

© 2022 Renesas Electronics Corporation Page 1 of 9

AN-1153
Stepper Motor Controller

Author: Ing. Alberto I. Leibovich & Ing. Pablo E. Leibovich

Date: January 12, 2017

Introduction

Stepper motors are among the most widely used

actuators for high precision motion. They are used

in routing systems, 3D printers, robots, etc.

For similar applications, servo motors were used

in the past; but today, compared to stepper

motors, they have higher costs and complexity

because of the additional components needed to

make them (position sensors and error amplifiers

etc.). This is why today, the ideal choice is often a

stepper motor because it’s simpler to control it

and it has good accuracy, good torque, moderate

speed, and a low cost.

A stepper motor based application needs two

more components:

- Controller: This is an IC capable of generating

step pulses continuously for the driver to make

the motor rotate.

- Driver: It is the interface between the

controller’s step signals and the necessary current

for the motor windings. There are various types of

drivers; a frequently used one is the H-bridge.

There are several ways to implement a stepper

motor controller. One of them is by using a

microcontroller. In such a scenario, the user has

to program his own f irmware to control the speed

and direction. Generally, a dedicated

microcontroller is used as the main controller

because generating step pulses is a continuous

task.

Another way to control the stepper motor is by

using a dedicated standalone integrated circuit

(IC). There are several dif ferent brands of

commercial ICs that implement the step pulses

based on an external clock and control signals. In

such a case, the user has to configure the

direction of motion and has to provide a clock

signal.

For the most common applications,

microcontroller based solutions are more

expensive and complex because the user must

also include all the external components such as

crystal, resistors, transistors, diodes and

decoupling capacitors to run the f irmware. The

commercial IC, instead, is designed to do the

same task without the need to program anything.

In this application note, a SLG46531V will be

configured to run as a commercial IC controller.

The step pulses will be generated based on the

external signals which set the direction of the

motion. Also, the user will have the ability to

enable or disable the motion externally and there

will be a need to provide an external clock to

define the speed motion.

Stepper Motor Description

A stepper motor is called so because the rotor

moves with discrete steps, instead of rotating

continuously like a conventional motor. There are

two basic winding arrangements for the motor

coils in a two phase stepper motor (the traditional

ones): Unipolar and bipolar.

A unipolar stepper motor has singular winding

with a center tap per phase. On each section of

the winding, a unidirectional f low current can be

used to determine the direction of the magnetic

f ield. In f igure 1, a schematic can be seen. To

rotate, the user must apply sequential current

with the correct direction to each half of the

winding.

Figure 1. Unipolar Motor Schematic

© 2022 Renesas Electronics Corporation Page 2 of 9

Stepper Motor Controller

A bipolar stepper motor has a single winding per

phase. The current in the winding needs to be

reversed in order to reverse a magnetic pole f or

rotating the rotor. In f igure 2, another schematic

can be seen. To rotate, the user must apply

current to each winding sequentially, inverting the

f low current direction in each step.

In this application note, we will use a bipolar

stepper motor, since the current f lows across the

entire coil, they have more torque. If a unipolar

stepper motor is to be used, slight modif ications

will have to be done to the driver circuit; the

controller, however, can be used without

modif ications.

There are three typical ways of controlling the

winding current steps in a bipolar motor.

The Full Step method is the usual method for

driving the motor. The two phases are always

energized (with the corresponding current

direction) ensuring that the rotor always aligns

itself between the two pole positions. This way,

the motor will provide its maximum torque.

The Wave Drive method energizes only one

phase at a time. It has the same number of steps

as the full step drive, but the motor will have

signif icantly lesser torque. It is, thus, rarely used.

The Half Step method energizes one phase,

then two, then one and so on.

This ensures that the motor moves with half step

increments. With this method, the angular

resolution gets incremented but the torque is

considerably lesser when compared with that of

the Full Step method.

One of the parameters of a stepper motor is the

step angle per revolution. It indicates how many

steps need to be done to make a revolution of the

motor; this in turn defines how many times the

sequence of the driving method has to be

repeated for a given distance.

To interface the step pulses with the motor, an H-

bridge is used to provide the current. There are

several commercial H-Bridge integrated circuits or

we can implement it using GreenPAK ICs.

This application note will implement the Full Step

method and the Half Step method so the user

may be able to select one of them with an input

from the controller.

Logic Description and Schematic

Diagram

The design implemented in this application note

can be described with the schematic shown in

f igure 3.

The inputs and outputs of the system along with

the simplif ied schematics of the H-Bridges can be

seen in f igure 3. The inputs and outputs are

described in Table 1.

The H-bridge shown in f igure 3 is a simplif ied

schematic of the circuit. Each bridge controls the

current of one phase of the stepper motor, so in

this case two H-Bridges will be needed.

The implemented controller generates step pulses

at the outputs A, B, C and D if the enable signal is

set to high. In this case, signals OFF 1 and OFF 2

are both set to a high level and the sequence of

steps is generated depending on the level of

signal A/C. If A/C is low, the sequence for an

anticlockwise motion is generated, but if it is high,

the sequence for a clockwise motion is generated.

Figure 2. Bipolar Motor Schematic

© 2022 Renesas Electronics Corporation Page 3 of 9

Stepper Motor Controller

Figure 3. Application Schematic

Figure 4. Clockwise step pulses sequence

© 2022 Renesas Electronics Corporation Page 4 of 9

Stepper Motor Controller

SIGNAL FUNCTION

H/F Determines the control method. Low level indicates Half Step method

and high level indicates Full Step method.

A/C Determines the direction of the motion. Low level indicates anticlockwise

rotating and high level indicates clockwise rotating.

Enable A high level enables the controller, starting motion. A low level disables

the controller, stopping motion.

A Motor phase A step signal.

B Motor phase B step signal.

C Motor phase C step signal.

D Motor phase D step signal.

OFF1 Controls one of the H-Bridges. When low, all of transistor outputs are

turned off.

OFF2 Same as OFF 1 for the second H-Bridge.

Also, the sequence depends on the selected

method. If H/F is low, the half step sequence is

generated and if H/F is high, the full step

sequence is generated. For changing the direction

or the method, it’s recommendable to disable the

motion f irst.

When the motion is disabled, the signals A, B, C,

D, OFF 1 and OFF 2 are set to a low level.

In f igure 4, the step pulses’ sequence for the Half

Step method is shown.

In f igure 5, the step pulses’ sequence for the Full

Step method is shown.

To implement the sequence, a sequential signal

generator with the ASM module of the GreenPAK

will be used.

Implementation

As described earlier, a stepper motor motion is

based on a sequence of steps. To implement it,

the Asynchronous State Machine module of

SLG46531V is used.

The ASM module is configured for the largest

sequence (half step method), as it can be seen in

f igure 6. There are 8 states; one for every step.

The ASM is a linear sequencer which can go f rom

State 0 to State 7 or from State 7 to State 0 f or

implementing clockwise or anticlockwise motion.

In f igure 7, the ASM output configuration is

shown.

Table 1. Inputs and outputs of the design

© 2022 Renesas Electronics Corporation Page 5 of 9

Stepper Motor Controller

A, B, C and D are configured with the

corresponding values of the outputs of the system

for the Half Step Method; so in the case of this

method, the GreenPak outputs copy these values.

Ao, Bo, Co and Do are bit f lags f or the Full Step

Method. Because in this method both coils are

always energized, these bits indicate the output

that has to be high in the steps, corresponding to

the one energized coil of Half Step method.

Figure 5. Clockwise step pulses sequence

Figure 6. ASM states

Figure 7. ASM states

© 2022 Renesas Electronics Corporation Page 6 of 9

Stepper Motor Controller

These f lags are used later in the output logic. The

clock control module can be seen in f igure 8, with

4-bit LUT1 configuration in f igure 9.

The transition between the ASM states is

controlled by the 4-bit LUT1 output and the 2-bit

LUTs.

To change from an even state to an odd state, the

output of the 4-bit LUT1 must be low. To change

from an odd state to an even state, the output of

the 4-bit LUT1 must be high.

To implement this, in the case of Half Step

method (H/F input in a low state), the clock input

is connected to the DFF4, which is configured as a

T-type FF. The 4-bit LUT1 copies the output of the

FF (this is def ined by the H/F connected to IN2).

In case of Full Step method (H/F input in a high

state), the clock is directly copied by the 4-bit

LUT1. With this logic, the ASM in the Half Step

method changes its state on every rising edge of

the clock (each rising edge is a DFF4 output

transition from either low to high or from high to

low).

In the Full Step Method, the ASM changes its

state on both edges of the clock, so each motor’s

step (each clock cycle) corresponds to two states

of the ASM. 2-bit LUT0, LUT1, LUT2 and LUT3

determines whether the transition is to be made

to the next state or to the previous state,

depending on the direction of the motion selected

by the pin A/C.

Figure 8. Clock control Figure 9. 4-but LUT1 configuration

© 2022 Renesas Electronics Corporation Page 7 of 9

Stepper Motor Controller

The output module can be seen in f igure 10, with

4-bit LUT0 configuration in f igure 11.

The logic of each output depends on the

corresponding pin’s ASM output (A), the

corresponding ASM f lag output (Ao), the enable

signal and the motion direction signal. If the Half

Step method is selected, the pin copies the pin

output of the ASM. If the Full Step method is

selected, the pin is high when the corresponding

ASM output is high or when the corresponding

ASM f lag output is high. In this way, the output is

high in two states of the same step.

In other words, considering that the ASM changes

to another state on both edges of clock, and that

every full step corresponds to two states of the

ASM, a full step is done on every rising edge of

the clock.

For outputs B, C and D, the same logic is used but

is implemented with two 3-bit LUTs because

GreenPAK doesn’t have more 4-bit LUTs.

All the outputs and the clock module also depend

on the Enable signal. The Enable signal

determines whether the output signal of the

modules is always low (when the user disables

the controller) or whether the outputs are

enabled.

Figure 10. Output module Figure 11. 4-but LUT0 configuration

© 2022 Renesas Electronics Corporation Page 8 of 9

Stepper Motor Controller

Also, this input is copied to OFF 1 and OFF 2

outputs. The entire implementation is shown in

f igure 12.

Figure 12. Stepper Motor Controller block diagram

Figure 13. Half Step outputs test Figure 14. Full Step outputs test

© 2022 Renesas Electronics Corporation Page 9 of 9

Stepper Motor Controller

Tests and Conclusion

To test the implementation, signals Clock, A, B, C

and D were registered (in this order) with a logic

analyzer.

The half step method outputs can be seen in

f igure 13 and the Full Step method outputs can be

seen in f igure 14.

In this application note, a stepper motor controller

was implemented using SLG46531V. The user

must set the direction, the controlling method and

must also provide a clock to make the motor

rotate.

Steps are done on every rising edge of the clock

and the outputs are designed to control the driver

circuit of the motor coils. With this

implementation, the user only has to provide a

clock signal without any other external circuit or

controlled logic to generate step pulses.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

