
 APPLICATION NOTE

R01AN1685EJ0380 Rev.3.80 Page 1 of 92
July 1, 2018

RX Family
Board Support Package Module Using Firmware Integration Technology
Introduction
The foundation of any project that uses FIT modules is the Renesas Board Support Package (r_bsp). The r_bsp is easily
configurable and provides all the code needed to get the MCU from reset to main(). The document covers conventions
of the r_bsp so that users will know how to use it, configure it, and create a BSP for their own board.

Target Device
The following is a list of devices that are currently supported:

• RX110, RX111, RX113 Groups

• RX130 Group

• RX210, RX21A Groups

• RX220 Group

• RX230, RX231, RX23T Groups

• RX24T Group

• RX24U Group

• RX610 Group

• RX62N, RX62T, RX62G Groups

• RX630, RX631, RX63N, RX63T Groups

• RX64M Group

• RX71M Group

• RX65N, RX651 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833)

R01AN1685EJ0380
Rev.3.80

July 1, 2018

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 2 of 92
July 1, 2018

Contents

1. Overview ... 3

2. Features .. 6

3. Configuration ... 17

4. API Information .. 26

5. API Functions .. 32

6. Project Setup ... 56

7. Adding r_bsp manually .. 61

8. Adding FIT Modules to the User Project ... 73

9. Appendices .. 78

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 3 of 92
July 1, 2018

1. Overview
Before running the user application there are a series of operations that must be performed to get the MCU set up
properly. These operations, and the number of operations, will vary depending on the MCU being used. Common
examples include: setting up stack(s), initializing memory, configuring system clocks, and setting up port pins. No
matter the application, these steps need to be followed. To make this process easier the Renesas Board Support Package,
abbreviated as r_bsp, is provided.

At the lowest level the r_bsp provides everything needed to get the user’s MCU from reset to the start of their
application’s main() function. The r_bsp also provides common functionality that is needed by many applications.
Examples of this include callbacks for exceptions and functions to enable or disable interrupts.

While every application will need to address the same steps after reset, this does not mean that the settings will be the
same. Depending on the application, stack sizes will vary and which clock is used will change. All r_bsp configuration
options are contained in one header file for easy access.

Many customers start development on a Renesas development board and then transition to their own custom boards.
When users move to their own custom hardware it is highly recommended they create a new BSP inside of the r_bsp.
By following the same standards and rules that are used for the provided BSPs the user can get an early start on
development knowing that their application code will move to their target board very easily. Details on how users can
create their own BSPs are provided in this document.

1.1 Terminology
Term Meaning

Platform The user’s development board. Used interchangeably with ‘board’.

BSP Short for Board Support Package. BSP’s usually have source files related to a specific
board.

Callback Function This term refers to a function that is called when an event occurs. For example, the bus
error interrupt handler is implemented in the r_bsp. The user will likely want to know
when a bus error occurs. To alert the user, a callback function can be supplied to the
r_bsp. When a bus error occurs the r_bsp will jump to the provided callback function
and the user can handle the error. Interrupt callback functions should be kept short and
be handled carefully because when they are called the MCU will still be inside of an
interrupt and therefore will be delaying any pending interrupts.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 4 of 92
July 1, 2018

1.2 File Structure

The r_bsp file structure is shown below in Figure 1-1. Underneath the root r_bsp folder there are 3 folders and 2 files.
The first folder is named doc and contains r_bsp documentation.

The board folder contains the evaluation board folder, the generic folder, and the user folder. The evaluation board
folder contains source files for the Renesas evaluation boards such as Renesas Starter Kits (RSK) and Renesas Solution
Starter Kits (RSSK), and is provided for each evaluation board. The generic folder contains source files whose settings
are independent of the board and is provided for each MCU. The structures of the evaluation board folder and generic
folder are shown in “Figure 1-2 : Structures of Evaluation Board Folder and generic Folder”. The user folder is merely a
placeholder and, for example, can be used for the user boards.

The mcu folder which has one folder per supported MCU. There is also a folder named all in this directory containing
source that is common to all MCUs in the r_bsp. While board folders have source files specific to a board, mcu folders
contain source that is shared between MCUs in the same MCU Group. This means that if the user has two distinct
boards that both use a version of the RX63N then each board will have its own board folder (i.e. board >> my_board_1
& board >> my_board_2) but both will share the same mcu folder (i.e. mcu >> rx63n). Even if the two RX63N MCUs
have different packages or memory sizes they will still share the same mcu folder.

The file platform.h is provided for the user to choose their current development platform. platform.h, in turn, selects all
the proper header files from the board and mcu folders to be included in the user’s project. This is discussed in more
detail in later sections. The readme.txt file is a standard text file that is provided with all FIT Modules that provides
brief information about the r_bsp.

Figure 1-1 : r_bsp File Structure

r_bsp

doc board mcu

Board Name

e.g. rdkrx63n

e.g. generic_rx65n

e.g. rskrx113

user

MCU Group

e.g. rx63n

e.g. rx111

all

en

ja

readme.txtplatform.h

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 5 of 92
July 1, 2018

Figure 1-2 : Structures of Evaluation Board Folder and generic Folder

board

e.g. generic_rx65ne.g. rskrx65n

hwsetup.c

dbsct.c

hwsetup.h

lowlvl.c

lowsrc.c

lowsrc.h

resetprg.c

rskrx65n.h

r_bsp.h

r_bsp_config_reference.h

r_bsp_interrupt_config_reference.h

sbrk.c

vecttbl.c

vecttbl.h

hwsetup.c

dbsct.c

hwsetup.h

lowlvl.c

lowsrc.c

lowsrc.h

resetprg.c

r_bsp.h

r_bsp_config_reference.h

r_bsp_interrupt_config_reference.h

sbrk.c

vecttbl.c

vecttbl.h

mcu

e.g. rx65n

cpu.c

register_access

cpu.h

locking.c

locking.h

mcu_clocks.c

mcu_info.c

mcu_info.h

mcu_interrupts.c

mcu_interrupts.h

mcu_locks.c

mcu_locks.h

mcu_mapped_interrupts.c

mcu_mapped_interrupts.h

mcu_mapped_interrupts_private.h

iodefine.h

* Files include the settings that are
dependent on the board.

mcu_startup.c

mcu_startup.h

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 6 of 92
July 1, 2018

2. Features
This section will go into more detail on the features provided by the r_bsp.

2.1 MCU Information
One of the main benefits of the r_bsp is that the user defines their global system settings only once, in a single place in
the project. This information is defined in the r_bsp and then used by FIT Modules and user code. FIT Modules can use
this information to automatically configure their code for the user’s system configuration. If the r_bsp did not provide
this information then the user would have to specify system information to each FIT Module separately.

Configuring the r_bsp is discussed in Section 3. The r_bsp uses this configuration information to set macro definitions
in mcu_info.h. Each MCU may have different macros in mcu_info.h, but below are some common examples.

Define Meaning

BSP_MCU_SERIES_<MCU_SERIES>
Which MCU Series this MCU belongs to. Example:
BSP_MCU_SERIES_RX600 would be defined if the MCU was an
RX62N, RX62T, RX630, RX63N, etc.

BSP_MCU_<MCU_GROUP> Which MCU Group this MCU belongs to. Example:
BSP_MCU_RX111 would be defined if the MCU was an RX111.

BSP_PACKAGE_<PACKAGE_TYPE> The package of the MCU. Example: BSP_PACKAGE_LQFP100
would be defined for a 100-pin LQFP package MCU.

BSP_PACKAGE_PINS How many pins this MCU has.

BSP_ROM_SIZE_BYTES The size of the user application ROM space in bytes.

BSP_RAM_SIZE_BYTES The size of the RAM available to the user in bytes. In some
MCUs the RAM area is not contiguous.

BSP_DATA_FLASH_SIZE_BYTES The size of the data flash area in bytes.

BSP_<CLOCK>_HZ

There will be one of these macros for each clock on the MCU.
Each macro will define that clock’s frequency in Hertz. Examples:
BSP_LOCO_HZ defines the LOCO frequency in Hz.
BSP_ICLK_HZ defines the CPU clock in Hz.
BSP_PCLKB_HZ defines the Peripheral Clock B in Hz.

BSP_MCU_IPL_MAX The maximum interrupt priority level for the MCU.

BSP_MCU_IPL_MIN The minimum interrupt priority level for the MCU.

FIT_NO_FUNC

and

FIT_NO_PTR

These macros can be used as arguments in function calls to specify
that the nothing is being supplied for an argument. For example, if
a function takes an optional argument for a callback function then
FIT_NO_FUNC could be used if the user did not wish to supply a
callback function. These macros are defined to point to reserved
address space. This is done so that if the argument is used
improperly it is easier to catch. The reason for this is that if the
MCU attempts to access reserved space then a bus error will occur
and the user will know immediately. If NULL was used instead
then a bus error would not occur because NULL is typically
defined as 0 which is a valid RAM location on the RX.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 7 of 92
July 1, 2018

2.2 Initialization
The PowerON_Reset_PC() function in resetprg.c is set as the reset vector for the MCU. This function performs a
number of chip initialization actions to get the MCU ready to jump to the user’s application. The flowchart below
details operations of the PowerON_Reset_PC() function and the system clock setting.

Figure 2-1: Flowchart of PowerON_Reset_PC()

PowerOn_Reset_PC

Set stack addresses

Initialize the FPU *1

Enable the NMI interrupt *2

Setting the system clock
operating_frequency_set()

• Sets the clock division ration and multiplication factor.
• Stops clocks that are not used as the clock source.
• Waits for stabilization of the clock that is used as the
 clock source.
• Transitions to the selected clock.

Initializing C runtime environment
_INITSCT()

• Sets 0 to the uninitialized data area.
• Copies the data to the data area to be initialized.

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

• Enables pins used for the peripheral function.
• Initializes non-existent port

Initialize PSW • Enables/disables user stack usage. *2
• Enables the CPU to accept an interrupt. *3

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.
Note 3: Only acceptance of CPU interrupts is enabled. Acceptance of each peripheral interrupt must be enabled separately.

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

• Initializes the interrupt callback.
• Assigns the interrupt source of the software configurable
 interrupt. *1

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 8 of 92
July 1, 2018

Figure 2-2: Flowchart of System Clock Setting

Disable main clock oscillator forced
oscillation

Specify HOCO oscillation *2

Note 1: The procedure may vary depending on the MCU used.
Note 2: The operation varies according to settings in r_bsp_config.h.

Disable register write protection

Clock source oscillation setting
clock_source_select()

Clock source oscillation setting *1
clock_source_select()

System clock setting *1
operating_frequency_set()

Set division ratio of the clock source *2

Switch the system clock

Enable register write protection

Stop LOCO oscillation *2

Specify ROM cache

return

Set the main clock source *2

Specify main clock oscillation *2

Specify sub-clock oscillation *2

Specify PLL oscillation *2

Specify LOCO oscillation *2

Specify ROM wait

return

Cold start or warm start?

Set RTC related registers *2

Specify sub-clock oscillation *2

Cold start

Warm start

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 9 of 92
July 1, 2018

2.3 Global Interrupts
Interrupts on RX MCUs are disabled out of reset. The PowerON_Reset_PC() function will enable interrupts before the
user’s application is called (see Section 2.2).

RX devices have two vector tables: a relocatable vector table and a fixed vector table. As the names suggest the
relocatable vector table can be anywhere in memory and the fixed vector table is at a static location at the top of the
memory map.

The relocatable vector table holds peripheral interrupt vectors and is pointed to by the INTB register. This register is
initialized after reset in the PowerON_Reset_PC() function. The vectors in the relocatable vector table are inserted by
the RX toolchain. The RX toolchain knows about the user’s interrupt vectors by the use of the ‘#pragma interrupt’
directives in the user’s code.

The fixed vector table holds exception vectors, the reset vector, as well as some flash-based option registers. The fixed
vector table is defined in vecttbl.c along with default interrupt handlers for all exceptions, the NMI interrupt, bus errors,
and undefined interrupts. The user has the option of dynamically setting callbacks (see Section 2.4) for all of these
vectors using the functionality found in mcu_interrupts.c. The vecttbl.c file also takes care of setting up the User Boot
reset vector when applicable.

All vectors in the fixed vector table are handled in vecttbl.c. All vectors in the relocatable vector table are not handled
because the user will define these vectors and each application will be different. This means that in every application
there will be unfilled vectors that should be taken care of in case that interrupt is triggered by accident. Many linkers
support the filling of unused vectors with a static function. The undefined_interrupt_source_isr() function in vecttbl.c is
provided for this purpose and the user is encouraged to setup the linker to fill in unused vectors with this function’s
address.

2.4 Interrupt Callbacks
The r_bsp provides several API functions (see Section 5.13 and 5.14) which allow the user to be alerted when certain
interrupts are triggered. This works by the user selecting the interrupt and then providing a callback function. When the
interrupt is triggered the r_bsp will call the supplied callback function.

Currently, the user can choose to register callbacks for all exception interrupts in the fixed vector table, the bus error
interrupt, and the undefined interrupt. After the user callback function has been executed, the r_bsp interrupt handler
will clear any interrupt flags as needed.

2.5 Non-Existent Port Pins
Within a MCU Group there can be many different packages with varying number of pins. For packages that have less
pins than the maximum (e.g. 64 pin package in a MCU group that goes up to 144 pins), the non-bonded out pins can be
initialized to lower power consumption. Based on the settings in r_bsp_config.h the r_bsp will automatically initialize
these non-bonded out pins during the MCU initialization procedure. This feature is implemented in the mcu_init.c
function and is called by the hardware_setup() function.

2.6 Clock Setup
All system clocks are setup during r_bsp initialization. The clocks are configured based upon the user’s settings in the
r_bsp_config.h file (see Section 3.2.6). Clock configuration is performed prior to initializing the C runtime environment.
This is done to quicken this process since some RX MCUs startup on a relatively slow clock (i.e. RX63x starts on 125
kHz Low-Speed On-Chip Oscillator). When selecting a clock the code in the r_bsp will implement the required delays
to allow the selected clock to stabilize.

Some RX MCUs require a wait cycle to access the flash memory or the RAM. The wait cycle can be set by the
MEMWAIT register or the ROMWT register. The setting values for these registers depend on the system clock or
operating power control mode used. Make sure to confirm the limitations in the user's manual for setting the
MEMWAIT register and the ROMWT register.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 10 of 92
July 1, 2018

2.7 STDIO & Debug Console
When enabled (see Section 3.2.3), the STDIO library is initialized as part of the MCU initialization procedure. The
r_bsp code is setup to send STDIO output to the debug console that can be viewed in HEW or e2 studio. The source file
lowlvl.c is responsible for sending and receiving bytes for STDIO functions and as previously stated is setup by default
to use the debug console. If desired the user may redirect the STDIO charget() and/or charput() functions to their own
respective functions by modifying r_bsp_config.h and enabling BSP_CFG_USER_CHARGET_ENABLED and/or
BSP_CFG_USER_CHARPUT_ENABLED, and providing and replacing the my_sw_charget_function and/or
my_sw_charput_function function names with the names of their own functions.

2.8 Stacks & Heap
RX MCUs have two stacks that can be used: the User stack and the Interrupt stack. When both stacks are used the User
stack will be used during normal execution flow and the Interrupt stack will be used during interrupt handling. Having 2
stacks can make it easier to figure out how much stack space to allocate since the user does not have to worry about
always having enough room on the User stack for if-and-when an interrupt occurs. Some users will not want 2 stacks
though because it is not needed in all applications and can lead to wasted RAM (i.e. space in between stacks that is not
used). If only 1 stack is used then it will always be the Interrupt stack.

The User and Interrupt stacks and the heap are all setup and initialized after reset inside of the r_bsp code. The sizes of
the stacks and heap, and whether 1 or 2 stacks are used, is configured in r_bsp_config.h (see Section 3.2.2). The user
also has the option of disabling the heap if desired.

2.9 CPU Mode
Out of reset, RX MCUs operate in Supervisor CPU Mode. In Supervisor Mode all CPU resources and instructions are
available. The user has the option (see Section 3.2.4) of transitioning to User Mode before the r_bsp code jumps to
main(). In User Mode there are restrictions to any instruction capable of writing to:

• Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)
• Interrupt stack pointer (ISP)
• Interrupt table register (INTB)
• Backup PSW (BPSW)
• Backup PC (BPC)
• Fast interrupt vector register (FINTV)

If the MCU executes one of these instructions while in User Mode, an exception will trigger. If the user has a callback
setup (see Section 2.4) then they will be alerted by a callback function of the exception.

2.10 ID Code
RX MCUs have a 16-byte ID Code in ROM that protects the MCU’s memory from being read through a debugger, or in
serial boot mode, in an attempt to extract the firmware from the device. The ID Code resides in the fixed vector table
and can easily be set in r_bsp_config.h (see Section 0). For more information on available ID Code options please
reference the ID Code subsection in the ‘Flash Memory’ or ‘ROM’ section of your MCU’s hardware manual.

2.11 Parallel Programmer Protection
Similar to the ID Code, RX MCUs also have a 4-byte code in ROM that can protect access to the MCU’s memory from
parallel programmers. The user has the option of allowing reads and write, only allowing writes, and prohibiting all
access. See Section 3.2.7 for information on how to enable this feature.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 11 of 92
July 1, 2018

2.12 Endian
RX MCUs have the option of operating in big or little endian mode. Which mode is chosen is decided in different ways
depending on which MCU is being used. RX610 and RX62x MCUs have a pin where the level decides. RX100, RX200,
RX63x, RX64x, RX65x, and RX700 MCUs have a register in ROM that decides the endian that will be used. For
devices with the register in ROM, the r_bsp detects the endian selected in the toolchain and will use that to
appropriately set the register. The r_bsp currently detects endian from the following toolchains:

• Renesas RXC
• IAR
• KPIT GNU

2.13 Option Function Select Registers
Starting with RX63x, RX200, and RX100 MCUs, there are registers stored in ROM called Option Function Select
registers. These registers are used to enable certain MCU features at reset instead of having to enable them in the user’s
code. Examples include the ability to enable low voltage monitoring, start the HOCO oscillating, and to configure and
start the IWDT.

The user can input the values to be used for these registers in r_bsp_config.h (see Section 0).

2.14 Trusted Memory
The trusted memory (TM) function prevents illegal reading of the area set as TM. This function is disabled as default.
To enable the trusted memory function, specify with the BSP_CFG_TRUSTED_MODE_FUNCTION definition in
r_bsp_config.h.
For a dual-bank device, available TM area varies according to bank mode. To switch bank mode, specify with the
BSP_CFG_CODE_FLASH_BANK_MODE definition in r_bsp_config.h.

2.15 Bank Mode
User area can be used in linear mode, which uses the user area as one area, or in dual mode, which uses the user area as
dual area. These modes can be selected with the bank mode switch function. The memory mapping differs between
linear mode and dual mode, and is switched depending on a mode selected. When dual mode is selected, the bank area
to launch the program can be selected.
To switch bank mode, specify with the BSP_CFG_CODE_FLASH_BANK_MODE definition in r_bsp_config.h.
To select a bank to launch the program, specify with the BSP_CFG_CODE_FLASH_START_BANK definition in
r_bsp_config.h.

2.16 Board-Specific Defines
Each board folder has a board-specific header file which defines things such as which pins are used for LEDs, switches,
and SPI slave selects. The name of the file is the name of the board with ‘.h’ appended. For example, the file for the
RSKRX111 is named rskrx111.h.

2.17 System Wide Parameter Checking
By default FIT modules will check input parameters to be valid. This is helpful during development but some users
will want to disable this for production code. The reason for this would be to save execution time and code space. In
r_bsp_config.h there is an option to globally enable or disable parameter checking. Local modules will use this value by
default but can select to override the value locally if desired. To configure this option see Section 3.2.9.

2.18 Atomic Locking
The r_bsp provides API functions to implement atomic locking. These locks can be used to protect critical areas of code
as a RTOS semaphore or mutex normally would. Care should be taken when using these locks though since they do not
offer the advanced features one would expect from a modern RTOS. If used incorrectly then the locks could cause a
deadlock in the user’s system.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 12 of 92
July 1, 2018

In each mcu folder the user will find a file named mcu_locks.h. This contains an enum named mcu_lock_t which has
one lock per peripheral, and peripheral channel, on the MCU. These locks can be used to mark that a peripheral has
been reserved. This could be used if the user wanted to use a FIT module to control three channels of a peripheral and
their own custom code for one channel. By reserving the lock for the channel they need they have removed that channel
from being used by the FIT Module. These locks can also be used if the user has more than one FIT module for the
same peripheral. For example, if the user had one FIT module for using the SCI in asynchronous mode and another for
using the SCI in I2C mode then these locks will prevent these two modules from trying to use the same SCI channel.
There are 4 locking API functions provided that are detailed in Section 0. The only difference between the hardware
and software locking functions is that the hardware locking functions only use locks that are defined in mcu_locks.h.
The software locking function takes locks allocated anywhere so the user could create their own as needed. FIT
Modules that need locking and do not use a MCU peripheral will also create their own locks and use the software
locking routines.

The user has the option of substituting the default r_bsp locking mechanisms for their own. See Section 3.2.8 for more
information.

2.19 Register Protection
RX100, RX200, RX63x, RX64x, RX65x, and RX700 MCUs have protect registers that protect various MCU registers
from being written. Examples of registers that are protected include clock registers, low power consumption registers,
the software reset register, and low voltage detection registers. The r_bsp provides API functions for easily
manipulating these registers to enable or disable write access. Refer to Sections 5.7 and 5.8 for more information.

2.20 CPU Functions
API functions are provided for CPU functions such as enabling and disabling interrupts and setting the CPU’s interrupt
priority level. Refer to Section 5 for more information.

2.21 Group Interrupts
Multiple peripheral interrupt requests (up to 32 requests) are grouped together as one interrupt request. Interrupts are
grouped depending on the peripheral operating clock (PCLKB or PCLKA) and method to detect interrupt requests
(edge detection or level detection).
When the group interrupt request is generated, checking the corresponding group interrupt request register (A or B,
edge or level) identifies the interrupt source.

Figure 2-3 shows the Overview of FIT Group Interrupts.
With the BSP group interrupt function, when an interrupt occurs, the preregistered function is called. The registration is
done by each peripheral FIT module using the R_BSP_InterruptWrite function.

1. Each peripheral FIT module registers the interrupt callback function by calling the R_BSP_InterruptWrite function.
2. When an interrupt occurs, the FIT module calls the callback function registered in 1 above.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 13 of 92
July 1, 2018

Figure 2-3: Overview of FIT Group Interrupts

2.22 Software Configurable Interrupts
Peripheral interrupt sources can be dynamically assigned to a vector number from 128 to 255. Based on the peripheral
operating clock, they are divided into software configurable interrupt A and software configurable interrupt B. Software
configurable interrupt B may be used for peripherals that operate in synchronization with PCLKB and can be assigned
to interrupt numbers 128 to 207. Software configurable interrupt A may be used for peripherals that operate in
synchronization with PCLKA and can be assigned to interrupt numbers 208 to 255.

2.23 Startup Disable
The startup disable function is the function for the user who wants to add the peripheral FIT module to the existing user
project without creating a new project.
When the startup disable function is enabled, all startup processing performed by the BSP (processing in the
PowerON_Reset_PC function) become disabled. This prevents conflict with the user created startup processing.
Figure 2-4 shows the Overview of the Startup Disable Function, Figure 2-5 shows the Processing Disabled with the
Startup Disable Function, and Figure 2-6 shows the Files Influenced by the Startup Disable Function.

Figure 2-4: Overview of the Startup Disable Function

Peripheral FIT ModuleBSP

sci0_tei0_callback()

group_bl0_handler_isr ()

GRPBL0.IS0 == 1 ?

return

peripheral_init ()

Group interrupt callback
registration

R_BSP_InterruptWrite()

return

return

Interrupt handling

No

Yes (interrupt requested) Initialization of the peripheral
module

(1) Arguments:
vector: BSP_INT_SRC_BL0_SCI0_TEI0
callback: sci0_tei0_callback

Calling the callback function
sci0_tei0_callback()

(2)

User Project

User API

User
Peripheral module

User start-up processing BSP

BSP start-up disable

FIT
Peripheral module

FIT peripheral
module

BSP
Add

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 14 of 92
July 1, 2018

Figure 2-5: Processing Disabled with the Startup Disable Function

PowerOn_Reset_PC

Set stack addresses

Initialize the FPU *1

Enable the NMI interrupt *2

Setting the system clock
operating_frequency_set()

Initializing C runtime environment
_INITSCT()

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initialize PSW

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.

* All processing in the PowerOn_Reset_PC function are
disabled with the startup disable function enabled.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 15 of 92
July 1, 2018

Figure 2-6: Files Influenced by the Startup Disable Function

board

e.g. generic_rx65n

hwsetup.c

dbsct.c

hwsetup.h

lowlvl.c

lowsrc.c

lowsrc.h

resetprg.c

r_bsp.h

r_bsp_config_reference.h

r_bsp_interrupt_config_reference.h

sbrk.c

vecttbl.c

vecttbl.h

mcu

e.g. rx65n

cpu.c

register_access

cpu.h

locking.c

locking.h

mcu_clocks.c

mcu_info.c

mcu_info.h

mcu_interrupts.c

mcu_interrupts.h

mcu_locks.c

mcu_locks.h

mcu_mapped_interrupts.c

mcu_mapped_interrupts.h

mcu_mapped_interrupts_private.h

iodefine.h

* Files whose code is completely disabled with the startup disable function.

* File whose code is partially disabled with the startup disable function.

mcu_startup.c

mcu_startup.h

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 16 of 92
July 1, 2018

2.23.1 Setting the Startup Disable Function
To disable the BSP startup processing, specify the setting described below. For how to implement the FIT module, refer
to “8 Adding FIT Modules to the User Project”.

(1) Setting the configuration file

Disable the BSP startup processing by setting BSP_CFG_STARTUP_DISABLE to 1 in the r_bsp_config.h of the BSP.

Set the user created startup processing in the r_bsp_config.h. BSP API functions and peripheral FIT modules refer to
the contents in the r_bsp_config.h. If the contents of the user startup processing and the BSP startup processing are
different, the FIT module does not operate correctly.

Here is an example when mcu_info.h of the BSP has the definition of the peripheral module clock B frequency
(BSP_PCLKB_HZ). The frequency of peripheral module clock B is calculated with the information (frequency of the
resonator, division ratio, multiplication factor, and so on) set in r_bsp_config.h. The calculated frequency of peripheral
module clock B is referred by peripheral FIT modules.

The BSP information to which FIT modules refer is generated from r_bsp_config.h. Therefore, the settings in the user
startup processing and settings in r_bsp_config.h must be the same.

Figure 2-7 shows Configuration File Settings.

Figure 2-7: Configuration File Settings

(2) Setting for the conflicted group interrupt function

The BSP uses the group interrupt function. The function cannot be disabled since the peripheral FIT module uses it. To
avoid confliction, use the group interrupt function of the BSP instead of user's group interrupt function.

For group interrupts of the FIT module, refer to 2.21 Group Interrupts.

(3) Calling the R_BSP_StartupOpen function

The R_BSP_StartupOpen function performs initialization for the interrupt callback, register protection, and the
hardware and pins. These processing are for using the BSP and peripheral FIT modules. Thus, the R_BSP_StartupOpen
function must be called in the beginning of the user main function.

Refer to “5.18 R_BSP_StartupOpen()” for the R_BSP_StartupOpen function.

Peripheral module
SCI

Peripheral module
Flash API

BSP

r_bsp_config.h

User startup processing

Clock settings and
the other settings

Clock settings and
the other settings Must be the same.

mcu_info.h

Reference

Reference

 R
efe

ren
ce

Reference

Clock settings and
the other settings

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 17 of 92
July 1, 2018

3. Configuration
The r_bsp provides two header files that are used for configuration. One header file is used for choosing which platform
will be used. The other header file is used to configure the chosen platform.

3.1 Choosing a Platform
The r_bsp provides board support packages for many boards. Choosing which one is currently being used is done by
modifying the platform.h header file found in the root of the r_bsp folder.

To choose a platform uncomment the #include for the board you are using. For example, to develop with a
RSK+RX63N board, uncomment the #include for ‘./board/rskrx63n/r_bsp.h’ macro and make sure all other board
#includes are commented out.

3.2 Platform Configuration
Once a platform has been chosen, it will need to be configured. The user configures their platform using a file named
r_bsp_config.h. Each platform has its own specific configuration file. This file is located in the platform’s board folder
and is named r_bsp_config_reference.h. To create an r_bsp_config.h file the user simply needs to copy the
r_bsp_config_reference.h file from their board folder, rename it to r_bsp_config.h, and put it somewhere in their
project where it can be included. The reference configuration file is provided so that users always have a known-good
configuration file if needed. It is recommended that the r_bsp_config.h file is stored in a folder named r_config in the
user’s project. This is not a requirement but all FIT Modules have configuration files and having one designated
location for these files makes them easy to find and easy to backup.

While each r_bsp_config.h file is different, there are many of the same options in each. The following sections will
provide details on these configuration options. Note that each macro starts with the common prefix ‘BSP_CFG_’ which
makes them easy to search for and easy for the user to identify.

When using Smart Configurator, the configuration option can be set on software component configuration screen. The
setting value is automatically reflected in r_bsp_config.h when adding modules to user project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 18 of 92
July 1, 2018

3.2.1 MCU Product Part Number Information
The product part number for a MCU can provide the r_bsp with a lot of information about a MCU. For this reason, the
beginning of the configuration file has definitions that are set based on the MCU’s product part number. All of these
macros have a prefix of ‘BSP_CFG_MCU_PART_’. Some MCUs have more information in their product part numbers
than others but the table below shows the standard set that most have.

Define Value Meaning

BSP_CFG_MCU_PART_PACKAGE See comments above #define in
r_bsp_config.h.

Defines which package is being
used. Depending on package sizes
MCUs will have different
numbers of pins and may have
more or less peripherals.

BSP_CFG_MCU_PART_MEMORY_SIZE See comments above #define in
r_bsp_config.h.

Defines the sizes of ROM, RAM,
and Data Flash.

BSP_CFG_MCU_PART_GROUP See comments above #define in
r_bsp_config.h.

Defines the MCU Group (e.g.
RX62N, RX63T) in a MCU
series.

BSP_CFG_MCU_PART_SERIES See comments above #define in
r_bsp_config.h.

Defines the MCU Series (e.g.
RX600, RX200, RX100).

Table 3-1 : Product Part Number Defines

3.2.2 Stack & Heap Sizes
Stack sizes for RX devices are defined using the #pragma directives for the RX toolchain.

Define Value Meaning

BSP_CFG_USER_STACK_ENABLE
0 = Use only Interrupt stack.

1 = Use Interrupt & User stacks.

Whether to use 1 stack (Interrupt
stack) or 2 (Interrupt & User
stack). For further explanation
please see Section 2.8.

#pragma stacksize su= Size of User Stack in bytes.

Defines the size of the User stack.
This macro may be hidden from
view if the user has code folding
enabled in their editor.

#pragma stacksize si= Size of Interrupt Stack in bytes.

Defines the size of the Interrupt
stack. This macro may be hidden
from view if the user has code
folding enabled in their editor.

BSP_CFG_HEAP_BYTES Size of heap in bytes.
Defines the size of the heap. To
disable heap please read the
comments above this #define.

Table 3-2 : Stack & Heap Defines

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 19 of 92
July 1, 2018

3.2.3 STDIO Enable
The use of the STDIO library requires extra code space, RAM space, and use of the heap. If the user does not require
the use of STDIO then it is recommended to disable it and save the extra memory.

Define Value Meaning

BSP_CFG_IO_LIB_ENABLE
0 = Disable use of STDIO

1 = Enable use of STDIO

Determines whether STDIO
initialization functions are called
at startup to setup the STDIO
libraries.

Table 3-3 : Stack & Heap Defines

3.2.4 CPU Modes & Boot Modes
RX MCUs have multiple boot modes including Serial Boot Mode, User Boot Mode, and Single-Chip Mode. The
method for selecting boot mode varies depending on the MCU used. Some MCU select boot mode according to the
level of a target pin at startup, and some others select boot mode by setting a pin and also setting a value (UB code) to
the ROM.

Define Value Meaning

BSP_CFG_RUN_IN_USER_MODE
0 = Stay in Supervisor Mode

1 = Transition to User Mode

Out of reset RX MCUs operate in
Supervisor Mode. The user has the
option of transitioning to User
Mode (which has limited write
access to certain registers). Unless
needed it is recommended to keep
the MCU in Supervisor mode.

BSP_CFG_USER_BOOT_ENABLE
0 = Disable User Boot Mode

1 = Enable User Boot Mode

To enter User Boot Mode, a value
in ROM must be set. If this macro
defines User Boot Mode to be
enabled then the r_bsp will set the
appropriate ROM value.

Table 3-4 : CPU Modes & Boot Modes Defines

3.2.5 RTOS

Define Value Meaning

BSP_CFG_RTOS_USED
0 = RTOS is not being used

1 = RTOS is being used

Defines if a RTOS is being used in the
current application. Some FIT modules
may use this information for their own
configuration.

Table 3-5 RTOS Defines

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 20 of 92
July 1, 2018

3.2.6 Clock Setup
Available clocks vary amongst RX MCUs but the same basic concepts apply to all. After reset the r_bsp will initialize
the MCU clocks using the clock configuration macros found in r_bsp_config.h.

Define Value Meaning

BSP_CFG_CLOCK_SOURCE

0 = Low Speed On-Chip
Oscillator (LOCO)

1 = High Speed On-Chip
Oscillator (HOCO)

2 = Main Clock Oscillator
3 = Sub-Clock Oscillator
4 = PLL Circuit

Defines which clock source will be in
use when the r_bsp code jumps to
main().

BSP_CFG_MAIN_CLOCK_SOURCE
0 = Resonator
1 = External clock input

Defines which clock source will be
used for the main clock oscillator.

BSP_CFG_RTC_ENABLE
0 = RTC is not used
1 = RTC is used

Defines whether to use the RTC or
not.

BSP_CFG_SOSC_DRV_CAP See the comment above
#define in r_bsp_config.h.

Defines the driving ability of the sub-
clock oscillator.

BSP_CFG_PLL_SCR
0 = Main clock
1 = HOCO

Defines which clock source will be
used for the PLL Circuit.

BSP_CFG_USB_CLOCK_SOURCE
0 = System Clock (ICLK)
1 = USB PLL Circuit

Defines which clock source will be
used when the USB peripheral is
enabled.

BSP_CFG_LCD_CLOCK_SOURCE

0 = Low Speed On-Chip
Oscillator (LOCO)

1 = High Speed On-Chip
Oscillator (HOCO)

2 = Main Clock Oscillator
3 = Sub-Clock Oscillator
4 = IWDT dedicated clock

(IWDTCLK)

Defines which clock source will be
used when LCD is enabled.

BSP_CFG_LCD_CLOCK_ENABLE

0 = LCD Source clock is
disabled

1 = LCD Source clock is
enabled

Defines if clock source to the LCD is
enabled.

BSP_CFG_HOCO_FREQUENCY See the comment above
#define in r_bsp_config.h. Defines the HOCO frequency.

BSP_CFG_LPT_CLOCK_SOURCE
0 = Sub-Clock
1 = IWDT dedicated clock
2 = LPT not used

Defines which clock source will be
used when the Low-Power Timer is
enabled. The default value is 2 (LPT
not used).

BSP_CFG_XTAL_HZ Input clock frequency in Hz.

Defines the input clock frequency
(Resonator or External oscillator).
This is used for calculating final clock
speeds.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 21 of 92
July 1, 2018

BSP_CFG_PLL_DIV PLL Input Frequency Divider
Defines the PLL divider to be used. If
the PLL is not used then this can be
ignored.

BSP_CFG_PLL_MUL PLL Frequency
Multiplication Factor

Defines the PLL multiplier to be used.
If the PLL is not used then this can be
ignored.

BSP_CFG_UPLL_DIV USB PLL Input Frequency
Divider

Defines the USB PLL divider to be
used. If the PLL is not used then this
can be ignored

BSP_CFG_UPLL_MUL USB PLL Frequency
Multiplication Factor

Defines the USB PLL multiplier to be
used. If the PLL is not used then this
can be ignored

BSP_CFG_<ClockAcronym>_DIV
Examples:

BSP_CFG_ICK_DIV
BSP_CFG_PCKA_DIV
BSP_CFG_PCKB_DIV
BSP_CFG_PCKD_DIV
BSP_CFG_FCK_DIV

The divisor to use for this
clock.

RX MCUs have a number of clock
domains on-chip. Dividers can be set
for each of these independently to
maximize performance while
minimizing power consumption.
<ClockAcronym> is a placeholder for
the name of the clock to be set. For
example to set the divider for the CPU
clock (ICLK) then the user would set
the BSP_CFG_ICK_DIV macro.

BSP_CFG_HOCO_WAIT_TIME HOSCWTCR register setting
value

Defines the high-speed on-chip
oscillator wait time.

BSP_CFG_MOSC_WAIT_TIME MOSCWTCR register setting
value

Defines the main clock oscillator wait
time.

BSP_CFG_SOSC_WAIT_TIME SOSCWTCR register setting
value

Defines the sub-clock oscillator wait
time.

BSP_CFG_ROM_CACHE_ENABLE

0 = ROM cache operation
disabled
1 = ROM cache operation
enabled

Defines if ROM cache operation is
enabled or disabled.

BSP_CFG_BCLK_OUTPUT

0 = BCLK is not output
1 = BCK frequency is output
2 = BCK/2 frequency is
output

Defines if BCLK is output and if so
what frequency is output.

BSP_CFG_SDCLK_OUTPUT
0 = SDCLK is not output
1 = BCK frequency is output

Defines if SDCLK is output.

BSP_CFG_USE_CGC_MODULE 0 = Use built-in clock code in
the r_bsp module Allows to set 0 only.

Table 3-6 : Clock Setup Defines

3.2.7 Registers in ROM & External Memory Access Protection
Some registers are located in ROM and therefore must be set at compile-time. These include some option-setting
memory registers as well as certain memory protection registers.

RX MCUs have 2 different mechanisms for protecting MCU memory from being read after production. The first is the
use of ID codes. The RX ID code is 16 byte value that can be used to protect the MCU from being connected to a

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 22 of 92
July 1, 2018

debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the ID code; please
refer to the hardware manual for your device for available options. The second mechanism is a 4 byte value called ROM
Code Protection. This value determines what read and write access parallel programmers have to the MCU.

Option-Setting Memory registers (i.e. OFS0, OFS1) can be set so that certain operations occur at reset. For example, the
IWDT can be configured and enabled, voltage detection can be enabled, and HOCO oscillation can be enabled. When
these registers are set the operations are completed before the MCU’s reset vector is fetched and execution begins.

Define Value Meaning

BSP_CFG_ID_CODE_LONG_1

BSP_CFG_ID_CODE_LONG_2

BSP_CFG_ID_CODE_LONG_3

BSP_CFG_ID_CODE_LONG_4

ID code setting in 4 byte
units.

Defines the ID code of the MCU.
The default value all 0xFF’s means
that protection is disabled. Note: if
the ID code is set then it should be
remembered because the code will
be required if the MCU is going to
be connected for debugging or in
Serial Boot Mode again.

BSP_CFG_ROM_CODE_PROTECT_VALUE

0 = Read/Write access is
disabled

1 = Read access is
disabled

Else = Read/Write access is
enabled

Defines the read and write access
allowed by parallel programmers.

BSP_CFG_OFS0_REG_VALUE Value to be written to OFS0
register.

Defines the 4-byte value to be
programmed into the OFS0 ROM
location.

BSP_CFG_OFS1_REG_VALUE Value to be written to OFS1
register.

Defines the 4-byte value to be
programmed into the OFS1 ROM
location.

When HOCO oscillation is
enabled, set the default value to
BSP_CFG_HOCO_FREQUENCY.

BSP_CFG_TRUSTED_MODE_FUNCTION Value to be written to TMEF
register.

Defines if Trusted Mode is enabled
or disabled for RX64M, RX65N
and RX71M MCU’s.

BSP_CFG_FAW_REG_VALUE Value to be written to FAW
register.

In RX65N MCU, defines the 4-
byte value to be programmed into
the FAW ROM location.

BSP_CFG_ROMCODE_REG_VALUE Value to be written to
ROMCODE register.

In RX65N MCU, defines the 4-
byte value to be programmed into
the ROMCODE ROM location.

BSP_CFG_CODE_FLASH_BANK_MODE
0 = Dual mode

1 = Linear mode
Defines bank mode for a dual-bank
device.

BSP_CFG_CODE_FLASH_START_BANK
0 = Launch from bank 0

1 = Launch from bank 1
Defines a bank to launch the
program in dual mode for a dual-

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 23 of 92
July 1, 2018

bank device.

This definition is disabled for
linear mode.

Table 3-7 : ROM Register Defines

3.2.8 Atomic Locking
For an introduction into the r_bsp’s atomic locking see 2.18. These macros allow the user to override the default locking
mechanisms and implement their own. A user might wish to do this in order to replace the simple default mechanisms
provided in the r_bsp with more feature rich objects such as semaphores or mutexes from their RTOS. If the user
wished to do this they would first configure the r_bsp to use user defined locking mechanisms (see
BSP_CFG_USER_LOCKING_ENABLED below). After that they would define BSP_CFG_USER_LOCKING_TYPE
to be the type they wished to use for their locks. If using an RTOS semaphore then its type would be used here. Finally
the user would need to define the four locking functions that would be used (see last 4 entries in table below). The
arguments to these user defined functions have to match the arguments sent to the default locking functions. After these
changes are made all locks in the user’s project would be converted to the user defined locks. Whenever the r_bsp lock
functions are called by user code, or FIT Module code, the user’s functions would be called. At this point the user is
responsible for implementing the locking features. Inside these functions the user would be free to use the more
advanced locking features of their RTOS.

Define Value Meaning

BSP_CFG_USER_LOCKING_ENABLED

0 = Use default locking
mechanisms

1 = Use user defined
locking mechanisms

The default locking mechanisms
provided with the r_bsp do not use an
RTOS and therefore do not offer
some of the advanced features that a
user might expect from an RTOS
when using a semaphore or mutex.

BSP_CFG_USER_LOCKING_TYPE
Data type to be used for
locks (default is
bsp_lock_t)

If the user decides to use their own
locking mechanism then the data type
for their locks should be defined here.
For example, if the user replaces the
default locks with an RTOS
semaphore or mutex then that data
type would be specified here.

BSP_CFG_USER_LOCKING_HW
_LOCK_FUNCTION

User defined functions to
be called when r_bsp
lock functions are
overridden by user.

If the user is using their own locking
mechanisms then the function
defined by this macro will be called
when R_BSP_HardwareLock() is
called.

BSP_CFG_USER_LOCKING_HW
_UNLOCK_FUNCTION

User defined functions to
be called when r_bsp
lock functions are
overridden by user.

If the user is using their own locking
mechanisms then the function
defined by this macro will be called
when R_BSP_HardwareUnlock() is
called.

BSP_CFG_USER_LOCKING_SW
_LOCK_FUNCTION

User defined functions to
be called when r_bsp
lock functions are
overridden by user.

If the user is using their own locking
mechanisms then the function
defined by this macro will be called
when R_BSP_SoftwareLock() is
called.

BSP_CFG_USER_LOCKING_SW User defined functions to If the user is using their own locking

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 24 of 92
July 1, 2018

_UNLOCK_FUNCTION be called when r_bsp
lock functions are
overridden by user.

mechanisms then the function
defined by this macro will be called
when R_BSP_SoftwareUnlock() is
called.

Table 3-8 : Atomic Locking Defines

3.2.9 Parameter Checking
This macro is a global setting for enabling or disabling parameter checking. Each FIT module will also have its own
local macro for this same purpose. By default the local macros will take the global value from here though they can be
overridden. Therefore, the local setting has priority over this global setting. Disabling parameter checking should only
be performed when inputs are known to be good and the increase in speed or decrease in code space is needed.

Define Value Meaning

BSP_CFG_PARAM_CHECKING_ENABLE
0 = Parameter checking disabled

1 = Parameter checking enabled

Defines whether the global
setting for parameter checking is
enabled or disabled. Local
modules will take this value by
default but can be locally
overridden.

Table 3-9 : Parameter Checking Defines

3.2.10 Extended Bus Master Priority Setting

Define Value Meaning

BSP_CFG_EBMAPCR_1ST_PRIORITY 0 = GLCDC graphics 1 data read
1 = DRW2D texture data read
2 = DRW2D frame buffer data read

write and display list data read
3 = GLCDC graphics 2 data read

4 = EDMAC

Settings other than above are
prohibited. Also, it is not possible
to set the same value for multiple
priorities.

Extended Bus Master 1st Priority
Selection.

BSP_CFG_EBMAPCR_2ND_PRIORITY Extended Bus Master 2nd Priority
Selection.

BSP_CFG_EBMAPCR_3RD_PRIORITY Extended Bus Master 3rd Priority
Selection.

BSP_CFG_EBMAPCR_4TH_PRIORITY Extended Bus Master 4th Priority
Selection.

BSP_CFG_EBMAPCR_5TH_PRIORITY Extended Bus Master 5th Priority
Selection.

Table 3-10 : Extended Bus Master Priority Setting Defines

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 25 of 92
July 1, 2018

3.2.11 MCU Voltage

Define Value Meaning

BSP_CFG_MCU_VCC_MV Voltage supplied to MCU (Vcc)
in millivolts.

Some FIT Modules (e.g. LVD) need to
know the voltage supplied to the MCU.
The voltage information can be obtained
from this definition.

Table 3-11 : MCU Voltage Defines

3.2.12 Startup Disable

Define Value Meaning

BSP_CFG_STARTUP_DISABLE 0 = BSP startup enable
1 = BSP startup disable

Defines the BSP startup processing to be
enabled or disabled. When setting to be
disabled, all startup processing performed
by the BSP is disabled.

Table 3-12 : Startup Disable Defines

3.2.13 Using Smart Configurator

Define Value Meaning

BSP_CFG_CONFIGURATOR_SELECT
0 = Do not use Smart
Configurator

1 = Use Smart Configurator

Define whether Smart Configurator will
be used in the current project. When
BSP_CFG_CONFIGURATOR_SELECT
= 1, The Smart Configurator initialization
function is called.

Table 3-13 : Using Smart Configurator Defines

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 26 of 92
July 1, 2018

4. API Information
This Driver API follows the Renesas API naming standards.

4.1 Hardware Requirements
Not Applicable.

4.2 Hardware Resource Requirements
Not Applicable.

4.3 Software Requirements
None.

4.4 Limitations
None.

4.5 Supported Toolchains
This driver is tested and working with the toolchains listed in 9.1 Confirmed Operation Environment.

4.6 Header Files
All API calls are accessed by including a single file platform.h which is supplied with this driver’s project code.

4.7 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

4.8 Configuration Overview
For configuration information please see Section 3.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 27 of 92
July 1, 2018

4.9 API Data Structures
4.9.1 Software Lock
This data structure is used for implementing atomic locking on RX MCUs. The lock member must be 4-bytes in order to
use the RX’s atomic XCHG instruction. This structure is the default type defined by the
BSP_CFG_USER_LOCKING_TYPE macro.

typedef struct
{
 /* The actual lock. int32_t is used because this is what the xchg()
 instruction takes as parameters. */
 int32_t lock;
} bsp_lock_t;

4.9.2 Interrupt Callback Parameter
This data structure is used when calling an interrupt callback function. The interrupt handler will fill in this structure,
cast it as ‘(void *)’, and then send it as the argument to the callback function.
typedef struct
{
 bsp_int_src_t vector; //Which vector caused this interrupt
} bsp_int_cb_args_t;

4.9.3 Interrupt Control Parameter
This data structure is used when calling the R_BSP_InterruptControl function. Specify the parameter value according to
the interrupt control command.
/* Type to be used for pdata argument in Control function. */
typedef union
{

uint32_t ipl; /* Used when enabling an interrupt to set that
 interrupt's priority level */

} bsp_int_ctrl_t;

4.10 API Typedefs
4.10.1 Register Protection
This typedef defines the different register protection options that can be toggled. Notice that some registers are grouped
together. For example, LPC, CGC, and software reset registers are all protected by the same bit. Which items, and how
many, are in this typedef will vary depending on the MCU being used. Please reference cpu.h for your MCU to see the
valid options for your MCU. The typedef below belongs to the RX111.

/* The different types of registers that can be protected. */
typedef enum
{
 /* Enables writing to the registers related to the clock generation circuit:
 SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR,LOCOCR, ILOCOCR, HOCOCR,
 OSTDCR, OSTDSR, CKOCR. */
 BSP_REG_PROTECT_CGC = 0,
 /* Enables writing to the registers related to operating modes, low power
 consumption, the clock generation circuit, and software reset: SYSCR1,
 SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, SOPCCR, MOFCR, MOSCWTCR,
 SWRR. */
 BSP_REG_PROTECT_LPC_CGC_SWR,
 /* Enables writing to the HOCOWTCR register. */
 BSP_REG_PROTECT_HOCOWTCR,

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 28 of 92
July 1, 2018

 /* Enables writing to the registers related to the LVD: LVCMPCR, LVDLVLR,
 LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR. */
 BSP_REG_PROTECT_LVD,
 /* Enables writing to MPC's PFS registers. */
 BSP_REG_PROTECT_MPC,
 /* This entry is used for getting the number of enum items. This must be the
 last entry. DO NOT REMOVE THIS ENTRY!*/
 BSP_REG_PROTECT_TOTAL_ITEMS
} bsp_reg_protect_t;

4.10.2 Hardware Resource Locks
This typedef defines the available hardware resource locks. For each entry in this enum one software lock will be
allocated in the hardware lock array. Which items are in this list, and how many, will vary depending on the MCU
chosen. The typedef below is for the RX111.

typedef enum
{
 BSP_LOCK_BSC = 0,
 BSP_LOCK_CAC,
 BSP_LOCK_CMT,
 BSP_LOCK_CMT0,
 BSP_LOCK_CMT1,
 BSP_LOCK_CRC,
 BSP_LOCK_DA,
 BSP_LOCK_DOC,
 BSP_LOCK_DTC,
 BSP_LOCK_ELC,
 BSP_LOCK_FLASH,
 BSP_LOCK_ICU,
 BSP_LOCK_IRQ0,
 BSP_LOCK_IRQ1,
 BSP_LOCK_IRQ2,
 BSP_LOCK_IRQ3,
 BSP_LOCK_IRQ4,
 BSP_LOCK_IRQ5,
 BSP_LOCK_IRQ6,
 BSP_LOCK_IRQ7,
 BSP_LOCK_IWDT,
 BSP_LOCK_MPC,
 BSP_LOCK_MTU,
 BSP_LOCK_MTU0,
 BSP_LOCK_MTU1,
 BSP_LOCK_MTU2,
 BSP_LOCK_MTU3,
 BSP_LOCK_MTU4,
 BSP_LOCK_MTU5,
 BSP_LOCK_POE,
 BSP_LOCK_RIIC0,
 BSP_LOCK_RSPI0,
 BSP_LOCK_RTC,
 BSP_LOCK_RTCB,
 BSP_LOCK_S12AD,
 BSP_LOCK_SCI1,
 BSP_LOCK_SCI5,
 BSP_LOCK_SCI12,
 BSP_LOCK_SMCI1,
 BSP_LOCK_SMCI5,
 BSP_LOCK_SMCI12,
 BSP_LOCK_SYSTEM,

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 29 of 92
July 1, 2018

 BSP_LOCK_USB0,
 BSP_NUM_LOCKS /* This entry is not a valid lock. It is used for sizing
 g_bsp_Locks[] array below. Do not touch! */
} mcu_lock_t;

4.10.3 Interrupt Error Codes
This typedef defines the error codes that can be returned by the R_BSP_InterruptWrite(), R_BSP_InterruptRead(), and
R_BSP_InterruptControl() functions.

The typedef below is for RX65N

The definition BSP_INT_ERR_GROUP_STILL_ENABLED is not included in the MCUs which do not support group
interrupts.

Some RX MCUs may support additional interrupt control commands.

typedef enum
{
 BSP_INT_SUCCESS = 0,
 BSP_INT_ERR_NO_REGISTERED_CALLBACK, //There is not a registered callback
 //for this interrupt source
 BSP_INT_ERR_INVALID_ARG, //Illegal argument input
 BSP_INT_ERR_UNSUPPORTED //Operation is not supported by this API

BSP_INT_ERR_GROUP_STILL_ENABLED //Not all group interrupts were disabled
//so group interrupt was not disabled

} bsp_int_err_t;

4.10.4 Interrupt Control Commands
This typedef defines the available commands that can be used with the R_BSP_InterruptControl() function.

The typedef below is for RX65N.

The definitions BSP_INT_CMD_GROUP_INTERRUPT_ENABLE and
BSP_INT_CMD_GROUP_INTERRUPT_DISABLE are not included in the MCUs which do not support group
interrupts.

Some RX MCUs may support additional interrupt control commands.
typedef enum
{
 BSP_INT_CMD_CALL_CALLBACK = 0, //Calls registered callback function
 //if one exists
 BSP_INT_CMD_INTERRUPT_ENABLE, //Enables a give interrupt (Available for NMI
 //pin, FPU, and Bus Error)
 BSP_INT_CMD_INTERRUPT_DISABLE //Disables a given interrupt (Available for
 //FPU, and Bus Error)

BSP_INT_CMD_GROUP_INTERRUPT_ENABLE, //Enables a group interrupt when
//a group interrupt source is given.
//The pdata argument should give the IPL
//to be used using the bsp_int_ctrl_t type.
//If a group interrupt is enabled
//multiple times with different IPL levels
//it will use the highest given IPL.

BSP_INT_CMD_GROUP_INTERRUPT_DISABLE //Disables a group interrupt when
//a group interrupt source is given.
//This will only disable a group
//Interrupt when all interrupt sources
//for that group are already disabled.

} bsp_int_cmd_t;

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 30 of 92
July 1, 2018

4.10.5 Interrupt Callback Function
This typedef defines the callback function type. Callback functions should have a ‘void’ return type and should take an
argument of type ‘void *’.

typedef void (*bsp_int_cb_t)(void *);

4.10.6 Interrupt Sources
This typedef defines the interrupt vectors that can have callbacks registered to them. Note that the options in this
typedef will vary depending on which MCU is being used. The typedef below is for the RX111. Other RX MCU’s may
support additional interrupt sources.

typedef enum
{
 BSP_INT_SRC_EXC_SUPERVISOR_INSTR = 0, //Occurs when privileged instruction
 //is executed in User Mode
 BSP_INT_SRC_EXC_UNDEFINED_INSTR, //Occurs when MCU encounters an
 //unknown instruction
 BSP_INT_SRC_EXC_NMI_PIN, //NMI Pin interrupt
 BSP_INT_SRC_EXC_FPU, //FPU exception
 BSP_INT_SRC_OSC_STOP_DETECT, //Oscillation stop is detected
 BSP_INT_SRC_WDT_ERROR, //WDT underflow/refresh error has
 //occurred
 BSP_INT_SRC_IWDT_ERROR, //IWDT underflow/refresh error has
 //occurred
 BSP_INT_SRC_LVD1, //Voltage monitoring 1 interrupt
 BSP_INT_SRC_LVD2, //Voltage monitoring 2 interrupt
 BSP_INT_SRC_UNDEFINED_INTERRUPT, //Interrupt has triggered for a vector
 //that user did not write a handler
 //for
 BSP_INT_SRC_BUS_ERROR, //Bus error: illegal address access or
 //timeout
 BSP_INT_SRC_TOTAL_ITEMS //DO NOT MODIFY! This is used for
 //sizing the interrupt callback array.
} bsp_int_src_t;

4.10.7 Unit for Software Delay
This typedef defines units which can be used with the R_BSP_SoftwareDelay function.
/* Available delay units. */
typedef enum
{

BSP_DELAY_MICROSECS = 1000000, // Requested delay amount is in microseconds
BSP_DELAY_MILLISECS = 1000, // Requested delay amount is in milliseconds
BSP_DELAY_SECS = 1 // Requested delay amount is in seconds

} bsp_delay_units_t;

4.11 Return Values
None.

4.12 Adding Driver to Your Project
Please see Section 6, Section 7, and Section 8.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 31 of 92
July 1, 2018

4.13 Code size
Typical code sizes associated with this module are listed below. Information is listed for a single representative device
of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration options
described in 3, Configuration. The table lists reference values when the C compiler’s compile options and configuration
options are set to their default values. The compile option default values are optimization level: 2, optimization type: for
size, and data endianness: little-endian. The code size varies depending on the C compiler version and compile options.
The version of the C compiler used is v2.07.00.

ROM, RAM and Stack Code Sizes

Device Category Memory Used Remarks

With Parameter
Checking

Without Parameter
Checking

RX130 ROM 5,001 bytes 4994 bytes Use rskrx130.

RAM 3.054 bytes Use rskrx130.

Maximum stack usage 184 bytes Use rskrx130.

RX24U ROM 5,032 bytes 5,025 bytes

RAM 3,382 bytes

Maximum stack usage 184 bytes

RX65N ROM 1 channel used 7.415 bytes 7.395 bytes Use rskrx65n.

RAM 1 channel used 7,436 bytes Use rskrx65n.

Maximum stack usage 184 bytes Use rskrx65n.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 32 of 92
July 1, 2018

5. API Functions
5.1 Summary
The following functions are included in this design:

Function Description
R_BSP_GetVersion Returns version of r_bsp

R_BSP_InterruptsDisable Globally disables interrupts

R_BSP_InterruptsEnable Globally enables interrupts

R_BSP_CpuInterruptLevelRead Reads the CPU’s Interrupt Priority Level

R_BSP_CpuInterruptLevelWrite Writes the CPU’s Interrupt Priority Level

R_BSP_RegisterProtectEnable Enables write protection for selected registers

R_BSP_RegisterProtectDisable Disables write protection for selected registers

R_BSP_SoftwareLock Attempts to reserve a lock

R_BSP_SoftwareUnlock Releases a lock

R_BSP_HardwareLock Attempts to reserve a hardware peripheral lock

R_BSP_HardwareUnlock Releases a hardware peripheral lock

R_BSP_InterruptWrite Registers a callback function for an interrupt

R_BSP_InterruptRead Gets the callback for an interrupt if one is registered.

R_BSP_InterruptControl Controls various interrupt operations.

R_BSP_SoftwareDelay Delays the specified duration.

R_BSP_GetIClkFreqHz Returns the system clock frequency specified by the r_bsp.

R_BSP_StartupOpen *1 Performs the startup processing for using the BSP.
Note 1. This function is only used when the BSP startup processing is disabled.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 33 of 92
July 1, 2018

5.2 R_BSP_GetVersion()
Returns the current version of the r_bsp.

Format
uint32_t R_BSP_GetVersion(void);

Parameters
None.

Return Values
Version of the r_bsp.

Properties
Prototyped in file “r_bsp_common.h”.
Implemented in file “r_bsp_common.c”.

Description
This function will return the version of the currently installed r_bsp. The version number is encoded where the top 2
bytes are the major version number and the bottom 2 bytes are the minor version number. For example, Version 4.25
would be returned as 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed r_bsp. */
cur_version = R_BSP_GetVersion();

/* Check to make sure version is new enough for this application’s use. */
if (MIN_VERSION > cur_version)
{
 /* This r_bsp version is not new enough and does not have XXX feature
 that is needed by this application. Alert user. */

}

Special Notes:
This function is specified to be an inline function in r_bsp_common.c.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 34 of 92
July 1, 2018

5.3 R_BSP_InterruptsDisable()
Globally disables interrupts.

Format
void R_BSP_InterruptsDisable(void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “cpu.h”.
Implemented in file “cpu.c.”

Description
This function globally disables interrupts. This is performed by clearing the ‘I’ bit in the CPU’s Processor Status Word
(PSW) register.

Reentrant
Yes.

Example
/* Disable interrupts so that accessing this critical area will be guaranteed
 to be atomic. */
R_BSP_InterruptsDisable();

/* Access critical resource while interrupts are disabled */
....

/* End of critical area. Enable interrupts. */
R_BSP_InterruptsEnable();

Special Notes:
The ‘I’ bit of the PSW can only be modified when in Supervisor Mode. If the CPU is in User Mode and this function is
called then a Privileged Instruction Exception will occur.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 35 of 92
July 1, 2018

5.4 R_BSP_InterruptsEnable()
Globally enables interrupts.

Format
void R_BSP_InterruptsEnable(void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “cpu.h”.
Implemented in file “cpu.c”.

Description
This function globally enables interrupts. This is performed by setting the ‘I’ bit in the CPU’s Processor Status Word
(PSW) register.

Reentrant
Yes.

Example
/* Disable interrupts so that accessing this critical area will be guaranteed
 to be atomic. */
R_BSP_InterruptsDisable();

/* Access critical resource while interrupts are disabled */
....

/* End of critical area. Enable interrupts. */
R_BSP_InterruptsEnable();

Special Notes:
The ‘I’ bit of the PSW can only be modified when in Supervisor Mode. If the CPU is in User Mode and this function is
called then a Privileged Instruction Exception will occur.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 36 of 92
July 1, 2018

5.5 R_BSP_CpuInterruptLevelRead()
Reads the CPU’s Interrupt Priority Level.

Format
uint32_t R_BSP_CpuInterruptLevelRead(void);

Parameters
None.

Return Values
The CPU’s Interrupt Priority Level.

Properties
Prototyped in file “cpu.h”.
Implemented in file “cpu.c”.

Description
This function reads the CPU’s Interrupt Priority Level. This is level is stored in the IPL bits of the Processor Status
Word (PSW) register.

Reentrant
Yes.

Example
uint32_t cpu_ipl;

/* Read the CPU’s Interrupt Priority Level. */
cpu_ipl = R_BSP_CpuInterruptLevelRead();

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 37 of 92
July 1, 2018

5.6 R_BSP_CpuInterruptLevelWrite()
Writes the CPU’s Interrupt Priority Level.

Format
bool R_BSP_CpuInterruptLevelWrite(uint32_t level);

Parameters
level

The level to write to the CPU’s IPL.

Return Values
true: Successful, CPU’s IPL has been written

false: Failure, provided ‘level’ has invalid IPL value

Properties
Prototyped in file “cpu.h”.
Implemented in file “cpu.c”.

Description
This function writes the CPU’s Interrupt Priority Level. This is level is stored in the IPL bits of the Processor Status
Word (PSW) register. This function does check to make sure that the IPL being written is valid. The maximum and
minimum valid settings for the CPU IPL are defined in mcu_info.h using the BSP_MCU_IPL_MAX and
BSP_MCU_IPL_MIN macros.

Reentrant
Yes.

Example
/* Response time is critical during this portion of the application. Set the
 CPU’s Interrupt Priority Level so that interrupts below the set
 threshold are disabled. Interrupt vectors with IPLs higher than this
 threshold will still be accepted and will not have to contend with the
 lower priority interrupts. */
if (false == R_BSP_CpuInterruptLevelWrite(HIGH_PRIORITY_THRESHOLD))
{
 /* Error in setting CPU’s IPL. Invalid IPL was provided. */

}

/* Only high priority interrupts (as defined by user) will be accepted during
 this period. */
....

/* Time sensitive period is over. Set CPU’s IPL back to lower value so that
 lower priority interrupts can now be serviced again. */
if (false == R_BSP_CpuInterruptLevelWrite(LOW_PRIORITY_THRESHOLD))
{
 /* Error in setting CPU’s IPL. Invalid IPL was provided. */

}

Special Notes:
The CPU’s IPL can only be modified by the user when in Supervisor Mode. If the CPU is in User Mode and this
function is called then a Privileged Instruction Exception will occur.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 38 of 92
July 1, 2018

5.7 R_BSP_RegisterProtectEnable()
Enables write protection for selected registers.

Format
void R_BSP_RegisterProtectEnable(bsp_reg_protect_t regs_to_protect);

Parameters
regs_to_protect

Which registers to enable write protection for. See Section 4.10.1.

Return Values
None.

Properties
Prototyped in file “cpu.h”.
Implemented in file “cpu.c”.

Description
This function enables write protection for the input registers. Only certain MCU registers have the ability to be write
protected. To see which registers are available to be protected by this function look at the bsp_reg_protect_t enum in
cpu.h for your MCU.

This function, and R_BSP_RegisterProtectDisable(), use counters for each entry in the bsp_reg_protect_t enum so that
users can call these functions multiple times without problem. An example of why this is needed is shown below in the
Special Notes section below.

Reentrant
No.

Example
/* Write access must be enabled before writing to MPC registers. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

/* MPC registers are now writable. */
/* Setup Port 2 Pin 6 as TXD1 for SCI1. */
MPC.P26PFS.BYTE = 0x0A;

/* Setup Port 4 Pin 2 as AD input for potentiometer. */
MPC.P42PFS.BYTE = 0x80;

/* More pin setup. */
....

/* Enable write protection for MPC registers to protect against accidental
 writes. */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 39 of 92
July 1, 2018

Special Notes:
This is an example showing why counters are needed for register protection.

1. The user’s application calls the open function for r_module1.

2. r_module1 disables write protection for some registers that are required to be written during initialization of this
module by calling R_BSP_RegisterProtectDisable(). At this point the counter for this protected registers is
incremented by 1.

3. r_module1 writes to unprotected registers that were made writable by previous step.

4. r_module1 also depends upon r_module2 and needs to call its open function, R_MODULE2_Open().

5. In the r_module2 function it also needs to write to the same protected registers as r_module1. r_module2 calls
R_BSP_RegisterProtectDisable() again since it does not know that r_module1 already enabled write access to these
registers. The counter for the protected register is incremented by 1 and is now 2.

6. r_module2 writes to unprotected registers that were made writable by previous step.

7. r_module2 is done writing to the protected registers so it calls R_BSP_RegisterProtectEnable() to re-enable write
protection for the registers. The counter for the protected register is decremented by 1 and is now 1. Since the counter
is not 0 the code knows that it should not actually re-enable protection yet.

8. Execution goes back to R_MODULE1_Open() where it continues to write to registers. Here is where the problem can
occur. If counters are not used then the call to R_BSP_RegisterProtectEnable() by r_module2 (Step #7) can prevent
the registers in r_module1 from being written.

9. r_module1 is done writing to the protected registers so it calls R_BSP_RegisterProtectEnable() to re-enable write
protection for the registers. The counter for the protected register is decremented by 1 and is now 0. Since the counter
is 0 the API code knows that it is safe to re-enable write protection for the registers.

Figure 5-1 : Register Protection Example

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 40 of 92
July 1, 2018

5.8 R_BSP_RegisterProtectDisable()
Disables write protection for selected registers.

Format
void R_BSP_RegisterProtectDisable(bsp_reg_protect_t regs_to_unprotect);

Parameters
regs_to_unprotect

Which registers to disable write protection for. See Section 4.10.1.

Return Values
None.

Properties
Prototyped in file “cpu.h”.
Implemented in file “cpu.c”

Description
This function disables write protection for the input registers. Only certain MCU registers have the ability to be write
protected. To see which registers are available to be protected by this function look at the bsp_reg_protect_t enum in
cpu.h for your MCU.

This function, and R_BSP_RegisterProtectEnable(), use counters for each entry in the bsp_reg_protect_t enum so that
users can call these functions multiple times without problem. An example of why this is needed is shown in the Special
Notes section of Section 5.7.

Reentrant
No.

Example
/* Write access must be enabled before writing to CGC registers. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);
/* CGC registers are spread amongst two protection bits. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_LPC_CGC_SWR);

/* CGC registers are now writable. */
/* Select PLL as clock source. */
SYSTEM.SCKCR3.WORD = 0x0400;

/* More clock setup. */
....

/* Enable write protection for CGC registers to protect against accidental
 writes. */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_LPC_CGC_SWR);

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 41 of 92
July 1, 2018

5.9 R_BSP_SoftwareLock()
Attempts to reserve a lock.

Format
bool R_BSP_SoftwareLock(BSP_CFG_USER_LOCKING_TYPE * const plock);

Parameters
plock

Pointer to lock structure with lock to try and acquire.

Return Values
true: Successful, lock was available and acquired

false: Failure, lock was already acquired and is not available

Properties
Prototyped in file “locking.h”.
Implemented in file “locking.c”

Description
This function implements an atomic locking mechanism. Locks can be used in numerous ways. Two common uses of
locks are to protect critical sections of code and to protect against duplicate resource allocation. For protecting critical
sections of code the user would require that the code first obtain the critical section’s lock before executing. An
example of protecting against duplicate resource allocation would be if the user had two FIT modules that used the
same peripheral. For example, the user may have one FIT module that uses the SCI peripheral in UART mode and
another FIT module that uses the SCI peripheral in I2C mode. To make sure that both modules cannot use the same SCI
channel, locks can be used.

Care should be taken when using locks as they do not provide advanced features one might expect from an RTOS
semaphore or mutex. If used improperly locks can lead to deadlock in the user’s system.

Users can override the default locking mechanisms. See Section 3.2.8 for more information.

Reentrant
Yes.

Example
This shows an example of using locks with the Virtual EEPROM code. This FIT module does not access any
peripherals directly, but still needs protection against reentrancy.

/* Used for locking state of VEE */
static BSP_CFG_USER_LOCKING_TYPE g_vee_lock;

/***
* Function Name: vee_lock_state
* Description : Tries to lock the VEE state
* Arguments : state -
* Which state to try to transfer to
* Return value : VEE_SUCCESS -
* Successful, state taken
* VEE_BUSY -
* Data flash is busy, state not taken
***/
static uint8_t vee_lock_state (vee_states_t state)
{
 /* Local return variable */
 uint8_t ret = VEE_SUCCESS;

 /* Try to lock VEE to change state. */
 /* Check to see if lock was successfully taken. */
 if(false == R_BSP_SoftwareLock(&g_vee_lock))
 {

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 42 of 92
July 1, 2018

 /* Another operation is on-going */
 return VEE_BUSY;
 }

 /* Check VEE status to make sure we are not interfering with another
 thread */
 if(state == VEE_READING)
 {
 /* If another read comes in while the state is reading then we are OK */
 if((g_vee_state != VEE_READY) && (g_vee_state != VEE_READING))
 {
 /* VEE is busy */
 ret = VEE_BUSY;
 }
 }
 else
 {
 /* If we are doing something other than reading then we must be in the
 VEE_READY state */
 if(g_vee_state != VEE_READY)
 {
 /* VEE is busy */
 ret = VEE_BUSY;
 }
 }

 if(ret == VEE_SUCCESS)
 {
 /* Lock state */
 g_vee_state = state;
 }

 /* Release lock. */
 R_BSP_SoftwareUnlock(&g_vee_lock);

 return ret;
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 43 of 92
July 1, 2018

5.10 R_BSP_SoftwareUnlock()
Releases a lock.

Format
bool R_BSP_SoftwareUnlock(BSP_CFG_USER_LOCKING_TYPE * const plock);

Parameters
plock

Pointer to lock structure with lock to release.

Return Values
true: Successful, lock was released. Or the lock has been already released.

false: Failure, lock could not be released

Properties
Prototyped in file “locking.h”.
Implemented in file “locking.c”

Description
This function releases a lock that was previously acquired using the R_BSP_SoftwareLock() function. Please see
Section 5.9 for more information on locks.

Reentrant
Yes.

Example
This shows an example of using locks for a critical section of code.

/* Used for locking critical section of code. */
static BSP_CFG_USER_LOCKING_TYPE g_critical_lock;

static bool critical_area_example (void)
{
 /* Try to acquire lock for executing critical section below. */
 if(false == R_BSP_SoftwareLock(&g_critical_lock))
 {
 /* Lock has already been acquired. */
 return false;
 }

 /* BEGIN CRITICAL SECTION. */

 /* Execute critical section. */

 /* END CRITICAL SECTION. */

 /* Release lock. */
 R_BSP_SoftwareUnlock(&g_critical_lock);

 return true;
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 44 of 92
July 1, 2018

5.11 R_BSP_HardwareLock()
Attempts to reserve a hardware peripheral lock.

Format
bool R_BSP_HardwareLock(mcu_lock_t const hw_index);

Parameters
hw_index

Index of lock to acquire from the hardware lock array.

Return Values
true: Successful, lock was available and acquired

false: Failure, lock was already acquired and is not available

Properties
Prototyped in file “locking.h”.
Implemented in file “locking.c”

Description
This function attempts to acquire the lock for a hardware resource of the MCU. Instead of sending in a pointer to a lock
as with the R_BSP_SoftwareLock() function, the user sends in an index to an array that holds 1 lock per MCU hardware
resource. This array is shared amongst all FIT modules and user code therefore allowing multiple FIT modules (and
user code) to use the same locks. The user can see the available hardware resources by looking at the mcu_lock_t enum
in mcu_locks.h. These enum values are also the index into the hardware lock array. The same atomic locking
mechanisms from the R_BSP_SoftwareLock() function are used with this function as well.

Reentrant
Yes.

Example
This example shows hardware locks being used to control access to a RSPI channel.
/**
* Function Name: R_RSPI_Send
* Description : Send data over RSPI channel.
* Arguments : channel -
* Which channel to use.
* pdata -
* Pointer to data to transmit
* bytes -
* Number of bytes to transmit
* Return Value : true -
* Data sent successfully.
* false -
* Could not obtain lock.
**/
bool R_RSPI_Send(uint8_t channel, uint8_t * pdata, uint32_t bytes)
{
 mcu_lock_t rspi_channel_lock;

 /* Check and make sure channel is valid. */
 ...

 /* Use appropriate RSPI channel lock. */
 if (0 == channel)
 {
 rspi_channel_lock = BSP_LOCK_RSPI0;
 }
 else
 {

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 45 of 92
July 1, 2018

 rspi_channel_lock = BSP_LOCK_RSPI1;
 }

 /* Attempt to obtain lock so we know we have exclusive access to RSPI
 channel. */
 if (false == R_BSP_HardwareLock(rspi_channel_lock))
 {
 /* Lock has already been acquired by another task. Need to try again
 later. */
 return false;
 }

 /* Else, lock was acquired. Continue on with send operation. */
 ...

 /* Now that send operation is completed, release hold on lock so that other
 tasks may use this RSPI channel. */
 R_BSP_HardwareUnlock(rspi_channel_lock);

 return true;
}

Special Notes:
Each entry in the mcu_lock_t enum in mcu_locks.h will be allocated a lock. On RX MCUs, each lock is required to be
4-bytes. If RAM space is an issue then the user can remove the entries from the mcu_lock_t enum that they are not
using. For example, if the user is not using the CRC peripheral then they could delete the BSP_LOCK_CRC entry. The
user will save 4-bytes per deleted entry.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 46 of 92
July 1, 2018

5.12 R_BSP_HardwareUnlock()
Releases a hardware peripheral lock.

Format
bool R_BSP_HardwareUnlock(mcu_lock_t const hw_index);

Parameters
hw_index

Index of lock to release from the hardware lock array.

Return Values
true: Successful, lock was released

false: Failure, lock could not be released

Properties
Prototyped in file “locking.h”.
Implemented in file “locking.c”

Description
This function attempts to release the lock for a hardware resource of the MCU that was previously acquired using the
R_BSP_HardwareLock() function. For more information on hardware locks please see Section 5.11.

Reentrant
Yes.

Example
This example shows hardware locks being used to prevent duplicate hardware resource allocation. The R_SCI_Open()
function takes the lock so all modules know that the SCI channel is being used. R_SCI_Close() releases the lock
thereby making it available for any module to use.
bool R_SCI_Open(uint8_t channel, ...)
{
 mcu_lock_t sci_channel_lock;

 /* Check and make sure channel is valid. */
 ...

 /* Use appropriate RSPI channel lock. */
 if (0 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI0;
 }
 else if (1 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI1;
 }
 ... continue for other channels ...

 /* Attempt to obtain lock so we know we have exclusive access to SCI
 channel. */
 if (false == R_BSP_HardwareLock(sci_channel_lock))
 {
 /* Lock has already been acquired by another task or another FIT module.
 Need to try again later. */
 return false;
 }

 /* Else, lock was acquired. Continue on initialization. */
 ...

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 47 of 92
July 1, 2018

}

bool R_SCI_Close(uint8_t channel, ...)
{
 mcu_lock_t sci_channel_lock;

 /* Check and make sure channel is valid. */
 ...

 /* Use appropriate RSPI channel lock. */
 if (0 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI0;
 }
 else if (1 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI1;
 }
 ... continue for other channels ...

 /* Clean up and turn off this SCI channel. */

 /* Release hardware lock for this channel. */
 R_BSP_HardwareUnlock(sci_channel_lock);
}

Special Notes:
Each entry in the mcu_lock_t enum in mcu_locks.h will be allocated a lock. On RX MCUs, each lock is required to be
4-bytes. If RAM space is an issue then the user can remove the entries from the mcu_lock_t enum that they are not
using. For example, if the user is not using the CRC peripheral then they could delete the BSP_LOCK_CRC entry. The
user will save 4-bytes per deleted entry.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 48 of 92
July 1, 2018

5.13 R_BSP_InterruptWrite()
Registers a callback function for an interrupt.

Format
bsp_int_err_t R_BSP_InterruptWrite(bsp_int_src_t vector,

 bsp_int_cb_t callback);

Parameters
vector

Which interrupt to register a callback for. See Section 4.10.6.

callback

Pointer to function to call when interrupt occurs. See Section 4.10.5.

Return Values
BSP_INT_SUCCESS: Successful, callback has been registered

BSP_INT_ERR_INVALID_ARG: Invalid function address input, any previous function has been unregistered

Properties
Prototyped in file “mcu_interrupts.h”.
Implemented in file “mcu_interrupts.c”.

Description
This function registers a callback function for an interrupt. If FIT_NO_FUNC, NULL, or any other invalid function
address is passed for the callback argument then any previously registered callbacks are unregistered.

If one of the interrupts that is handled by this code is triggered then the interrupt handler will query this code to see if a
valid callback function is registered. If one is found then the callback function will be called. If one is not found then
the interrupt handler will clear the appropriate flag(s) and exit.

If the user has a callback function registered and wishes to no longer handle the interrupt then the user should call this
function again with FIT_NO_FUNC as the vector parameter.

Reentrant
No.

Example
/* Prototype for callback function. */
void bus_error_callback(void * pdata);

void main (void)
{
 bsp_int_err_t err;

 /* Register bus_error_callback() to be called whenever a bus error occurs */
 err = R_BSP_InterruptWrite(BSP_INT_SRC_BUS_ERROR, bus_error_callback);

 if (BSP_INT_SUCCESS != err)
 {
 /* Error in registering callback. Alert user. */
 ...
 }
}

void bus_error_callback (void * pdata)
{
 /* Bus error has occurred. Handle accordingly. */
 ...
}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 49 of 92
July 1, 2018

Special Notes:
Use of FIT_NO_FUNC is preferred over NULL since access to the address defined by FIT_NO_FUNC will cause a bus
error which is easy for the user to catch. NULL typically resolves to 0 which is a valid address on RX MCUs.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 50 of 92
July 1, 2018

5.14 R_BSP_InterruptRead()
Gets the callback for an interrupt if one is registered.

Format
bsp_int_err_t R_BSP_InterruptRead(bsp_int_src_t vector,

 bsp_int_cb_t * callback);

Parameters
vector

Which interrupt to read the callback for. See Section 4.10.6.

callback

Pointer to where to store callback address. See Section 4.10.5.

Return Values
BSP_INT_SUCCESS: Successful, callback address has been returned

BSP_INT_ERR_NO_REGISTERED_CALLBACK: No valid callback has been registered for this interrupt source.

Properties
Prototyped in file “mcu_interrupts.h”.
Implemented in file “mcu_interrupts.c”.

Description
This function returns the callback function address for an interrupt if one has been registered. If a callback function has
not been registered then an error is returned and nothing is stored to the callback address.

Reentrant
No.

Example
/* This function handles bus error interrupts. The address for this function
 is located in the bus error interrupt vector. */
void bus_error_isr (void)
{
 bsp_int_err_t err;
 bsp_int_cb_t * user_callback;

 /* Bus error has occurred, see if a callback function has been registered */
 err = R_BSP_InterruptRead(BSP_INT_SRC_BUS_ERROR, user_callback);

 if (BSP_INT_SUCCESS == err)
 {
 /* Valid callback function found. Call it. */
 user_callback ();
 }

 /* Clear bus error flags. */
 ...
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 51 of 92
July 1, 2018

5.15 R_BSP_InterruptControl()
Controls various interrupt operations.

Format
bsp_int_err_t R_BSP_InterruptControl(bsp_int_src_t vector,

bsp_int_cmd_t cmd,
void *pdata)

Parameters
vector

Which interrupt to control for. See Section 4.10.6.

cmd
Interrupt control command. See Section 4.10.4.

pdata
Pointer to the argument for each command. Typecasted to void*. See Section 4.9.3.
Most of the commands do not need the argument and take FIT_NO_PTR for this parameter.
For BSP_INT_CMD_GROUP_INTERRUPT_ENABLE, specify the interrupt priority level for group
interrupts as the argument.

Return Values
BSP_INT_SUCCESS: Successful
BSP_INT_ERR_NO_REGISTERED_CALLBACK: No valid callback has been registered for this interrupt source.
BSP_INT_ ERR_INVALID_ARG: The command passed is invalid.
BSP_INT_ERR_UNSUPPORTED: This processing is not supported.
BSP_INT_ERR_GROUP_STILL_ENABLED: Group interrupt request remains enabled.

Properties
Prototyped in file “mcu_interrupts.h”

Description
This function controls the interrupt callback function call and enabling/disabling interrupts such as bus error interrupt,
floating-point exception, NMI pin interrupt, and group interrupts.

When BSP_INT_CMD_GROUP_INTERRUPT_ENABLE is set as the interrupt control command, the interrupt request
(IER) for group interrupts is enabled and also the interrupt priority level is set. The interrupt priority level set must be
higher than the current level.

When BSP_INT_CMD_GROUP_INTERRUPT_DISABLE is set as the interrupt control command, the interrupt
request (IER) for group interrupts is disabled. Note that the interrupt request (IER) for group interrupts cannot be
disabled as long as all interrupt requests (GEN) caused by grouped interrupt sources are disabled.

Reentrant
No.

Example
bsp_int_err_t err;
bsp_int_ctrl_t int_ctrl;

err = BSP_INT_ERR_NO_INVALID_ARG;
int_ctrl.ipl = 0x0A;

err = R_BSP_InterruptControl(BSP_INT_SRC_BL0_SCI0_TEI0,

BSP_INT_CMD_GROUP_INTERRUPT_ENABLE,
&int_ctrl);

if (BSP_INIT_SUCCESS != err)
{
/* NG processing */

}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 52 of 92
July 1, 2018

Special Notes:
None.

5.16 R_BSP_SoftwareDelay()
Delay the specified duration in units and return.

Format
bool R_BSP_SoftwareDelay(uint32_t delay, bsp_delay_units_t units)

Parameters
delay

The number of 'units' to delay.

units

The 'base' for the units specified. See Section 4.10.7.

Return Values
true: True if delay executed

false: False if delay/units combination resulted in overflow/underflow

Properties
Prototyped in file “r_bsp_common.h”.
Implemented in file “r_bsp_common.c”

Description
This is function that may be called for all MCU targets to implement a specific wait time.

The actual delay time is plus the overhead at a specified duration. The overhead changes under the influence of
compiler, operating frequency and ROM cache. When the operating frequency is low, or the specified duration in units
of microsecond level, please note that the error becomes large.

Reentrant
No.

Example
bool ret;

/* Delay 5 seconds before returning */
ret = R_BSP_SoftwareDelay(5, BSP_DELAY_SECS);

if (true != ret)
{

/* NG processing */
}

/* Delay 5 milliseconds before returning */
ret = R_BSP_SoftwareDelay(5, BSP_DELAY_MILLISECS);

if (true != ret)
{
/* NG processing */
}

/* Delay 50 microseconds before returning */
ret = R_BSP_SoftwareDelay(50, BSP_DELAY_MICROSECS);

if (true != ret)
{
/* NG processing */

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 53 of 92
July 1, 2018

}

Special Notes:
None.

5.17 R_BSP_GetIClkFreqHz()
Returns the system clock frequency specified by the r_bsp.

Format
uint32_t R_BSP_GetClkFreqHz(void)

Parameters
None.

Return Values
System clock frequency specified by the r_bsp.

Properties
Prototyped in file “r_bsp_common.h”

Description
This function returns the system clock frequency which is specified by the r_bsp based on the information in
r_bsp_config.h. Note that the frequency returned is not the one when this function is called.

For example, when the system clock is set to 120 MHz in r_bsp_config_h and the r_bsp has completed to specify the
clock setting, then even if the user changed the system clock frequency to 60 MHz, the return value is not '60000000'
but '120000000'.

Reentrant
Yes.

Example
uint32_t iclk;

iclk = R_BSP_GetIClkFreqHz();

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 54 of 92
July 1, 2018

5.18 R_BSP_StartupOpen()
Specifies settings to use the BSP and peripheral FIT modules. Call this function only when the BSP startup is disabled.

Format
void R_BSP_StartupOpen(void)

Parameters
None.

Return Values
None.

Properties
Prototyped in file “mcu_startup.h”

Description
This function performs initialization for the interrupt callback, register protection, and the hardware and pins. These
processing are needed for using the BSP and peripheral FIT modules. Thus, this function must be called in the
beginning of the main function.

Call this function only when the BSP startup is disabled.

Reentrant
No.

Example
void main (void)
{

R_BSP_StartupOpen();

...

}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 55 of 92
July 1, 2018

Special Notes:
The R_BSP_StartupOpen function performs a part of processing in the PowerOn_Reset_PC function. The following
shows the processing.

Figure 5-2: Processing of the R_BSP_StartupOpen Function

PowerOn_Reset_PC

Set stack addresses

Initialize the FPU *1

Enable the NMI interrupt *2

Setting the system clock
operating_frequency_set()

Initializing C runtime environment
_INITSCT()

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initialize PSW

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

R_BSP_StartupOpen

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initializing register protection
bsp_register_protect_open()

return

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 56 of 92
July 1, 2018

6. Project Setup
This section details creating an e2 studio project and adding the r_bsp to it.

6.1 Creating a FIT Project
Create a FIT project with the e2 studio. For this example, a project will be created for RX65N.

1. Open your e2 studio workspace.

2. Click File >> New >> C Project

3. Enter the project name, choose “Sample Project” in the ‘Project type:’ pane, and choose “Renesas RXC
Toolchain” in the ‘Toolchains’ pane. Click Next.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 57 of 92
July 1, 2018

4. Choose the MCU used from the ‘Select Target’ field. For this example, choose RX65N (R5F565N9AxFB).

5. In the ‘Select Coding Assistant Tool’ window, select “Peripheral Code Generator or Firmware Integration
Technology (FIT)” and check to select “Use FIT module”.
(If the FIT module has not been downloaded yet, download the FIT module with “Download FIT module” on
the right.)
Click Next.

Download the FIT
module from here if it has
not been downloaded.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 58 of 92
July 1, 2018

6. Specify settings as needed in the ‘Select Additional CPU Options’ window and click Next.

7. Specify settings as needed in the ‘Global Options Settings’ window and click Next.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 59 of 92
July 1, 2018

8. Select libraries as needed in the ‘Standard Header Files’ window and click Finish.

9. When the Summary window opens, click OK.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 60 of 92
July 1, 2018

6.2 Adding FIT Module with e2 studio FIT Configurator
Now that we have an empty e2 studio project the FIT module can be added. This section describes how to add the FIT
module to the project with the FIT Configurator.

1. Click Renesas Views >> e2 solution toolkit >> FIT Configurator to open the FIT configurator.

2. Confirm that your project is selected in the ‘Name of the project to add FIT modules’ field.

3. Choose the board from the ‘Target Board’ field. There are two types of boards in the target boards.

 Renesas evaluation board:
Boards provided by Renesas such as Renesas Starter Kits (RSK) and Renesas Solution Starter Kits
(RSSK). For this type, board specific settings, e.g. settings for switch or LED, are provided depending on
what they support.

 Generic board:
Assuming the user board. For this type, no board specific setting is provided.
Specify settings according to your application.
Example: Choose “GENERIC_RX65N” for using RX65N with the user board.

4. Select the FIT module needed from the ‘Available Modules’ pane and click the Add Module button.
Regardless of what FIT module you use, the BSP must always be selected.

5. Confirm the selected modules and click the Generate Code button.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 61 of 92
July 1, 2018

7. Adding r_bsp manually
This section will give instruction on how to add the r_bsp to an e2 studio project manually (without use of the FIT Plug-
in).

1. Copy the r_bsp folder to your e2 studio project’s root. Once clicking Copy in Windows you can right-click on
your project in e2 studio and click Paste.

2. Expand the r_bsp >> board folder and delete all of the folders except the one for the board you are using. You

can leave the ‘user’ directory if you wish to have a directory to start off with when you create your own BSP.

3. Expand the r_bsp >> mcu folder and delete all of the folders except the one for your MCU group and the one
named all.

4. It is recommended to create a directory to store all FIT configuration files. Having one place for configuration

files make them easy to find and easy to backup. The default name for this folder is r_config. If an r_config
folder was not included in your r_bsp zip file then we will create one here. Create an r_config folder for your
project by right-clicking on your project and choosing New >> Folder. In the window that pops up enter
‘r_config’ for the folder name and click Finish.

5. We will now setup include paths for the r_bsp and r_config folders. Right-click on your project and click
Properties.

6. Under ‘Tool Settings’ select Compiler >> Source.

7. In the ‘Include file directories’ box click the ‘Add’ button.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 62 of 92
July 1, 2018

8. The ‘Add directory path’ window will pop up; click the Workspace button.

9. In the ‘Folder selection’ window choose the r_bsp folder and click OK.

10. Verify that your window looks like the one above and click OK.

11. Back in the main Properties window verify that you now have an include path for the r_bsp.

12. Follow the same steps to add an include path for the r_config folder.

13. Back in the main Properties window verify that you now have an include path for the r_bsp and r_config
folders and click Apply. Click OK to return to your project.

14. Which board is being used needs to be selected in the platform.h header file. Open up platform.h and
uncomment the #include for the board you are using. In this example the RSKRX111 is being used so the
#include for “./board/rskrx111/r_bsp.h” is uncommented.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 63 of 92
July 1, 2018

15. In order to configure the r_bsp the user needs to create an r_bsp_config.h file. Copy the

r_bsp_config_reference.h file from your board folder and paste it into the r_config folder. Right-click on the
file in the r_config folder and click Rename. Rename the file to r_bsp_config.h. If the MCU has an
r_bsp_interrupt_config_reference.h file, copy that file as well and rename it to r_bsp_interrupt_config.h.

16. Configure the r_bsp for your board by going through and modifying the r_bsp_config.h file as needed.

17. For RX64M, RX65N and RX71M MCU’s configuring the bsp requires that the user also create an
r_bsp_interrupt_config.h file. Copy the r_bsp_interrupt_config_reference.h file from your board folder and
paste it into the r_config folder. Right-click on the file in the r_config folder and click Rename. Rename the
file to r_bsp_interrupt_config.h.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 64 of 92
July 1, 2018

18. Configure the software configurable interrupts for your RX64M/RX65N/RX71M board by going through and

modifying the r_bsp_interrupt_config.h file as needed.

19. Build the project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 65 of 92
July 1, 2018

7.1 Creating a BSP Module for a Custom Board
This section describes how to create a custom BSP.

When there is a generic folder for the MCU used, create a project selecting the Generic board (refer to the procedure in
6. Project Setup).

When there is no generic folder for the MCU used, create a project following the procedure below. This section
describes an example procedure using the RX111 MCU.

The figure below shows the procedure for creating a bsp for a custom board.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 66 of 92
July 1, 2018

Step 1. Create a New Project (Mandatory)
To create a new project, refer to "Creating Empty Project" in the "Board Support Package Module Using Firmware
Integration Technology" application note (R01AN1685).

Step 2. Add the BSP Module (Mandatory)
To add the BSP module to the new project (user project) created in step 1, refer to "Adding r_bsp with e2 studio FIT
Plug-in" in the "Board Support Package Module Using Firmware Integration Technology" application note
(R01AN1685).
Choose the following options when adding the BSP module on the FIT plug-in.

 Family, Series, Group: MCU used.

 Target Board: MCU board used.

For example, when using the RX111 to create the user board, choose "RSKRX111" or "RSKRX64M". By choosing the
appropriate options here, the board folder for the custom board can be created easily.

 Choose the
MCU used.

Choose the MCU board used.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 67 of 92
July 1, 2018

Step 3. Create a Folder for the Custom Board
The r_bsp folder should now be present in the user project. Below, the board folder under the r_bsp folder is modified
to create the custom BSP. The code in the mcu folder does not require modification.

1) Confirm that the board folder (rskrx111 here) specified in step 2 and the user folder are generated in the board
folder under the r_bsp folder.

2) Use the user folder as the folder for the custom board (optional).
Rename the folder name (optional). The folder name does not have to be changed.

Folder structure after the
BSP module is added.

Example when the folder name is
changed for the custom board

Folder for setting of the
board specified

Folder for the
custom board

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 68 of 92
July 1, 2018

Step 4. Store Necessary Files (Mandatory)
Store necessary files in the folder created in step 3.

1) Copy all files in the rskrx111 folder and paste them in the folder for the custom board. Then overwrite the r_bsp.h
file.

2) Exclude the rskrx111 folder from build.
(The folder can be deleted if it is not necessary after the folder for the custom board is created.)

 Right click the folder.

Select “Exclude from build…”
from the menu.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 69 of 92
July 1, 2018

Step 5. Modify Files Suited to the Custom Board (Mandatory)
Modify the following four files suited to the custom board.

1. hwsetup.c

This file executes the following four functions.

 Function: output_ports_configure

This function initializes ports used for LEDs, switchs, SCI, and ADC.

Ports need to be configured with either of procedures below according to the board used.

If not configuring pins in this function:

1) Comment out or delete the function declaration of the output_ports_configure function.

2) Delete the output_ports_configure function which is called in the hardware_setup function.

3) Comment out or delete the output_ports_configure function.

Then configure settings described in "2. *board_specific_defines*.h" as well.

If configuring pins in this function:

1) Comment out or delete the source code in the output_ports_configure function.

2) Configure pins according to the board used.

 Function: bsp_non_existent_port_init

This function initializes nonexistent ports. No additional processing is required for this function.

 Function: interrupts_configure

This function configures interrupt settings which are performed prior to the main function.

When such settings are required, add the settings in this function.

 Function: peripheral_modules_enable

This function configures settings for peripheral functions which are performed prior to the main function.

When such settings are required, add the settings in this function.

Examples of processing are shown below when not configuring pins in the output_ports_configure function.

Comment out or delete this part.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 70 of 92
July 1, 2018

Comment out or delete this line.

Comment out or delete this
part.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 71 of 92
July 1, 2018

2. *board_specific_defines*.h

The board used becomes the name of this file (e.g. rskrx111.h). This file has definitions of pins used for switches,
LEDs, and so on, and their settings vary depending on the board used.

However this file is not necessary when using the custom board. Perform the following steps.

1) Delete the *board_specific_defines*.h file from the folder for the custom board.

2) Delete the following line in the r_bsp.h file.

#include "board/rskrx111/rskrx111.h"

3. r_bsp.h

This header file is included in platform.h and has all #includes required for the board and the MCU. The include
paths associated with the board need to be modified.

1) Modify the include paths which start with "board/" as follows:

Change the path to "board/name of the folder for the custom board/file name".

Example:

Before modification: #include "board/rskrx111/rskrx111.h"

After modification: #include "board/test_board/rskrx111.h"

Change this part to the folder name for the custom board.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 72 of 92
July 1, 2018

4. r_bsp_config_reference.h

This header file has settings to provide default options of the board. Macro definitions that are included in this file
and need to be modified according to the custom board are listed in the table below. Change the settings as required.

For example, when the setting in the copied board folder uses the PLL as the system clock while the user system
uses the HOCO, change the clock setting for BSP_CFG_CLOCK_SOURCE from PLL to HOCO.

Also confirm usage conditions for macros not in the table below and modify them as required.

Table 7.1 Macros to be modified to reflect the Custom Board

Macro Description
BSP_CFG_CLOCK_SOURCE Selects a crystal on the board and a clock source.

BSP_CFG_XTAL_HZ Specifies a value according to the crystal on the board (default value: RSK
setting).

BSP_CFG_PLL_DIV When using the PLL:
Specifies an available setting value using the crystal on the board.

BSP_CFG_PLL_MUL When using the PLL:
Specifies an available setting value using the crystal on the board.

BSP_CFG_ICK_DIV Specifies an available setting value using the crystal on the board.
BSP_CFG_PCKB_DIV Specifies an available setting value using the crystal on the board.
BSP_CFG_PCKD_DIV Specifies an available setting value using the crystal on the board.
BSP_CFG_FCK_DIV Specifies an available setting value using the crystal on the board.

Step 6. Copy and Rename the r_bsp_config_reference.h File (Mandatory)
After step 5, copy the r_bsp_config_reference.h file, paste it in the r_config folder, and rename the copied file to
"r_bsp_config.h".

Step 7. Modify the platform.h File (Mandatory)
This header file needs to be modified to specify the r_bsp.h file in the newly created folder for the custom board. Follow
the steps below for the modification.

1) Uncomment the line under the comment "/* User Board - Define your own board here. */ ".

2) Change the folder name after "board/" to the folder name for the custom board.

Before modification:

After modification:

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 73 of 92
July 1, 2018

8. Adding FIT Modules to the User Project
This section describes how to add the FIT module to the user project. The procedure to add the peripheral FIT module
to the existing user project without creating a new project is described. The FIT configurator in the e2 studio is used to
add the FIT module.

Step 1. Adding the FIT module using the FIT configurator

1. Click Renesas Views >> e2 solution toolkit >> FIT Configurator to open the FIT configurator.

2. Select the user created project from the list in the ‘Name of the project to add FIT modules’ field.

3. Select a GENERIC board from the list in the ‘Target Board’ field.

4. Select the r_bsp and the peripheral FIT module from the ‘Available Modules’ pane and click the Add Module button.

5. Confirm that the r_bsp and the peripheral FIT module selected are displayed in the ‘Selected Modules’ pane, and
click the Generate Code button.

6. Check the contents for code generation in the ‘FIT Generation – Summary’ window and click OK.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 74 of 92
July 1, 2018

7. When the ‘FIT project toolchain settings’ window appears, click Cancel.

This window appears when the necessary settings to use the BSP and FIT modules have not been done. Settings for
the compiler option and the Standard library option are described in “Step 2. Setting the Project Environment”.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 75 of 92
July 1, 2018

Step 2. Setting the Project Environment

1. Select Renesas Tool Setting (click the e2 icon on the menu bar) to open the ‘Properties for <project name>’ window
and select
C/C++ Build >> Settings >> Tool Settings (tab) >> Compiler >> Source >> Source file, and then specify ‘C99’ in the
‘C:’ field. The FIT module assumes ‘C99’ to be specified for the C language setting.

2. Select Renesas Tool Setting (click the e2 icon on the menu bar) to open the ‘Properties for <project name>’ window
and select
C/C++ Build >> Settings >> Tool Settings >> Standard Library >> Contents, and then specify ‘C99’ in the ‘Library
configuration’ field. The FIT module assumes ‘C99’ to be specified for the library setting for C language.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 76 of 92
July 1, 2018

3. Specify sections for the FIT module.

When the FIT module project is generated in the e2 studio, sections for the FIT module will be specified. FIT module
assumes these sections are used for the project.

Table 8-1 lists the Sections for the FIT module.

Table 8-1 Sections for the FIT module

Address Section Name

0x00000004 SU

SI

B_1

R_1

B_2

R_2

B

R

0xFFxxxxxx *1 C_1

C_2

C

C$*

D*

W*

L

P*

0xFFFFFF80 EXCEPTVECT / FIXEDVECT *2

0xFFFFFFFC *3 RESETVECT *3

Note 1. The address varies depending on the device selected when generating the project.
Note 2. Section names are different between RXv2 core and RXv1 core. The section names are

EXCEPTVECT for RXv2 and FIXEDVECT for RXv1.
Note 3. This is only specified when RXv2 core is selected.

For device CPU, refer to the Features section in the User’s Manual: Hardware.

Step 3. Startup disable

1. Disable the BSP startup. See Section 2.23.1 Setting the Startup Disable Function for details.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 77 of 92
July 1, 2018

Notes

1. When the code is generated with the FIT configurator, include paths necessary for using the FIT module are
automatically added.

To check include paths added, select Renesas Tool Setting (click the e2 icon on the menu bar) to open the ‘Properties
for <project name>’ window and select C/C++ General >> Path and Symbols, and then check the paths in the
‘Includes’ and the ‘Source and Location’ tabs.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 78 of 92
July 1, 2018

9. Appendices
9.1 Confirmed Operation Environment
This section describes confirmed operation environment for this module.

Table 9.1 Confirmed Operation Environment (Rev.3.10)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.1.0.018

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev.3.10
Board used Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)

Table 9.2 Confirmed Operation Environment (Rev.3.20)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.1.0.018

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev.3.20
Board used Renesas Starter Kit for RX24T (product No.: RTK500524TSxxxxxBE)

Table 9.3 Confirmed Operation Environment (Rev.3.30)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.2.0.012

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev.3.30
Board used Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 79 of 92
July 1, 2018

Table 9.4 Confirmed Operation Environment (Rev.3.31)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.3.0.007

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev.3.31
Board used Renesas Starter Kit for RX23T (product No.: RTK500523TSxxxxxBE)

Table 9.5 Confirmed Operation Environment (Rev.3.40)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 5.0.1.005

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev.3.40
Board used Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE)

Table 9.6 Confirmed Operation Environment (Rev.3.50)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 5.2.0.020

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev.3.50

Board used Renesas Starter Kit for RX24T (product No.: RTK500524TSxxxxxBE)
Renesas Starter Kit for RX24U (product No.: RTK500524USxxxxxBE)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 80 of 92
July 1, 2018

Table 9.7 Confirmed Operation Environment (Rev.3.60)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 5.4.0.015 (RX130)
Renesas Electronics e2 studio Version 6.0.0.001 (RX65N)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev3.60

Board used
Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)

Table 9.8 Confirmed Operation Environment (Rev.3.70)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 6.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev3.70

Board used

Renesas Starter Kit for RX111 (product No.: R0K505111SxxxBE)
Renesas Starter Kit for RX113 (product No.: R0K505113SxxxBE)
Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX23T (product No.: RTK500523TSxxxxxBE)
Renesas Starter Kit for RX24T (product No.: RTK500524TSxxxxxBE)
Renesas Starter Kit for RX24U (product No.: RTK500524USxxxxxBE)
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX71M (product No.: R0K50571MSxxxBE)
RX65N Envision Kit (product No.: RTK5RX65N2CxxxxxBR)

Table 9.9 Confirmed Operation Environment (Rev.3.71)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 6.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev3.71

Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
RX65N Envision Kit (product No.: RTK5RX65N2CxxxxxBR)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 81 of 92
July 1, 2018

Table 9.10 Confirmed Operation Environment (Rev.3.80)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
 -lang = C99

Endian Big endian/little endian
Revision of the module Rev3.80

Board used

Renesas Starter Kit for RX111 (product No.: R0K505111SxxxBE)
Renesas Starter Kit for RX113 (product No.: R0K505113SxxxBE)
Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit for RX210 (B Mask) (product No.: R0K505210SxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX23T (product No.: RTK500523TSxxxxxBE)
Renesas Starter Kit for RX63T (64-pin) (product No.: R0K50563TSxxxBE)
Renesas Starter Kit for RX63T (144-pin) (product No.: R0K5563THSxxxBE)
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX71M (product No.: R0K50571MSxxxBE)
Target Board for RX130 (product No.: RTK5RX1300CxxxxxBR)
Target Board for RX231 (product No.: RTK5RX2310CxxxxxBR)
Target Board for RX65N (product No.: RTK5RX65N0CxxxxxBR)
RX65N Envision Kit (product No.: RTK5RX65N2CxxxxxBR)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 82 of 92
July 1, 2018

9.2 Creating a Project with FIT Plug-in
9.2.1 Creating an Empty Project
To start off an e2 studio project will be created and modified. For this example a project will be created for the
RSKRX111.

1. Open your e2 studio workspace.

2. Click File >> New >> C Project

3. Enter the project name. In ‘Project type:’ choose ‘Sample Project’. In ‘Toolchains’ choose ‘Renesas RXC
Toolchain’. Click Next.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 83 of 92
July 1, 2018

4. Choose your debug hardware and MCU.

5. In the ‘Select Coding Assistant Tool’ window, do not check “Use Peripheral code Generator”. Click Next.

6. For the ‘Select Additional CPU Options’ window, configure as needed and click Next.

7. For the ‘Global Options Settings’ window, configure as needed and click Next.

8. For the ‘Standard Header Files’ window, select ‘C(C99)’ for ‘Library configuration’. Configure which libraries
are brought in as needed and click Next.

9. Uncheck all boxes for the window shown below:

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 84 of 92
July 1, 2018

10. Click Finish. In the ‘Summary’ window that pops up, click OK.

11. Expand your newly created project in the ‘Project Explorer’ pane. Expand the ‘src’ directory and delete all
files except for the one that contains the main() function. In this example the dbsct.c and typedefine.h files
were deleted.

12. Right-click on the project in the ‘Project Explorer’ pane and click Properties.

13. We will now setup the linker sections. The main change in these steps will be removing some default linker
sections that are not used by the r_bsp.

14. Expand ‘C/C++ Build’ and click ‘Settings’.

15. Under ‘Tool Settings’ select Linker >> Section.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 85 of 92
July 1, 2018

16. In the ‘Sections viewer’ pane note the address that is allocated for the section ‘PResetPRG’. This address

should be beginning of user ROM for your MCU. Write down this address then click on the ‘PResetPRG’
section and click ‘Remove Section’.

17. Click on the section that was directly beneath ‘PResetPRG’ (in this example it is ‘C_1’) and change its address
to the address that you recorded for ‘PResetPRG’.

18. Click on the ‘PIntPRG’ section and click ‘Remove Section’.

19. Click on the ‘P’ section and click the ‘Move Up’ button. This should remove the address from the section and
combine it with the previous section block.

20. Click on the ‘P’ section and change it to ‘P*’. The use of the ‘*’ character acts as a wildcard and will catch all
‘P’ sections used in your project.

21. Verify that the address for the ‘FIXEDVECT’ section is set to 0xFFFFFF80.

22. VERY IMPORTANT, remember to click the Apply button. If the Apply button is not visible in your screen
then use the scroll bars on the right of the window to find it.

23. Your linker screen should now look similar to the one below.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 86 of 92
July 1, 2018

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 87 of 92
July 1, 2018

24. We will now setup the linker to fill in unused interrupt vectors with the address of the
undefined_interrupt_source_isr() function. Under ‘Tool Settings’ select Linker >> User.

25. Click the ‘Add’ button (with green ‘+’ symbol) and in the window that pops up enter:

-vect=_undefined_interrupt_source_isr

26. Click OK to close the pop up window. Verify the option has been added to the list and click Apply.

27. Click OK to return to your project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 88 of 92
July 1, 2018

9.2.2 Adding r_bsp with e2 studio FIT Plug-in
Now that we have an empty e2 studio project the r_bsp code can be added. This section describes using the FIT Plug-in.

1. Open up the FIT Plug-in by clicking File >> New >> Renesas FIT Module.

2. Confirm that your project is shown in the ‘Name of the project to add FIT modules’ dropdown near the top of
the window.

3. Choose which board and MCU you are using by selecting options in the Family, Series, Group, and Target
Board dropdowns. In this example the RSKRX111 is being used.

4. Click on the version of the r_bsp you wish to use in the module list.

5. Click Finish.

6. A window will pop up alerting you that the plug-in has automatically updated your include paths for the new
module. Click OK.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 89 of 92
July 1, 2018

7. The plug-in will pop up the include paths for your project. Verify that an include is present for the r_bsp and
r_config folders. Click Apply and then click OK to close the window.

8. Confirm that there are now r_bsp and r_config folders in your project.

9. Expand the r_bsp folder and confirm that the proper board and mcu folders were copied.

10. Which board is being used needs to be selected in the platform.h header file. Open up platform.h and

uncomment the #include for the board you are using. In this example the RSKRX111 is being used so the
#include for “./board/rskrx111/r_bsp.h” is uncommented.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 90 of 92
July 1, 2018

11. In order to configure the r_bsp the user needs to create an r_bsp_config.h file. Copy the
r_bsp_config_reference.h file from your board folder and paste it into the r_config folder. Right-click on the
file in the r_config folder and click Rename. Rename the file to r_bsp_config.h.

12. Configure the r_bsp for your board by going through and modifying the r_bsp_config.h file as needed.

13. For RX64M, RX65N and RX71M MCU’s configuring the bsp requires that the user also create an
r_bsp_interrupt_config.h file. Copy the r_bsp_interrupt_config_reference.h file from your board folder and
paste it into the r_config folder. Right-click on the file in the r_config folder and click Rename. Rename the
file to r_bsp_interrupt_config.h.

14. Configure the software configurable interrupts for your RX64M/RX65N/RX71M board by going through and

modifying the r_bsp_interrupt_config.h file as needed.

15. Build the project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 91 of 92
July 1, 2018

9.3 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules is correct
with the following documents:

 When using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”
 When using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to the project.
For this, refer to the application note “Board Support Package Module Using Firmware Integration Technology
(R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got an error: ERROR - Valid clock source must be
chosen in r_bsp_config.h using BSP_CFG_CLOCK_SOURCE macro.

A: The setting in the file “r_bsp_config.h” may be wrong. Check the file “r_bsp_config.h”. If there is a wrong
setting, set the correct value for that. Refer to 3 Configuration.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0380 Rev.3.80 Page 92 of 92
July 1, 2018

Technical Update Information
The following technical update applies to this module.

 TN-RX*-A021A
 TN-RX*-A138A
 TN-RX*-A164A
 TN-RX*-A169A

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision Record

Rev.

Date

Description
Page Summary

2.30 Nov 15, 2013 — First Release.
2.40 Feb 18, 2014 — Added support for RX21A, RX220, RX110. Expanded ‘MCU

Information’ subsection.
2.50 Mar 13, 2014 — Added support for RX64M.
2.60 July 15, 2014 — Added section for Creating a BSP Module for a Custom Board.
2.70 Aug 5, 2014 — Added support for RX113.
2.80 Jan 21, 2015 — Added support for RX71M.
2.81 Mar 31, 2015 — Supported 240 MHz of the operating frequency (default) for

RX71M.
2.90 June 30, 2015 — Added support for RX231.
3.00 Sep 30, 2015 — Added support for RX23T.
3.01 Sep 30, 2015 Program Modified the BSP FIT module due to the software issues.

Modification Regarding Clocks

[Description]
For processing to switch a clock immediately after a reset,
there is an error in determination of the condition in processing
for switching to high-speed operating mode when exceeding
allowable frequency range of middle-speed operating mode.
This may cause middle-speed operating mode to be set with a
frequency out of the allowable frequency range.

[Conditions]
When the following three conditions are all met:
- RX231 or RX23T is used with the BSP FIT module rev. 3.00
or earlier.

- The initial definition of the highest clock frequency is as
follows: 12 MHz < the highest clock frequency ≤ 32 MHz
(RX231).

- The initial definition of the ICLK is as follows:
12 MHz < ICLK ≤ 32 MHz (RX23T).

[Workaround]
Use rev. 3.01 or a later version of the BSP FIT module.

Modification Regarding Stacks

[Description]
The large stack size defined by the BSP FIT module may
cause a lack of the RAM area used for other than stack or
heap.

[Conditions]
When the following two conditions are met:
- RX23T is used with the BSP FIT module rev. 3.00.
- BSP_CFG_USER_STACK_ENABLE = 1

[Workaround]
Use rev. 3.01 or a later version of the BSP FIT module.

Rev.

Date

Description
Page Summary

3.01 Sep 30, 2015 Program Modified the BSP FIT module due to the software issues.

Modification Regarding Locks

[Description]
For the lock function, predefined indexes according to
hardware functions do not exactly correspond to actual
hardware functions supported. Thus the lock function may not
be used for some hardware functions.

[Conditions]
When the following three conditions are all met:
- RX231 or RX23T is used with the BSP FIT module rev. 3.00
or earlier.

- The function R_BSP_HardwareLock or
R_BSP_HardwareUnlock is used.

- BSP_CFG_USER_LOCKING_ENABLED = 0

[Workaround]
Use rev. 3.01 or a later version of the BSP FIT module.

This modification includes the following changes in definitions.
- Definitions added (RX23T)
 BSP_LOCK_CMPC0, CMPC1, CMPC2,
BSP_LOCK_SMCI1, SMCI5

- Definitions added (RX231)
 BSP_LOCK_CMPB0, CMPB1, CMPB2, CMPB3,
BSP_LOCK_LPT

- Definitions deleted (RX231)
 BSP_LOCK_CMPB,
BSP_LOCK_SMCI2, SMCI3, SMCI4, SMCI7, SMCI10,

SMCI11

3.10 Dec 1, 2015 —

1, 6, 8

62

Added support for RX130.
Modified descriptions in the following sections:

Target Device, 2.6 Clock Setup, 2.14 Trusted Memory
Added the following section:

Technical Update Information
3.20 Feb 1, 2016 —

13, 14

Program

Added support for RX24T.
Added the following macro definitions in section 3.2.6 Clock
Setup:
- BSP_CFG_MAIN_CLOCK_SOURCE
- BSP_CFG_MOSC_WAIT_TIME
- BSP_CFG_ROM_CACHE_ENABLE

Modified the PCLKA to satisfy the clock restriction
(ICLK=PCLKA) of Ethernet Controller (ETHERC). (RX63N)

Rev.

Date

Description
Page Summary

3.30 Feb 29, 2016 —
—
43

Program

Added support for RX230.
Update RX113 iodefine.h to V1.0A.
5.15 R_BSP_SoftwareDelay, Description changed

Modified the BSP FIT module.

Modification Regarding API Functions

[Description]
Since subtraction of overhead in the R_BSP_SoftwareDelay
function is more than necessary, it may not be able to secure
the specified duration.

[Workaround]
Change the following definition (the overhead cycles).
- OVERHEAD_CYCLES
- OVERHEAD_CYCLES_64

[Note]
This modification is compared with the BSP FIT module
Rev.3.20 or earlier, the processing time of
R_BSP_SoftwareDelay function is longer.

3.31 May 19, 2016 —
—
—
—
14

Program

Updated RX230 and RX231 iodefine.h to V1.0F.
Changed RX23T iodefine.h to V1.1.
Changed RX24T iodefine.h to V1.0A.
Changed RX64M iodefine.h to V1.0.
3.2.6 Clock Setup
Amended the following macro definition:
• BSP_CFG_MOSC_WAIT_TIME
Added the following macro definitions:
• BSP_CFG_HOCO_WAIT_TIME
• BSP_CFG_SOSC_WAIT_TIME

Modification Regarding Memory
Changed the setting values in the following macro definition to
match the increased RAM capacity (RX23T):
• BSP_RAM_SIZE_BYTES

Rev.

Date

Description
Page Summary

3.31 May 19, 2016 Program

Modification Regarding Clocks
The following items are now supported. Made partial changes
to the program code (RX23T, RX64M, and RX71M).

[Description]
• Added HOCO as a selectable clock source for the system

clock (RX23T only).
• The oscillation source of the main clock oscillator is

selectable.
• The wait time of the main clock oscillator is selectable.
The oscillation source of the sub-clock oscillator is selectable
(RX64M and RX71M only).

[Note]
With these changes, the wait time default values for the main
clock oscillator and sub-clock oscillator of the RX64M and
RX71M are set to the values after a reset listed in the user’s
manual. Note that the new default values differ from the BSP
FIT module default values listed in rev. 3.30 and earlier.

Modification Regarding Clocks
Amended the HOCO oscillation setting because the setting
value was not appropriate when HOCO oscillation is enabled in
option function select register 1 (OFS1.HOCOEN = 1) (RX64M
and RX71M).

[Description]
• Made changes so that when HOCO oscillation is enabled in

option function select register 1 (OFS1.HOCOEN = 1) and
HOCO is selected as the clock source of the system clock,
HOCO oscillation does not stop.

• Set the HOCO power supply to OFF when HOCO
oscillation is disabled in option function select register 1
(OFS1.HOCOEN = 0) and HOCO is not selected as the
clock source of the system clock.

Modification Regarding interrupts
Made changes to the bsp_interrupt_group_enable_disable
function in the program code to conform to the IPR setting
procedure in the user’s manual (RX64M and RX71M).

[Description]
Changed the program code so that writing to the IPRr register
occurs when the value of the corresponding IERm.IENj bit is 0.

Modification Regarding STDIO & Debug console
Improved the following (RX23T, RX64M, and RX71M).

[Description]
The module did not operate properly when
BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to “enabled”
(1), so the program code was modified to ensure proper
operation.

Rev.

Date

Description
Page Summary

3.31 May 19, 2016 Program Modification Regarding API Functions
Deleted unnecessary enumerated constants from the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions, and added HOCO
enumerated constant (RX23T).

[Description]
Deleted the BSP_REG_PROTECT_VRCR constant of the
bsp_reg_protect_t enumerated argument of the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions.
Added BSP_REG_PROTECT_HOCOWTCR.

3.40 Oct 1, 2016 —
17

Program

Added support for RX65N.
3.2.7 Registers in ROM & External Memory Access Protection
Added the following macro definitions:

• BSP_CFG_FAW_REG_VALUE
• BSP_CFG_ROMCODE_REG_VALUE

Modification Regarding Clocks
(1) Changed the default value of the following definition in
r_bsp_config_reference.h, because it becomes the cause of
compile errors in the LPT module (RX130).

• BSP_CFG_LPT_CLOCK_SOURCE
Changed the default value from 2 to 0.

(2) Fixed the error of the following definitions in mcu_info.h
(RX230, RX231).

Case of the “BSP_CFG_LPT_CLOCK_SOURCE = 1”.
• BSP_LPTSRCCLK_HZ
Changed the default value from "15360" to "15000".

Case of the “BSP_CFG_LPT_CLOCK_SOURCE = 2”.
• Deleted the definition.

(3) Added the following macro definition in mcu_info.h
(RX130).

• BSP_LPTSRCCLK_HZ

Rev.

Date

Description
Page Summary

3.50 Mar 15, 2017 —
—
15

16

19

62

Program

Added support for RX24U
Changed RX24T iodefine.h to V1.0H.
3.2.6 Clock Setup
Amended the following macro definition contests:
• BSP_CFG_USE_CGC_MODULE
3.2.7 Registers in ROM & External Memory Access Protection
Amended the following macro definition contests:
• BSP_CFG_OFS1_REG_VALUE
4.5 Supported Toolchains
Amended the contents
Added 8, Appendix

Modification Regarding Memory
Changed the setting values in the following macro definition to
match the increased ROM and RAM capacity (RX24T):

• BSP_ROM_SIZE_BYTES
• BSP_RAM_SIZE_BYTES

Modification Regarding Package
Added the following macro definition to match the increased 64
Pin Packages (RX24T):

• BSP_PACKAGE_LFQFP64
• BSP_PACKAGE_PINS

Modification Regarding Clocks
The following items are now supported. Made partial changes
to the program code (RX24T).

[Description]
• Added HOCO as a selectable clock source for the system

clock.
• Added HOCO as a selectable input clock source for the

PLL circuit.

Modification Regarding STDIO & Debug console
Improved the following (RX24T).

[Description]
The module did not operate properly when
BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to “enabled”
(1), so the program code was modified to ensure proper
operation.

Modification Regarding API Functions
Deleted unnecessary enumerated constants from the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions, and added HOCO
enumerated constant (RX24T).

[Description]
Deleted the BSP_REG_PROTECT_VRCR constant of the
bsp_reg_protect_t enumerated argument of the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions.
Added BSP_REG_PROTECT_HOCOWTCR.

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 —
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—

4
4
5

7
7
8
11
11
11

11

13
19

20

Added support for RX130-512KB.
Added support for RX65N-2MB.
Added support for GENERIC-RX65N.
Updated RX110 iodefine.h to V1.0B.
Updated RX111 iodefine.h to V1.1A.
Updated RX113 iodefine.h to V1.0C.
Updated RX130 iodefine.h to V2.0.
Updated RX210 iodefine.h to V1.5.
Updated RX21A iodefine.h to V1.1C.
Updated RX220 iodefine.h to V1.1A.
Updated RX230 iodefine.h to V1.0I.
Updated RX231 iodefine.h to V1.0I.
Updated RX23T iodefine.h to V1.1C.
Updated RX62N iodefine.h to V1.4.
Updated RX62T iodefine.h to V2.0.
Updated RX62G iodefine.h to V2.0.
Updated RX630 iodefine.h to V1.6A.
Updated RX63N/RX631 iodefine.h to V1.8A.
Updated RX63T iodefine.h to V2.1C.
Updated RX64M iodefine.h to V1.0A.
Updated RX65N iodefine.h to V2.0.
Updated RX71M iodefine.h to V1.0A.
Applied the following technical update:
- TN-RX*-A138A
- TN-RX*-A164A
- TN-RX*-A169A

Modified the description in 1.2 File Structure.
Revised Figure 1-1: r_bsp File Structure.
Added Figure 1-2: Structures of Evaluation Board Folder and
generic Folder.
Modified the description in 2.2 Initialization.
Revised Figure 2-1: PowerON_Reset_PC() Flowchart.
Added Figure 2-2: Flowchart of System Clock Setting
Modified the descriptions in 2.14 Trusted Memory.
Added 2.15 Bank Mode.
Moved the section “Group Interrupts” from 4.10.7 to 2.20 and
modified the description.
Moved the section “Software Configurable Interrupts” from
4.10.8 to 2.21.
Added 2.23 Startup Disable.
Modified the descriptions in 3.2.4 CPU Modes & Boot Modes
including Table 3-4.
Corrected and added the following definitions in 3.2.6 Clock
Setup:
- Addition: BSP_CFG_RTC_ENABLE
- Addition: BSP_CFG_SOSC_DRV_CAP
- Correction: BSP_CFG_PLL_SOURCE ->

 BSP_CFG_PLL_SCR

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 22-23

24
26
28
28
29
29
30
31
50
52
53
55
59
72
79

79
79

85

88

Modified and added the following definitions in 3.2.7 Registers
in ROM & External Memory Access Protection:
- Modification: BSP_CFG_OFS1_REG_VALUE
- Addition: BSP_CFG_CODE_FLASH_BANK_MODE
- Addition: BSP_CFG_CODE_FLASH_START_BANK
Added 3.2.11 Startup Disable.
Added 4.9.3 Interrupt Control Parameter.
Modified 4.10.3 Interrupt Error Codes.
Modified 4.10.4 Interrupt Control Commands.
Added 4.10.7 Unit for Software Delay.
Changed 4.12 Adding Driver to Your Project.
Added 4.13 Code size.
Modified 5. API Functions.
Added 5.15 R_BSP_InterruptControl().
Added 5.17 R_BSP_GetIClkFreqHz().
Added 5.18 R_BSP_StartupOpen().
Added 6.1 Creating a FIT Project.
Added 6.2 Adding FIT Module with e2 studio FIT Configurator.
Added 8. Adding FIT Modules to the User Project.
Added Table 9.7 Operation Confirmation Environment
(Rev.3.60).
Added 9.2 Creating a Project with FIT Plug-in.
Moved the section “Creating an Empty Project” from 6.1 to
9.2.1 and modified some descriptions.
Moved the section “Adding r_bsp with e2 studio FIT Plug-in”
from 6.2 to 9.2.2.
Added 9.3 Troubleshooting.

 Program Changes associated with functions:

Deleted unnecessary transition to User Mode. (RX130)
- Description: Deleted the following function.
PSW_PM_to_UserMode function.

Added the startup disable function. (RX65N)
- Description: Added the macro definition,
BSP_CFG_STARTUP_DISABLE.

Added the bank function. (RX65N)
- Description: Added processing for setting the bank function in
vecttbl.c. If a package with the ROM of 1 Mbytes or less is
selected, this processing will be disabled.

Modified the procedure for initializing the ADSAM register.
(RX65N)
- Description: Modified the procedure to hold the setting of
module-stop state before the ADSAM register is initialized so
that the setting can be restored after the initialization.

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Changes associated with packages:

Added new package specifications. (RX130)
[Description]
(1) Added the following macro definitions for new packages.

- BSP_MCU_RX130_512KB
- BSP_PACKAGE_LFQFP100

(2) Added setting values of the following macro definitions

regarding new packages.
- BSP_CFG_MCU_PART_PACKAGE:
 Values: FP = 0x5 = LFQFP/100/0.50
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: 6 = 0x6 = 128KB/32KB/8KB

7 = 0x7 = 384KB/48KB/8KB
8 = 0x8 = 512KB/48KB/8KB

Added new package specifications. (RX65N)
[Description]
(1) Added the following macro definitions for new packages.

- BSP_CFG_CODE_FLASH_BANK_MODE
- BSP_CFG_CODE_FLASH_START_BANK
- BSP_MCU_RX65N_2MB
- BSP_PACKAGE_LFQFP176
- BSP_PACKAGE_LFBGA176
- BSP_PACKAGE_TFLGA177
- BSP_PRV_PORTG_NE_PIN_MASK

(2) Added setting values of the following macro definitions

regarding new packages.
- BSP_CFG_MCU_PART_PACKAGE:
 Values: FC = 0x0 = LFQFP/176/0.50

BG = 0x1 = LFBGA/176/0.80
LC = 0x2 = TFLGA/177/0.50

- BSP_CFG_MCU_PART_ENCRYPTION_INCLUDED:
 Values: D = false =Encryption module not included,
 SDHI/SDSI module included, dual-bank
 structure

H = true = Encryption module included,
SDHI/SDSI
 module included, dual-bank structure.

- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: C = 0xC = 1.5MB/640KB/32KB

E = 0xE = 2MB/640KB/32KB

Changed the macro definitions for the RX231 package.
(1) Added the following macro definition.

- BSP_PACKAGE_WFLGA64

(2) Deleted the following macro definition.

- BSP_PACKAGE_LQFP64

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program (3) Added setting values of the following macro definitions:
- BSP_CFG_MCU_PART_PACKAGE:
 Values: LF = 0x1 = WFLGA/64/0.50
- BSP_CFG_MCU_PART_VERSION:
 Values: C = 0xC = Chip version C = Security function not

included, SDHI module not included,
CAN module not included.

(4) Deleted the setting values for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: FK = 0x3 = LQFP/64/0.80

LJ = 0xA = TFLGA//100/0.65
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: 3 = 0x3 = 64KB/12KB/8KB

(5) Changed the setting values for the following macro

definitions:
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Value: 5 = 0x5 = 128KB/20KB/8KB
 -> 5 = 0x5 = 128KB/32KB/8KB

Changed the macro definition for the RX63N/RX631 package.
[Description]
(1) Changed the default value of the following macro definition:

- BSP_CFG_MCU_PART_MEMORY_SIZE: (RSK only)
 Value: (0xB) -> (0xF)
- BSP_CFG_MCU_PART_GROUP: (RX631 only)
 Value: (0x2) -> (0x1)

(2) Added the following macro definition.

- BSP_PACKAGE_TFLGA64

(3) Deleted the following macro definition.

- BSP_PACKAGE_LQFP80

(4) Added setting values of the following macro definitions:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LJ = 0xA = TFLGA/100/0.65

LH = 0xB = TFLGA/64/0.65
- BSP_CFG_MCU_PART_ENCRYPTION_INCLUDED:
 Values: H = true = CAN included/DEU included/PDC not

included.
G = false = CAN not included/DEU included/PDC

not included.
S = true = CAN included/DEU not included/PDC

included.
F (only 64-pin TFLGA) = true = CAN included/DEU

not included/PDC not included.

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program - BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: F = 0xF = 2MB/256KB/32KB

G = 0x10 = 1.5MB/192KB/32KB
J = 0x13 = 1.5MB/256KB/32KB
K = 0x14 = 2MB/192KB/32KB
M = 0x16 = 256KB/64KB/32KB
N = 0x17 = 384KB/64KB/32KB
P = 0x19 = 512KB/64KB/32KB
W = 0x20 = 1MB/192KB/32KB
Y = 0x22 = 1MB/256KB/32KB

(5) Deleted the setting values for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LA = 0x6 = TFLGA/100/0.65

FN = 0x7 = LQFP/80/0.50
- BSP_CFG_MCU_PART_CAN_INCLUDED:
 Values: E = = 3V included (RX63T). Ignore.
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: 4 = 0x4 = 32KB/8KB/8KB

5 = 0x5 = 48KB/8KB/8KB

(6) Changed the setting values for the following macro

definitions:
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Value: 6 = 0x6 = 64KB/8KB/8KB
 -> 6 = 0x6 = 256KB/128KB/32KB
 Value: 7 = 0x7 = 384KB/64KB/32KB
 -> 7 = 0x7 = 384KB/128KB/32KB
 Value: 8 = 0x8 = 512KB/64KB/32KB
 -> 8 = 0x8 = 512KB/128KB/32KB

Changed the macro definitions for the RX64M package.
[Description]
(1) Corrected typo for the following macro definitions:

- BSP_PACKAGE_LQFP176 ->
BSP_PACKAGE_LFQFP176
- BSP_PACKAGE_LQFP144 ->
BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LQFP100 ->
BSP_PACKAGE_LFQFP100

(2) Added the setting value for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Value: LJ = 0xA = TFLGA/100/0.65

(3) Deleted the setting values for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LA = 0x6 = TFLGA/100/0.50

JA = 0x7 = TFLGA/100/0.65

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Changed the macro definition for the RX65N package.
[Description]
(1) Corrected typo for the following macro definitions:

- BSP_PACKAGE_LQFP144 ->
BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LQFP100 ->
BSP_PACKAGE_LFQFP100

(2) Changed the setting values for the following macro

definitions:
- BSP_CFG_MCU_PART_PACKAGE:
 Value: LJ = 0x6 = TFLGA/100/0.65
 -> LJ = 0xA = TFLGA/100/0.65
- BSP_CFG_MCU_PART_GROUP:
 Value: 5N = 0x0 = RX65N Group
 -> 5N/51 = 0x0 = RX65N Group/RX651 Group

(3) Deleted the setting value for the following macro definition:

- BSP_CFG_MCU_PART_GROUP:
 Value: 51 = 0x1 = RX65N Group

Changed the macro definition for the RX71M package.
[Description]
(1) Corrected typo for the following macro definitions:

- BSP_PACKAGE_LQFP176 ->
BSP_PACKAGE_LFQFP176
- BSP_PACKAGE_LQFP144 ->
BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LQFP100 ->
BSP_PACKAGE_LFQFP100

(2) Changed the setting value for the following macro
definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Value: LJ = 0x6 = TFLGA/100/0.65
 -> LJ = 0xA = TFLGA/100/0.65

Changes associated with clocks:

The following items are now supported. Made partial changes
to the program code. (RX130)
[Description]
(1) Added definition of the following clock setting:

- The oscillation source of the main clock oscillator is
selectable.
- The wait time of the main clock oscillator is selectable.

(2) Added the following macro definition in mcu_info.h.

- BSP_ILOCO_HZ

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Made add to the lpt_clock_source_select function in the
program code to conform to the notes on LPT in the user’s
manual. (RX130)
[Description]
When the IWDT-dedicated on-chip oscillator is used as the
clock source for the low-power timer, changed the program
code so that writing to the IWDTCSTPR.SLCSTP bit to 0.

Improved the following. (RX130)
[Description]
(1) When restarting the sub-clock oscillator after it has been
stopped, allow at least five cycles of the sub-clock as an
interval over which it is still stopped.

Deleted the following unnecessary branch condition in the
lpt_clock_source_select function.
 - BSP_CFG_LPT_CLOCK_SOURCE == 2

Modified the sub-clock oscillation settings. (RX64M, RX65N,
RX71M)
 [Description]
(1) Modified for the sub-clock oscillation settings to be

specified according to the settings in r_bsp_config.h.

(2) Added processing at warm start.

(3) Added the following macro definitions regarding changes in

the sub-clock oscillation settings.
 - BSP_CFG_RTC_ENABLE
 - BSP_CFG_SOSC_DRV_CAP

Changes associated with interrupts:

Made add to the bsp_interrupt_enable_disable function in the
program code. (RX130)

[Description]
Added timeout detection enable bit (BSC.BEREN.BIT.TOEN)
settings.

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Modified the following items for software configurable
interrupts.
[Description]
(1) Corrected the macro definitions due to typos in names of

the software configurable interrupt sources. (RX64M,
RX65N, RX71M)
The corrected interrupt sources are as follows:
- TPU0_TGI0V -> TPU0_TCI0V
- TPU1_TGI1V -> TPU1_TCI1V
- TPU1_TGI1U -> TPU1_TCI1U
- TPU2_TGI2V -> TPU2_TCI2V
- TPU2_TGI2U -> TPU2_TCI2U
- TPU3_TGI3V -> TPU3_TCI3V
- TPU4_TGI4V -> TPU4_TCI4V
- TPU4_TGI4U -> TPU4_TCI4U
- TPU5_TGI5V -> TPU5_TCI5V
- TPU5_TGI5U -> TPU5_TCI5U
- MTU0_TGIV0 -> MTU0_TCIV0
- MTU1_TGIV1 -> MTU1_TCIV1
- MTU1_TGIU1 -> MTU1_TCIU1
- MTU2_TGIV2 -> MTU2_TCIV2
- MTU2_TGIU2 -> MTU2_TCIU2
- MTU3_TGIV3 -> MTU3_TCIV3
- MTU4_TGIV4 -> MTU4_TCIV4
- MTU6_TGIV6 -> MTU6_TCIV6
- MTU7_TGIV7 -> MTU7_TCIV7
- MTU8_TGIV8 -> MTU8_TCIV8

(2) Deleted the macro definition, MTU8_TGI8U since the

corresponding interrupt source does not exist. (RX64M,
RX71M)

(3) Added interrupt sources for software configurable interrupts

regarding new packages. (RX65N)
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_PROC_BUSY
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_ROMOK
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_LONG_PLG
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_TEST_BUSY
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_WRRDY0
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_WRRDY1
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_WRRDY4
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_RDRDY0
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_RDRDY1
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_INTEGRATE

_WRRDY
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_INTEGRATE

_RDRDY

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Modified the following items for group interrupts.
[Description]
(1) Modified the sequence to call callback functions for group

interrupts. (RX64M, RX65N, RX71M)
Peripherals influenced by the sequence change are as
follows:
- SCI0 to SCI7, SCI12
- SCI8 to SCI11 (RX65N only)
- PDC
- SCIFA8 to SCIFA11 (RX64M and RX71M only)
- RSPI0
- RSPI1 (RX71M and RX65N only)
- RSPI2 (RX65N only)

(2) Added the following enum definitions regarding new

packages. (RX65N)
bsp_int_src_t
- BSP_INT_SRC_BL1_RIIC1_TEI1
- BSP_INT_SRC_BL1_RIIC1_EEI1
- BSP_INT_SRC_AL1_GLCDC_VPOS
- BSP_INT_SRC_AL1_GLCDC_GR1UF
- BSP_INT_SRC_AL1_GLCDC_GR2UF
- BSP_INT_SRC_AL1_DRW2D_DRW_IRQ

(3) Corrected the macro definitions due to typos in names of

the group interrupt sources. (RX64M, RX71M)
The corrected interrupt sources are as follows:
- BSP_INT_SRC_BL0_CAC_FERRF ->
BSP_INT_SRC_BL0_CAC_FERRI
- BSP_INT_SRC_BL0_CAC_ MENDF ->
BSP_INT_SRC_BL0_CAC_ MENDI
- BSP_INT_SRC_BL0_CAC_OVFF ->
BSP_INT_SRC_BL0_CAC_OVFI
- BSP_INT_SRC_BL0_DOC_DOPCF ->
BSP_INT_SRC_BL0_DOC_DOPCI

Changed the following items regarding non-maskable
interrupts.
[Description]
(1) Added the enum definition, BSP_INT_SRC_EXRAM to

bsp_int_src_t regarding new packages. (RX65N)

(2) Added interrupt processing for EXRAM in vecttbl.c

regarding new packages. (RX65N)
If a package with the ROM of 1 Mbytes or less is selected,
this processing will be disabled.

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Change associated with API functions:

Modified the branch condition for the number of loop cycles of
the R_BSP_SoftwareDelay function.
[Description]
Before:
#if defined(BSP_MCU_RX231) || defined(BSP_MCU_RX64M)

|| defined(BSP_MCU_RX71M) || ...
#define CPU_CYCLES_PER_LOOP 4

#else
#define CPU_CYCLES_PER_LOOP 5

#endif

After:
#ifdef __RXV1

#define CPU_CYCLES_PER_LOOP (5)
#else

#define CPU_CYCLES_PER_LOOP (4)
#endif

Change associated with the lock function:

Modified the lock function. (RX130)
[Description]
Added the following enums regarding new packages:

mcu_lock_t
- BSP_LOCK_REMC0
- BSP_LOCK_REMC1
- BSP_LOCK_REMCOM
- BSP_LOCK_SCI0
- BSP_LOCK_SCI8
- BSP_LOCK_SCI9
- BSP_LOCK_SMCI0
- BSP_LOCK_SMCI8
- BSP_LOCK_SMCI9
- BSP_LOCK_TEMPS

Modified the lock function. (RX65N)
[Description]
Added the following enums regarding new packages:

mcu_lock_t
- BSP_LOCK_RIIC1
- BSP_LOCK_GLCDC
- BSP_LOCK_DRW2D

Rev.

Date

Description
Page Summary

3.60 May 15, 2017 Program Modification Regarding STDIO & Debug console

Improved the following. (RX130)
[Description]
The module did not operate properly when
BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to “enabled”
(1), so the program code was modified to ensure proper
operation.

Modification Regarding Pin Function

Made changes to the output_ports_configure function in the
program code to conform to the notes on MPC in the user’s
manual. (RX130)
[Description]
When setting the given bits of the PMR register to 0, the PDR
register to 0, and the PCR register to 0, changed the program
code so that writing to the PmnPFS.ASEL bit to 1.

Improved the following. (RX111)
[Description]
(1) PORTH does not exist. Therefore, deleted the port setting.

(2) Deleted the following macro definition.

- BSP_PRV_PORTH_NE_PIN_MASK

3.70 Nov. 1, 2017 —
—
—
—
—
—
—
—
—
—
—
—

20

Added support for GENERIC-RX110.
Added support for GENERIC-RX111.
Added support for GENERIC-RX113.
Added support for GENERIC-RX130.
Added support for GENERIC-RX230.
Added support for GENERIC-RX231.
Added support for GENERIC-RX23T.
Added support for GENERIC-RX24T.
Added support for GENERIC-RX24U.
Added support for GENERIC-RX64M.
Added support for GENERIC-RX71M.
Added support for Envision Kit for RX65N-2MB

3.2.6 Clock Setup
For BSP_CFG_LPT_CLOCK_SOURCE, “2 = LPT not used”
has been added as the setting value in the Value and “The
default value is 2 (LPT not used)” has been added to the
description in the Meaning.

Rev.

Date

Description
Page Summary

3.70 Nov. 1, 2017 Program Changes associated with functions:

Added the startup disable function for RX110, RX111, RX113,
RX130, RX230, RX231, RX23T, RX24T, RX24U, RX64M, and
RX71M.

[Description]
Added the macro definition, BSP_CFG_STARTUP_DISABLE.

Changes associated with the low power timer:

Modified the following items for RX230 and RX231:

[Description]
(1) To follow the description for the ILCSTP bit in the User’s

Manual, processing to wait the ILOCO oscillation
stabilization time has been added in the
usb_lpc_clock_source_select function.

(2) To follow the note on the LPT in the User's Manual, the

code has been modified to write 0 to the
IWDTCSTPR.SLCSTP bit when the IWDT-dedicated on-chip
oscillator is used as the clock source of the low power timer.

(3) The usb_lpc_clock_source_select function included

processing to stop the ILOCO. This processing has been
removed since the ILOCO cannot be stopped by the
program once it starts oscillation.

(4) Added the definition of the IWDT-dedicated on-chip

oscillator “BSP_ILOCO_HZ” for RX230 and RX231.

Modified the following items for RX130, RX230, and RX231:

[Description]
(1) Added the following definition for when the LPT module is

not used: “BSP_CFG_LPT_CLOCK_SOURCE = 2”

(2) Changed the default value of the following definition:

BSP_CFG_LPT_CLOCK_SOURCE (0) → (2)

(3) Added a branch to processing not to oscillate the sub-clock

and the ILOCO when the LPT is not used.

3.71 Dec. 20, 2017 24
80

108

Program

3.2.10 Extended Bus Master Priority Setting
Corrected typo for the ‘Board used’ in the Table 9.8 Operation
Confirmation Environment.
Corrected typo in Revision Record. (Rev3.70)

Changes associated with functions:
Added the Extended Bus Master Priority Setting function for
RX65N-2MB.

[Description]
Added the following macro definition:
- BSP_CFG_EBMAPCR_1ST_PRIORITY
- BSP_CFG_EBMAPCR_2ND_PRIORITY
- BSP_CFG_EBMAPCR_3RD_PRIORITY
- BSP_CFG_EBMAPCR_4TH_PRIORITY
- BSP_CFG_EBMAPCR_5TH_PRIORITY

Rev.

Date

Description
Page Summary

3.80 July 1, 2018 —
—
—
—
—
—
—
—
24, 25
25
32

81

Program

Added support for Target Board for RX130
Added support for Target Board for RX231
Added support for Target Board for RX65N
Added support for the 384 KB and 256 KB ROM size for
RX111.
Changed the name of Section 9.
Updated RX113 iodefine.h to V1.1.
Updated RX65N iodefine.h to V2.0A.
Corrected some table names.
Added 3.2.13 Using Smart Configurator.
Corrected typo for Function name for "5.1 Summary" table.
R_BSP_SutartupOpen -> R_BSP_StartupOpen
Added Table 9.10 Confirmed Operation Environment
(Rev.3.80).

Changes associated with functions:
Added support setting function of configuration option Using
GUI on Smart Configurator for only Generic of RX110,
RX111,RX113, RX230, RX231, RX64M, RX65N, and RX71M.
[Description]
Added a setting file to support configuration option setting
function by GUI.

Supports peripheral function initialization processing by smart
configurator.
[Description]
Added the following macro definition:
-BSP_CFG_CONFIGURATOR_SELECT

Processing was added after writing the ROMWT register of
RX65N.
Processing was added after writing the MEMWAIT register of
RX71M.
[Description]
Added processing to check that the value written to the
ROMWT or MEMWAIT register was reflected after the value
was written to the ROMWT or MEMWAIT register.

Supported tool news number R20TS0302. (RX113, RX210 and
RX63T)
[Description]
Corrected a problem that caused a build error when selecting
and building a specific package.
For more information on this problem please reference the tool
news (R20TS0302).

Deleted unnecessary processing. (RX230, RX231 and RX23T)
[Description]
Deleted the processing for user boot function from RX230,
RX231 and RX23T.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	1.1 Terminology
	1.2 File Structure

	2. Features
	2.1 MCU Information
	2.2 Initialization
	2.3 Global Interrupts
	2.4 Interrupt Callbacks
	2.5 Non-Existent Port Pins
	2.6 Clock Setup
	2.7 STDIO & Debug Console
	2.8 Stacks & Heap
	2.9 CPU Mode
	2.10 ID Code
	2.11 Parallel Programmer Protection
	2.12 Endian
	2.13 Option Function Select Registers
	2.14 Trusted Memory
	2.15 Bank Mode
	2.16 Board-Specific Defines
	2.17 System Wide Parameter Checking
	2.18 Atomic Locking
	2.19 Register Protection
	2.20 CPU Functions
	2.21 Group Interrupts
	2.22 Software Configurable Interrupts
	2.23 Startup Disable
	2.23.1 Setting the Startup Disable Function

	3. Configuration
	3.1 Choosing a Platform
	3.2 Platform Configuration
	3.2.1 MCU Product Part Number Information
	3.2.2 Stack & Heap Sizes
	3.2.3 STDIO Enable
	3.2.4 CPU Modes & Boot Modes
	3.2.5 RTOS
	3.2.6 Clock Setup
	3.2.7 Registers in ROM & External Memory Access Protection
	3.2.8 Atomic Locking
	3.2.9 Parameter Checking
	3.2.10 Extended Bus Master Priority Setting
	3.2.11 MCU Voltage
	3.2.12 Startup Disable
	3.2.13 Using Smart Configurator

	4. API Information
	4.1 Hardware Requirements
	4.2 Hardware Resource Requirements
	4.3 Software Requirements
	4.4 Limitations
	4.5 Supported Toolchains
	4.6 Header Files
	4.7 Integer Types
	4.8 Configuration Overview
	4.9 API Data Structures
	4.9.1 Software Lock
	4.9.2 Interrupt Callback Parameter
	4.9.3 Interrupt Control Parameter

	4.10 API Typedefs
	4.10.1 Register Protection
	4.10.2 Hardware Resource Locks
	4.10.3 Interrupt Error Codes
	4.10.4 Interrupt Control Commands
	4.10.5 Interrupt Callback Function
	4.10.6 Interrupt Sources
	4.10.7 Unit for Software Delay

	4.11 Return Values
	4.12 Adding Driver to Your Project
	4.13 Code size

	5. API Functions
	5.1 Summary
	5.2 R_BSP_GetVersion()
	5.3 R_BSP_InterruptsDisable()
	5.4 R_BSP_InterruptsEnable()
	5.5 R_BSP_CpuInterruptLevelRead()
	5.6 R_BSP_CpuInterruptLevelWrite()
	5.7 R_BSP_RegisterProtectEnable()
	5.8 R_BSP_RegisterProtectDisable()
	5.9 R_BSP_SoftwareLock()
	5.10 R_BSP_SoftwareUnlock()
	5.11 R_BSP_HardwareLock()
	5.12 R_BSP_HardwareUnlock()
	5.13 R_BSP_InterruptWrite()
	5.14 R_BSP_InterruptRead()
	5.15 R_BSP_InterruptControl()
	5.16 R_BSP_SoftwareDelay()
	5.17 R_BSP_GetIClkFreqHz()
	5.18 R_BSP_StartupOpen()

	6. Project Setup
	6.1 Creating a FIT Project
	6.2 Adding FIT Module with e2 studio FIT Configurator

	7. Adding r_bsp manually
	7.1 Creating a BSP Module for a Custom Board
	Step 1. Create a New Project (Mandatory)
	Step 2. Add the BSP Module (Mandatory)
	Step 3. Create a Folder for the Custom Board
	Step 4. Store Necessary Files (Mandatory)
	Step 5. Modify Files Suited to the Custom Board (Mandatory)
	Step 6. Copy and Rename the r_bsp_config_reference.h File (Mandatory)
	Step 7. Modify the platform.h File (Mandatory)

	8. Adding FIT Modules to the User Project
	9. Appendices
	9.1 Confirmed Operation Environment
	9.2 Creating a Project with FIT Plug-in
	9.2.1 Creating an Empty Project
	9.2.2 Adding r_bsp with e2 studio FIT Plug-in

	9.3 Troubleshooting

	Technical Update Information
	Website and Support
	Revision Record
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

