

© 2022 Renesas Electronics Corporation

AN-1097
7-Segment LED Control

with GreenPAK
Author: David Riedell

Date: February 22, 2016

Introduction

This app note will explain how to control 7-

segment LED displays using two new

components in GreenPAK: the I2C block and

the asynchronous state machine (ASM). It

incorporates I2C I/O Controller techniques

discussed in AN-1090.

1. 7-Segment Control Overview

2. 2-Digit GreenPAK Configuration

3. 4-Digit GreenPAK Configuration

4. I2C Control with an Arduino Uno

7-Segment Control Overview

A 7-segment display has 7 distinct sections

that can be powered on individually. The

display can show digits 0-9 depending on

which segments are lit. It can also display

letters A-F for use in hexadecimal

applications. These displays typically include

a segment for the Decimal Place (dp) and an

enable pin.

In this App Note we will be driving a 2-Digit

Common-Anode LED 7-Segment Display with

the pinout shown in Figure 3. Since this is a

Common-Anode display, its enable pins are

active HIGH and its segments are active

LOW, meaning if pin EN1 is HIGH and the pin

F1 is LOW, the F1 segment will be turned on.

The same result could be achieved with a

Common-Cathode LED 7-Segment with

inverted logic.

Figure 2. Generic Segment Names

Figure 2. 2-Digit 7-Segment LED

Display

Used in this App Note

Figure 3. 2-Digit LED 7-Segment Display

https://www.renesas.com/document/apn/1090-simple-i2c-io-controllers-slg46531v

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

GreenPAK Configuration

DFF1 and DFF2 are used to create alternating

enable signals which also toggle between

ASM states D[0] and D[1]. When the output

of DFF1 is high, the ASM is in state D[0],

D[0]_EN is high, and Digit 0 is enabled via

the EN0 pin on the LED display. When the

output of DFF2 is high, the ASM is in state

D[1] and Digit 1 is enabled.

Figure 5. 2-Digit Enable Signals

Figure 4. 2-Digit GreenPAK Block Diagram

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

The LED segment control bits for Digit 1 and

Digit 0 are stored in State D[1] and State

D[0] of the ASM. If you open the ASM Editor,

you will see that the state machine is

extremely simple, as shown in Figure 6. 2-

Digit ASM Configuration. The segment control

signals a, b, c, d, e, f, g, and dp are

connected to their corresponding pins for

both Digit 1 and Digit 0 as shown in Figure 7.

Although both digits are connected to the

segment control signals, only one digit enable

pin is asserted at a time.

Figure 6. 2-Digit ASM Configuration

Figure 7. External Connections between GreenPAK and 2-Digit 7-Segment Display

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

4-Digit GreenPAK Configuration

In order to expand our design to drive a 4-

Digit 7-Segment display, we added two more

DFFs, two more ASM states, and two more

enable pins. Pin10 is now the enable for Digit

2 (D[2]), and Pin12 is the enable for Digit 3

(D[3]).

Instead of toggling between two enable

signals, we now cascade through four enable

signals so that only one digit is enabled at a

time.

Figure 8. 4-Digit GreenPAK Block Diagram

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

Figure 10 shows the ASM configuration to

transition between 4 digits. Figure 10 shows

the external connection routing between the

segment control signals and each of their

corresponding pins. The routing of each

enable signal corresponds directly to its

enable pin as illustrated in Figure 11 and

Figure 12.

GreenPAK

Pin

Signal LED

Pin 6 D[0]_EN EN0

7 D[1]_EN EN1

10 D[2]_EN EN2

12 D[3]_EN EN3

Figure 12. Signal Routing

Figure 11. External Connections between GreenPAK and 4-Digit 7-Segment Display

Figure 10. 4-Digit Enable Signals

Figure 10. 4-Digit ASM Configuration

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

This design could be expanded further to

handle up to 7 digits since we have four more

ASM states, three more GPIO pins for enable

signals (Pin3, Pin4, and Pin5), and plenty of

unused DFFs. However, at that point the duty

cycle of each digit would be low enough that

it may be difficult to read.

I2C Control with an Arduino

Uno

In this section, we will use I2C to write

directly to the ASM RAM table. Each state

(D[3:0]) in the ASM accesses 1 byte of RAM.

Each byte has 8 bits which control the 8

segments on the display. (To read more

about how to use I2C with GreenPAK5, read

AN-1090 or refer to the part’s datasheet.)

To write to the GreenPAK’s registers via I2C,

you need 3 bytes:

Control

Byte

0x00 Control Code = ‘0000’,

Block Address = ‘000’,

R/W = ‘0’

Address

Byte

0xD0 /

0xD1

Register Addresses of

ASM RAM for States

D[0] & D[1]

Data

Byte

0x?? Data to send via I2C

Figure 13 shows the I2C Data Byte needed to

make the 7-Segment LED Display show HEX

0:F.

Notice that the Decimal Point bit is HIGH for

every hex value, meaning that the active-

LOW decimal point is off. If you want to

include a decimal point after your digit, all

you need to do is BITWISE AND 0x7F to your

I2C Data Byte. For example, to make a digit

display ‘0.’, the Data Byte would be: 0xC0 &

0x7F = 0x40.

We wrote a simple Arduino program to send

digits to the GreenPAK via I2C to illustrate

the control system. This program increments

D[3:2] from ‘AA’ to ‘FF’, and increments

D[1:0] from ‘0.0’ to ‘9.9’. The code used is

included in Appendix A and the Arduino file is

included in the app note materials.

https://www.renesas.com/us/en/document/apn/1090-simple-i2c-io-controllers-slg46531v
http://www.silego.com/softdoc/datasheet.html?filterPN=SLG46531V

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

Hex

Value

7-
Segment
Display

LCD Segment

Byte
I2C

Data
d
p

g f e d c b a

0 1 1 0 0 0 0 0 0 11000000 0xC0

1 1 1 1 1 1 0 0 1 11111001 0xF9

2 1 0 1 0 0 1 0 0 10100100 0xA4

3 1 0 1 1 0 0 0 0 10110000 0xB0

4 1 0 0 1 1 0 0 1 10011001 0x99

5 1 0 0 1 0 0 1 0 10010010 0x92

6 1 0 0 0 0 0 1 0 10000010 0x82

7 1 1 1 1 1 0 0 0 11111000 0xF8

8 1 0 0 0 0 0 0 0 10000000 0x80

9 1 0 0 1 0 0 0 0 10010000 0x90

A 1 0 0 0 1 0 0 0 10001000 0x88

B 1 0 0 0 0 0 1 1 10000011 0x83

C 1 1 0 0 0 1 1 0 11000110 0xC6

D 1 0 1 0 0 0 0 1 10100001 0xA1

E 1 0 0 0 0 1 1 0 10000110 0x86

F 1 0 0 0 1 1 1 0 10001110 0x8E

Figure 13. Hex translation to I2C Data Byte

Conclusion

Thanks to new features like I2C and the ASM

in GreenPAK, it is a fairly simple task to

leverage GreenPAK to drive a series of 7-

Segment LED Displays.

This design has the flexibility to turn on any

combination of LED segments while only

requiring two microcontroller pins for I2C:

SCL and SDA.With some adjustments, this

design could be expanded to drive up to

seven 7-segment displays.

© 2022 Renesas Electronics Corporation

7-Segment LED Control

with GreenPAK

Appendix A

#include <Wire.h>

// Global Variables
int i = 0;
int w = 0, x = 0;
int y = 10, z = 10;
byte DP = 0x7F; // decimal point sets bit7 HIGH
byte D[4] = {0xD0, 0xD1, 0xD2, 0xD3}; //address of the digits
byte number[17] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
// 0 1 2 3 4 5 6 7
 0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E, 0xFF};
// 8 9 A B C D E F clr

void setup() {
 Wire.begin();
 clearDigits();
 for (i = 0; i < 4; i++) { //set all digits to ‘8.’
 writeI2C(i, 0x00);
 delay(500);
 }
 clearDigits();
}

void loop() {
 writeI2C(1, number[w] & DP);
 if (w == 9 && x == 9) {w = 0;} else if (w != 9 && x == 9) {w++;}
 writeI2C(0, number[x]);
 if (x == 9) {x = 0;} else {x++;}
 delay(500);

 writeI2C(3, number[y]);
 if (y == 15 && z == 15) {y = 10;} else if (y != 15 && z == 15) {y++;}
 writeI2C(2, number[z]);
 if (z == 15) {z = 10;} else {z++;}
 delay(500);
}

void clearDigits() {
 for (i = 0; i < 4; i++) {writeI2C(i, 0xFF);}
 delay(500);
}

void writeI2C(int digit, byte num) {
 Wire.beginTransmission(0x00); //control byte
 Wire.write(D[digit]); //address byte for digit
 Wire.write(num); //data byte for digit
 Wire.endTransmission();
}

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

