

1 Description

The iW709 is an AC/DC secondary-side controller for USB Power Delivery (PD) 3.0 with Programmable Power Supply (PPS) and Qualcomm[®] Quick Charge[™] QC4+ (QC2.0/QC3.0/QC4) support which integrates a secondary-side regulation controller, interface protocol controller, USB V_{BUS} driver and synchronous rectifier controller into a single IC.

The iW709 allows rapid charge of USB PD PPS or QC-enabled mobile devices (MDs). It resides on the secondary side of an AC/DC travel adapter (TA) and allows the TA to be configured for multi-level output voltage and current.

The iW709 measures the output voltage and load current and sends the results to a digital compensator for closed-loop control of flyback converter. The digital control signal generated by the compensator is converted to an analog signal and transferred to primary controller via an optocoupler.

The iW709 is also an advanced synchronous rectifier (SR) controller with an integrated MOSFET driver. The device works with an external power MOSFET to replace the main rectifying diode on the secondary of a flyback converter. The SR control block optimizes the SR on/off timing and also uses proprietary technologies for timing control of ZVS or active clamp flyback topologies to achieve best efficiency when coupled with Dialog's ZVS-enabled primary-side controllers.

The iW709 can be paired with one of Dialog's high-performance flyback controllers that support either quasi-resonant (QR) control or QR and Zero Voltage Switching (ZVS) technology to achieve high efficiency, low no-load power consumption, accuracy voltage/current control and fast dynamic load response.

2 Features

- USB-IF certified: USB PD 3.0 with PPS
 - » Supports 3.3V to 21V in 20mV steps and output current in 50mA steps
- Optionally supports Qualcomm QC4+ (QC2.0/QC3.0/QC4)
- High resolution accuracy multi-level output voltage and current control
- Built-in digital loop compensation to minimize the external component count
- Built-in synchronous rectification controller with integrated driver
- Optimized V_{DS}-based SR timing and driving control for
 ZVS or active clamp flyback with wide output range

- NFET driver for V_{BUS} switch
- Programmable active fast discharge from a high voltage to 5V at MD unplug or from a high voltage level to a lower level upon request with built-in switch or external switch
- Intelligent low power mode enables very low no-load power consumption when paired with one of Dialog's primary-side controllers, the iW9801 or iW9809
- Supports DCM and CCM operation
- PD-based power derating feature
- Wide V_{VIN} operating range from 2.6V to 25V
- 16-Lead QFN package

3 Applications

 Direct-charge AC/DC adapters for USB PD enabled smart phones, tablets and other mobile devices

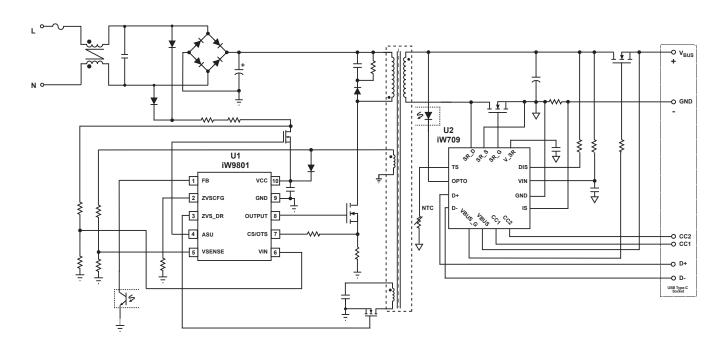


Figure 3.1: iW709 Typical Application Circuit for Multi-Level Voltage and Current Control with ZVS Technology (Using iW9801 as ZVS-enabled Primary-Side Controller.)

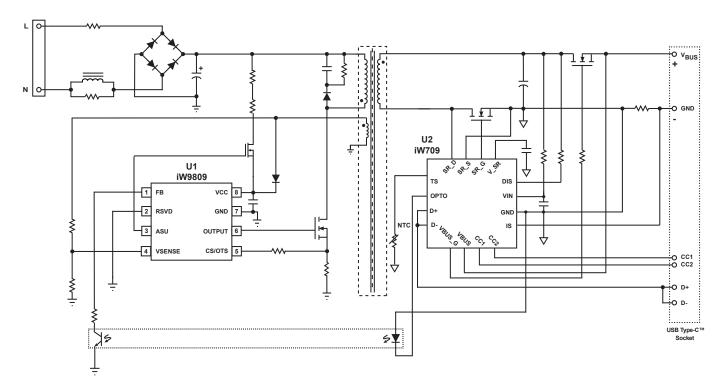


Figure 3.2 :iW709 Typical Application Circuit with Active Start-up Circuit
(Using iW9809 as Primary-Side Controller. Achieving Multi-Level CV/CC Regulation and <20mW No-load Power
Consumption in a Typical 25W Design)

4 Pinout Description

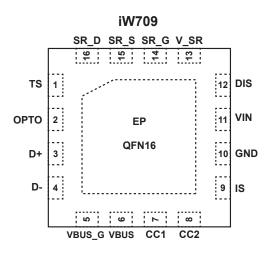
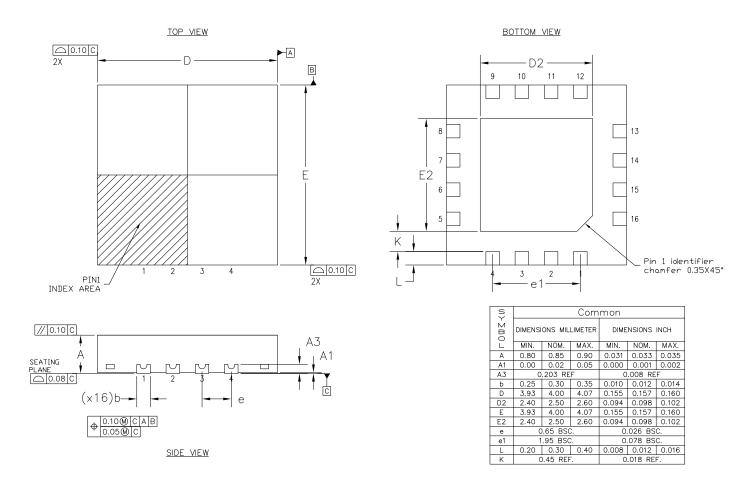


Figure 4.1: 16-Lead QFN Package

Pin No.	Pin Name	Туре	Pin Description		
1	TS	Analog Input/ Output	Temperature sensing pin. Connect to an external NTC resistor to measure the power adapter temperature.		
2	OPTO	Analog Output	Optocoupler driver to transfer the output regulation control signal to primary side.		
3	D+	Analog Input/ Output	USB D+ signal.		
4	D-	Analog Input/ Output	USB D- signal.		
5	VBUS_G	Analog Input/ Output	Gate drive for external N-FET switch.		
6	VBUS	Analog Input/ Output	Connect to V _{BUS} after N-FET switch.		
7	CC1	Analog Input/ Output	Communication channel 1.		
8	CC2	Analog Input/ Output	Communication channel 2.		
9	IS	Analog Input	Output Current sensing , connect to current sensing resistor "+" terminal.		
10	GND	Ground	Ground, connect to current resistor "-" terminal.		
11	VIN	Power Analog Input	Input of the internal LDO and output voltage sensing circuit.		
12	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.		
13	V_SR	Power	Voltage supply for SR drive. Connect this pin to a capacitor.		
14	SR_G	Analog Output	Synchronous rectifier MOSFET driver.		
15	SR_S	Analog Input	Synchronous rectifier MOSFET source input.		
16	SR_D	Analog Input	Synchronous rectifier MOSFET drain voltage sensing and the Pulse Linear Regulator (PLR) input.		

5 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage if exceeded. For maximum safe operating conditions, refer to Electrical Characteristics in Section 6.


Parameter	Symbol	Value	Units
V _{VIN} DC supply voltage range (I _{VIN} = 15mA max)	V _{VIN}	-0.3 to 30	V
Continuous DC supply current at VIN pin (V _{VIN} = 12V)	I _{VO}	15	mA
SR_G peak output current	I _G	±2	А
SR_G voltage	V _G	-0.6 to 10	V
SR_D voltage (Note 1)	V _D	-1.5 to 120	V
SR_D peak current	I _{DRAIN}	-40 to 300	mA
SR_S voltage	Vs	-0.5 to 6	V
V_SR voltage	V_{V_SR}	10	V
DIS voltage	V _{DIS}	30	V
Peak current at DIS pin	I _{DIS}	600	mA
OPTO voltage	V _{OPTO}	-0.6 to 30	V
D+ voltage	V _{D+}	-0.3 to 25	V
D- voltage	V _{D-}	-0.3 to 25	V
CC1 voltage	V _{CC1}	-0.3 to 25	V
CC2 voltage	V _{CC2}	-0.3 to 25	V
IS voltage	V _{IS+}	-0.3 to 7	V
TS voltage	V_{SD}	-0.3 to 7	V
VBUS voltage	V_{VBUS}	-0.7 to 30	V
VBUS_G voltage	V_{VBUS_G}	-0.7 to 35	V
Junction temperature	T _J	-40 to 150	°C
Storage temperature		-65 to 150	°C
Thermal Resistance Junction-to-Ambient	θ_{JA}	66.9	°C/W
ESD rating per JEDEC JS-001-2017 (CC1/CC2/D+/D- pins)		± 8,000	V
ESD rating per JEDEC JS-001-2017 (all other pins)		± 2,000	V

Notes:

Note 1. The DRAIN pin voltage should not be below -0.6V for more than 500ns.

6 Physical Dimensions

7 Part Number Code Description

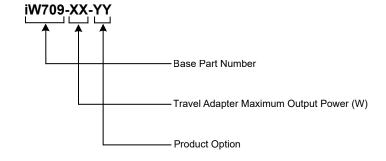


Figure 7.1: iW709 Part Number Decoder

iW709

AC/DC Secondary-Side Controller with Integrated Synchronous Rectification for USB PD 3.0 w/PPS and Qualcomm[®] Quick Charge[™] 4+ (QC2.0/QC3.0/QC4) IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2022 Renesas Electronics Corporation. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Product Summary Rev. 1.1 23-Feb-2022