LENESANS

Introduction

Stepper motors areamong the most widely used
actuators for high precision motion. They are used
in routing systems, 3D printers, robots, etc.

For similar applications, servo motors were used
in the past; but today, compared to stepper
motors, they have higher costs and complexity
because of the additional components needed to
make them (position sensors and error amplifiers
etc.). Thisis why today, the ideal choice is often a
stepper motor because it's simpler to control it
and it has good accuracy, good torque, moderate
speed, and a low cost.

A stepper motor based application needs two
more components:

- Controller: This is an IC capable of generating
step pulses continuously for the driver to make
the motor rotate.

- Driver: It is the interface between the
controller’s step signals and the necessary current
for the motor windings. There are various types of
drivers; a frequently used one is the H-bridge.

There are several ways to implement a stepper
motor controller. One of them is by using a
microcontroller. In such a scenario, the user has
to program his own firmware to control the speed
and direction. Generally, a dedicated
microcontroller is used as the main controller
because generating step pulses is a continuous
task.

Another way to control the stepper motor is by
using a dedicated standalone integrated circuit
(IC). There are several different brands of
commercial ICs that implement the step pulses
based on an external clock and control signals. In
such a case, the user has to configure the
direction of motion and has to provide a clock
signal.

For the most common applications,
microcontroller based solutions are more
expensive and complex because the user must
also include all the external components such as

AN-1153
Stepper Motor Controller

Author: Ing. AlbertoI. Leibovich & Ing. Pablo E. Leibovich

Date: January 12, 2017

crystal, resistors, transistors, diodes and
decoupling capacitors to run the firmware. The
commercial IC, instead, is designhed to do the
same task without the need to program anything.

In this application note, a SLG46531V will be
configured to run as a commercial IC controller.
The step pulses will be generated based on the
external signals which set the direction of the
motion. Also, the user will have the ability to
enable or disable the motion externally and there
will be a need to provide an external clock to
define the speed motion.

Stepper Motor Description

A stepper motor is called so because the rotor
moves with discrete steps, instead of rotating
continuously like a conventional motor. There are
two basic winding arrangements for the motor
coils in a two phase stepper motor (the traditional
ones): Unipolar and bipolar.

A unipolar stepper motor has singular winding
with a center tap per phase. On each section of
the winding, a unidirectional flow current can be
used to determine the direction of the magnetic
field. In figure 1, a schematic can be seen. To
rotate, the user must apply sequential current
with the correct direction to each half of the
winding.

Common

oo

Figure 1. Unipolar Motor Schematic

© 2022 Renesas Electronics Corporation

Page 1 of 9

LENESANS

A bipolar stepper motor has a single winding per
phase. The current in the winding needs to be
reversed in order to reverse a magnetic pole for
rotating the rotor. In figure 2, another schematic
can be seen. To rotate, the user must apply
current to each winding sequentially, inverting the
flow current direction in each step.

A

[

D C

Figure 2. Bipolar Motor Schematic

In this application note, we will use a bipolar
stepper motor, since the current flows across the
entire coil, they have more torque. If a unipolar
stepper motoris to be used, slight modifications
will have to be done to the driver circuit; the
controller, however, can be used without
modifications.

There are three typical ways of controlling the
winding current steps in a bipolar motor.

The Full Step method is the usual method for
driving the motor. The two phases are always
energized (with the corresponding current
direction) ensuring that the rotor always aligns
itself between the two pole positions. This way,
the motor will provide its maximum torque.

The Wave Drive method energizes only one
phase at a time. It has the same number of steps
as the full step drive, but the motor will have
significantly lesser torque. Itis, thus, rarely used.

The Half Step method energizes one phase,
then two, then one and so on.

Stepper Motor Controller

This ensures that the motor moves with half step
increments. With this method, the angular
resolution gets incremented but the torque is
considerably lesser when compared with that of
the Full Step method.

One of the parameters of a stepper motor is the
step angle per revolution. It indicates how many
steps need to be done to make a revolution of the
motor; this in turn defines how many times the
sequence of the driving method has to be
repeated for a given distance.

To interface the step pulses with the motor, an H-
bridge is used to provide the current. There are
several commercial H-Bridge integrated circuits or
we can implement it using GreenPAK ICs.

This application note will implement the Full Step
method and the Half Step method so the user
may be able to select one of them with an input
from the controller.

Logic Description and Schematic

Diagram

The design implemented in this application note
can be described with the schematic shown in
figure 3.

The inputs and outputs of the system along with
the simplified schematics of the H-Bridges can be
seen in figure 3. The inputs and outputs are
described in Table 1.

The H-bridge shown in figure 3 is a simplified
schematic of the circuit. Each bridge controls the
current of one phase of the stepper motor, so in
this case two H-Bridges will be needed.

The implemented controller generates step pulses
at the outputs A, B, C and D if the enable signal is
set to high. In this case, sighals OFF 1 and OFF 2
are both set to a high leveland the sequence of
steps is generated depending on the level of
signal A/C. If A/C is low, the sequence for an
anticlockwise motion is generated, butif it is high,
the sequence for a clockwise motion is generated.

© 2022 Renesas Electronics Corporation

Page 2 of 9

[zEN ESAS Stepper Motor Controller
e

Ve
A
B
H/F OFF1
_ Ve
A/C
Enable
C
Clock
D
OFF2
Controller

Figure 3. Application Schematic

Figure 4. Clockwise step pulses sequence

© 2022 Renesas Electronics Corporation Page 3 of 9

LENESANS

Stepper Motor Controller

SIGNAL FUNCTION
H/F Determines the control method. Low levelindicates Half Step method
and high level indicates Full Step method.
A/C Determines the direction of the motion. Low level indicates anticlockwise
rotating and high levelindicates clockwise rotating.
Enable A high level enables the controller, starting motion. A low level disables
the controller, stopping motion.
A Motor phase A step signal.
B Motor phase B step signal.
C Motor phase C step signal.
D Motor phase D step signal.
OFF1 Controls one of the H-Bridges. When low, all of transistor outputs are
turned off.
OFF2 Same as OFF 1 for the second H-Bridge.

Table 1. Inputs and outputs of the design

Also, the sequence depends on the selected
method. If H/F is low, the half step sequence is
generated and if H/F is high, the full step
sequence is generated. For changing the direction
or the method, it's recommendable to disable the
motion first.

When the motion is disabled, the signals A, B, C,
D, OFF 1 and OFF 2 are set to a low level.

In figure 4, the step pulses’ sequence forthe Half
Step method is shown.

In figure 5, the step pulses’ sequenceforthe Full
Step method is shown.

To implement the sequence, a sequential signal
generator with the ASM module of the GreenPAK
will be used.

Implementation

As described earlier, a stepper motor motion is
based on a sequence of steps. To implement it,
the Asynchronous State Machine module of
SLG46531V is used.

The ASM module is configured for the largest
sequence (half step method), as it can be seen in
figure 6. There are 8 states; one forevery step.

The ASMis a linear sequencer whichcango from
State 0 to State 7 or from State 7to State O for
implementing clockwise or anticlockwise motion.

In figure 7, the ASM output configuration is
shown.

© 2022 Renesas Electronics Corporation

Page 4 of 9

[IE N ESAS Stepper Motor Controller

Figure 5. Clockwise step pulses sequence

A, B, C and D are configured with the Ao, Bo, Co andDo are bit flagsfor the Full Step

corresponding values of the outputs of the system Method. Because in this method both coils are

for the Half Step Method; so in the case of this always energized, these bits indicate the output

method, the GreenPak outputs copy these values. that has to be high in the steps, corresponding to
the one energized coil of Half Step method.

Stata O l State Connedtion Matrix Output RAM
name 2 § § & = = v o
wuea o [o [l o [o o o]
State 7 Ses State1|T|T| 0 TlLT 1 T|
stte2| o [4]0 |0 ofo]a]o]
5tate3|_ T TTT|
o |

State 6

-

a0

0 |
|1 u|

Figure 7. ASM states

0
o
o
o

L
Bl
m
(=]
E
| § | '
[]

Ctate & State 7 |] |

Figure 6. ASM states

© 2022 Renesas Electronics Corporation Page 5 of 9

LENESANS

These flags are used later in the output logic. The
clock control module can be seenin figure 8, with
4-bit LUT1 configuration in figure 9.

The transition between the ASM states is
controlled by the 4-bit LUT1 outputand the 2-bit
LUTs.

To change from an even state to an odd state, the
output of the 4-bit LUT1 must be low. To change
from an odd state to an even state, the output of
the 4-bit LUT1 must be high.

To implement this, in the case of Half Step
method (H/F input in a low state), the clock input
is connected to the DFF4, which is configured as a
T-type FF. The 4-bit LUT1 copies the output of the
FF (this is defined by the H/F connected to IN2).

ASM nRESET
(State 0)

ASM QUTPUT

Figure 8. Clock control

Stepper Motor Controller

In case of Full Step method (H/F input in a high
state), the clock is directly copied by the 4-bit
LUT1. With this logic, the ASM in the Half Step
method changes its state on every rising edge of
the clock (each rising edge is a DFF4 output
transition from either low to high or from high to
low).

In the Full Step Method, the ASM changes its
state on both edges of the clock, so each motor’s
step (each clock cycle) correspondsto two states
of the ASM. 2-bit LUTO, LUT1, LUT2 and LUT3
determines whether the transition is to be made
to the next state or to the previous state,
depending on the direction of the motion selected
by the pin A/C.

4-bit LUT1/16-bit CNT1/DLY1/F SM1

Type: LT =

Zz
w
z
oY
z
pury
=
(=]
o
[=
=]

=Elojlojojojojojojojo o

[y

e e e e T T R N = T = TR = T T T = T = T 1
el e e e = L= B = R = TR R R = I e BN o N o)
R - D = = e i iy i~ [P =
Y- I - I - I N - A - A

Figure 9. 4-but LUT1 configuration

© 2022 Renesas Electronics Corporation

Page 6 of 9

LENESANS

The output module can be seenin figure 10, with
4-bit LUTO configuration in figure 11.

The logic of each output depends on the
corresponding pin’s ASM output (A), the
corresponding ASM flag output (Ao), the enable
signal and the motion direction signal. If the Half
Step method is selected, the pin copies the pin
output of the ASM. If the Full Step method is
selected, the pin is high when the corresponding
ASM output is high or when the corresponding
ASM flag outputis high. In this way, the output is
high in two states of the same step.

Figure 10. Output module

Stepper Motor Controller

In other words, considering that the ASM changes
to another state on both edges of clock, and that
every full step correspondsto two states of the
ASM, a full step is done on every rising edge of
the clock.

For outputs B, C and D, the same logic is used but
is implemented with two 3-bit LUTs because
GreenPAK doesn’thave more 4-bit LUTSs.

All the outputs and the clock module also depend
on the Enable signal. The Enable signal
determines whether the output signal of the
modules is always low (when the user disables
the controller) or whether the outputs are
enabled.

4-bit LUTO/WS Ctrl/16-bit CNTO/DLYO..

Type: LuT =
IN3 IN2 IN1 INO OuT
0 0 0 0
0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 | 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 |1

—
u—y
"y
—h
o =

Figure 11. 4-but LUTO configuration

© 2022 Renesas Electronics Corporation

Page 7 of 9

[zEN ESAS Stepper Motor Controller
e

Also, this input is copied to OFF 1 and OFF 2
outputs. The entire implementation is shown in
figure 12.

State 0
. |
.

State 1
. |
.

State 2
. |
.

State 4

|

State 5
1

State 6

State 7

ASM nRESET
(State 0)

ASM QUTPUT

Figure 12. Stepper Motor Controller block diagram

=]
o

Figure 13. Half Step outputs test Figure 14. Full Step outputs test

© 2022 Renesas Electronics Corporation Page 8 of 9

LENESANS

Tests and Conclusion

To test the implementation, signals Clock, A, B, C
and D were registered (in this order) with a logic
analyzer.

The half step method outputs can be seen in
figure 13 and the Full Step method outputs can be
seenin figure 14.

In this application note, a stepper motor controller
was implemented using SLG46531V. The user
must set the direction, the controlling method and

Stepper Motor Controller

must also provide a clock to make the motor
rotate.

Steps are done on every rising edge of the clock
and the outputs are designed to control the driver
circut of the motor coils. With this
implementation, the user only has to provide a
clock signal without any other external circuit or
controlled logic to generate step pulses.

© 2022 Renesas Electronics Corporation

Page 9 of 9

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

