
 Software Manual

R16US0007EU0101 Rev.1.01 Page 1
Nov 17, 2021 © 2021 Renesas Electronics

This manual provides a detailed description and application guidelines for using the ISL94212 sample code. It
includes sample library functions and examples to speed up the design of high voltage battery management
systems, consisting of multiple (stacked) battery front end ICs. The ISL94212 software package provides robust
and easy access to the resources and functionality of the device. The sample code includes a
specialized-to-the-device library, a demo battery management application and a user interface; these components
are designed to be portable and suitable for integration into multitasking software projects.

Features
The software package has the following features:

▪ Stand-alone or daisy chain operation

▪ Full system scalability

▪ Custom configurations

▪ Easy status and error monitoring

▪ Integrated fault diagnostics and processing

▪ Application Programming Interface (API) for easy integration

▪ Fully compatible with Renesas Advanced (RA) Family 32bit MCUs

Target Device
The library is intended to be used with ISL94212 in stand-alone or stacked configuration. The target device is the
ISL94212 Li-ion battery manager IC that supervises up to 12 series connected cells and can operate in
standalone mode or with up to 14 devices in a stack, monitoring up to 168 Li-ion cells in total. The daisy chain
hardware provides robust, redundant board-to-board communications using differential, AC-coupled signaling.
The MCU communicates with the stack master device using a high-speed SPI communication interface.

Figure 1. Software Package Structure

Battery Front End ISL94212 ISL94212 ISL94212

 Communication
Library
Communication
Library

 CommunicationCommunication
LibraryLibrary
Communication
Library API Control Struct Configuration

MCU ISL94212 Software Package

 BMS ApplicationBMS Application DEMO Manage Faults Balancing
 BMS ApplicationBMS Application DEMO Manage Faults BalancingBMS Application DEMO Manage Faults Balancing

 Hardware
Abstraction Layer
Hardware
Abstraction Layer

 Hardware
Abstraction Layer Hall Drivers

 HardwareHardwareHardwareHardware
Abstraction LayerAbstraction LayerAbstraction LayerAbstraction Layerrrrrrrrr Hall Drivers
Hardware
Abstraction Layer Hall Drivers

ISL94212 Sample Code

R16US0007EU0101 Rev.1.01 Page 2
Nov 17, 2021

ISL94212 Sample Code Software Manual

Contents
1. Battery Front End Library . 3

1.1 Configuration of the BFE Library . 3

1.2 Configuration and Control Structures . 4

1.3 Description of Functions . 5

1.4 Using of the Software Library . 5

2. Battery Management System Demo . 6

2.1 Initialization . 7

2.2 Obtaining Measurement . 8

2.3 Cell Balancing . 9

2.4 Sleep Mode . 10

2.5 Fault Management . 10

3. Requirements and Setup . 11

3.1 Software Setup . 11

3.2 Importing the Sample Project . 12

3.3 Hardware Setup . 14

3.4 Battery Front End Evaluation Board . 14

3.5 MCU Evaluation Board . 15

3.6 Power Supply . 15

3.7 Precision multimeter . 15

3.8 Oscilloscope . 15

3.9 Hardware Assembly . 16

4. User Interface . 17

4.1 Terminal setup . 17

4.2 Turning On the Setup . 18

4.3 Using the Demo . 19

4.4 Debugging . 21

5. Glossary . 22

6. Ordering Information . 22

7. Revision History . 22

R16US0007EU0101 Rev.1.01 Page 3
Nov 17, 2021

ISL94212 Sample Code Software Manual

1. Battery Front End Library
The Battery Front End (BFE) library is a major part of the ISL94212 software package, providing an application
programming interface (API) to the user and a level of abstraction for the battery management system (BMS) from
the BFE specifics (such as communication sequence, timing, register access, verification, and state monitoring). It
comprises the middleware routines, standing in the layer between the HAL drivers and higher-level application
algorithms (Figure 1), control structures and definitions. All files, routines, global variables and macros have the
prefix bfe_ or BFE_ so that they are easy distinguishable from other parts of a multitasking project.

The library file tree is shown in Figure 2. The files have the following content:

▪ File r_bfe_api.h: Instances of functions, providing a level of independence for the battery management system
and the used battery front end; Configuration and control structures; Battery management system error codes,
used for diagnostics of state of functions; General enumerations, used for control of the library functions.

▪ File r_bfe_isl94212.h: Declarations of functions; ISL94212 specific structures, enumerations and macros;
Table with all registers and their specifics.

▪ File r_bfe_isl94212.c: Implementations of API functions; Initialization of time intervals, holding structures.

▪ File r_bfe_crc4.h: Declarations of functions used for the non-standard CRC4.

▪ File r_bfe_ crc4.c: Functions used for the non-standard CRC4 calculation, check and appending to data
arrays.

▪ File r_bfe_cfg.h: Library configuration, used by the pre-processor, related to hardware specifics.

▪ File: r_bfe_common.h: Common macros, used in the other library source code and header files.

1.1 Configuration of the BFE Library
It is important that the battery front end library is correctly configured to function properly. This process takes place
in the file r_bfe_cfg.h that holds the pre-processor macros and is dictated mostly by the hardware setup and
wanted features, providing the following options:

▪ Stack size: How many devices are in the stack?

▪ Battery front end devices enable pin usage: Is the master device enable pin connected to the MCU?

▪ The battery front end goes to sleep mode using a Sleep command or watchdog timeout.

▪ Use parameter checking for input arguments of functions: Every implementation of API function has an optional
build-in input parameter checking mechanism.

▪ Verify content after register write command: Every function that writes into any register of ISL94212 has an
optional build-in register content verification mechanism.

▪ Check if scan command has been received by all devices: Every function that sends a scan command has an
optional build-in scan command acceptance checking mechanism.

▪ Number of identify attempts: How many times to try to identify devices inside the stack? This option is valid only
in a daisy chain!

▪ The physical pin of the MCU to which the fault pin is connected.

▪ The physical pin of the MCU to which the data ready pin is connected.

▪ The physical pin of the MCU to which the enable pin is connected.

Figure 2. BFE Library File Structure

R16US0007EU0101 Rev.1.01 Page 4
Nov 17, 2021

ISL94212 Sample Code Software Manual

▪ The overvoltage lockout that triggers fault condition. (Default value is 0x1CCC equal to 4.5V)

▪ The undervoltage lockout that triggers fault condition. (Default value is 0x0CCC equal to 2.0V)

▪ The external temperature lockout voltage that triggers fault condition. (Default value is 0x3FFF equal to 2.5V)
Depends on the thermistor type and connection.

1.2 Configuration and Control Structures
The configuration structure is used when calling the function for opening the BFE interface. It is initialized in an
external source file (see bal_data.c) and should not be updated anymore. It holds the following constants:

▪ Operation mode: The battery front end is in stack (daisy chain) or stand-alone mode.

▪ Daisy chain data speed: This constant is set according to the input levels of pins COMMS RATE 0 and COMMS
RATE 1.

The control structure is used as an input argument in every function. It is initialized in an external source file and
most of its content can be updated any time by application or by the relevant function itself. The relevant variables
must be modified before calling a specific function. For more details, check the description of functions. It holds
the following constants and nested structures:

▪ Cell balancing pattern: Cell balancing pattern used for applying masks while running the algorithm. This is an
input argument.

▪ Select cells for balancing: The array size is as the number of devices in the stack. Every bit is relevant to a cell
balancing FET control output. This array is an input argument.

▪ Watchdog timeout: Set timeout or disable watchdog. This is an input argument.

▪ Status structure: This structure is modified by certain functions.

• Serial numbers: The array holds the serial numbers of all devices in the stack. This is an output argument.

• Sleep mode: The variable denotes if the battery front end is in sleep mode. This is an output argument.

• Cell balancing status: The variable denotes if battery balancing has been initiated. This is an output
argument.

• Internal temperature limits: The array holds the internal temperature limits of all devices in the stack. This is
an output argument.

• Trim voltage: The array holds the nominal cell voltages of all devices in the stack. This is an output argument.

• Stack identification counter: Stack identification cycles that has passed. This is an output argument.

• Stacked devices: Number of detected devices in the stack. This is an output argument.

▪ Setup structure: This structure must be initialized and further modification of internal variables is not
recommended.

• Overvoltage limit: The variable holds the overvoltage limit to which each cell voltage is compared after scan.
This is an input argument. (0 = 0V; 8191 = 5V)

• Undervoltage limit: The variable holds the undervoltage limit to which each cell voltage is compared after
scan. This is an input argument. (0 = 0V; 8191 = 5V)

• External temperature limit: The variable holds the current voltage limit to which each external temperature
input voltage is compared after scan. This is an input argument. (0 = 0V; 16383 = 2.5V)

• Wire scan current: The variable holds the selected option for an open-wire scan current (from enumeration).
This is an input argument.

• Fault samples totalizator: The variable holds the number of consecutive compare events that trigger fault
detection and protection. This is an input argument.

• Balance mode: The variable holds the cell balancing mode enumeration. This is an input argument.

• Configuration of cells: The array holds the configuration of cells of all devices in the stack. Bit [0] – Bit [11] are
relevant to a cell voltage input that is measured and fault tested. This is an input argument. When using less
than 12 cells per device, distribute cells according to description in datasheet and set the respective bits.

R16US0007EU0101 Rev.1.01 Page 5
Nov 17, 2021

ISL94212 Sample Code Software Manual

• Configuration of temperatures: The array holds the configuration of external temperature inputs of all devices
in the stack. Bit [0] to Bit [3] is relevant to an external temperature voltage input that is measured. This is an
input argument.

• Configuration of temperatures faults: The array holds the fault configuration of external temperature inputs of
all devices in the stack. Bit [0] to Bit [3] is relevant to an external temperature voltage input that is fault
monitored. This is an input argument.

1.3 Description of Functions
The API functions documentation can be found in an interactive catalogue, which is a part of the ISL94212
software package (see isl94212_sw_package_doc/index.html). This HTML-based document contains a
detailed description of all API functions, input/output parameters, error returns, data structures, enumerations, and
definitions (Figure 3). A common input parameter is the BFE control structure. Functions use specific variables
from this structure but could also write into them as an output. More information about what you should set and
what output to expect can be found into the description of each function.

Renesas does not recommend calling functions in any interrupt. If so, special precautions should be taken to
avoid interrupt masking and getting stuck in a loop. The functions use two interrupts. The first one is triggered by
any SPI event (receive, transmit buffer empty, transfer complete or error interrupt) and must have higher priority
than the second one or the others in nested interrupt. A dedicated hardware timer is used for detection of
communication timeouts. Its overflow also triggers an interrupt. There are parallel software counters that return an
error to prevent getting stuck in a loop.

Two pins of the master stack device are connected to inputs of the MCU: FAULT and DATA READY. They are
monitored at specific moments during the execution of code and do not trigger interrupts that could compromise
the commands, therefore, compromising the SPI and stack (daisy chain) communication.

1.4 Using of the Software Library
The software package and the BFE library is designed to be directly used with RA2 series MCUs and is fully
compatible with the Renesas Advanced (RA) family. However, with the current MCU, the maximum supported
daisy chain data speed is 250kHz as the timing when receiving bytes is critical. Higher speeds can cause a
master stack device buffer overflow and communication mishmash. If higher daisy chain data speed is required, a
higher performance MCU (such as RA6 series) should be used.

In some cases, when receiving data from the stack, the software can wait for a response in a loop for as long as
46.4ms, depending on the data speed and stack size (see the Maximum Time to Communications Failure

Figure 3. Software Package Reference Documentation

R16US0007EU0101 Rev.1.01 Page 6
Nov 17, 2021

ISL94212 Sample Code Software Manual

Response table from ISL94212 Datasheet). If a watchdog timer is used in the MCU, you should take measures to
avoid system reset in this case.

If another MCU is used, it must have the required peripheral modules preconfigured according to the requirements
in the BFE initialization function and the connected API (see ra_gen/hal_data.h). Because the library is placed in
the middleware layer, it has a higher level of abstraction than specific hardware drivers and is tolerant of changing
hardware if it provides the required performance.

2. Battery Management System Demo
The battery management system demo is a part of the ISL94212 software package. Its main purpose is to
demonstrate the application and functionality of the BFE library but also to provide the customer with examples for
basic fault management solutions, described in the product datasheet. The supported toolchain for the sample
project is: e² studio Integrated Development Environment (IDE), default toolchain is GCC Arm Embedded. The
library file tree is given in Figure 4. The files have the following content:

▪ File: bal_data.c: Declaration and initialization of global configuration and control structures. Connection of the
API.

▪ File: bal_data.h: Definitions of the external global variables.

▪ File: r_bms.c: Battery management demo state machine, fault management, balancing algorithm and USB
communication related functions.

▪ File: r_bms.h: Definitions of structures, enumerations, configuration macros and other. The over-temperature,
under-temperature, and external temperature inputs voltage lockout limits, memory check interval, and the
balancing algorithm related parameters must be set into this file.

Figure 4. Demo Project File Structure

R16US0007EU0101 Rev.1.01 Page 7
Nov 17, 2021

ISL94212 Sample Code Software Manual

The states of the sample application and possible transitions between them are given in Figure 5. The execution
of the code begins with Initialization state. If initialization is successful, it transitions to Normal state. From Normal
state a transition to Balance or Sleep state can be made. A transition to Fault state is accomplished from any other
state if an error is returned by any function. The Fault state exits only to Normal state. When a transition from state
to state must be made, the relevant flag into a global structure with Boolean type variables is raised and the state
is changed in a single place inside the main loop so that no unexpected transition or Fault state skipping
transitions are possible.

2.1 Initialization
The Initialization state is the default one on MCU start-up. The code in it is executed once, followed by a transition
to Normal state. After executing every function, if an error return is detected then Fault state is entered. The
sequence is given in Figure 6. The open BFE interface function accomplishes SPI interface initialization, stack
reset and identification and reads serial numbers of all devices. The reset command ensures that the current
condition of every ISL94212 IC is known if the MCU is reset but the BFE was not. The communications test is for
demonstration purposes. It could be implemented also in the other states.

Figure 5. State Machine

Figure 6. Initialization State Flowchart

Initialization
State

Normal State
Balancing

State

Sleep State Fault State

Initialization State

Open BFE interface
open();

Test communication
commTest();

Write into user regs
userRegsAccess();

Go to Normal State

R16US0007EU0101 Rev.1.01 Page 8
Nov 17, 2021

ISL94212 Sample Code Software Manual

2.2 Obtaining Measurement
The Normal state flowchart is given in Figure 7. In the demo project, the voltage and temperature measurements
are initiated by you instead of having a continuous action. Therefore, the MCU stays in a loop and waits for your
input. After a selected period (10 cycles equal to 1 second by default), determined by a software timer, a memory
check function is called that checks the Page 2 registers checksum for corruption of the configuration registers.
Periodically, calling the memory check function that sends commands also resets the watchdog timeout of the
BFE. At the same interval, the BFE is monitored for indications of any fault conditions by checking the master
FAULT pin for assertion and reading the Fault Status Registers of all devices.

Figure 7. Normal State Flowchart

Normal State

Memory check
cycles count ?

Check setup regs
memoryCheck();Yes

No

Time
Delay

Aquire all
voltTempAllGet();

Measure?
Yes

No

Check for faults
faultsCheck();

R16US0007EU0101 Rev.1.01 Page 9
Nov 17, 2021

ISL94212 Sample Code Software Manual

2.3 Cell Balancing
The BFE library sample project includes a sample algorithm for cell balancing (CB). The algorithm flowchart is
given in Figure 8. It contains a loop, at the beginning all cell voltages are acquired and the cell with lowest voltage
is found. Next, the voltage difference between each cell and the one with lowest voltage is calculated and
compared with predefined thresholds. By default, if the voltage difference is more than 20mV the cell is identified
as needing balancing. However, if the voltage difference is more than 500mV a problem with the battery is
considered and an error is returned.

If any cell is detected to need balancing, the algorithm continues. First, the odd cells are unmasked and the
respective balancing FETs are enabled for a predefined period of time (20s by default). Next, the same action is
accomplished for the even cells. Afterwards, all CB FETs are off and an off timer is activated to provide a recovery
time for the cell voltages to obtain more accurate measurements before the next balancing cycle (avoiding the RC
time constant of the filters and Li- chemistries). If the differences in cells voltages are within limits, the balancing
activity is inhibited after the voltage measurement in the next cycle and a transition to Normal state is made. The
application, Li-chemistry, and battery pack specifics must be considered when the balancing parameters are set.
Important: Avoid setting the CB delta voltage thresholds too low and balancing intervals that are too long as this
can lead to non-convergence and excess battery drain.

Figure 8. Cell Balancing Algorithm Flowchart

Balancing State

Check for faults
faultsCheck();

Go to Normal State

Yes

CB needed?

Yes

No

CB on
Timer

Aquire all voltages
vAllGet();

Determine cells to be
balanced (delta V)

Max CB loops?

Turn on odd mask CB

No

Turn off odd mask CB

Turn on even mask CB

CB on
Timer

Turn off CB

CB off
Timer

R16US0007EU0101 Rev.1.01 Page 10
Nov 17, 2021

ISL94212 Sample Code Software Manual

To help avoid this situation, there is a balancing cycles counter that limits the number of loops. To avoid long
software delays and taking unnecessary MCU resources, the balancing algorithm is implemented with a dedicated
state machine allowing the MCU to run other code in the main loop.

2.4 Sleep Mode
The sample project provides an option for entering sleep mode and waking up all devices in the stack. When
Sleep state is active, the BFE enters sleep mode immediately and waits for user input to wake up and make a
transition to Normal state (Figure 9). If any of the operations is unsuccessful, the system goes to Fault state.
However, when in sleep state the master stack device fault pin is not monitored.

2.5 Fault Management
The BMS sample project contains fault management mechanism that incorporates and demonstrates the fault
management examples described in the ISL94212 datasheet. The fault management flowchart is given in
Figure 10.

When any function returns an error (Including the one checking the fault pin) the BMS state machine makes a
transition to Fault state and processes the error.

A fault pin assertion or a fault status register automatic response results in a BMS fault error return. In that case,
all fault registers are read and information is extracted into a data structure. It has built in the following
mechanisms:

▪ Oscillator fault: Wakes up any sleeping device in the stack

▪ Parity error (register checksum): Re-enters setup, checks memory

If NAK or communication fault response, incorrect CRC or DATA READY assertion timeout error is returned the
following sequence is called:

▪ Send a packet with ones to reset potential flipped daisy chain port

▪ Send ACK and wake up any sleeping device inside the stack

If EEPROM error is returned (incorrect shadow registers), the whole stack is reset and BFE is reconfigured.

Figure 9. Sleep State Flowchart

Sleep State

Wake up
wakeUp();

In Sleep Mode?

Yes

Wake up?

Yes

No

No

Go to Sleep
sleep();

Go to Normal State

R16US0007EU0101 Rev.1.01 Page 11
Nov 17, 2021

ISL94212 Sample Code Software Manual

If the BFE has successfully completed fault management procedures and faults are successfully cleared, the state
machine makes a transition to Normal state, otherwise a hardware reset is needed.

3. Requirements and Setup

3.1 Software Setup
The required tools for directly compiling, debugging and running the project, provided with the BFE software

package under scope, include e2 studio Integrated Development Environment (IDE) with the GCC Arm®

Embedded toolchain, the Flexible Software Package (FSP) and a terminal emulator program. Visit e2 studio for
instructions and more information. If an alternative microcontroller and/or integrated development environment
and toolchain are used, you should install them according to related instructions, then port the software library,
connect it to hardware abstraction layer API, and then port the sample code to be able to go through the example.

A terminal emulator program is needed for running the user interface (UI). A useful option is Tera Term, which can
be downloaded from the Tera Term Home Page.

Figure 10. Fault Management Flowchart

Fault State

Add custom code for
error processing.

BFE fault is
detected? Yes

Communication
or CRC error?

Yes

No

Read fault registers
faultAllRead();

Go to Normal State

Examine fault data.
Process faults.

Process Communication
or CRC errorYes

EEPROM
error?

No

Halted! Hard reset is
required!

No

Yes
Process EEPROM error

Is the Error
Cleared?

No

https://www.renesas.com/software-tool/e-studio
https://ttssh2.osdn.jp/

R16US0007EU0101 Rev.1.01 Page 12
Nov 17, 2021

ISL94212 Sample Code Software Manual

3.2 Importing the Sample Project

The sample project provided with this document can be imported into e2 studio workspace by following these
steps:

1. Select File > Import

2. Select Existing Project into Workspace and click Next button.

Figure 11. File Menu to Import the Sample Project

Figure 12. Selection of the Import Option

R16US0007EU0101 Rev.1.01 Page 13
Nov 17, 2021

ISL94212 Sample Code Software Manual

3. Choose Select archive file option, click the Browse… button and then select the sample project file (.zip).
Click the Finish button.

4. The project is now imported into the e2 studio workspace. Figure 14 shows the imported project structure.
Double-click on configuration.xml and press Generate Project Content to generate the additional hardware
specific project files.

5. Now the project is ready to be built. Open Project from top menu and press Build All. Then open run Run from
top menu and select Debug As->3 Renesas GDB Hardware Debugging. The IDE changes automatically to
a debug perspective and a debug session is started. To run the de code you must press the Resume button
twice.

Figure 13. Import the Sample Project

Figure 14. Generate Additional Project Files

R16US0007EU0101 Rev.1.01 Page 14
Nov 17, 2021

ISL94212 Sample Code Software Manual

3.3 Hardware Setup
The hardware setup, needed for running the demo and familiarization with the software package, is given in
Table 1. It includes all evaluation boards, power supply, measurement and control tools. Some of the items are
considered as optional. The used MCU evaluation board does not provide any galvanic insulation. Therefore,
additional isolation may be required when working with high voltage battery packs (not needed in the proposed
test setup).

3.4 Battery Front End Evaluation Board
The BFE evaluation board ISL94212EVKIT1Z demonstrates the application of the ISL94212 Li-ion battery
manager IC. It consists of ISL94212EVZ board and MCB_PS2_Z resistor ladder, simulating the battery pack
(Figure 15). The ISL94212 communicates to a host microcontroller via an SPI interface and to other ISL94212
devices using a robust, two-wire daisy chain system. The primary evaluation board provides configuration options
that can be set using the switches. More information can be found on the ISL94212EVKIT1Z product page. For a
detailed setup, see the ISL94212EVKIT1Z manual.

Table 1. Hardware Setup

Item Qty. Description

1 ISL94212EV1Z 3[1]

1. The quantity depends on the stack size.

ISL94212 Evaluation Boards

2 MCB_PS2_Z 3[1] 12 Cell resistor ladder board (or target battery pack)

3 EK-RA2A1 1 RA2A1 Evaluation Board

4 USB micro cable 2 Connection between EK-RA2A1 and PC

5 USB isolator (optional) 1 Dual isolator. Additional 5V power supply might be required

6 DC Power Supply 1 6V to 60V Regulated

7 Precision multimeter 1 Multipurpose DC voltmeter compatible with total battery voltage

8 Oscilloscope (optional) 1 Equipped with Logic Analyzer

9 Cables and wires - Connection between MCU and BFE boards, Resistor ladders and power supply

10 Personal computer or notebook 1 Running Windows® or Linux with USB support

Figure 15. Resistor Ladder and ISL94212 Evaluation Board

DC Power
Supply
Connector

Daisy Up
Connector

MCB_PS2_Z ISL94212EVZ

Daisy Down
Connector

uC Connector

https://www.renesas.com/isl94212evkit1z

R16US0007EU0101 Rev.1.01 Page 15
Nov 17, 2021

ISL94212 Sample Code Software Manual

3.5 MCU Evaluation Board
The MCU evaluation board is EK-RA2A1 that facilitates firmware development of R7FA2A1AB3CFM 32-Bit MCU
from RA2A1 microcontroller group of Renesas Advanced (RA) family (Figure 16). The selected microcontroller is
suitable for BMS applications as it has low power modes combined with 24-bit Sigma-Delta ADC, appropriate for
current monitoring (Coulomb counting algorithm). Another alternative from the same family is RA4W1 that has a
built-in Bluetooth module.

The evaluation board provides access to its resources and USB micro device connector for establishing virtual
serial communication with the terminal. There is also a LED that is used to indicate fault state.

More information can be found on the EK-RA2A1 product page. For detailed setup, see the EK-RA2A1 User’s
manual.

3.6 Power Supply
When a battery pack is not available, a combination of a DC power supply and a resistor ladder is used. It must
provide the necessary voltage to simulate full cells voltage range without entering current limit to power the
resistor ladder and the evaluation board with all LEDs on. At a typical operating voltage of 39.6V, when connected
between J11 and J12, simulates around 3.3V cell voltage. This board consumes about ~120mA in normal
operation mode and ~102mA in sleep mode. Do not go under 6V (the ISL94212 internal voltage regulator inhibits
operation) or exceed 60V!

3.7 Precision multimeter
A precision multimeter is used as a voltmeter to monitor battery pack voltage, individual cell voltages or another
voltage of interest. The recommended start-up connection is between Pack+ (J11) and Pack- (J12).

3.8 Oscilloscope
An oscilloscope can be used optionally to capture signals in the SPI communication channel between the MCU
and stack master device together with the FAULT and DATA READY signals. The vertical daisy chain
communication ports can be captured when using a differential probe or two passive probes, referenced to ground
and divided by scope math. For easier capture and better results, Renesas recommends equipping the scope with
a logic analyzer.

Figure 16. RA2A1 Evaluation Board

Pin Header J2

Pin Header J1

USB micro

USB micro
debug connector

device connector

https://www.renesas.com/ra/ek-ra2a1

R16US0007EU0101 Rev.1.01 Page 16
Nov 17, 2021

ISL94212 Sample Code Software Manual

3.9 Hardware Assembly
The hardware assembly for standalone mode (single ISL94212) is shown in Figure 17 and for daisy chain mode
(stack of 3 ISL94212) – in Figure 18. When stacked, the ISL94212 boards are interconnected directly using
headers JP3 and JP4. However, twisted pair cables can also be used. The MCU and ISL94212 boards are
connected with external cables (see Table 2). Make sure that all jumpers are in place and all microswitches (SW1,
SW2, SW3) are in the right position as shown in the figures to set the right daisy chain speed and device position
inside the stack. For more details, see the ISL94212EVKIT1Z Manual.

Figure 17. BFE and MCU Boards Hardware Assembly in Standalone Mode

Figure 18. BFE and MCU Boards Hardware Assembly in Daisy Chain Mode (3 Devices Stacked)

https://www.renesas.com/ISL94212EVKIT1Z

R16US0007EU0101 Rev.1.01 Page 17
Nov 17, 2021

ISL94212 Sample Code Software Manual

The MCU board is powered by the host computer through the debug USB connector J11. However, device USB
J9 must be also connected to enable the virtual serial communication with the terminal software. The resistor
ladders are connected and powered up in parallel so that no matter how many boards are stacked the supply
voltage is always up to 60V for safety reasons. The positive terminal of the MCB_PS2_Z board is J5/J11 and the
negative terminal is J8/J12. Connector J7 can also be used to provide power to the board. The J7 tip is positive
and the ring is negative.

4. User Interface
The user interface (UI) demonstrates the functionality of the sample code by displaying the current state, acquired
data from BFE, fault data, and providing control over the measurement rate, cell balancing, sleep/wake up, and
fault clearing. It directly controls the BMS state machine. However, the UI indirectly sends commands to the BFE.

4.1 Terminal setup
To initiate a terminal session, a new connection must be opened (Figure 19). When using terminal software, the
serial connection settings are given in Table 3. The PC user must have read/write access permission for the USB
port.

Table 2. BFE and MCU Board Connection

Signal name R7FA2A1AB3CFM - Pin EK-RA2A1 - Header ISL94212EVZ (master) - Header

SCK P103 J1-RSPCKB J2 - 1

MISO P104 J1-MISOB J2 - 2

MOSI P105 J1-MOSIB J2 - 3

CS P102 J1-SSLB0 J2 - 4

DRDY P101 J1-RXD9 J2 - 5

FAULT P204 J1-SCK9 J2 - 6

DGND -- J2 - VSS J2 - 7

EN (optional) P402 J1-CTS9 EN

Figure 19. Tera Term New Connection Window

R16US0007EU0101 Rev.1.01 Page 18
Nov 17, 2021

ISL94212 Sample Code Software Manual

If Windows® recognized the board correctly, it is listed in Tera Term as a serial connection. If the board is not listed
at all or the Device Manager indicates an error, there might be a problem with the driver. See the latest support
entry for this topic in the Renesas Knowledge Base to resolve this.

4.2 Turning On the Setup
Before turning on the setup, ensure the following:

▪ The BMS sample project is imported into e2 studio IDE (See Importing the Sample Project).

▪ The library has the right configuration, corresponding to the hardware setup (See to Configuration of the BFE
Library).

▪ If real battery is used, the battery limits are set, corresponding to the used chemistry and balancing
requirements (See to Configuration of the BFE Library).

The hardware setup must be turned on in the following sequence:

1. Ensure that everything is properly connected and both USB cables are connecting the MCU evaluation board
and the PC. Check jumpers and switches of all boards.

2. Set the power supply to 39.6V and power up the resistor ladder (MCB_PS2_Z board). Check that the voltages
on the J3 connector of the board are +3.3V from PIN(n) to Pin(n-1).

3. In e2 studio, build the sample project and initiate debugging to download the software to the MCU. Run the
software.

4. Open the Tera Term terminal and press Enter to display the menu.

The MCU should start together with or after the BFE, otherwise it returns an error when trying to initialize an
unpowered BFE.

Table 3. Serial Connection (Terminal) Settings

Parameter Value

New Line (Receive) CR

New Line (Transmit) CR

Terminal Mode VT100

Baud Rate 9600

Data Bits 8 bits

Parity none

Stop Bits 1 bit

Flow Control none

https://en-support.renesas.com/knowledgeBase/18959077

R16US0007EU0101 Rev.1.01 Page 19
Nov 17, 2021

ISL94212 Sample Code Software Manual

4.3 Using the Demo
When the hardware setup is fully connected and powered-up, and the terminal session is initiated, the user
interface becomes active. After pressing Enter, the MCU should respond with the menu shown in Figure 20. Now
the BMS is in Normal state and the MCU expects a user input. By pressing 1, all voltage and temperature scans
are triggered, results are read and displayed onto the terminal inside a table. Return to the main menu by pressing
Enter.

When you press 2 inside the menu, the BMS goes to cell balancing state (Figure 21) and the balancing algorithm
immediately runs. After each loop, an asterisk is displayed. When all cells are balanced, the MCU sends a
message and BMS goes back to normal state. The balancing activity can be interrupted by pressing Enter. The
parameters, related to cell balancing, cannot be modified using the UI and must be hardcoded into the sample
project.

When you press 3 inside the menu, the BMS goes to Sleep state (Figure 22). This can be also noticed as the VDD
LEDs of the ISL94212 boards fade out slightly because in sleep mode the voltage regulator drops down to 2.5V. If
watchdog timeout is used for sleep mode or it expires when the BFE is already in sleep mode, the FAULT pin is
asserted and the FAIL LED is on. When the system is in sleep mode, it can wake up and return to normal state by
pressing Enter. When a fault condition is detected, the system goes automatically into fault state and the UI
displays more details (Figure 23). The FAIL LED of the MCU board is on. You can run the built-in fault

Figure 20. User Interface Voltage and Temperature Readings

Figure 21. User Interface Cell Balancing

R16US0007EU0101 Rev.1.01 Page 20
Nov 17, 2021

ISL94212 Sample Code Software Manual

management algorithms by pressing Enter. If the faults are successfully cleared, the BMS goes to normal state
otherwise a massage is displayed that a hard reset is needed (Figure 24).

Figure 22. User Interface Go to Sleep and Wake Up Mode

Figure 23. User Interface Fault State

Figure 24. Message when Faults and Errors Cannot be Cleared and a Hard Reset is Required

R16US0007EU0101 Rev.1.01 Page 21
Nov 17, 2021

ISL94212 Sample Code Software Manual

4.4 Debugging

The e2 studio integrated development environment and the GCC Arm® Embedded toolchain provide various tools
for debugging, including variables and memory viewer (Figure 25). You can add breakpoints and examine, in what
situation the CPU runs that code. If a fault cannot be cleared and system hard reset is needed, the execution of
code is halted so that you can identify and analyze the error. The error return can be found in the bms_err variable
and decoded using the error enumerator in r_bfe_api.h.

Figure 25. Debugging the Sample Project

R16US0007EU0101 Rev.1.01 Page 22
Nov 17, 2021

ISL94212 Sample Code Software Manual

5. Glossary

6. Ordering Information
All necessary parts for the hardware setup to be ordered from Renesas are given in Table 4.

7. Revision History

Term Definition

ADC Analog-to-Digital Converter is a device that converts an analog signal to a digital code.

AC-Coupling A method of connecting transmitter to a receiver using series capacitors. This only transmits signal transitions, not
DC voltage levels, therefore, can be useful for constantly toggling signals like clocks, especially when trying to
isolate the DC voltage levels.

BFE Battery Front End is a device that is part of a battery management system and provides system protection and cell
monitoring and balancing.

BMS Battery Management System manages a rechargeable battery. Typically Li- based chemistries.

CRC Cyclic Redundancy Check – A method of determining if a block of data was stored or transmitted correctly. Involves
the addition of one or more bytes of extra information to determine data integrity. One of several algorithms can be
used.

EEPROM Electrically-Erasable Programmable Read-Only Memory – Commonly used non-volatile memory device.

EVK Evaluation Kit is a demonstration board built for a specific device to easy its evaluation.

FET Field-Effect Transistor is a type of transistor that uses electric field to control the current though its channel.

FSP Flexible Software Package supplies engineers with lightweight and highly efficient functions and drivers to ease
implementation of common use cases in embedded systems.

GCC GNU Compiler Collection is an optimizing compiler produced by GNU Project.

GPI General-Purpose Input - An input signal that can be programmed for many different purposes.

Table 4. Software Package Demo Hardware Order List

Part Number Description Product page

ISL94212EV1Z[1]

1. Multiple items may have to be ordered, depending on the desired stack size.

ISL94212 Evaluation Board ISL94212EVKIT1Z

MCB_PS2_Z[1] 12-Cell resistor ladder board

EK-RA2A1 RA2A1 Evaluation Board EK-RA2A1 - Evaluation Kit for RA2A1 MCU Group | Renesas

Revision Date Description

1.01 Nov 17, 2021 Updated the following sections:

▪ Configuration of the BFE Library

▪ Configuration and Control Structures

▪ Battery Management System Demo

▪ Obtaining Measurement

▪ Power Supply

▪ Turning On the Setup

Updated Figures 5, 7, 8, 9, 10, 20, 21, 22, 23, 24

Updated Table 2.

1.00 Aug 16, 2021 Initial release

https://www.renesas.com/ISL94212EVKIT1Z
https://www.renesas.com/EK-RA2A1

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	Features
	Target Device
	Contents
	1. Battery Front End Library
	1.1 Configuration of the BFE Library
	1.2 Configuration and Control Structures
	1.3 Description of Functions
	1.4 Using of the Software Library

	2. Battery Management System Demo
	2.1 Initialization
	2.2 Obtaining Measurement
	2.3 Cell Balancing
	2.4 Sleep Mode
	2.5 Fault Management

	3. Requirements and Setup
	3.1 Software Setup
	3.2 Importing the Sample Project
	3.3 Hardware Setup
	3.4 Battery Front End Evaluation Board
	3.5 MCU Evaluation Board
	3.6 Power Supply
	3.7 Precision multimeter
	3.8 Oscilloscope
	3.9 Hardware Assembly

	4. User Interface
	4.1 Terminal setup
	4.2 Turning On the Setup
	4.3 Using the Demo
	4.4 Debugging

	5. Glossary
	6. Ordering Information
	7. Revision History

