
225

Integrated Device Technology, Inc.

APPLICATION
NOTE

AN-132

The IDT logo is a registered trademark and IDT/C, IDT/sim and RISController are trademarks of Integrated Device Technology, Inc.

INTRODUCTION
Writing ROM-able code using IDT/C 5.0 or IDT/C 6.0 puts

restrictions on initialized data declarations. Initialized data
end up in ROM space, making it impossible to change such
data during program execution. This restriction is neither
obvious, nor acceptable to a number of C programmers. One
technique to eliminate this restriction is explained in this
application note. The most effective implementation requires
modification to the C compiler utilities, which may be offered
in future releases of IDT/C.

OVERVIEW
IDT’s C Compiler tool chains IDT/C 5.0 and 6.0 provide a

means of developing embedded applications based on the
IDT R30xx and R4x00 RISControllers. IDT/C 5.0 generates
ECOFF format files; IDT/C 6.0 generates ELF files. For
purposes of this discussion, both output file formats will be
referred to as “executable”. Any differences in formats / tool
chains will be noted wherever appropriate.

IDT/C organizes the executable into sections by default, as
shown below:
1) .text: All instructions from all source files.
2) .rdata (ECOFF) / .rodata (ELF): All initialized data that

are declared constant. (Most commonly found elements
here are strings.)

3) .data: All initialized data. Data may get moved between
.rdata and .data depending on what the compiler be-
lieves is constant.

4) .bss: All uninitialized data.
5) .sdata: All initialized data smaller than the size specified

by the -G option.
6) .sbss: All uninitialized data smaller than the size speci-

fied by the -G option.
The layout of sections and determining what exactly goes

into which section can be controlled using a linker script file,
and by adding -T<script filename> in the linker command line.

Both IDT/C 5.0 and 6.0 allow creation of user-defined
sections and embedding user-defined symbols in the execut-
able generated, using the linker script. This flexibility is key to
the technique discussed below.

PROBLEM
Initialized data in the .data section get programmed into

ROM space when the PROMs are created. This is the only
way that the code can “remember” the initial values of all
initialized data, in an embedded environment. However, this
makes it impossible for the user to modify these values. The
user can get around this by not initializing the variables at the
point of declaration (making them uninitialized and thus forc-
ing them into the .bss section) and then initializing them in
code. The drawback of this approach is that the user needs to

remember where to initialize each such data structure. An-
other way would be to have two structures: one initialized, one
uninitialized, and in the code, copy the one in .data to the one
in .bss. This method has speed and space disadvantages.

This Application Note describes a three-step method to
overcome this problem. Briefly, the logic can be explained as
(a) build the code assuming that the .data section will be in the
RAM space; (b) in reality, burn the .data section in the ROM;
(c) right at the start of code execution, move the .data section
from ROM to RAM where the code expects it to be already.

Using IDT/C, the steps would be:
1. Link the executable program in such a way that the

instructions look for .data section in the RAM address
area.

2. Build S-records using a modified version of objcopy that
relocates the .data section to ROM area while converting
the executable to S-record. This “saves” the initialized
contents of the .data section.

3. Make the startup code copy this relocated section from
ROM area to its designated place in RAM area. This is
the RAM address area where the instructions will be
looking for the .data section (as explained in step 1
above). This method has been tested and found to work
with relocating .data from IDT/sim ; it can be extended
easily to cover .rdata / .rodata too.

ADVANTAGES
1. Allows software programmers to use initialized data

without restrictions.
2. Removes the necessity for additional code/data spread

out all over the application for modifying initialized data.
3. Speeds up program execution, since accesses that used

to go to ROM are now directed to RAM.

DISADVANTAGES
1. Increased startup time because of the code to copy the

.data section to RAM. However, this is only a one-time
effort, and hence is not a major overhead.

STEPS INVOLVED
1. Determine what section(s) of the executable are to be

relocated.
2. Modify the linker script to add informational sections (for

objcopy) and symbols (for the startup code) that define
the source and target of relocation.

3. Modify the startup code to copy data from the relocated
address (ROM) to its real address (RAM).

4. Compile and link the application using the new linker
script, such that the .data section now lies in RAM.

5. Use the version of objcopy that has support for this
relocation, to build PROMs.

By Ketan Deshpande and Sugavaneswaran Subramanian

COPYING INITIALIZED DATA TO RAM

1996 Integrated Device Technology 3159/- 2/96

226

COPYING INITIALIZED DATA TO RAM APPLICATION NOTE AN-132

SECTIONS TO BE RELOCATED
Let us assume that only the .data section needs to be

relocated.

MODIFYING THE LINKER SCRIPT
Linker scripts for IDT/C 5.0 and 6.0 are slightly different; the

modifications done are very similar.
The following information needs to be inserted into the

linker script to enable both objcopy and the startup code to
perform the relocation and data movement.
a) Sections .start, .endsect:
This is done by inserting section lines in the linker script.

The program “objcopy” relocates all sections between
these two sections to the address defined by _src_start.

b) Symbols _src_start, _src_end:
This is done by inserting symbol lines in the linker script.

The startup code copies data from _src_start to
_tgt_start, until _src_end is reached.

c) Symbol _tgt_start:
This is done by inserting a symbol line in the linker script.

The startup code copies all data that was relocated, to
this RAM address.
The modified linker scripts are listed on the following pages,

with the changes highlighted.

Sample Linker Script for IDT/C 5.0:
OUTPUT_FORMAT(“ecoff-bigmips”)
ENTRY(start)
SECTIONS
{
 .text 0xbfc00000 : {
 _ftext = . ;
 *(.init)
 eprol = .;
 *(.text)
 *(.fini)
 etext = .;
 _etext = .;
 }
 .rdata . : {
 *(.rdata)
 }

/* Relocate the sections between .start and
.endsect, to begin from the current ad-
dress */

 .start . : {}
 _src_start = . ;
 _tgt_start = 0xa0000200 ;
/* _tgt_start should be equal to the start
of the .data section below */

 .data 0xa0000200 : {
 _fdata = .;
 *(.data)
 CONSTRUCTORS
 edata = .;

 _edata = .;
 }

/* OK, this is all we wanted to relocate */
 .endsect . : {}
 _src_end = . ;

 .reginfo . : {}
 .scommon . : {}
 .bss . : {
 _fbss = .;
 *(.bss)
 *(COMMON)
 }
 end = .;
 _end = .;
}

Sample Linker script file for IDT/C 6.0:

OUTPUT_FORMAT(“elf32-bigmips”)
OUTPUT_ARCH(mips)
_DYNAMIC_LINK = 0;
SECTIONS
{
 /* Read-only sections, merged into text
segment: */

 .text 0xbfc00000 :
 {
 _ftext = . ;
 *(.text)
 CREATE_OBJECT_SYMBOLS
 _etext = .;
 }
 .init ALIGN(8) : { *(.init) } =0
 .fini ALIGN(8) : { *(.fini) } =0
 .ctors ALIGN(8) : { *(.ctors) }
 .dtors ALIGN(8) : { *(.dtors) }
 .rodata ALIGN(8) : { *(.rodata) }
 .rodata1 ALIGN(8) :
 {
 *(.rodata1)
 . = ALIGN(8);
 }
 .reginfo . : { *(.reginfo) }

/* Relocate the sections between .start and
.endsect, to begin from the current ad-
dress */

 .start . : {}
 _src_start = . ;
 _tgt_start = 0xa0000200 ;
/* _tgt_start should be equal to the start
of the .data section below */

 .data 0xa0000200 :
 {
 _fdata = . ;
 *(.data)

227

 CONSTRUCTORS
 }
 .data1 ALIGN(8) : { *(.data1) }
 _gp = . + 0x8000;
 .lit8 . : { *(.lit8) }
 .lit4 . : { *(.lit4) }
 .sdata ALIGN(8) : { *(.sdata) }
 _edata = .;

/* OK, this is all we wanted to relocate */
 .endsect . : {}
 _src_end = . ;

 __bss_start = . ;
 .sbss ALIGN(8) : { *(.sbss)
*(.scommon) }

 .bss . :
 {
 _fbss = .;
 *(.bss)
 *(COMMON)
 _end = . ;
 end = . ;
 }

 .line 0 : { *(.line)
}

 .debug 0 : { *(.debug)
}

 .debug_sfnames 0 : {
*(.debug_sfnames) }

 .debug_srcinfo 0 : {
*(.debug_srcinfo) }

 .debug_macinfo 0 : {
*(.debug_macinfo) }

 .debug_pubnames 0 : {
*(.debug_pubnames) }

 .debug_aranges 0 : {
*(.debug_aranges) }

}

Modifying the startup code
Typically, embedded applications have code that performs

CPU control register initialization, cache flushing, memory
sizing, initializing .bss etc. With the .data section in its new
positions in ROM, the code will still look to RAM addresses for
initialized data. Before any such references are attempted, the
.data section should be copied out into it’s real place. A good
place to do this is usually after .bss initialization. The code
segment below demonstrates how this can be done. The
same code can be used for IDTC/5.0 and 6.0; though for the
R4x00 processors, the user may want to use double-word
loads and stores for faster execution.

 la t0, _src_start
 la t1, _tgt_start
 la t2, _src_end

2: lw t3, 0(t0)
 nop
 sw t3, 0(t1)
 addu t0, 4
 addu t1, 4
 blt t1, t2, 2b
 nop

Modification to OBJCOPY
The binary utility “objcopy” needs to be modified to make it

intelligent enough to recognize the sections that the linker
script was asked to create, and to move the appropriate
sections to their temporary PROM addresses. Most of the
code modifications needed to perform this movement are in
the function setup_section() in the file objcopy.c (the main
source code file for the objcopy utility), and are shown on the
next page, in boldface. Some adjacent code is shown for
reference. Initialization of the variables may not be shown
explicitly; it is mentioned wherever appropriate.

setup_section(......)
{
...../* Original variable declarations here

*/
 int sec_addr;
 static int new_data_addr = 0;
 static int move_section = FALSE;
......
....../* Original code here */
 if (!bfd_set_section_size (obfd,
 osection,
 bfd_section_size (ibfd,

isection)))
 {
 err = “size”;
 goto loser;
 }

 /* start_address = bfd_get_start_address
(ibfd);

 in copy_object() */
 if (!new_data_addr) new_data_addr =

start_address;
 new_data_addr += bfd_section_size (ibfd,

isection);

 /* Got section .start? Now remember current
address

 and keep track of new relocation address
*/

 if (!strcmp(bfd_get_section_name(ibfd,
isection),

 “.start”))
 move_section = TRUE;
 /* Got section .endsect? Stop relocation

*/
 else if (!strcmp(bfd_get_section_name(ibfd,

COPYING INITIALIZED DATA TO RAM APPLICATION NOTE AN-132

228

COPYING INITIALIZED DATA TO RAM APPLICATION NOTE AN-132

isection), “.endsect”))
move_section = FALSE;

 if (move_section) sec_addr = new_data_addr;
 else sec_addr = bfd_section_vma (ibfd,

isection);

 /* Actually do the relocation */
 if (bfd_set_section_vma (obfd, osection,

sec_addr)
== false)

 {
err = “vma”;
goto loser;

 }

 if (bfd_set_section_alignment (obfd,
osection,

bfd_section_alignment
(ibfd, isection))

== false)
 {

err = “alignment”;
goto loser;

 }

......

Compile, link the application and build PROMs
This can be done in the usual manner. The scripts shown

above setup the .data section to reside in RAM area. The new
version of objcopy with this option may be available in future
releases of IDT/C.

SUMMARY
This application note described a technique that relocated

certain sections to ROM and then copied them to their desig-
nated locations in RAM. This method has been demonstrated
on the .data section; it can very easily be extended to include
other sections too.

The advantages are: provide C programmers with the
ability to use initialized variables much more freely, removal of
the need for extra code or data, faster access without requiring
any extra ROM space.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

