
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Performance

The narrow, eight bit, interface used for both address and data is one performance issue, but it is not the
biggest. The real problem is random access latency. Within a 512 byte memory page, data can be read with
a 50 nS read cycle time. The problem comes when the processor accesses data in a different page. The
time required to load a page into the page register, where it can be accessed, is 7 uS. With a 66 MHz
processor frequency this represents 462 instruction times. This latency will adversely effect real-time perfor-
mance.

Error Handling

Each 512 byte page in the FLASH has 16 bytes of spare storage for storing ECC information. The
problem is that this is nowhere near enough storage for implementing ECC for small block sizes. For
example, to correct single bit errors on a RC32364 cache line (16 bytes) using a Hamming code the
following relationship must be satisfied:

Since there are 32 (512 / 16) cache lines per page, a total of 36 bytes are needed for ECC storage.
Recall that 16 bytes are available.

In order to get around this problem, the block size could be increased to 32 bytes. At 32 bytes, 10 bits of
ECC are required per block, but there are now only 16 blocks per page which is consistent with the avail-
able ECC memory per page. Performing the block check over two cache lines could accommodate this
larger block size. The down side to this is that every time a cache line is loaded, two would have to be
checked with a corresponding increase in memory latency.

As a result of this the decision was made to copy the executable image to the SDRAM memory at boot
time. This not only increases performance but also turns the ECC checking issue into a non real-time soft-
ware exercise. 

The estimated FPGA device resources used to implement this block include an estimated 100 CLBs,
and the ten I/O pads listed in Table 4.

Software support required for this block consists of the FLASH BIOS which implements low level primi-
tives for programming, erasing, and checking validity of memory blocks.

N <= 2**K - K – 1

where: N is the number of data bits in the block

K is the number of ECC bits

Solving for K:

16 * 8 = 256 <= 2K - K - 1

K = 9 ECC bits per cache line

Signal Type Description

FL_CE_N[3:0] Output Device chip enables, active low.

FL_ALE Output Address latch enable

FL_WE_N Output Write enable, write data is latched on the rising edge

FL_RE_N Output Read enable, when low enables device data output buffers

FL_SE_N Output Enable spare area when low

FL_WP_N Output Write protect, active low

FL_R/B_N Input Open drain output from devices, pulled low when a program, 
erase, or read operation is in progress

Table 4  FLASH Controller Interface Signal Summary
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The IRDA controller is essentially a specialized, fixed function UART. The separate, two word, transmit
and receive FIFOs reduce the interrupt overhead associated with data transmission. At the maximum data
rate that the IR transceiver can support (115 kb/s) the CPU will get an interrupt every 557 mS.

Figure 21  IRDA Controller Block Diagram
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The interface for the CS4343 consists of two separate functional blocks, one for each of the serial inter-
faces that are required to support this device. 

Figure 22 shows a block diagram of this interface.

Signal Type Description

IR_TXD Output Transmit data

IR_RXD Input Receive data

IR_SD Output Shut down signal, puts transceiver into low power mode

Table 5  FLASH Controller Interface Signal Summary
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Figure 22  Audio DAC Interface Block Diagram

The control port interface is implemented as a two bit I/O port that is manipulated by software in order to

implement the I2C protocol used for accessing the control and status registers in the DAC. This approach
uses minimal device resources and is practical due to the low data rate of this port and its infrequent use.

The serial audio port on the other hand is in use most of the time that the system is in operation. As such
dedicated hardware is provided for implementing the transfer protocol and for delivering an uninterrupted
audio stream. This hardware consists of two, four word, FIFOs one for each audio channel and a state
machine to manage the FIFOs and sequence the interface signals. 

Like the IRDA controller, an interrupt is generated every time the FIFOs transfer their last word into the
shift registers. Assuming a 48 kHz audio sampling rate, this will result in an interrupt every 83.3 uS. To put
this in perspective, this means that the CPU will get an interrupt every 5,333 instructions.
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The touch screen interface is nothing more than an I/O port that lets the processor read the data
returned by a two-channel analog to digital converter. This lets the system software read the X and Y coor-
dinate resistance values that result from the user touching the screen. The system software handles linear-
ization and filtering out transient touch events.

Signal Type Description

DAC_MCLK Output Master clock

DAC_LRCK Output Left / Right clock, determines which channel is currently being transferred

DAC_SDATA Output Serial audio data

DAC_SCL Output I2C data clock

DAC_SDA I/O I2C data

Table 6  Audio DAC Interface Signal Summary
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Figure 23  Touch Interface Block Diagram
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Spartan devices are available in a range of densities and packages. The following criteria were used to
select the device used in this application:

Based on these criteria the device selected for this design is the XC2S50. This device offers 50K
density, 3.3V operation, 176 user I/O, and is packaged in a space saving FG256 BGA package.

Signal Type Description

AD_SCK Output Serial data clock

AD_SDI Input Serial data in

AD_SDO Output Serial data out

Table 7   Touch Screen Interface Signal Summary

I/O Pins The design requires a total of 137 I/O pins. I/O pin requirements per block are summarized in Table 8.

Voltage The design operates at 3.3V.

Density The estimated size of the design is 83K gates, with the usage broken out in Table 8.

Performance The highest clock speed used in the device is 64 MHz, used to clock the SDRAM controller state 
machines. The remaining logic runs at sub multiples of this clock rate.

Packaging The size constraints imposed on most modem designs dictates a high-density surface mount package.

Interface CLB Usage Number of Signals

CPU 25 51

LCD display 58 9

IRDA 59 3

USB 21 3

DAC 23 5

ADC 0 3

SDRAM 100 9

FLASH 100 10

CompactFlash 100 17

Memory address bus 4 11

Memory data bus 10 16

Total: 500 137

Table 8  FPGA Resource Usage Summary
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The design that has been outlined meets both original design objectives. Even with budgetary pricing
the cost of the solution is well below $100. Table 9 shows the cost breakdown of the system. The design
also has enough spare resources both in terms of CPU cycles and FPGA gates to support field upgrades.
Operating at a core clock speed of 64 MHz, the RC32364 will provide enough performance for both audio
decoding and user interface functions. By locking the audio decode functions in the instruction cache a
significant increase in system performance as well as reduced power consumption is achieved.

This design also illustrates how manufacturers can create designs that the optimized integration of an
ASIC while supporting the manufacturing and field upgrade flexibility of an FPGA.
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RC32364 RISController, Hardware User’s Manual, April 1999, Integrated Device Technology

Xilinx Spartan II FPGA Data Sheet, January 2000, Xilinx

IRMS6100 1.15 Mb/s IrDT Data Transceiver Data Sheet, May 1999, Infineon Technologies

SED1743 160-bit LCD Common Driver Data Sheet, Epson Electronics

SED1758 160-bit LCD Segment Driver Data Sheet, Epson Electronics

CS4343 Low Voltage, Stereo DAC with Headphone Amp Data Sheet, June 1999, Cirrus Logic

MAX1108 2-Channel, Serial 8-Bit ADC, Data Sheet, October 1998, Maxim Integrated Products
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Mfg. Part Number Description Volume
Unit

Cost

Ext.

Cost

1 4 Samsung KM29U6400T Flash, 64Mb 1M/Yr. $10.00 $40.00

2 1 Micron Mt48C1LC1M16A1TG7SIT SDRAM,
512K x 16 x 2 banks

200K/m $3.50 $3.50

3 1 IDT 79RC32V364-133 RISC CPU 100K $11.50 $11.50

4 1 Xilinx XC2S100 FPGA 20K/m $10.00 $10.00

5 1 Xilinx XC1801 Serial Configuration 
PROM

20K/m $3.00 $3.00

6 1 NSC USB9602 USB Interface Controller 20K/m $1.63 $1.63

7 1 SMOS SED1758T0A LCD Common Driver, 
160 Rows

20K/m $2.50 $2.50

8 1 SMOS SED1743T0A LCD Segment Driver, 
160 Rows

20K/m $2.50 $2.50

9 1 Various TBD 160 x 160 LCD Panel, 
Glass Only

est. $5.00 $5.00

10 1 MicroTouch TBD Touch Screen est. $5.00 $5.00

11 1 Infineon IRDT6100 1Mb IRDA Transceiver 20K/m $2.00 $2.00

12 1 Crystal CS4343 DAC Stereo Audio est. $2.00 $2.00

13 1 Maxim MAX1108 AD Converter disti $2.68 $2.68

14 1 Maxim MAX1705 Step-up DC to DC 
Converter

10K $2.81 $2.81

Note: BOM includes only semiconductor content. Total: $94.12

Table 9  NG Player Semiconductor BOM
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