Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M306H7MG-XXXFP/MC-XXXFP/FGFP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

1. **DESCRIPTION**

The M306H7MG/MC-XXXFP and M306H7FGFP are single-chip microcomputers using the highperformance silicon gate CMOS process using M16C/62 Series CPU core and is packaged in a 100-pin plastic molded QFP. This single-chip microcomputer operates using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, this is capable of executing instructions at high speed. This also features a built-in data slicer, making this correspondence to Global broadcasting service.

1.1 Features

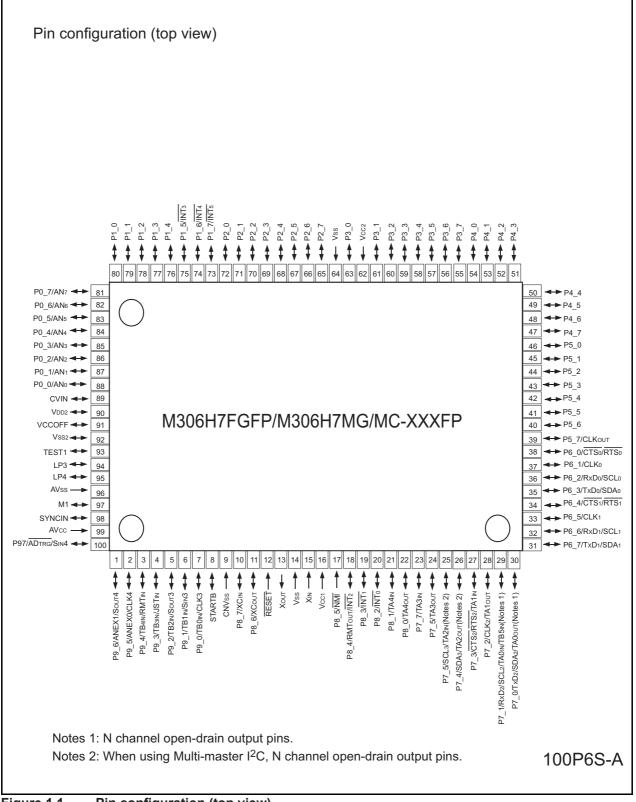
Memory capacity	ROM	Mask version : 256 K/128 K bytes Flash memory version : 256 K bytes
	RAM	Mask version : 8 K/5 K bytes Flash memory version : 8 K bytes
Objects at instance line second in a first	00 5	
Shortest instruction execution time		
Supply voltage		00 V to Vcc2, Vcc2=4.5 V to 5.5 V(at f(XIN)=16 MHz)
	Vcc1=2.	00 V to Vcc2, Vcc2=2.00 V to 5.5 V(at f(Xcin)=32 kHz)
	*Vcc2=2	2.0 V to 2.9 V: Operates only in the low power dissipation
mode		
Interrupts	25 interr	al and 8 external interrupt sources, 4 software
		sources; 7 levels
Multifunction 16-bit timer	•	
Serial I/O		
		ock synchronous: 3
		•
		nchronous: 2
		ister I ² C: 1
• DMAC		
A/D converter	8 bits X	8 channels (Expandable up to 10 channels)
CRC calculation circuit	1 circuit	
Watchdog timer	1 line	
Programmable I/O	79 lines	(P6 to P7, P80 to P84: Can be used as 3.3 V interface)
Input port		
Clock generating circuit		
		eedback resistor, external crystal oscillator is required)
• Data slicer		C, VPS, WSS, EPG-J, CC, CC2X, ID-1
	011 DC	$\gamma, v = 0, v = 00, c = 0.00, 002 \Lambda, 10^{-1}$

1.2 Applications

DVD recorder, HDD recorder

REJ03B0152-0210 Rev.2.10 Oct 25, 2006

-----Table of Contents-----


1. DESCR	RIPTION1
1.1	Features1
1.2	Applications1
	of Contents
1.3 1.4	Pin Configuration
1.4	Block Diagram
1.6	Memory
	AL PRÓCESSING UNIT (CPU)11
2.1	Data Registers (R0, R1, R2 and R3)11
2.2	Address Registers (A0 and A1)11
2.3 2.4	Frame Base Register (FB)12 Interrupt Table Register (INTB)12
2.5	Program Counter (PC)
2.6	Program Counter (PC)
2.7	Static Base Register (SB)12
2.8	Flag Register (FLG)
3. RESET 3.1	13 Hardware Reset
3.1	Software Reset
3.3	Watchdog Timer Reset14
3.4	SFR17
	GENERATION CIRCUIT
4.1	Oscillator Circuit
4.2 4.3	CPU Clock and Peripheral Function Clock33 Clock Output Function
4.4	Power Control 35
4.5	Power Control35 System Clock Protective Function41
	CTION
	RUPTS
6.1 6.2	Type of Interrupts
6.3	Hardware Interrupts44
6.4	Interrupts and Interrupt Vector
6.5	Interrupts and Interrupt Vector46 Interrupt Control48
6.6	I Flag
6.7 6.8	IR Bit50 ILVL2 to ILVL0 Bits and IPL50
6.9	Interrupt Sequence
6.10	Interrupt Response Time
6.11	Variation of IPL when Interrupt Request is Accepted 52
6.12	Saving Registers 53
6.13	Returning from an Interrupt Routine
6.14 6.15	Interrupt Priority55 Interrupt Priority Resolution Circuit55
6.16	INT Interrupt
6.17	NMI Interrupt
6.18	Address Match Interrupt58
	IDOG TIMER60
8. DMAC 8.1	62 Transfer Cycles
8.2	Number of DMA Transfer Cycles
8.3	DMA Enable
8.4	DMA Request70
8.5	Channel Priority and DMA Transfer Timing71
9. TIMER 9.1	S
9.2	Timer B
	AL I/O
10.1	UARTi (i=0 to 2)93
10.2	Clock Synchronous serial I/O Mode
10.3 10.4	Clock Asynchronous Serial I/O (UART) Mode 109 Special Mode 1 (I2C mode)
10.4	Special Mode 2
10.6	Special Mode 3 (IE mode)131
10.7	Special Mode 4 (SIM Mode) (UART2)133
10.8	SI/O3 and SI/O4
	I-MASTER I2C BUS INTERFACE143 ONVERTER163
12. A/D C	One-shot Mode
12.2	Repeat mode
12.3	Single Sweep Mode171
12.4	Repeat Sweep Mode 0
12.5 12.6	Repeat Sweep Mode 1175 Sample and Hold177
12.0	

12.7 Extended Analog Input Pins	177
12.8 External Operation Amp Connection Mode	177
12.9 Current Consumption Reducing Function	178
12.10 Analog Input Pin and External Sensor Equivalent Circuit Example.	178
12.11 Caution of Using A/D Converter	179
13. CRC CALCULATION	180
14. EXPANSION FUNCTION	182
14.1 Expansion function description	182
14.2 Expansion memory	183
14.3 slice RAM	184
14.4 CRC Operation Circuit (EPG-J)	187
 14.3 slice RAM 14.4 CRC Operation Circuit (EPG-J) 14.5 Expansion Register 14.6 Expansion Register Construction Composition. 	200
14.6 Expansion Register Construction Composition.	240
14.7 8/4 Humming Decoder	247
14.8 24/18 Humming Decoder	247
14.9 I/O Composition of pins for Expansion Function	240
15. PROGRAMMABLE I/O PORTS	250
15.1 Port Pi Direction Register (PDi Register, i = 0 to 9)	252
15.2 Port Pi Register (Pi Register, i = 0 to 9)	
	202
	л ОГО
Register 2 (PUR0 to PUR2 Registers)	252
15.4 Port Control Register	252
16. ELECTRICAL CHARACTERISTICS	
17. FLASH MEMORY VERSION	
17.1 Flash Memory Performance	279
17.2 Memory Map	281
17.3 Boot Mode 17.4 Functions To Prevent Flash Memory from Rewriting.	282
17.4 Functions To Prevent Flash Memory from Rewriting.	
17.5 CPU Rewrite Mode	284
17.6 Data Protect Function	
17.7 Status Register	298
17.8 Full Status Check	300
17.9 Standard Serial I/O Mode	302
17.10 Parallel I/O Mode	307
18. PACKAGE OUTLINE	
19. USEGE NOTES	309
19.1 Precautions for Power Control	309
19.2 Precautions for Protect	309
19.3 Precautions for Interrupts	309
19.4 Precautions for DMAC	313
19.5 Precautions for Timers	314
19.6 Precautions for Serial I/O (Clock-synchronous Serial I/O).	317
19.7 Precautions for Serial I/O (UART Mode)	318
19.8 Precautions for A/D Converter	318
19.9 Precautions for Programmable I/O Ports	318
19.10 Electric Characteristic Differences Between Mask ROM	/I and
Flash Memory Version Microcomputers	318
19.11 Precautions for Flash Memory Version	318
19.12 Other Notes	323
19.13 Serial I/O (RxDi input setup time)	325
19.14 Precautions for LP3 and LP4 pins	326

RENESAS

1.3 Pin Configuration

Figures 1.1 shows the pin configuration (top view).

1.4 Performance Outline

Performance outline is shown in Table 1.1.

Table 1.1 Performance outline

Item		Performance		
Number of bas	ic instructions	91 instructions		
	ction execution time	62.5 ns (f(XIN)= 16MHz, VCC= 4.5V to 5.5V)		
Memory	ROM	Refer to the Product table (Table 1.2)		
capacity	RAM	Refer to the Product table (Table 1.2)		
	P0 to P5, P86 to P87, P9	8-bit x 7, 2-bit x 1 : VCC2 system		
I/O port	P6 to P7, P80 to P84	8-bit x 2, 5-bit x 1 : VCC1 system		
Input port	P85	1-bit x 1 (NMI pin VCc2 level judgment) : VCc2 system		
	TA0, TA1, TA2, TA3, TA4	16-bit x 5 channels		
Multi function timer	TB0, TB1, TB2, TB3, TB4, TB5	16-bit x 6 channels		
Serial I/O		3 channels Clock synchronous serial I/O, Clock asynchronous serial I/O, I ² C bus ^{1.} , or IEBus ^{2.} 2 channels Clock synchronous serial I/O		
Serial I/O	Multi-master I ² C	I ² C bus x 1		
A/D converter		8 bits x (8 + 2) channels		
DMAC		2 channels (trigger: 24 sources)		
CRC calculation circuit		CRC-CCITT		
Watchdog timer		15 bits x 1 (with prescaler)		
Interrupt		25 internal and 8 external sources, 4 software sources, 7 levels		
Clock generation	on circuit	 2 circuits Main clock (These circuits contain a built-in feedback resistor Sub-clock and external crystal oscillator) 		
		Vcc1=3.00 V to Vcc2, Vcc2= 4.5 V to 5.5 V (at f(XIN)=16MHz)		
Power supply v	voltage	Vcc1=3.00 V to Vcc2, Vcc2= 4.00 V to 5.5 V (at f(XIN)=16MHz) ^{3.}		
i onoi ouppiy i		Vcc1=2.90 V to Vcc2, Vcc2= 2.90 V to 5.5 V (at f(XIN)=16MHz, at divide-by-8 or 16) ^{3.}		
		Vcc1=2.0 V to Vcc2, Vcc2=2.0 V to 5.5 V (at f(Xcin)=32kHz, only low-power consumption mode) ^{3.4.}		
Flash memory	Program/erase voltage	5.0 V ± 0.25 V		
-	Number of program/erase	100 times		
Device configu	ration	CMOS high performance silicon gate		
Package		100-pin plastic mold QFP		
	Slice RAM	864 bytes (48 x 18 x 8-bit)		
Data slicer	Data slicer	Corresponds to PDC, VPS, WSS, EPG-J, CC, CC2X and ID-1		

RENESAS

NOTES:

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N.V. If you desire this option, please so specify.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. If the Vcc2 supply voltage is less than 4.50 V, the A/D converter, data slicer cannot be used.
- 4. If the Vcc2 supply voltage is less than 2.60 V, be aware that only the CPU, RAM, clock timer, interrupt, and I/O ports can be used. Other control circuits (e.g., timers A and B, serial I/O, UART) cannot be used.

Table 1.2Product table

Туре No.	ROM capacity	RAM capacity	Package type	Remarks
M306H7MG-XXXFP	256K bytes	8K bytes		Mask ROM version
M306H7MC-XXXFP	128K bytes	5K bytes	100P6S-A	Mask ROM version
M306H7FGFP	256K bytes	8K bytes		Flash Memory version

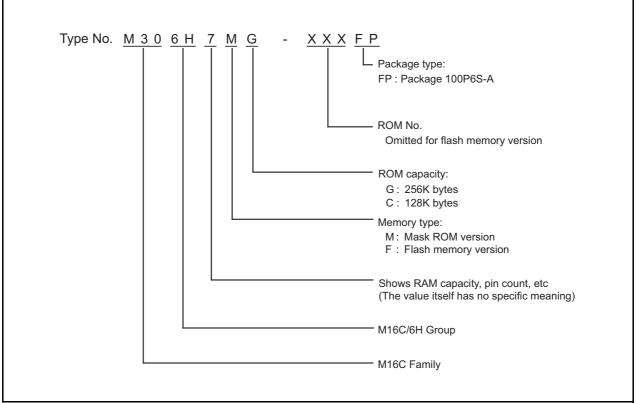


Figure 1.2 Type No, Memory Size, and Package

1.5 Block Diagram

Figure 1.3 is a block diagram.

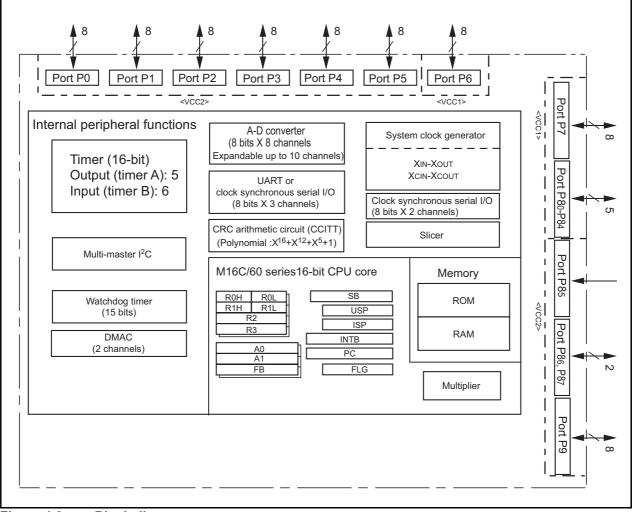


Figure 1.3 Block diagram

Pin name	Signal name	I/O type	Power supply	Function
VCC1, VCC2,	Power supply input			Apply 2.00 V to 5.5 V to the Vcc1 and Vcc2 pins. Apply 0 V to the Vss
Vss				pin. Input condition of Vcc1 and Vcc2 are Vcc1 \leq Vcc2. (1.)
CNVss	CNVss	Input	VCC2	Connect this pin to Vss.
RESET	Reset input	Input	VCC2	"L" on this input resets the microcomputer.
Xin	Clock input	Input	VCC2	These are I/O pins provided for main clock oscillation circuit.
Xout	Clock output	Output		Connect ceramic resonator or crystal oscillator between pins XIN and
				Xout. To use an externally derived clock, input it to XIN pin and leave
				Xout pin open.
AVcc	Analog power supply input			This pin is a power supply input for the A/D converter. Connect this pin to Vcc.
AVss	Analog power supply input			This pin is a power supply input for the A/D converter. Connect this pin to Vss.
P00 to P07	I/O port P0	Input/output	VCC2	This is an 8-bit CMOS I/O port. This port has an I/O select direction register,
				allowing each pin in that port to be directed for input or output individually.
				If any port is set for input, selection can be made for it in a program whether or
				not to have a pull-up resistor in 4 bit units. Pins in this oprt also function as
				A/D converter input pins as selected by Program.
P10 to P17	I/O port P1	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0. Pins P15 to P17 in this port also
				functionas INT interrupt input pins as selected by software.
P20 to P27	I/O port P2	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.

Table 1.3Pin Description (1)

Note 1: In this datasheet, hereafter, Vcc refers to Vcc2 unless otherwise noted.

Table 1.4Pin Description (2)

Pin name	Signal name	I/O type	Power supply	Function	
P30 to P37	I/O port P3	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.	
P40 to P47	I/O port P4	output	VCC2	This is an 8-bit I/O port equivalent to P0.	
P50 to P57	I/O port P5	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.	
				The same frequency as divide-by-8, 32 of XIN from	
				P57 or XCIN are output by program selecting.	
P60 to P67	I/O port P6	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0.	
				These pins function as I/O pin of UART0 and UART1	
				by selecting it by the program.	
P70 to P77	I/O port P7	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0 (P70 and P71	
				are N channel open-drain output). This port can function	
				as I/O pins for timers A0 to A3 when so selected in a	
				program.	
				Furthermore, P70 to P73 function as I/O pins of UART2,	
				P71 function as input pin of timer B5, and P74 and P75	
				function as I/O pin of multi-master I2C bus.	
P80 to P84	I/O port	Input/output	VCC1	P80 to P84, P86, and P87 are I/O ports with the same	
	P80 to P84		(P80 to P84)	functions as P0. When selected by a program,	
				P80 to P81 function as I/O pins of timer A4, P82 to P84	
				function input pin of INT interrupt.	
				And, P84 also function as output pin for remote control.	

Pin name	Signal name	I/O type	Power supply	Function
P86, P87, P85	I/O port P86 I/O port P87 I/O port P85	Input/output Input/output Input	Vcc2 (P85 to P87)	P86 and P87 that when selected in a program, both can function as I/O pins for sub clock oscillation circuit. In that case, connect crystal resonator between P86 (XCOUT pin) and P87 (XCIN pin). P85 is an input-only port shared with NMI. NMI interrupt is generated when input on this pin changes state from high to low. NMI function cannot be disabled in a program. Pull-up resistor cannot be set for this pin.
P90 to P97	I/O port P9	Input/output	Vcc2	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as SI/O3 and SI/O4 of I/O pins, Timer B0 to B4 input pins, A/D converter input pins, A/D trigger input pins, or remote control input pins as selected by program.
VDD2, VSS2	Power supply input			Analog power supply pin. Apply the same potential as VCC2 to the VDD2 pin. Apply 0 V to the VSS2 pin.
CVIN	Composite video signal input 1	Input	VCC2	This pin inputs the external composite video signal. Data-acquisition slices this signal internally by setting.
SYNCIN	Composite video signal input 2	Input	VCC2	This pin inputs the external composite video signal. Syncseparate circuit devides this signal internally.
STARTB	Oscillation selection input	Input	VCC2	This pin selects the oscillation circuit. XIN-XOUT circuit is selected when this pin is "L"; XCIN-XCOUT circuit is selected when this pin is "H".
LP3	Filter output 2	output	VDD2	This is a filter output pin 2 (for VPS).
LP4	Filter output 3	output	VDD2	This is a filter output pin 3 (for PDC).
Vcc OFF	VCC1 Power supply input select	Input	VCC2	Normally, please input "L" level. When Vcc1 power supply is off, please input "H" level.
M1	Mode selection input (M1 input)	Input	VCC2	Connect it to the Vss.In the mask ROM version, connect this pin to the Vss or the Vcc2.
TEST1	Test input	Input	VCC2	This is a test pin. Connect a capacitor.

Table 1.5Pin Description (3)

1.6 Memory

Figure 1.4 is a memory map of M306H7MG-XXXFP/MC-XXXFP/FCFP. The address space extends the 1M bytes from address 0000016 to FFFF16.

The internal ROM is allocated in a lower address direction beginning with address FFFFF16. An internal ROM of M306H7MC-XXXFP, for instance, is allocated to the addresses from E000016 to FFFFF16.

The fixed interrupt vector table is allocated to the addresses from FFFDC16 to FFFFF16. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 0040016. An internal RAM of M306H7MC-XXXFP, for instance, is allocated to the addresses from 0040016 to 017FF16. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

SFR is allocated to the addresses from 0000016 to 003FF16. Peripheral function control registers are located here. Of SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE0016 to FFFDB16. This vector is used by the JMPS or JSRS instruction. For details, refer to the "M16C/60 and M16C/20 Series Software Manual."

In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

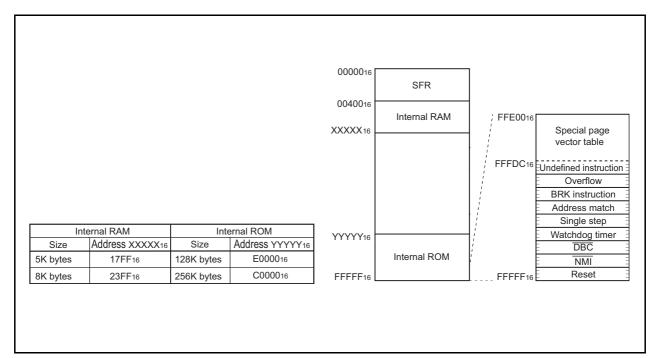


Figure 1.4 Memory Map

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

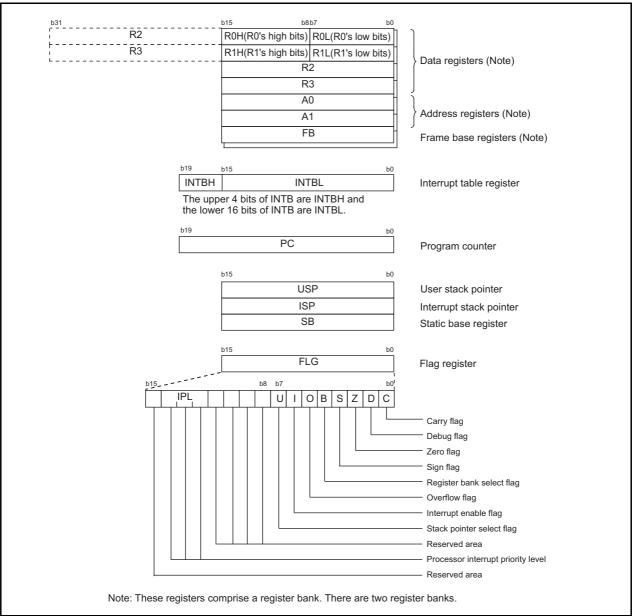


Figure 2.1 CPU registers

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32- bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

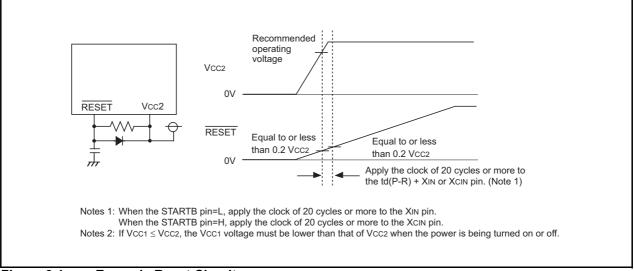
- Carry Flag (C Flag) This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.
- Debug Flag (D Flag) The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".
- Zero Flag (Z Flag) This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".
- Sign Flag (S Flag) This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".
- Register Bank Select Flag (B Flag) Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".
- Overflow Flag (O Flag) This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".
- Interrupt Enable Flag (I Flag) This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.
- Stack Pointer Select Flag (U Flag) ISP is selected when the U flag is "0"; USP is selected when the U flag is "1". The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.
- Processor Interrupt Priority Level (IPL)
 IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

• Reserved Area When write to this bit, write "0". When read, its content is indeterminate.

3. Reset

There are three types of resets: a hardware reset, a software reset, and a watchdog timer reset.


3.1 Hardware Reset

A reset is applied using the $\overline{\text{RESET}}$ pin. When an "L" signal is applied to the $\overline{\text{RESET}}$ pin while the power supply voltage is within the recommended operating condition, the pins are initialized (see Table 3.1).

The oscillation circuit is initialized and the main clock starts oscillating. When the input level at the $\overline{\text{RESET}}$ pin is released from "L" to "H", the CPU and SFR are initialized, and the program is executed starting from the address indicated by the reset vector. The internal RAM is not initialized. If the $\overline{\text{RESET}}$ pin is pulled "L" while writing to the internal RAM, the internal RAM becomes indeterminate.

Figure 3.1 shows the example reset circuit. Figure 3.2 shows the reset sequence. Table 3.1 shows the statuses of the other pins while the RESET pin is "L". Figure 3.3 shows the CPU register status after reset. Refer to "SFR" for SFR status after reset.

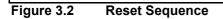
- 1. When the power supply is stable
 - When STARTB pin = "L"
 - (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
 - (2) Apply a clock for 20 cycles or more to the XIN pin.
 - (3) Apply an "H" signal to the $\overline{\text{RESET}}$ pin.
 - When STARTB pin = "H"
 - (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
 - (2) Apply a clock for 20 cycles or more to the XCIN pin.
 - (3) Apply an "H" signal to the $\overline{\text{RESET}}$ pin.
- 2. Power on
 - When STARTB pin = "L"
 - (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
 - (2) Let the power supply voltage increase until it meets the recommended operating condition.
 - (3) Wait td(P-R) or more until the internal power supply is stabilized.
 - (4) Apply a clock for 20 cycles or more to the XIN pin.
 - (5) Apply an "H" signal to the $\overline{\text{RESET}}$ pin.
 - When STARTB pin = "H"
 - (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
 - (2) Let the power supply voltage increase until it meets the recommended operating condition.
 - (3) Wait td(P-R) or more until the internal power supply is stabilized.
 - (4) Apply a clock for 20 cycles or more to the XCIN pin.
 - (5) Apply an "H" signal to the $\overline{\text{RESET}}$ pin.

Figure 3.1 Example Reset Circuit

3.2 Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), the microcomputer has its pins, CPU, and SFR initialized. Then the program is executed starting from the address indicated by the reset vector. Select the main clock for the CPU clock source, and set the PM03 bit to "1" with main clock oscillation satisfactorily stable.

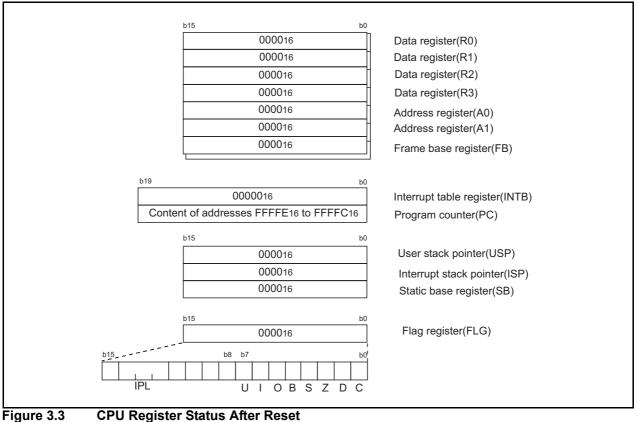
At software reset, some SFR's are not initialized. Refer to "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.


3.3 Watchdog Timer Reset

Where the PM12 bit in the PM1 register is "1" (reset when watchdog timer underflows), the microcomputer initializes its pins, CPU and SFR if the watchdog timer underflows. Then the program is executed starting from the address indicated by the reset vector.

At watchdog timer reset, some SFR's are not initialized. Refer to "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.

Vcc XIN / XCIN


cc _	_		
Xcin	td(P-R) 20 cycles are needed (Note)	ווווווווווווווווווווווווווווווווווווווו	
RESET		BCLK 28 cycles	
BCLK		 	
Single chip mode			FFFFC16 Content of reset vector
Address —			<pre> FFFFE16</pre>
			ore to the XIN pin after waiting for td(P-R) until the internal power supply is stabilized. ore to the XCIN pin after waiting for td(P-R) until the internal power supply is stabilized.

	Status						
Pin name		CNVs	CNVss = Vcc (Note)				
	CNVss = Vss	BYTE = Vss	BYTE = Vcc				
P0	Input port	Data input	Data input				
P1	Input port	Data input	Input port				
P2, P3, P40 to P43	Input port	Address output (undefined)	Address output (undefined)				
P44	Input port	CS0 output ("H" is output)	CS0 output ("H" is output)				
P45 to P47	Input port	Input port (Pulled high)	Input port (Pulled high)				
P50	Input port	WR output ("H" is output)	WR output ("H" is output)				
P51	Input port	BHE output (undefined)	BHE output (undefined)				
P52	Input port	RD output ("H" is output)	RD output ("H" is output)				
P53	Input port	BCLK output	BCLK output				
P54	Input port	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)				
P55	Input port	HOLD input	HOLD input				
P56	Input port	ALE output ("L" is output)	ALE output ("L" is output)				
P57	Input port	RDY input	RDY input				
P6, P7, P80 to P84, P86, P87, P9	Input port	Input port	Input port				

Pin Status When RESET Pin Level is "L Table 3.1

Note : Do not set CNVss=Vcc for this product.

3.4 SFR

Address	Register (Note 1)	Symbol	After reset
000016			
000116			
000216			
000316			
000416	Processor mode register 0 (Note 2)		00000002
000516	Processor mode register 1	PM1	000010002
000616	System clock control register 0	CM0	010010002(the STARTB pin is "L") 011110002(the STARTB pin is "H")
000716	System clock control register 1	CM1	001000002
000816		01111	001000002
000916	Address match interrupt enable register	AIER	XXXXXX002
000A16	Protect register	PRCR	XX000002
000B16			
000C16			
000D16			
000E16	Watchdog timer start register	WDTS	XX16
000F16	Watchdog timer control register	WDC	00XXXXX2(Note 3)
001016	Address match interrupt register 0	RMAD0	0016 0016
001116 001216			X016
001216			7018
001318	Address match interrupt register 1	RMAD1	0016
001516	Audress match interrupt register 1	RIVIADT	0016
001616			X016
001716			
001816			
001916			
001A16			
001B16			
001C16			
001D16	Dracessor mode register 2	PM2	XXX000002
001E16 001F16	Processor mode register 2	PIVIZ	XXX000002
002016	DMA0 source pointer	SAR0	XX16
002116		OAIXO	XX16
002216			XX16
002316			
002416	DMA0 destination pointer	DAR0	XX16
002516			XX16
002616			XX16
002716			
002816	DMA0 transfer counter	TCR0	XX16
002916 002A16			XX16
002A16 002B16			
002D16	DMA0 control register	DM0CON	00000X002
002D16		Billoool	
002E16			
002F16			
003016	DMA1 source pointer	SAR1	XX16
003116			XX16
003216			XX16
003316			
003416	DMA1 destination pointer	DAR1	XX16
003516 003616			XX16
003016			XX16
003816	DMA1 transfer counter	TCR1	XX16
003916			XX16
003A16			
003B16			
003C16	DMA1 control register	DM1CON	00000X002
003D16	~		
000010			
003E16 003F16			

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: The PM00 and PM01 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.

Note 3: The WDC5 bit is "0" (cold start) immediately after power-on. It can only be set to "1" in a program.

X : Undefined

Address	Register	Symbol	After reset
004016		- ,	
004116			
004216			
004316			
004416	INT3 interrupt control register	INT3IC	XX00X0002
004516	Timer B5/SLICE ON interrupt control register	TB5IC	XXXXX0002
004616	Timer B4/Remote control interrupt control register, UART1 BUS collision detection interrupt control register	TB4IC, U1BCNIC	XXXXX0002
004716	Timer B3/HINT interrupt control register, UART0 BUS collision detection interrupt control register	TB3IC, U0BCNIC	XXXXX0002
004816	SI/O4 interrupt control register, INT5 interrupt control register	S4IC, INT5IC	XX00X0002
004916	SI/O3 interrupt control register, INT4 interrupt control register	S3IC. INT4IC	XX00X0002
004A16	UART2 Bus collision detection interrupt control register	BCNIC	XXXXX0002
004B16	DMA0 interrupt control register	DM0IC	XXXXX0002
004C16	DMA1 interrupt control register	DM1IC	XXXXX0002
004D16		2	
004E16	A/D conversion interrupt control register	ADIC	XXXXX0002
004F16	UART2 transmit interrupt control register	S2TIC	XXXXX0002
005016	UART2 receive interrupt control register	S2RIC	XXXXX0002
005116	UART0 transmit interrupt control register	SOTIC	XXXXX0002
005216	UART0 receive interrupt control register	SORIC	XXXXX0002
005316	UART1 transmit interrupt control register	S1TIC	XXXXX0002
005416	UART1 receive interrupt control register	S1RIC	XXXXX0002
005516	Timer A0 interrupt control register	TA0IC	XXXXX0002
005616	Timer A1 interrupt control register	TA1IC	XXXXX0002
005716	Timer A2 interrupt control register	TA2IC	XXXXX0002
005816	Timer A3 interrupt control register	TA3IC	XXXXX0002
005916	Timer A4 interrupt control register	TA4IC	XXXXX0002
005A16	Timer B0 interrupt control register	TB0IC	XXXXX0002
005B16	Timer B1 interrupt control register	TB1IC	XXXXX0002
005C16	Timer B2/Clock timer interrupt control register	TB2IC	XXXXX0002
005D16	INT0 interrupt control register	INTOIC	XX00X0002
005E16	INT1 interrupt control register	INT1IC	XX00X0002
005F16	INT2 interrupt control register	INT2IC	XX00X0002
006016			
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816			
006916			
006A16			
006B16			
006C16			
006D16			
006E16			
006F16			
007016			
007116			
007216			
007316			
007416			
007516			
007616			
007616 007716			
007716			
007716 007816			
007716 007816 007916			
007716 007816 007916 007A16			
007716 007816 007916 007A16 007B16			
007716 007816 007916 007A16 007B16 007C16			

Note :The blank areas are reserved and cannot be accessed by users.

X : Undefined

Address	Register		Symbol	After reset
008016	•			
008116				
008216 008316				
008416				
008516				
008616				
01B016			+	
01B116				
01B216				
01B316				
01B416 01B516	Flash memory control register 1	(Note 2)	FMR1	0X00XX0X2
01B516				070077072
01B716	Flash memory control register 0	(Note 2)	FMR0	XX0000012
01B816	Address match interrupt register 2		RMAD2	0016
01B916 01BA16				0016
01BA16 01BB16	Address match interrupt enable register 2		AIER2	X016 XXXXXX002
01BC16	Address match interrupt register 3		RMAD3	0016
01BD16				0016
01BE16				X016
01BF16			+	
020016	Remote control transmission buffer register		RMTTMHL	0016
020116				0016
020E16	Slice RAM address control register		SA	0016
020F16 021016	Slice RAM data control register			0016
021116	•		SD	
021316 021416	Address control register for CRC registers		CA	0016
021516	Data control register for CRC registers		CD	0016
021616 021716	Address control register for extended registers		DA	0016
021816 021916	Data control register for extended registers		DD	0016
021A16 021B16	Humming 8/4 register		HM8	0016
021C16 021D16	Humming 24/18 register 0		HM0	0016
021E16 021F16	Humming 24/18 register 1		HM1	0016
025016				
025916 025A16			+	
025A16 025B16				
025C16				
025D16				
025E16 025F16	Peripheral clock select register		PCLKR	000000112
JZJF 10				
0050	1200 interrupt control register		EXTIICINT	0016
02D616 02D716	I ² C0 interrupt control register Reserved register		EXTREG02D7	0016
520/10				0010
02E016	I ² C data shift register		IIC0S0	Undefined
02E116 02E216	I ² C address register I ² C states register		IIC0S0D IIC0S1	0016 0001000?2
02E216 02E316	I ² C states register		IICOS1 IICOS1D	000100072
02E416	I ² C clock control register		IIC0S2	0016
02E516	Reserved register		REVREG02E5	00?000002
02E616	I ² C transmit buffer register		IICOSOS	Undefined
033016				
0331 16 0332 16			+	

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: This register is included in the flash memory version.

X : Undefined

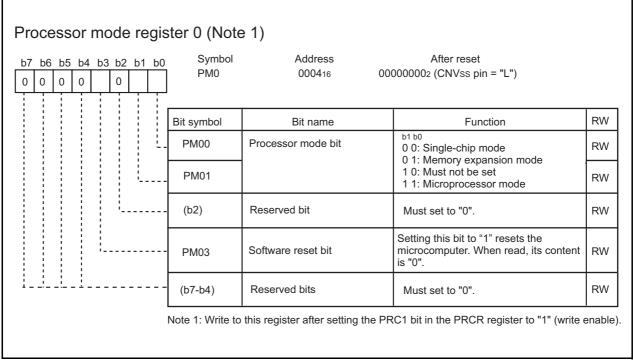
Address	Register	Symbol	After reset
034016	Timer B3, 4, 5 count start flag	TBSR	000XXXXX2
034116	*		
034216			
034316			
034416			
034516			
034616			
034716			
034816			
034916			
034A16			
034B16			
034C16			
034D16			
034E16			
034F16			
035016	Timer B3 register	TB3	XX16
035116	-		XX16
035216	Timer B4 register	TB4	XX16
035316	-		XX16
035416	Timer B5 register	TB5	XX16
035516	-		XX16
035616			
035716			
035816			
035916			
035A16			
035B16	Timer B3 mode register	TB3MR	00XX00002
035C16	Timer B4 mode register	TB4MR	00XX00002
035D16	Timer B5 mode register	TB5MR	00XX00002
035E16	Interrupt cause select register 2	IFSR2A	00XXXXXX2
035F16	Interrupt cause select register	IFSR	0016
036016	SI/O3 transmit/receive register	S3TRR	XX16
036116			
036216	SI/O3 control register	S3C	01000002
036316	SI/O3 bit rate generator register	S3BRG	XX16
036416	SI/O4 transmit/receive register	S4TRR	XX16
036516			
036616	SI/O4 control register	S4C	01000002
036716	SI/O4 bit rate generator register	S4BRG	XX16
036816			
036916			
036A16			
036B16			
036C16	UART0 special mode register 4	U0SMR4	0016
036D16	UART0 special mode register 3	U0SMR3	000X0X0X2
036E16	UART0 special mode register 2	U0SMR2	X0000002
036F16	UART0 special mode register	U0SMR	X0000002
037016	UART1 special mode register 4	U1SMR4	0016
037116	UART1 special mode register 3	U1SMR3	000X0X0X2
037216	UART1 special mode register 2	U1SMR2	X0000002
037316	UART1 special mode register	U1SMR	X0000002
037416	UART2 special mode register 4	U2SMR4	0016
037516	UART2 special mode register 3	U2SMR3	000X0X0X2
037616	UART2 special mode register 2	U2SMR2	X0000002
037716	UART2 special mode register	U2SMR	X0000002
037816	UART2 transmit/receive mode register	U2MR	0016
037916	UART2 bit rate generator	U2BRG	XX16
037A16	UART2 transmit buffer register	U2TB	XXXXXXXX2
037B16	· ·		XXXXXXXX2
037C16	UART2 transmit/receive control register 0	U2C0	000010002
037D16	UART2 transmit/receive control register 1	U2C1	000000102
037E16	UART2 receive buffer register	U2RB	XXXXXXXX2
037F16	-		XXXXXXXX2

Note : The blank areas are reserved and cannot be accessed by users. $X: \ensuremath{\mathsf{Undefined}}$

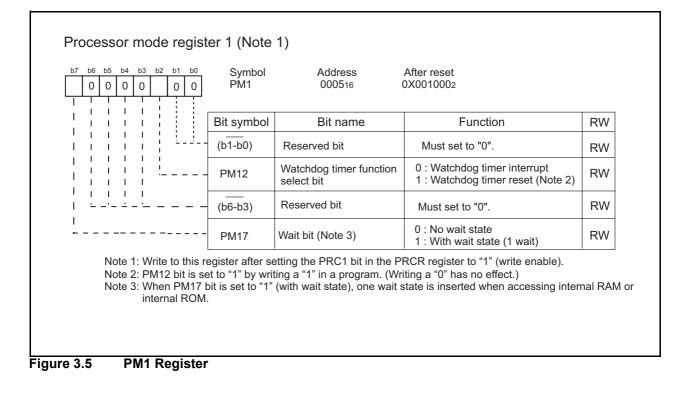
Address	Register	Symbol	After reset
038016	Count start flag	TABSR	0016
038116	Clock prescaler reset flag	CPSRF	0XXXXXX2
038216	One-shot start flag	ONSF	0016
038316	Trigger select register	TRGSR	0016
038416	Up-down flag	UDF	0016
038516			
038616	Timer A0 register	TAO	XX16
038716	0		XX16
038816	Timer A1 register	TA1	XX16
038916			XX16
038A16	Timer A2 register	TA2	XX16
038B16			XX16
038C16	Timer A3 register	TA3	XX16
038D16			XX16
038E16	Timer A4 register	TA4	XX16
038F16			XX16
039016	Timer B0 register	ТВО	XX16
039116			XX16
039216	Timer B1 register	TB1	XX16
039316			XX16
039416	Timer B2 register	TB2	XX16
039516			XX16
039616	Timer A0 mode register	TAOMR	0016
039716	Timer A1 mode register	TA1MR	0016
039816	Timer A2 mode register	TA2MR	0016
039916	Timer A3 mode register	TA3MR	0016
039A16	Timer A4 mode register	TA4MR	0016
039B16	Timer B0 mode register	TBOMR	00XX00002
039C16	Timer B1 mode register	TB1MR	00XX00002
039D16	Timer B2 mode register	TB2MR	00XX00002
039D16		TDZIVIK	007700002
039E16			
039F16 03A016	UART0 transmit/receive mode register	U0MR	0010
03A016 03A116	UARTO bit rate generator register	U0BRG	0016
03A116			XX16
03A216	UART0 transmit buffer register	U0TB	XXXXXXXX2 XXXXXXXX2
03A316 03A416			
03A416 03A516	UART0 transmit/receive control register 0	<u> </u>	000010002
03A516 03A616	UART0 transmit/receive control register 1	U0C1	00000102
03A616 03A716	UART0 receive buffer register	UORB	XXXXXXXX2
			XXXXXXXX2
03A816	UART1 transmit/receive mode register	U1MR	0016
03A916	UART1 bit rate generator	U1BRG	XX16
03AA16	UART1 transmit buffer register	U1TB	XXXXXXXX2
03AB16	LIADT1 transmit/respires control register 0		XXXXXXX2
03AC16	UART1 transmit/receive control register 0	U1C0	000010002
03AD16	UART1 transmit/receive control register 1	U1C1	00000102
03AE16	UART1 receive buffer register	U1RB	XXXXXXXX2
03AF16			XXXXXXXX2
03B016	UART transmit/receive control register 2	UCON	X0000002
03B116			
03B216			
03B316			
03B416			
03B516			
03B616			
03B716			
03B816	DMA0 request cause select register	DM0SL	0016
03B916			
03BA16	DMA1 request cause select register	DM1SL	0016
03BB16			
03BC16	CRC data register	CRCD	XX16
	-		XX16
03BD16			
03BD16 03BE16	CRC input register	CRCIN	XX16

Note : The blank areas are reserved and cannot be accessed by users.

X : Undefined


RENESAS

Address	Register	Symbol	After reset	
03C016	A/D register 0	ADO	XXXXXXXX2	
03C116				
03C216	A/D register 1	AD1	XXXXXXXX2	
03C316				
03C416	A/D register 2	AD2	XXXXXXXX2	
03C516				
03C616	A/D register 3	AD3	XXXXXXXX2	
03C716				
03C816	A/D register 4	AD4	XXXXXXXX2	
03C916				
03CA16	A/D register 5	AD5	XXXXXXXX2	
03CB16				
03CC16	A/D register 6	AD6	XXXXXXXX2	
03CD16				
03CE16	A/D register 7	AD7	XXXXXXXX2	
03CF16				
03D016				
03D116				
03D216				
03D316	A/D control register 2		0016	
03D416	A/D control register 2	ADCON2	0016	
03D516 03D616	A/D control register 0	ADCON0	00000XXX2	
03D616 03D716	A/D control register 0	ADCON0 ADCON1	000007772	
03D716 03D816			0010	
03D916				
03D916				
03DB16				
03DC16				
03DC16				
03DE16				
03DE16				
03E016	Port P0 register	P0	XX16	
03E116	Port P1 register	P1	XX16	
03E216	Port P0 direction register	PD0	0016	
03E316	Port P1 direction register	PD1	0016	
03E416	Port P2 register	P2	XX16	
03E516	Port P3 register	P3	XX16	
03E616	Port P2 direction register	PD2	0016	
03E716	Port P3 direction register	PD3	0016	
03E816	Port P4 register	P4	XX16	
03E916	Port P5 register	P5	XX16	
03EA16	Port P4 direction register	PD4	0016	
03EB16	Port P5 direction register	PD5	0016	
03EC16	Port P6 register	P6	XX16	
03ED16	Port P7 register	P7	XX16	
03EE16	Port P6 direction register	PD6	0016	
03EF16	Port P7 direction register	PD7	0016	
03F016	Port P8 register	P8	XX16	
03F116	Port P9 register	P9	XX16	
03F216	Port P8 direction register	PD8	00X000002	
03F316	Port P9 direction register	PD9	0016	
03F416	Port P10 register	P10	XX16	
03F516				
03F616				
03F716				
03F816				
03F916				
03FA16				
03FB16				
03FC16	Pull-up control register 0	PUR0	0016	
03FD16				
	Pull-up control register 1	PUR1	00000002	
03FE16	Pull-up control register 2	PUR2	0016	


3. RESET

Note 1: The blank areas are reserved and cannot be accessed by users.

RENESAS

4. Clock Generation Circuit

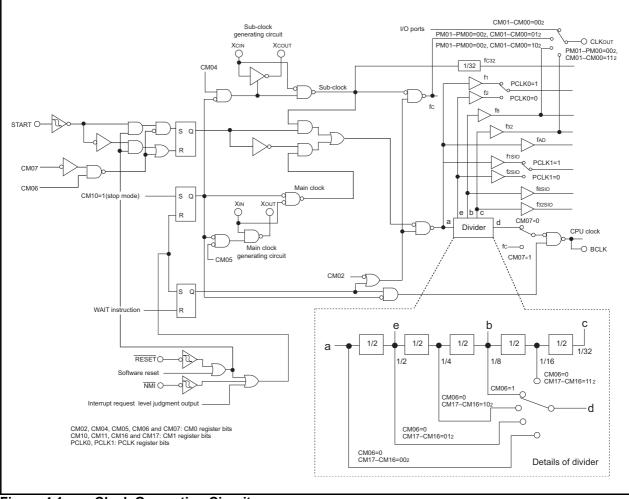
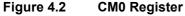
The clock generation circuit contains two oscillator circuits as follows:

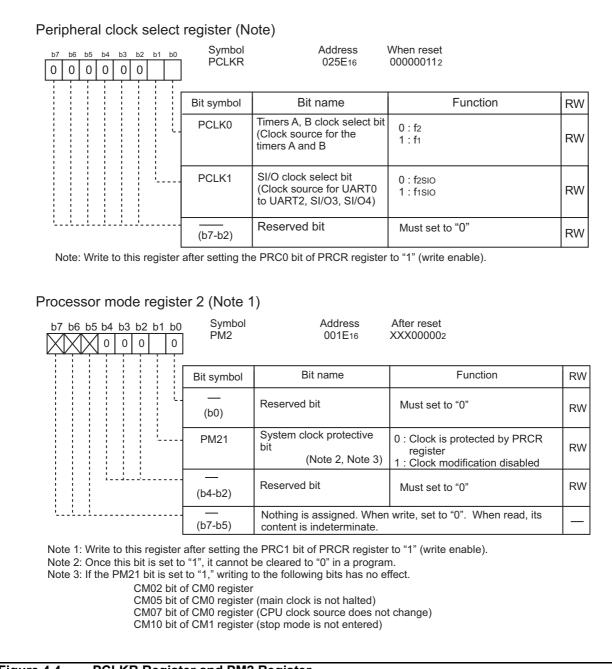
- (1) Main clock oscillation circuit
- (2) Sub clock oscillation circuit

Table 4.1 lists the clock generation circuit specifications. Figure 4.1 shows the clock generation circuit. Figures 4.2 to 4.4 show the clock-related registers.

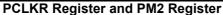
Item	Main clock oscillation circuit	Sub clock oscillation circuit
Use of clock	CPU clock source Peripheral function clock source	•CPU clock source • Timer A, B's clock source
Clock frequency	0 to 16 MHz (Note 3)	32.768 kHz
Usable oscillator	Ceramic oscillator Crystal oscillator (Note 2)	Crystal oscillator
Pins to connect oscillator	Xin, Xout	XCIN, XCOUT
Oscillation stop, restart function	Presence	Presence
Oscillator status after reset (Note1)	Oscillating	Stopped
Other	Externally derived clo	ock can be input

- Note 1. The state that the STARTB pin is held "L" after reset is shown. The state that the STARTB pin is held "H" after reset is following. Main clock oscillation circuit: Stopped Sub clock oscillation circuit: Oscillating
- Note 2. If you use "14 Expansion Function (Data acquisition)", be sure to connect a crystal oscillator between the XIN and XOUT pins.
- Note 3. If you use "14 Expansion Function (Data acquisition)", connect a crystal of 10MHz, 12MHz, 14MHz, or 16MHz.


Figure 4.1 Clock Generation Circuit

7 b6 b5 b4 b3 b2 b1 b0] Symbol CM0	Address 000616	After reset (Note 14) 011110002 (STARTB pin = Vcc) 010010002 (STARTB pin = Vss)	
	Bit symbol	Bit name	Function	RW
-	CM00	Clock output function select bit	^{b1 b0} 0 0 : I/O port P57 0 1 : fc output	RW
	CM01	(Valid only in single-chip mode)	1 0 : f8 output 1 1 : f32 output	RW
	CM02	WAIT peripheral function clock stop bit (Note 10)	0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode (Note 8)	RW
	CM03	XCIN-XCOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	RW
	CM04	Port Xc select bit (Note 2)	0 : I/O port P86, P87 1 : XCIN-XCOUT generation function(Note 9)	RW
	CM05	Main clock stop bit (Notes 3, 10, 12, 13)	0 : On 1 : Off (Note 4, Note5)	RW
· · · · · · · · · · · · · · · · · · ·	CM06	Main clock division select bit 0 (Notes 7, 13)	0 : CM16 and CM17 valid 1 : Division by 8 mode	RW
		, , ,	,	
Note 2: The CM03 bit is s Note 3: This bit is provide detection as to wh	et to "1" (high) v d to stop the ma ether the main	System clock select bit (Notes 6, 10, 11, 12) the PRC0 bit of PRCR regist when the CM04 bit is set to "(in clock when the low power clock stopped or not. To sto	0 : Main clock 1 : Sub-clock ver to "1" (write enable). " (I/O port) or the microcomputer goes to a stop mode. r dissipation mode is selected. This bit cannot be used for p the main clock, the following setting is required:	RW
Note 2: The CM03 bit is so Note 3: This bit is provide detection as to wh (1) Set the CM07 (2) Set the CM07 (2) Set the CM07 Note 4: During external ch chosen as a CPU Note 5: When CM05 bit is the XIN pin is pulle Note 6: After setting the C the CM07 bit from Note 7: When entering sto Note 8: The fc32 clock door turned off when in Note 9: To use a sub-cloc Note 10: When the PM21 no effect. Note 11: If the PM21 bit n Note 12: To use the main (1) Set the CM05 (2) Wait until td(M (3) Set the CM07	er after setting et to "1" (high) v d to stop the main ' bit to "1" (Sub- 5 bit to "1" (Stop ock input, only t clock. set to "1, the X d "H" to the sar MO4 bit to "1" (3 "0" to "1" (sub- p mode from hi es not stop. Dur wait mode). <, set this bit to bit of PM2 regist eeds to be set t clock as the clo bit to "0" (oscilla -L) elapses or tl bit all to "0".	System clock select bit (Notes 6, 10, 11, 12) the PRC0 bit of PRCR regist when the CM04 bit is set to "(ain clock when the low power clock stopped or not. To sto clock select) with the sub-clo). he clock oscillation buffer is out pin goes "H". Furthermo ne level as Xout via the feet (XcIN-XCOUT oscillator functio clock). gh or middle speed mode, the ing low speed or low power of "1". Also make sure ports P8 ster is set to "1" (clock modified of "1", set the CM07 bit to "0" ck source for the CPU clock, ate). he main clock oscillation state	0 : Main clock 1 : Sub-clock "(I/O port) or the microcomputer goes to a stop mode. r dissipation mode is selected. This bit cannot be used for p the main clock, the following setting is required: bock stably oscillating. turned off and clock input is accepted if the sub clock is n re, because the internal feedback resistor remains conne black resistor. n), wait until the sub-clock oscillates stably before switching the CM06 bit is set to "1" (divide-by-8 mode). dissipation mode, do not set this bit to "1" (peripheral clock a and P87 are directed for input, with no pull-ups. cation disable), writing to the CM02, CM05, and CM07 bit (main clock) before setting it. follow the procedure below.	r not ected, ing kk

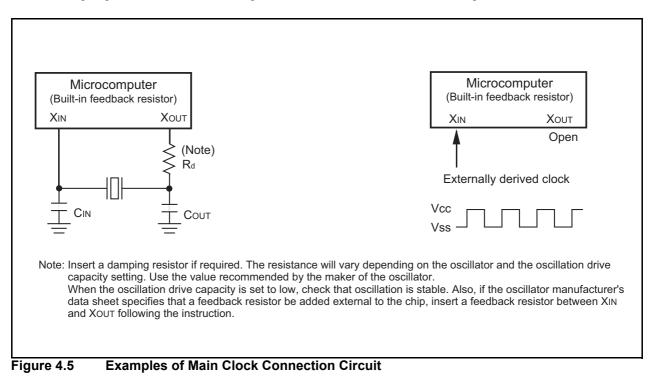


7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0] Symbol CM1	Address 000716	After reset 001000002	
	Bit symbol	Bit	Function	RW
	- CM10	All clock stop control bit (Notes 4, 5)	0 : Clock on 1 : All clocks off (stop mode)	RW
	(b4-b1)	Reserved bit	Must set to "0"	RW
	CM15	XIN-XOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	RW
	- CM16	Main clock division select bit 1 (Note 3)	0 0 : No division mode 0 1 : Division by 2 mode	RW
	- CM17		1 0 : Division by 4 mode 1 1 : Division by 16 mode	RW
Note 2: When entering sto speed mode, the 0 Note 3: Effective when the	op mode from hi CM15 bit is set t e CM06 bit is "0 "1" (stop mode)	o "1" (drive capability high). " (CM16 and CM17 bits ena , Xo∪⊤ goes "H" and the inte	or when the CM05 bit is set to "1" (main clock turned	,

4.1 Oscillator Circuit

The following describes the clocks generated by the clock generation circuit.

Two oscillation circuits are built in the clock generating circuit, and a main clock or a sub clock can be chosen as a CPU clock by setup of the STARTB pin after reset.


4.1.1 Main Clock

This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 4.5 shows the examples of main clock connection circuit.

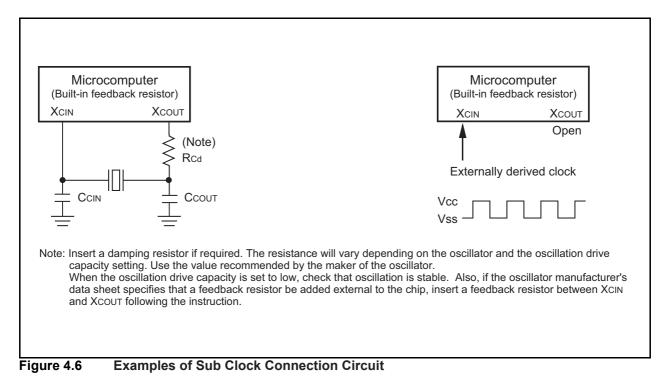
When the level on the STARTB pin is "L", the main clock divided by 8 is selected for the CPU clock (Sub clock turned off) after reset.

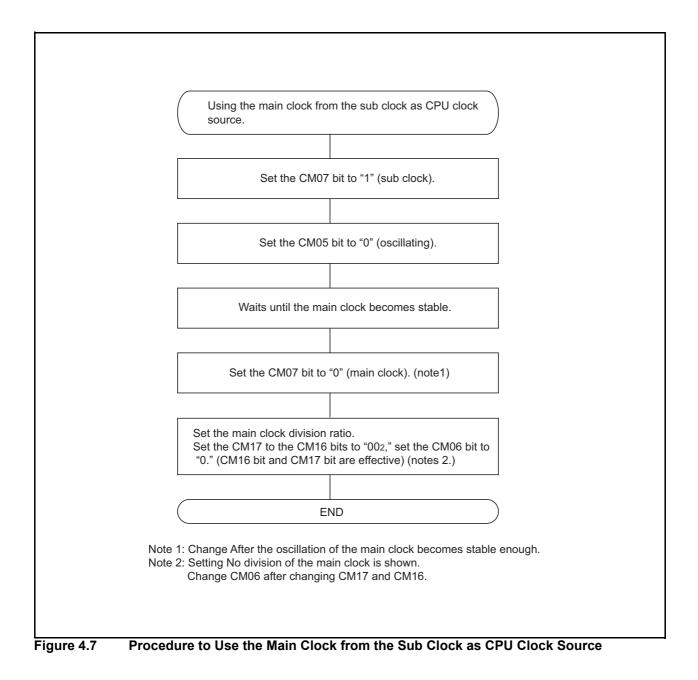
The power consumption in the chip can be reduced by setting the CM05 bit of CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1" without selecting sub clock for the CPU clock. If necessary, use an external circuit to turn off the clock.

During stop mode, all clocks including the main clock are turned off. Refer to "power control".

4.1.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fc clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.


The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin.


Figure 4.6 shows the examples of sub clock connection circuit.

When the level on the STARTB pin is "L", the sub clock is turned off after reset. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit of CM0 register to "1" (sub clock) after the sub clock becomes oscillating stably.

When a STARTB pin is "H", the sub clock (XCIN) divided by 8 becomes the CPU clock after reset (the main clock stops). When you use a main clock after this, please shift according to the procedure shown in Fig. 4.7. During stop mode, all clocks including the sub clock are turned off. Refer to "power control".

4.2 CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

4.2.1 CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock or sub clock.

If the main clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in CM0 register and the CM17 to CM16 bits in CM1 register to select the divide-by-n value.

When the level on the STARTB pin is "H", the main clock divided by 8 provides the CPU clock after reset. When the level on the STARTB pin is "L", the sub clock of frequency divided by 8 provides the CPU clock after reset.

At this time, the CM04 bit and the CM05 bit of CM0 register become "1".

Note that when entering stop mode from high or middle speed mode, or when the CM05 bit of CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit of CM0 register is set to "1" (divide-by-8 mode).

4.2.2 Peripheral Function Clock(f1, f2, f8, f32, f1sio, f2sio, f8sio, f32sio, fAD, fC32)

These are operating clocks for the peripheral functions.

Of these, fi (i = 1, 2, 8, 32) and fisto are derived from the main clock by dividing them by i. The clock fi is used for timers A and B, and fisto is used for serial I/O. The f8 and f32 clocks can be output from the CLKOUT pin. The fAD clock is produced from the main clock, and is used for the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit of CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fisio and fAD clocks are turned off.

The fC32 clock is produced from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is on.

4.3 Clock Output Function

During single-chip mode, the f8, f32 or fC clock can be output from the CLKOUT pin. Use the CM01 to CM00 bits of CM0 register to select.

4.4 **Power Control**

There are three power control modes. For convenience' sake, all modes other than wait and stop modes are referred to as normal operation mode here.

4.4.1 Normal Operation Mode

Normal operation mode is further classified into four modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock or sub clock, allow a sufficient wait time in a program until it becomes oscillating stably.

• High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

• Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

• Low-speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock.

The fC32 clock can be used as the count source for timers A and B.

• Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fC32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit of CM0 register becomes "1" (divided by 8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divided by 8) mode is to be selected when the main clock is operated next.

4.4.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. Because the main clock and sub clock are on, the peripheral functions using these clocks keep operating.

• Peripheral Function Clock Stop Function

If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO and fAD clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

• Pin Status During Wait Mode

Pin Status During Wait Mode is shown in Table 4.2.

• Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of exit wait mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If CM02 bit is "0" (peripheral function clocks not turned off during wait mode), all peripheral function interrupts can be used to exit wait mode. If CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 4.2 Pin Status During Wait Mode

Pin		Single-chip mode
A ₀ to A ₁₉ , D ₀ to D ₁₅ , $\overline{CS0}$ to $\overline{CS3}$,		
BHE		
RD, WR, WRL, V	VRH	
HLDA,BCLK		
ALE		
I/O ports		Retains status before wait mode
CLKOUT	When fc selected	Does not stop
	When f8, f32 selected	Does not stop when the CM02
		bit is "0".
		When the CM02 bit is "1", the
		status immediately prior to
		entering wait mode is main-
		tained.

Table 4.3 Interrupts to Exit Wait Mode

Interrupt	CM02=0	CM02=1
NMI interrupt	Can be used	Can be used
Serial I/O interrupt	Can be used when operating with internal or external clock	Can be used when operating with external clock
A-D conversion interrupt	Can be used in one-shot mode or single sweep mode	— (Do not use)
Timer A interrupt Timer B interrupt	Can be used in all modes	Can be used in event counter mode or when the count source is fC32
INT interrupt	Can be used	Can be used

Table 4.3 lists the interrupts to exit wait mode.

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

- (1) In the ILVL2 to ILVL0 bits of interrupt control register, set the interrupt priority level of the peripheral function interrupt to be used to exit wait mode. Also, for all of the peripheral function interrupts not used to exit wait mode, set the ILVL2 to ILVL0 bits to "0002" (interrupt disable).
- (2) Set the I flag to "1".
- (3) Enable the peripheral function whose interrupt is to be used to exit wait mode. In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt routine is executed.

The CPU clock turned on when exiting wait mode by a peripheral function interrupt is the same CPU clock that was on when the WAIT instruction was executed.

4.4.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to Vcc pins is VRAM or more, the internal RAM is retained.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

- $\overline{\text{NMI}}$ interrupt
- INT interrupt
- Timer A, Timer B interrupt (when counting external pulses in event counter mode)
- Serial I/O interrupt (when external clock is selected)

The internal oscillator circuit of expansion function (Data acquisition / humming function) stops oscillation when expansion register XTAL_VCO, PDC_VCO_ON, VPS_VCO_ON = "L".

• Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit of CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit of CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit of CM1 register is set to "1" (main clock oscillator circuit drive capability high).

• Pin Status in Stop Mode

Table 4.4 lists pin status during stop mode

• Exiting Stop Mode

The microcomputer is moved out of stop mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of stop mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disable) before setting the CM10 bit to "1".

If the microcomputer is to be moved out of stop mode by a peripheral function interrupt, set up the following before setting the CM10 bit to "1".

(1) In the ILVL2 to ILVL0 bits of interrupt control register, set the interrupt priority level of the peripheral function interrupt to be used to exit stop mode.

Also, for all of the peripheral function interrupts not used to exit stop mode, set the ILVL2 to ILVL0 bits to "0002".

- (2) Set the I flag to "1".
- (3) Enable the peripheral function whose interrupt is to be used to exit stop mode. In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt service routine is executed.

Which CPU clock will be used after exiting stop mode by a peripheral function or NMI interrupt is determined by the CPU clock that was on when the microcomputer was placed into stop mode as follows: If the CPU clock before entering stop mode was derived from the sub clock: sub clock

If the CPU clock before entering stop mode was derived from the main clock: main clock divide-by-8

Table 4.4 Pin Status in Stop Mode

Pin		Single-chip mode
A0 to A19, D0	to D_{15} , $\overline{CS0}$ to $\overline{CS3}$,	
BHE		
RD, WR, WF	RL, WRH	
HLDA, BCLK		
ALE		
I/O ports		Retains status before stop mode
CLKOUT	When fc selected	"Н"
	When f8, f32 selected	Retains status before stop mode

Figure 4.8 shows the state transition from normal operation mode to stop mode and wait mode. Figure 4.9 shows the state transition in normal operation mode.

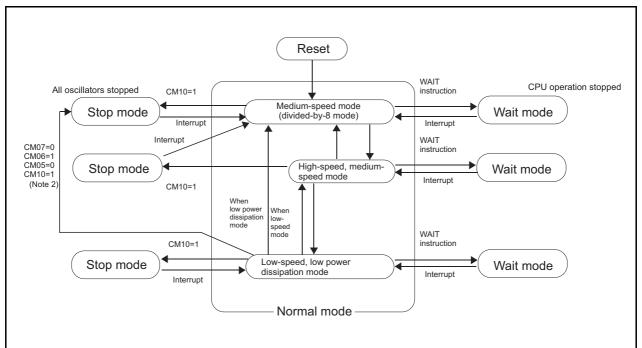
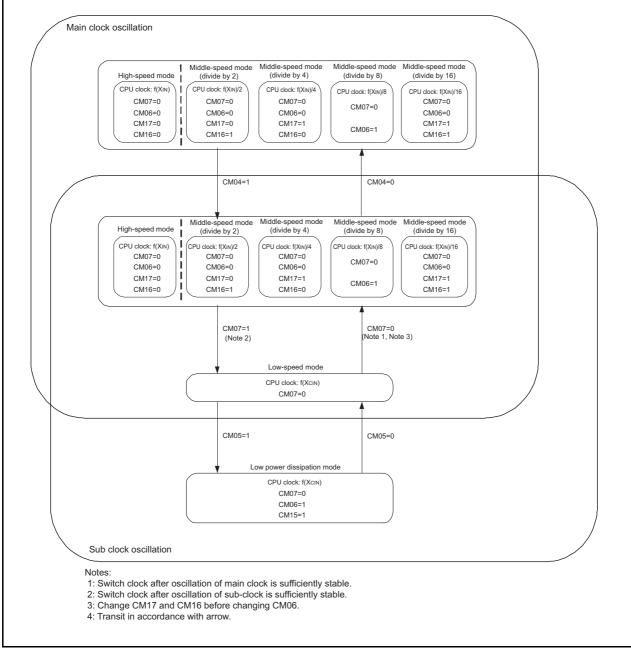



Figure 4.8 State Transition to Stop Mode and Wait Mode

4.5 System Clock Protective Function

When the main clock is selected for the CPU clock source, this function disables the clock against modifications in order to prevent the CPU clock from becoming halted by run-away.

If the PM21 bit of PM2 register is set to "1" (clock modification disabled), the following bits are protected against writes:

- CM02, CM05, and CM07 bits in CM0 register
- CM10, CM11 bits in CM1 register

Before the system clock protective function can be used, the following register settings must be made while the CM05 bit of CM0 register is "0" (main clock oscillating) and CM07 bit is "0" (main clock selected for the CPU clock source):

- (1) Set the PRC1 bit of PRCR register to "1" (enable writes to PM2 register).
- (2) Set the PM21 bit of PM2 register to "1" (disable clock modification).
- (3) Set the PRC1 bit of PRCR register to "0" (disable writes to PM2 register).

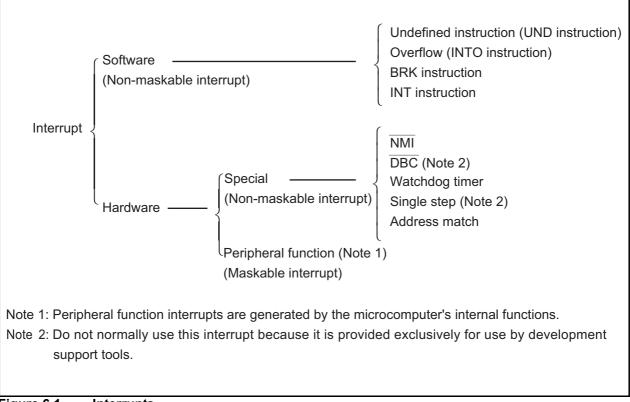
Do not execute the WAIT instruction when the PM21 bit is "1".

5. Protection

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 5.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- Registers protected by PRC0 bit: CM0, CM1 and PCLKR registers
- Registers protected by PRC1 bit: PM0, PM1 and PM2 registers
- Registers protected by PRC2 bit: PD9, S3C and S4C registers

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0 and PRC1 bits are not automatically cleared to "0" by writing to any address. They can only be cleared in a program.


b7 b6 b5 b4 b3 b2 b1 b0	Symbol PRCR		iter reset (0000002	
	Bit symbol	Bit name	Function	RW
		Protect bit 0	Enable write to CM0, CM1 and PCLKR registers 0 : Write protected 1 : Write enabled	RW
	PRC1	Protect bit 1	Enable write to PM0, PM1 and PM2 registers 0 : Write protected 1 : Write enabled	RW
	PRC2	Protect bit 2	Enable write to PD9, S3C and S4C registers 0 : Write protected 1 : Write enabled	RW
	- (b5-b3)	Reserved bit	Must set to "0"	RW
	(b7-b6)	Nothing is assigned. When wr content is interdeterminate.	ite, set to "0". When read, its	

6. Interrupts

6.1 Type of Interrupts

Figure 6.1 shows types of interrupts.

Figure 6.1 Interrupts

• Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority can be changed by priority level.

• Non-maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>cannot be changed</u> by priority level.

6.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

• Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

• Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

• BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

• INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 4 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is cleared to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

6.3 Hardware Interrupts

Hardware interrupts are classified into two types - special interrupts and peripheral function interrupts.

• Special Interrupts

Special interrupts are non-maskable interrupts.

(1) NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. For details about the $\overline{\text{NMI}}$ interrupt, refer to the section "NMI interrupt".

(2) $\overline{\text{DBC}}$ Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

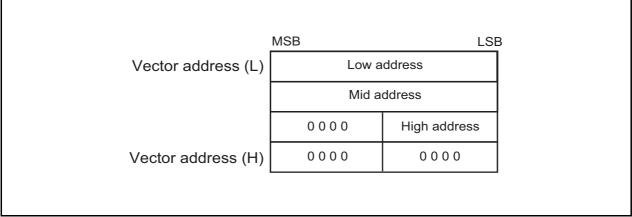
(3) Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to the section "watchdog timer".

(4) Single-step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

(5) Address Match Interrupt


An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD3 register that corresponds to one of the AIER register's AIER0 or AIER1 bit or the AIER2 register's AIER20 or AIER21 bit which is "1" (address match interrupt enabled). For details about the address match interrupt, refer to the section "address match interrupt".

• Peripheral Function Interrupts

Peripheral function interrupts are maskable interrupts and generated by the microcomputer's internal functions. The interrupt sources for peripheral function interrupts are listed in Table 6.2. For details about the peripheral functions, refer to the description of each peripheral function in this manual.

6.4 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 6.2 shows the interrupt vector.

Figure 6.2 Interrupt Vector

• Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDC16 to FFFFF16. Table 6.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to the section "flash memory rewrite disabling function".

Interrupt source	Vector table addresses Address (L) to address (H)	Remarks	Reference
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction	M16C/60, M16C/20
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction	series software
BRK instruction	FFFE416 to FFFE716	If the contents of address FFFE716 is FF16, program ex- ecution starts from the address shown by the vector in the relocatable vector table.	manual
Address match	FFFE816 to FFFEB16		Address match interrupt
Single step (Note)	FFFEC16 to FFFEF16		
Watchdog timer	FFFF016 to FFFF316		Watchdog timer
DBC (Note)	FFFF416 to FFFF716		
NMI	FFFF816 to FFFFB16		NMI interrupt
Reset	FFFFC16 to FFFFF16		Reset

Table 6.1Fixed Vector Tables

Note: Do not normally use this interrupt because it is provided exclusively for use by development support tools.

Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a reloacatable vector table area. Table 6.2 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Interrupt source	Vector address (Note 1) Address (L) to address (H)	Software interrupt number	Reference	
BRK instruction (Note 5)	+0 to +3 (000016 to 000316)	0	M16C/60, M16C/20	
(Reserved)		1 to 3	series software manual	
ĪNT3	+16 to +19 (001016 to 001316)	4	INT interrupt	
Timer B5/SLICE ON (Note 7)	+20 to +23 (001416 to 001716)	5	Timer	
Timer B4/Remote control, UART1 bus collision detect (Note 4, Note 6, Note 7)	+24 to +27 (001816 to 001B16)	6	Timer	
Timer B3/HINT, UART0 bus collision detect (Note 4, Note 6, Note 7)	+28 to +31 (001C16 to 001F16)	7	Serial I/O	
SI/O4, INT5 (Note 2)	+32 to +35 (002016 to 002316)	8	INT interrupt	
SI/O3, INT4 (Note 2)	+36 to +39 (002416 to 002716)	9	Serial I/O	
UART 2 bus collision detection	+40 to +43 (002816 to 002B16)	10	Serial I/O	
DMA0	+44 to +47 (002C16 to 002F16)	11		
DMA1	+48 to +51 (003016 to 003316)	12	DMAC	
A/D	+56 to +59 (003816 to 003B16)	14	A/D converter	
UART2 transmit, NACK2 (Note 3)	+60 to +63 (003C16 to 003F16)	15		
UART2 receive, ACK2 (Note 3)	+64 to +67 (004016 to 004316)	16		
UART0 transmit, NACK0(Note 3)	+68 to +71 (004416 to 004716)	17		
UART0 receive, ACK0 (Note 3)	+72 to +75 (004816 to 004B16)	18	Serial I/O	
UART1 transmit, NACK1(Note 3)	+76 to +79 (004C16 to 004F16)	19		
UART1 receive, ACK1(Note 3)	+80 to +83 (005016 to 005316)	20		
Timer A0	+84 to +87 (005416 to 005716)	21		
Timer A1	+88 to +91 (005816 to 005B16)	22		
Timer A2	+92 to +95 (005C16 to 005F16)	23		
Timer A3	+96 to +99 (006016 to 006316)	24		
Timer A4/Multi-master I ² C (Note 9)	+100 to +103 (006416 to 006716)	25	Timer	
Timer B0	+104 to +107 (006816 to 006B16)	26		
Timer B1	+108 to +111 (006C16 to 006F16)	27		
Timer B2/Clock timer (Note 7)	+112 to +115 (007016 to 007316)	28		
INT0	+116 to +119 (007416 to 007716)	29		
INT1	+120 to +123 (007816 to 007B16)	30	INT interrupt	
INT2/Remote control transmission (Note 8)	+124 to +127 (007C16 to 007F16)	31	· ·····	
Software interrupt (Note 5)	+128 to +131 (008016 to 008316) to +252 to +255 (00FC16 to 00FF16)	32 to 63	M16C/60, M16C/20 series software manual	

Table 0.2 Relocatable vector Tables	Table 6.2	Relocatable	Vector Tables
-------------------------------------	-----------	-------------	----------------------

Notes 1: Address relative to address in INTB

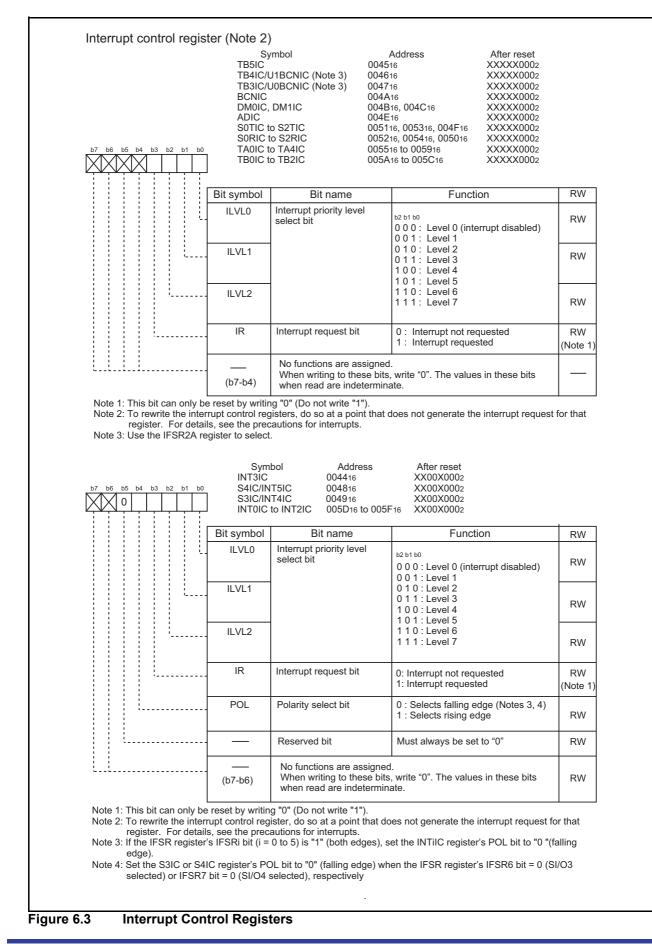
Notes 2: Use the IFSR register's IFSR6 and IFSR7 bits to select. Notes 3: During I²C mode, NACK and ACK interrupts comprise the interrupt source.

Notes 4: Use the IFSR2A register's IFSR26 and IFSR27 bits to select.

Notes 5: These interrupts cannot be disabled using the I flag. Notes 6: Bus collision detection : During IE mode, this bus collision detection constitutes the cause of an interrupt. During I²C mode, however, a start condition or a stop condition detection

constitutes the cause of an interrupt.

Notes 7: When you use SLICEON, remote control, HINT and clock timer interruption, refer to address 3616 expansion register of "14. Expansion Function"


Notes 8: Please refer to address 3E16 of the expansion register of "14. Expansion Function" when you use the remote control transmission interrupt.

Notes 9: Please refer to the I²C0 interrupt control register of "11 multi-master I²C-BUS interface" (address 02D616) when you use multi master I²C interrupt.

6.5 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to nonmaskable interrupts.

Use the FLG register's I flag, IPL, and each interrupt control register's ILVL2 to ILVL0 bits to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register. Figure 6.3 shows the interrupt control registers.

6.6 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (= enabled) enables the maskable interrupt. Setting the I flag to "0" (= disabled) disables all maskable interrupts.

6.7 IR Bit

The IR bit is set to "1" (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to "0" (= interrupt not requested).

The IR bit can be cleared to "0" in a program. Note that do not write "1" to this bit.

6.8 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits. Table 6.3 shows the settings of interrupt priority levels and Table 6.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

Settings of Interrupt Priority

- I flag = "1"
- IR bit = "1"

Table 6.3

• interrupt priority level > IPL

Levels

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

ILVL2 to ILVL0 bits	Interrupt priority level	Priority order
0002	Level 0 (interrupt disabled)	
0012	Level 1	Low
0102	Level 2	
0112	Level 3	
1002	Level 4	
1012	Level 5	
1102	Level 6	l v
1112	Level 7	High

Table 6.4	Interrupt Priority Levels Enabled
	by IPL

IPL	Enabled interrupt priority levels
0002	Interrupt levels 1 and above are enabled
0012	Interrupt levels 2 and above are enabled
0102	Interrupt levels 3 and above are enabled
0112	Interrupt levels 4 and above are enabled
1002	Interrupt levels 5 and above are enabled
1012	Interrupt levels 6 and above are enabled
1102	Interrupt levels 7 and above are enabled
1112	All maskable interrupts are disabled

6.9 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 6.4 shows time required for executing the interrupt sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request priority level) by reading the address 0000016. Then it clears the IR bit for the corresponding interrupt to "0" (interrupt not requested).
- (2) The FLG register immediately before entering the interrupt sequence is saved to the CPU's internal temporary register(Note 1).
- (3) The I, D and U flags in the FLG register become as follows:
 - The I flag is cleared to "0" (interrupts disabled).
 - The D flag is cleared to "0" (single-step interrupt disabled).
 - The U flag is cleared to "0" (ISP selected).

However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

- (4) The CPU's internal temporary register (Note 1) is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the accepted interrupt is set in the IPL.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, the processor resumes executing instructions from the start address of the interrupt routine.

Note: This register cannot be used by user.

	<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u> <u>14</u> <u>15</u> <u>16</u> <u>17</u> <u>18</u>
CPU clock	
Address bus	Address Indeterminate (Note 1) SP-2 SP-4 vec vec+2 PC
Data bus	Indeterminate (Note 1) SP-2 SP-4 vec vec+2 contents
RD	Indeterminate (Note 1)
WR (1	Note 2)
	: The indeterminate state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is ready to accept instructions. 2 : The WR signal timing shown here is for the case where the stack is located in the internal RAM.

Figure 6.4 Time Required for Executing Interrupt Sequence

6.10 Interrupt Response Time

Figure 6.5 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) in Figure 6.5) and a time during which the interrupt sequence is executed ((b) in Figure 6.5).



Figure 6.5 Interru

Interrupt response time

6.11 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL. When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 6.5 is set in the IPL. Shown in Table 6.5 are the IPL values of software and special interrupts when they are accepted.

Table 6.5 IPL Level That is Set to IPL When A Software or Special Interrupt Is Accepted

Interrupt sources	Level that is set to IPL
Watchdog timer, NMI	7
Software, address match, DBC, single-step	Not changed

6.12 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits of the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 6.6 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

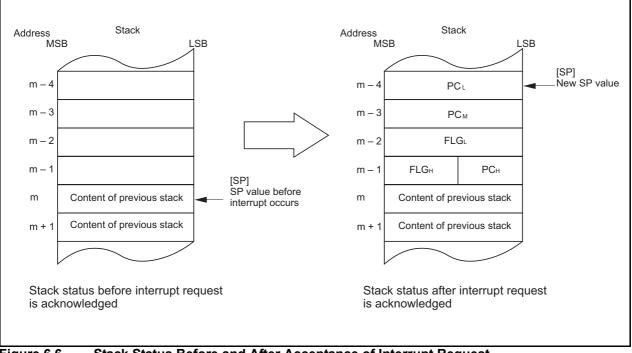
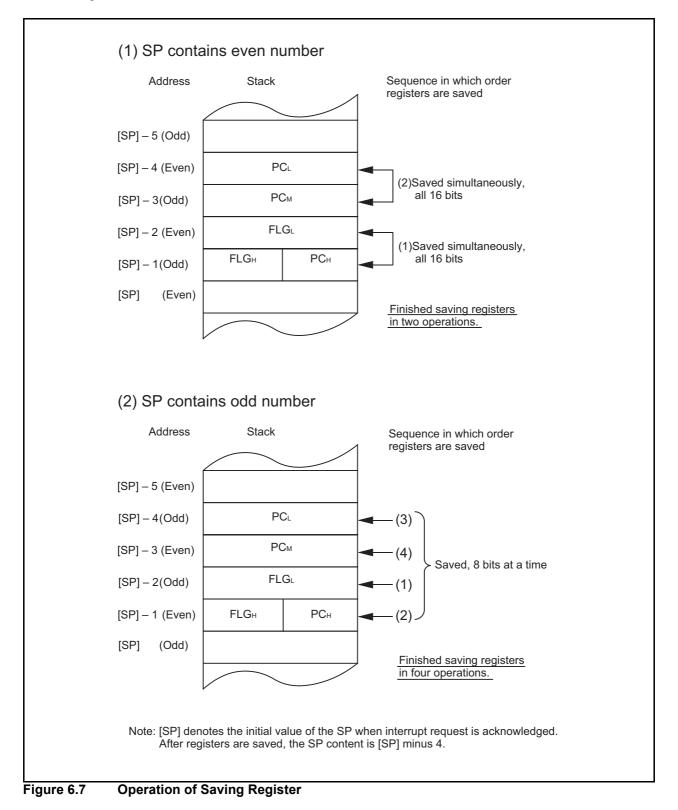



Figure 6.6 Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP(Note), at the time of acceptance of an interrupt request, is even or odd. If the stack pointer (Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 6.7 shows the operation of the saving registers.

Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

6.13 Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine.

Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction

6.14 Interrupt Priority

If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 6.8 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

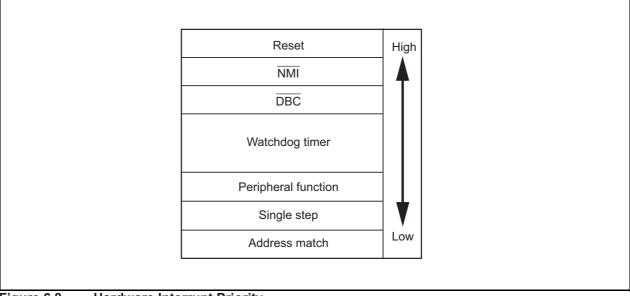
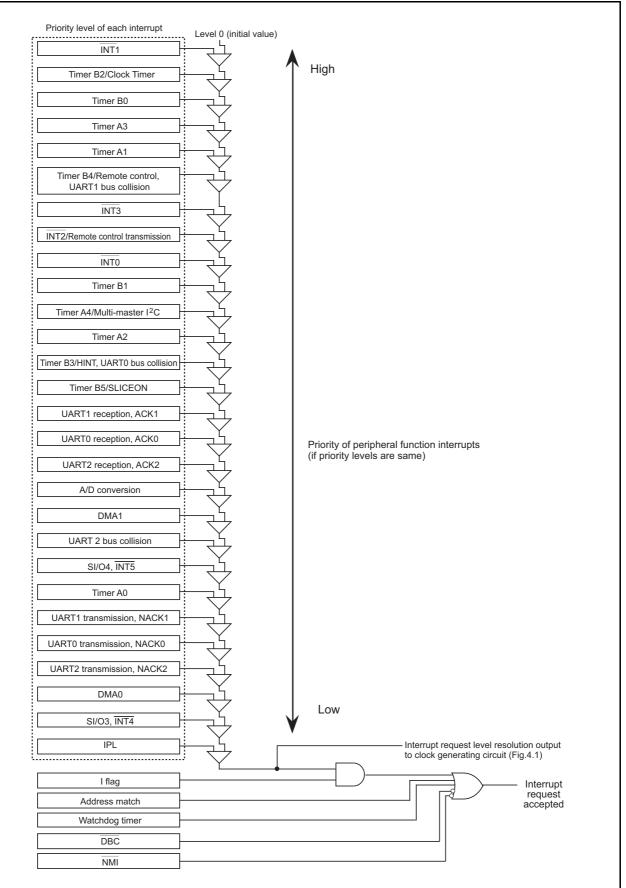



Figure 6.8 Hardware Interrupt Priority

6.15 Interrupt Priority Resolution Circuit

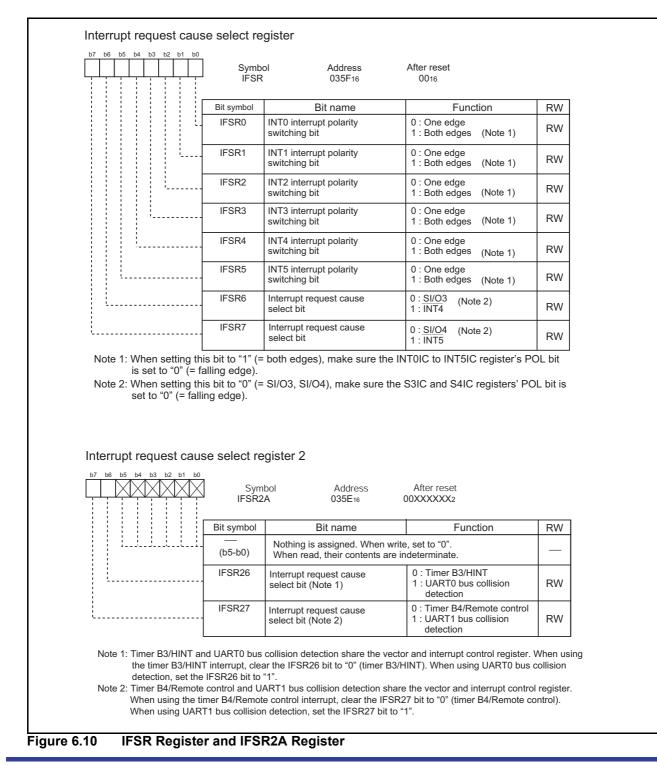
The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 6.9 shows the circuit that judges the interrupt priority level.

9 Interrupts Priority Select Circuit

6.16 INT Interrupt

 $\overline{\text{INT}i}$ interrupt (i = 0 to 5) is triggered by the edges of external inputs. The edge polarity is selected using the IFSR register's IFSRi bit.


INT4 and INT5 share the interrupt vector and interrupt control register with SI/O3 and SI/O4, respectively.

To use the $\overline{INT4}$ interrupt, set the IFSR register's IFSR6 bit to "1" (= $\overline{INT4}$). To use the $\overline{INT5}$ interrupt, set the IFSR register's IFSR7 bit to "1" (= $\overline{INT5}$).

After modifying the IFSR6 or IFSR7 bit, clear the corresponding IR bit to "0" (= interrupt not requested) before enabling the interrupt.

INT2 and the remote control transmission, the vector and the interrupt control register are shared. (Please refer to "14. Expansion Function" for details.)

Figure 6.10 shows the IFSR and IFSR2A registers.

6.17 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8 register's P8_5 bit. This pin cannot be used as an input port.

6.18 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i = 0 to 3). Set the start address of any instruction in the RMADi register. Use the AIER register's AIER0 and AIER1 bits and the AIER2 register's AIER20 and AIER21 bits to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL.

For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to "Saving Registers").

(The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

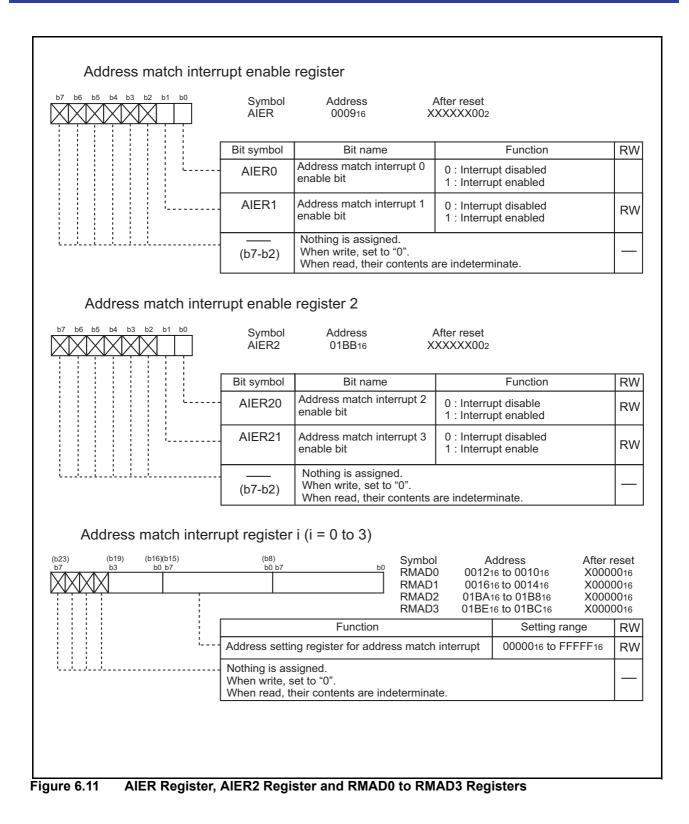
• Rewrite the content of the stack and then use the REIT instruction to return.

• Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 6.6 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted.

Note that when using the external bus in 8 bits width, no address match interrupts can be used for externa areas. Figure 6.11 shows the AIER, AIER2, and RMAD0 to RMAD3 registers.

Table 6.6 Instruction Just Before Execution and Address Stored in Stack When There Occurs Interrupts


	Instruction at the address indicated by the RMADi register					
16-bit op-cod Instruction sh ADD.B:S OR.B:S STNZ.B:S CMP.B:S JMPS MOV.B:S		SUB.B:S MOV.B:S STZX.B:S PUSHM JSRS	ation code instructions #IMM8,dest #IMM8,dest #IMM81,#IMM82,dest src #IMM8 =A0 or A1)	AND.B:S STZ.B:S POPM de	#IMM8,dest #IMM8,dest st	The address indicated by the RMADi register +2
Instructions oth	Instructions other than the above					The address indicated by the RMADi register +1

Value of the PC that is saved to the stack area : Refer to "Saving Registers".

Table 6.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address match interrupt sources	Address match interrupt enable bit	Address match interrupt register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1
Address match interrupt 2	AIER20	RMAD2
Address match interrupt 3	AIER21	RMAD3

7. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit of PM1 register. The PM12 bit can only be set to "1" (reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program.

Refer to "Watchdog Timer Reset" for the details of watchdog timer reset.

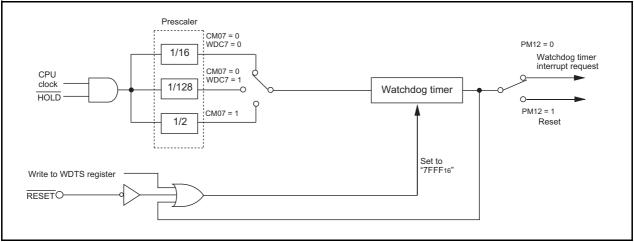
When the main clock is selected for CPU clock, the divide-by-N value for the prescaler can be chosen to be 16 or 128 using the WDC7 bit of WDC register. If a sub-clock is selected for CPU clock, the divide-by-N value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock chosen for CPU clock

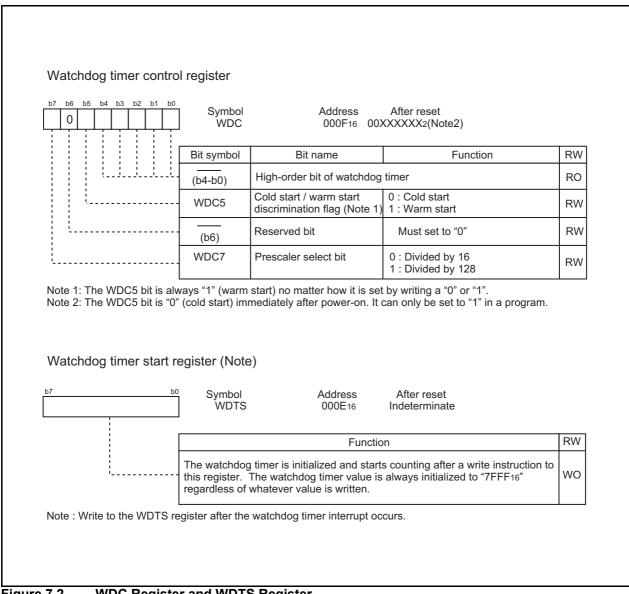
Watchdog timer period = <u>Prescaler dividing (16 or 128) X Watchdog timer count (32768)</u> CPU clock

With sub-clock chosen for CPU clock

Watchdog timer period = <u>Prescaler dividing (2) X Watchdog timer count (32768)</u> CPU clock

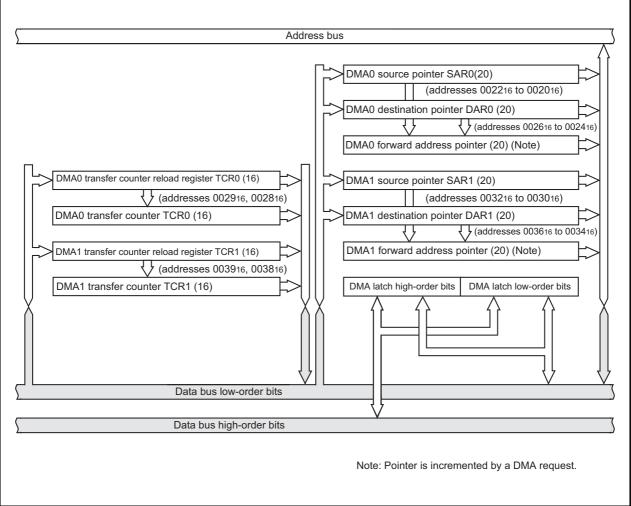

For example, when CPU clock = 10 MHz and the divide-by-N value for the prescaler= 16, the watchdog timer period is approx. 52.4 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset.


Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 7.1 shows the block diagram of the watchdog timer. Figure 7.2 shows the watchdog timer-related registers.



8. DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8 or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 8.1 shows the block diagram of the DMAC.

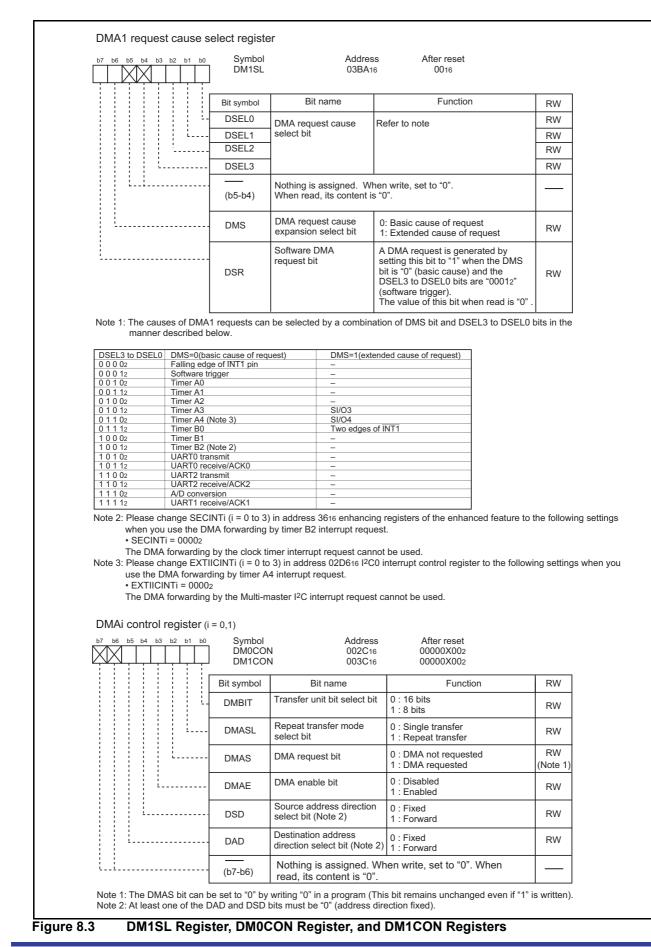
Table 8.1 shows the DMAC specifications. Figures 8.2 to 8.4 show the DMAC-related registers.

Figure 8.1 DMAC Block Diagram

A DMA request is generated by a write to the DMiSL register (i = 0 to 1)'s DSR bit, as well as by an interrupt request which is generated by any function specified by the DMiSL register's DMS and DSEL3 to DSEL0 bits. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the interrupt control register's IR bit does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMiCON register's DMAE bit = "1" (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to "DMA Requests".

Table 8.1DMAC Specifications


Ite	m	Specification		
No. of channels	6	2 (cycle steal method)		
Transfer memo	ory space	 From any address in the 1M bytes space to a fixed address 		
		 From a fixed address to any address in the 1M bytes space 		
		 From a fixed address to a fixed address 		
Maximum No. of bytes transferred		128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)		
DMA request factors		Falling edge of INT0 or INT1		
(Note 1, Note 2)		Both edge of INT0 or INT1		
		Timer A0 to timer A4 interrupt requests		
		Timer B0 to timer B5 interrupt requests		
		UART0 transfer, UART0 reception interrupt requests		
		UART1 transfer, UART1 reception interrupt requests		
		UART2 transfer, UART2 reception interrupt requests		
		SI/O3, SI/O4 interrpt requests		
		A/D conversion interrupt requests		
		Software triggers		
Channel priority	y	DMA0 > DMA1 (DMA0 takes precedence)		
Transfer unit	-	8 bits or 16 bits		
Transfer addres	ss direction	forward or fixed (The source and destination addresses cannot both be		
		in the forward direction.)		
Transfer mode •Single transfer		Transfer is completed when the DMAi transfer counter (i = 0–1)		
		underflows after reaching the terminal count.		
	•Repeat transfer	When the DMAi transfer counter underflows, it is reloaded with the value		
		of the DMAi transfer counter reload register and a DMA transfer is con-		
		tinued with it.		
DMA interrupt requ	est generation timing	When the DMAi transfer counter underflowed		
DMA startup		Data transfer is initiated each time a DMA request is generated when the		
		DMAiCON register's DMAE bit = "1" (enabled).		
DMA shutdown	•Single transfer	• When the DMAE bit is set to "0" (disabled)		
	-	 After the DMAi transfer counter underflows 		
	•Repeat transfer	When the DMAE bit is set to "0" (disabled)		
Reload timing	-	When a data transfer is started after setting the DMAE bit to "1"		
		(enabled), the forward address pointer is reloaded with the value of the		
address pointer	r and transfer	SARi or the DARi pointer whichever is specified to be in the forward		
counter		direction and the DMAi transfer counter is reloaded with the value of the		
		DMAi transfer counter reload register.		
Nataa				

Notes:

1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.

- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 002016 to 003F16) are accessed by the DMAC.

DMA0 reques	st cause s	elect registe	er				
b7 b6 b5 b4 b3	b2 b1 b0	Symbol DM0SL		Addres 03B81			
		Bit symbol	Bit	name	Functior	ı	RW
	· · · · · · · · · · · · · · · · · · ·		DMA reque	est cause	Refer to note	Refer to note	
			select bit				RW
		DSEL2	1				RW
		DSEL3	1				RW
			Nothing is	assigned. W	hen write, set to "0".		
		(b5-b4)		d, its content			
		DMS	DMA reque		0: Basic cause of reque 1: Extended cause of r		RW
	DSR		Software DMA request bit		A DMA request is generated by setting this bit to "1" when the DMS bit is "0" (basic cause) and the DSEL3 to DSEL0 bits are "00012" (software trigger). The value of this bit when read is "0".		RW
manner d	DMS=0 (bas	elow. sic cause of requ		DMS=1 (ext	ation of DMS bit and DSF	EL3 to DSEL0 b	its in the
0 0 0 02 0 0 0 12	Falling edge Software trig			_			
0 0 1 02 0 0 1 12	Timer A0 Timer A1			-			
0 1 0 02	Timer A2			_			
0 1 0 12 0 1 1 02	Timer A3 Timer A4 (N	ote 4)		- Two edges of	of INTO pin		
0 1 1 12	Timer B0			Timer B3			
10002	Timer B1			Timer B4			
1 0 0 12 1 0 1 02	Timer B2 (N UART0 tran			Timer B5 –			
10112	UART0 rece			_			
1 1 0 02	UART2 tran			-			
1 1 0 12 1 1 1 02	UART2 rece A-D convers			-			
1 1 1 12	UART1 tran			_			
them by the VINTi = • INTRMT • HINTi =	he following 10112 ī = 10102 10012				pansion register of expa elect bit = "1" (extended		
 (i = 0 to 3) Note 3: Please change SECINTi (i = 0 to 3) in address 3616 expansion registers of the expansion feature to the following settings when you use the DMA forwarding by timer B2 interrupt request. SECINTi = 00002 The DMA forwarding by the clock timer interrupt request cannot be used. 							
 Note 4: Please change EXTIICINTi (i = 0 to 3) in address 02D616 I²C0 interrupt control register to the following settings when you use the DMA forwarding by timer A4 interrupt request. • EXTIICINTi = 00002 The DMA forwarding by the Multi-master I²C interrupt request cannot be used. 							
gure 8.2 [DM0SL R	legister					

$\Lambda \Lambda /$	(b19) b3	(b16)(b15) b0 b7		(b8) b0 b7	b0	Symbol	Address	After reset
$\mathbb{X}\mathbb{X}$	X					SÁR0 (002216 to 002016	Indetermina Indetermina
					Function		Setting range	RW
				Set the source ad	ddress of transfe	r	0000016 to FFFF	F ₁₆ RW
				Nothing is assign are "0".	ed. When write,	set "0". Wher	n read, these conte	nts
D If If	MiCON re the DSD I the DSD I	egister is "0" (bit is "1" (forv bit is "1" and	DMA disab vard direction the DMAE	led). on), this register ca	an be written to a abled), the DMAi	at any time.	ten the DMAE bit o	
		n pointer (i	= 0, 1)(N	,				
²³⁾ 7 7	(b19) b3	(b16)(b15) b0 b7		(b8) b0 b7	b0	Symbol	Address	After reset
ŶŶŔ	<u>ү</u>		:				002616 to 002416 003616 to 003416	Indetermina Indetermina
					Function		Setting range	RW
				Set the destinatio		nsfor		
			·				0000016 to FFFF	
				Nothing is assignate are "0".	ed. When write,	set "0". When	read, these conter	nts 🔤
If				on), this register ca				
lf tř	the DAD I		the value v	bit is if (DiviA ena vritten to it can be i	read. Symbol TCR0	Add 002916	Iress After 1 , 002816 Indeter	reset minate
If th DMAi tra	the DAD I	r. Otherwise, punter (i = (the value v	vritten to it can be i	read. Symbol	Add 002916	Iress After 1	reset minate
If th DMAi tra	the DAD I	r. Otherwise, punter (i = (the value v	vritten to it can be i	read. Symbol TCR0	Add 002916	lress After ı , 002816 Indeter	reset minate

8.1 Transfer Cycles

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer.

(a) Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

(b) Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

Figure 8.5 shows the example of the cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16 bit units using an 8-bit bus ((2) in Figure 8.5), two source read bus cycles and two destination write bus cycles are required.

BCLK	
Address bus	CPU use Source Destination Dummy CPU use
RD signal	
 WR signal	
Data bus	CPU use Source Destination Dummy CPU use
?) When the transfer u	transfer unit is 16 bits and the source address of transfer is an odd address, or when the nit is 16 bits and an 8-bit bus is used
BCLK	
Address bus	CPU use Source + 1 Destination CPU use CPU use
 RD signal	
WR signal	
Data bus	CPU use Source + 1 Destination CPU use CPU use
BCLK	CPU use Source Destination CPU use
WR signal	
Data bus	CPU use Source Destination CPU use CPU use
) When the	source read cycle under condition (2) has one wait state inserted
BCLK	
Address	CPU use Source Source + 1 Destination Dummy cycle CPU use
 RD signal	
WR signal	
	CPU use Source Source + 1 Destination CPU use

8.2 Number of DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible. Table 8.2 shows the number of DMA transfer cycles. Table 8.3 shows the Coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

 Table 8.2
 Number of DMA Transfer Cycles

Turneformult	December	A	Single-chip mode		
Transfer unit	Bus width	Access address	No. of read cycles	No. of write cycles	
8-bit transfers	16-bit	Even	1	1	
(DMBIT= "1")	(BYTE= "L")	Odd	1	1	
16-bit transfers	16-bit	Even	1	1	
(DMBIT= "0")	(BYTE = "L")	Odd	2	2	

Table 8.3 Coefficient j, k

	lr	а	
	Internal R	SFR	
	No wait	With wait	
j	1	2	2
k	1	2	2

8.3 DMA Enable

When a data transfer starts after setting the DMAE bit in DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in DMiCON register is "1" (forward) or the DARi register value when the DAD bit of DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

8.4 DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits of DMiSL register (i = 0, 1) on either channel. Table 8.4 shows the timing at which the DMAS bit changes state.

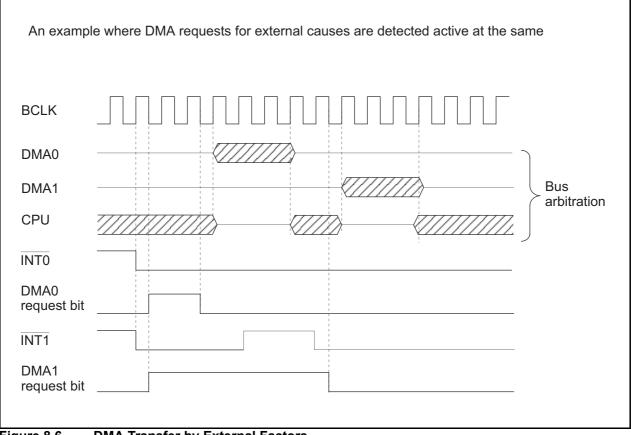
Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

DMA factor	DMAS bit of the DMiCON register				
	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"			
Software trigger	When the DSR bit of DMiSL register is set to "1"	 Immediately before a data transfer starts When set by writing "0" in a program 			
Peripheral function	When the interrupt control register for the peripheral function that is selected by the DSEL3 to DSEL0 and DMS bits of DMiSL register has its IR bit set to "1"				

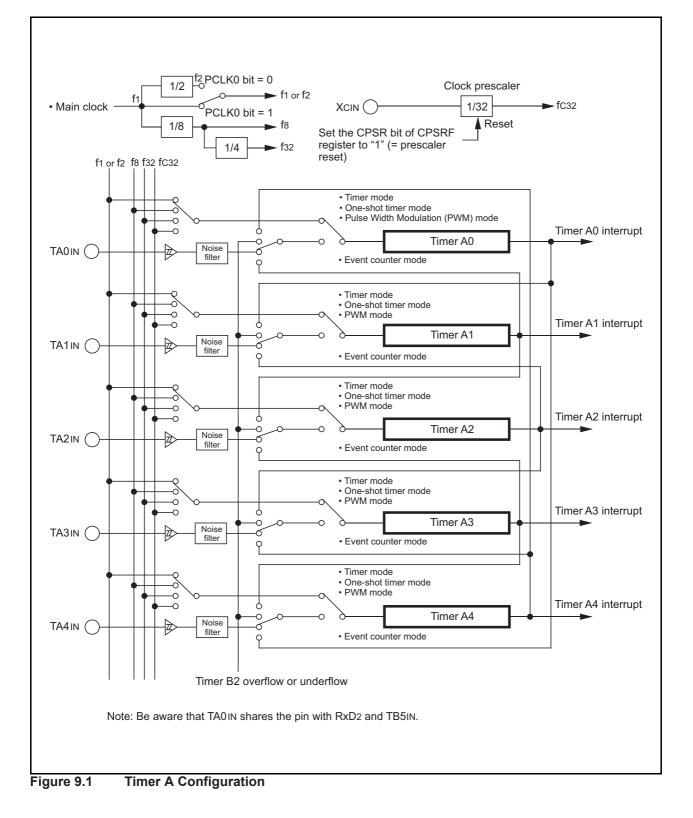
 Table 8.4
 Timing at Which the DMAS Bit Changes State

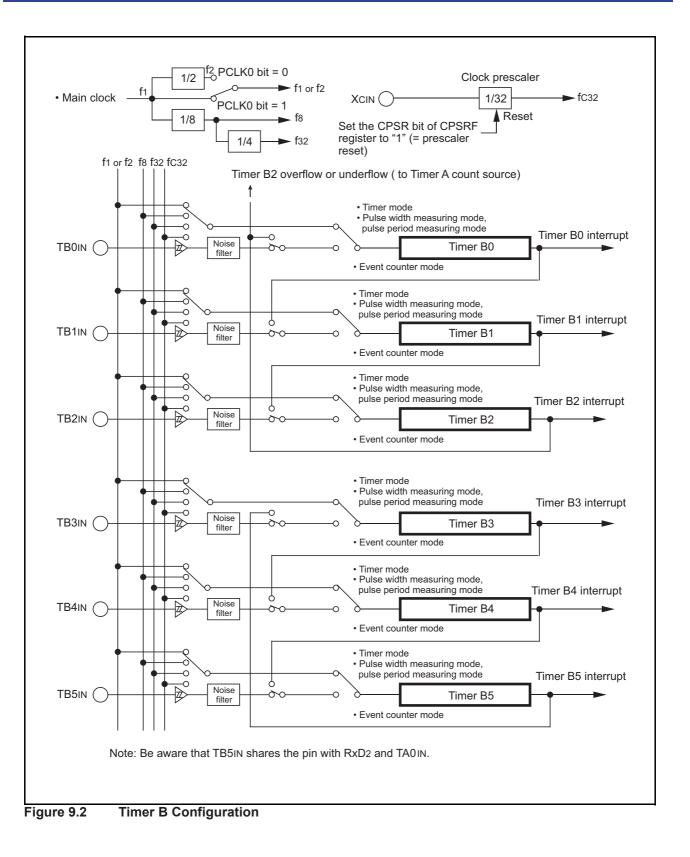

8.5 Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1. The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period.

Figure 8.6 shows an example of DMA transfer effected by external factors.

DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.


In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 8.6, occurs more than one time, the DMAS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed.



9. Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc. Figures 9.1 and 9.2 show block diagrams of timer A and timer B configuration, respectively.

9.1 Timer A

Figure 9.3 shows a block diagram of the timer A. Figures 9.4 to 9.6 show registers related to the timer A. The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits of TAiMR register (i = 0 to 4) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "000016."
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

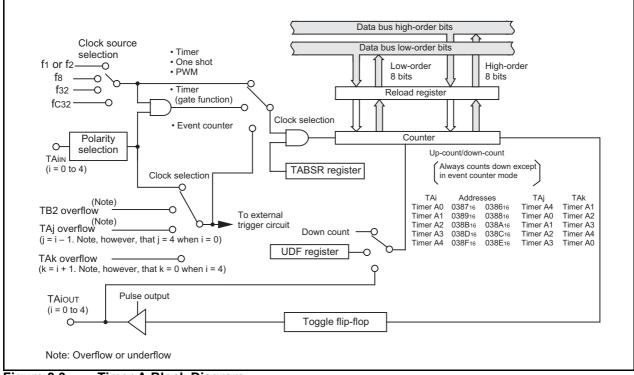


Figure 9.3

Timer A Block Diagram

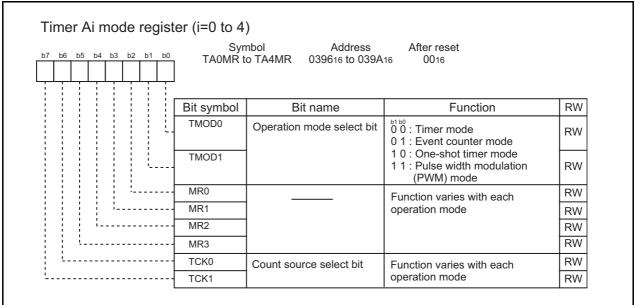
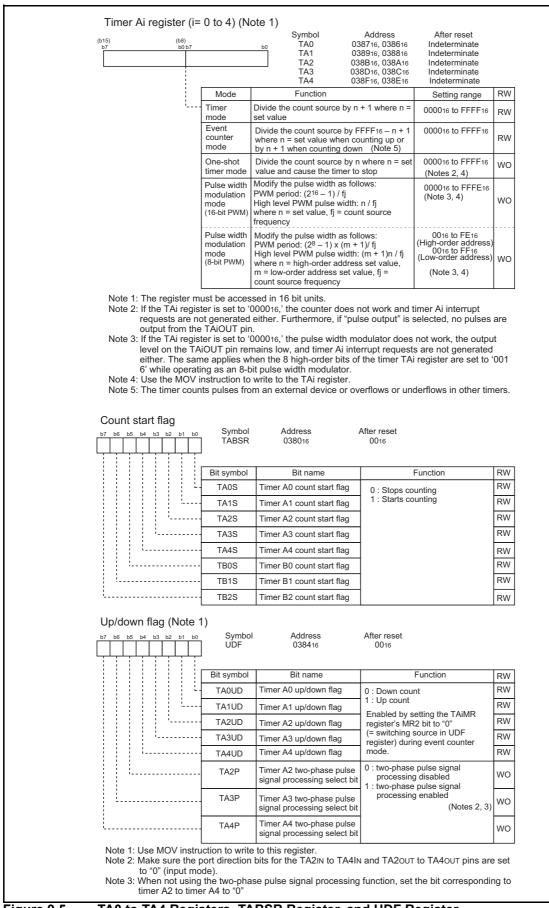
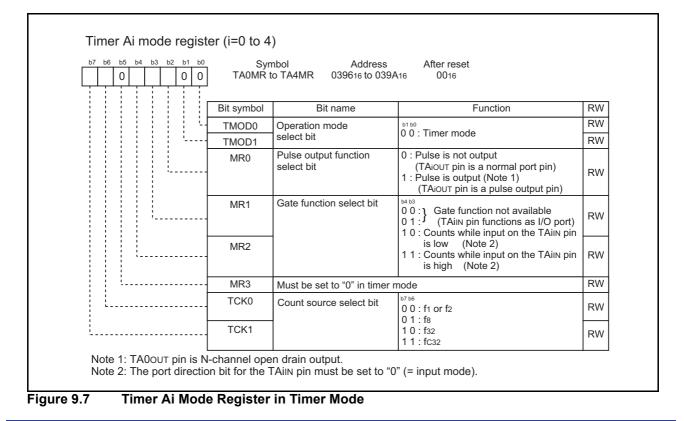



Figure 9.4 TA0MR to TA4MR Registers

M306H7MG-XXXFP/MC-XXXFP/FGFP


	tart flag	Symbo ONSF	ol Address 038216	After reset 0016	
		Bit symbol	Bit name	Function	R۱
		- TA0OS	Timer A0 one-shot start flag	The timer starts counting by setting	R۱
		TA105	Timer A1 one-shot start flag	this bit to "1" while the TMOD1 to	R۱
		- TA2OS	Timer A2 one-shot start flag	TMOD0 bits of TAiMR register (i = 0 to 4) = '102' (= one-shot timer	R۱
		TA30S	Timer A3 one-shot start flag	mode) and the MR2 bit of TAiMR register = "0" (=TAiOS bit enabled).	R۱
		TA40S	Timer A4 one-shot start flag	When read, its content is "0".	R\
		17400			
		(b5)	Reserved bit	Must be set to "0"	R١
		TA0TGL	Timer A0 event/trigger select bit	b7 b6 0 0 : Input on TA0IN is selected (Note 1)	R۱
l		TA0TGH		0 1 : TB2 overflow is selected (Note 2) 1 0 : TA4 overflow is selected (Note 2) 1 1 : TA1 overflow is selected (Note 2)	R١
	b3 b2 b1 b0	Symbol TRGSR Bit symbol		After reset 0016 Function	R
		TA1TGL	Timer A1 event/trigger	b1 b0	
		- TA1TGH	select bit	0 0 : Input on TA1IN is selected (Note 1) 0 1 : TB2 is selected 1 0 : TA0 is selected	R\ R\
				1 1 : TA2 is selected	
		TA2TGL	Timer A2 event/trigger select bit	b3 b2 0 0 : Input on TA2IN is selected (Note 1) 0 1 : TB2 is selected	R۱
		TA2TGH		1 0 : TA1 is selected 1 1 : TA3 is selected	R۱
		- TA3TGL	Timer A3 event/trigger select bit	b5 b4 0 0 : Input on TA3ıN is selected (Note 1) 0 1 : TB2 is selected	R۱
		TA3TGH		1 0 : TA2 is selected 1 1 : TA4 is selected	R۱
		- TA4TGL	Timer A4 event/trigger select bit	0 0 : Input on TA4 _{IN} is selected (Note 1) 0 1 : TB2 is selected	R١
L		TA4TGH		1 0 : TA3 is selected 1 1 : TA0 is selected	R١
Note 1: Mak			ו bits for the TA1וא to TA4וו	n pins are set to "0" (= input mode).	
		Symbol CPSRF		After reset XXXXXXX2	
		CPSRF			R
		Bit symbol	038116 0 Bit name Nothing is assigned. When write, set to "0". When	XXXXXXX2 Function	R\
		CPSRF	038116 0 Bit name Nothing is assigned.	XXXXXXX2 Function	R\

9.1.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 9.1). Figure 9.7 shows TAiMR register in timer mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	When the timer underflows, it reloads the reload register contents and continues counting
Divide ratio	1/(n+1) n: set value of TAi register (i= 0 to 4) 000016 to FFFF16
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TAilN pin function	I/O port or gate input
TAiout pin function	I/O port or pulse output
Read from timer	Count value can be read by reading TAi register
Write to timer	When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Gate function
	Counting can be started and stopped by an input signal to TAiIN pin
	Pulse output function
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.
	When not counting, the pin outputs a low.

Table 9.1Specifications in Timer Mode

9.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 9.2 lists specifications in event counter mode (when not processing two-phase pulse signal). Table 9.3 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 9.8 shows TAiMR register in event counter mode (when not processing two-phase pulse signal). Figure 9.9 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Table 9.2	Specifications in Event Counter Mode (when not processing two-phase pulse signal)
-----------	---

Item	Specification
Count source	• External signals input to TAiN pin (i=0 to 4) (effective edge can be selected
	in program)
	Timer B2 overflows or underflows,
	timer Aj (j=i-1, except j=4 if i=0) overflows or underflows,
	timer Ak (k=i+1, except k=0 if i=4) overflows or underflows
Count operation	Up-count or down-count can be selected by external signal or program
	When the timer overflows or underflows, it reloads the reload register con-
	tents and continues counting. When operating in free-running mode, the
	timer continues counting without reloading.
Divided ratio	1/ (FFFF16 - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFFF16
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer overflow or underflow
TAilN pin function	I/O port or count source input
TAiout pin function	I/O port, pulse output, or up/down-count select input
Read from timer	Count value can be read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Free-run count function
	Even when the timer overflows or underflows, the reload register content is
	not reloaded to it
	Pulse output function
	Whenever the timer overflows or underflows, the output polarity of TAiOUT
	pin is inverted . When not counting, the pin outputs a low.

	Symbol Add DMR to TA4MR 039616 to	ress After reset 0 039A16 0016	
Bit symbol	Bit name	Function	RV
TMOD0	Operation mode select bit	b1 b0	R٧
 TMOD1		0 1 : Event counter mode (Note 1)	RV
 MR0	Pulse output function select bit	0 : Pulse is not output (TAio∪⊤ pin functions as I/O port) 1 : Pulse is output (Note 2) (TAio∪⊤ pin functions as pulse output pin)	R٧
 MR1	Count polarity select bit (Note 3)	0 : Counts external signal's falling edge 1 : Counts external signal's rising edge	RV
 MR2	Up/down switching cause select bit	0 : UDF register 1 : Input signal to TAiout pin (Note 4)	RW
 MR3	Must be set to "0" in event	counter mode	R٧
ТСК0	Count operation type select bit	0 : Reload type 1 : Free-run type	RV
 TCK1	Can be "0" or "1" when not processing	using two-phase pulse signal	RW

Figure 9.8 TAiMR Register in Event Counter Mode (when not using two-phase pulse signal processing)

The use of the event counter mode (When you use two aspect pulse signal processing with Timer A2, A3, and A4) is shown in Table 9.3.

Figure 9.9 shows from TA2MR register to TA4MR register (When you use two aspect pulse signal processing with timer A2, A3, and A4) at event counter mode.

Table 9.3	Specifications in Event Counter Mode (when processing two-phase pulse signal with
	timers A2, A3 and A4))

Item	Specification
Count source	 Two-phase pulse signals input to TAiIN or TAiOUT pins (i = 2 to 4)
Count operation	 Up-count or down-count can be selected by two-phase pulse signal When the timer overflows or underflows, it reloads the reload register contents and continues counting. When operating in free-running mode, the timer continues counting without reloading.
Divide ratio	1/ (FFFF16 - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFFF16
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer overflow or underflow
TAilN pin function	Two-phase pulse input
TAiout pin function	Two-phase pulse input
Read from timer	Count value can be read by reading timer A2, A3 or A4 register
Write to timer	 When not counting and until the 1st count source is input after counting start Value written to TAi register is written to both reload register and counter When counting (after 1st count source input) Value written to TAi register is written to reload register (Transferred to counter when reloaded next)
Select function (Note)	 Normal processing operation (timer A2 and timer A3) The timer counts up rising edges or counts down falling edges on TAjIN pin when input signals on TAjOUT pin is "H". TAjOUT TAjOUT (j=2,3) Up- count Multiply-by-4 processing operation (timer A3 and timer A4) If the phase relationship is such that TAkIN(k=3, 4) pin goes "H" when the input signal on TAkOUT pin is "H", the timer counts up rising and falling edges on TAkOUT and TAKIN pins. If the phase relationship is such that TAKIN pin goes "L" when the input signal on TAkOUT and TAKIN pins. TAkOUT TAkOUT TAkOUT Count up all edges Count down all edges

Notes:

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

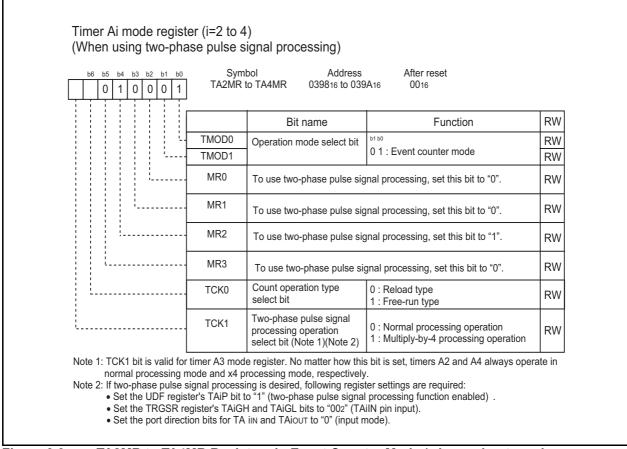


Figure 9.9 TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulsesignal processing with timer A2, A3 or A4)

9.1.3 One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. (See Table 9.4.) When the trigger occurs, the timer starts up and continues operating for a given period. Figure 9.10 shows the TAiMR register in one-shot timer mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	• When the counter reaches 000016, it stops counting after reloading a new value
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	1/n n : set value of TAi register 000016 to FFFF16
	However, the counter does not work if the divide-by-n value is set to 000016.
Count start condition	TAiS bit of TABSR register = "1" (start counting) and one of the following
	triggers occurs.
	 External trigger input from the TAiIN pin
	Timer B2 overflow or underflow,
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow
	 The TAiOS bit of ONSF register is set to "1" (= timer starts)
Count stop condition	When the counter is reloaded after reaching "000016"
	TAiS bit is set to "0" (= stop counting)
Interrupt request generation timing	When the counter reaches "000016"
TAilN pin function	I/O port or trigger input
TAiout pin function	I/O port or pulse output
Read from timer	An indeterminate value is read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Pulse output function
	The timer outputs a low when not counting and a high when counting.

 Table 9.4
 Specifications in One-shot Timer Mode

b6 b5 b4 b3 b2 b1 b0 0 1 0 1 0	Syn TA0MR t	nbol Address to TA4MR 039616 to 039/	After reset A16 0016	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	b1 b0	RW
	TMOD1		1 0 : One-shot timer mode	RW
	MR0	Pulse output function select bit	0 : Pulse is not output (TAio∪⊤ pin functions as I/O port) 1 : Pulse is output (Note 1) (TAio∪⊤ pin functions as a pulse output pin)	RW
	MR1	External trigger select bit (Note 2)	0 : Falling edge of input signal to TAin pin (Note 3) 1 : Rising edge of input signal to TAin pin (Note 3)	RW
	MR2	Trigger select bit	0 : TAiOS bit is enabled 1 : Selected by TAiTGH to TAiTGL bits	RW
	MR3	Must be set to "0" in one-s	hot timer mode	RW
· · · · · · · · · · · · · · · · · · ·	TCK0	Count source select bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

9.1.4 Pulse Width Modulation (PWM) Mode

In PWM mode, the timer outputs pulses of a given width in succession (see Table 9.5). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 9.11 shows TAiMR register in pulse width modulation mode. Figures 9.12 and 9.13 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count (operating as an 8-bit or a 16-bit pulse width modulator)
	The timer reloads a new value at a rising edge of PWM pulse and continues counting
	 The timer is not affected by a trigger that occurs during counting
16-bit PWM	High level width n / fj n : set value of TAi register (i=o to 4)
	Cycle time (2 ¹⁶ -1) / fj fixed fj: count source frequency (f1, f2, f8, f32, fC32)
8-bit PWM	High level width n x (m+1) / fj n : set value of TAi register high-order address
	Cycle time (2 ⁸ -1) x (m+1) / fj m : set value of TAi register low-order address
Count start condition	TAiS bit of TABSR register is set to "1" (= start counting)
	 The TAiS bit = 1 and external trigger input from the TAiN pin
	 The TAiS bit = 1 and one of the following external triggers occurs
	Timer B2 overflow or underflow,
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow
Count stop condition	TAiS bit is set to "0" (= stop counting)
Interrupt request generation timing	PWM pulse goes "L"
TAilN pin function	I/O port or trigger input
TAiout pin function	Pulse output
Read from timer	An indeterminate value is read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)

 Table 9.5
 Specifications in PWM Mode

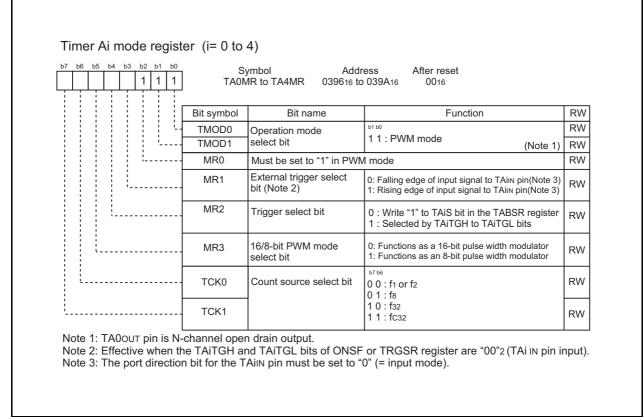


Figure 9.11 TAIMR Register in PWM Mode

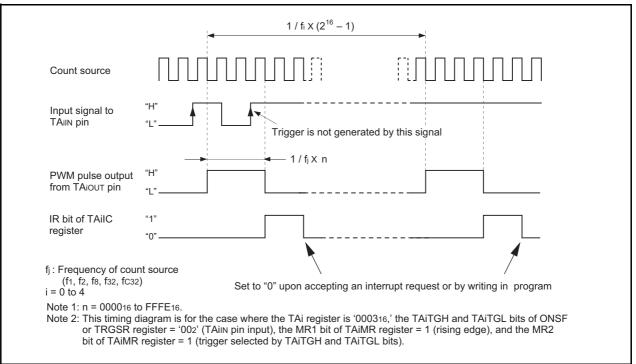


Figure 9.12 Example of 16-bit Pulse Width Modulator Operation

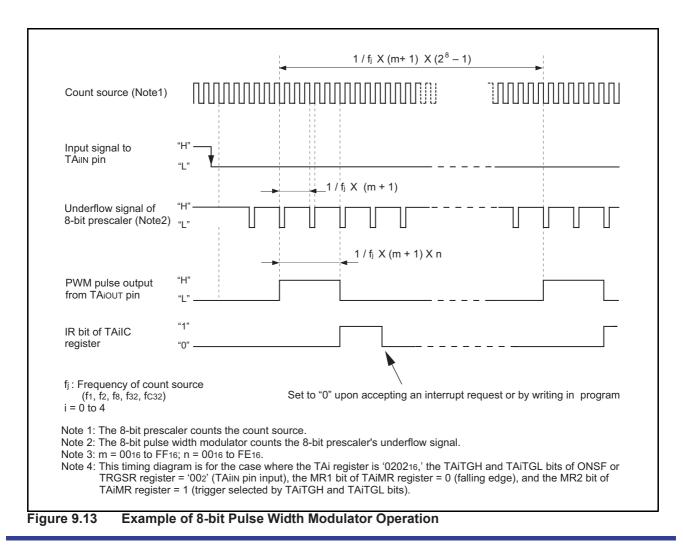


Figure 9.14 shows a block diagram of the timer B. Figures 9.15 and 9.16 show registers related to the timer B. Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits of TBiMR register (i = 0 to 5) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows or underflows of other timers.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

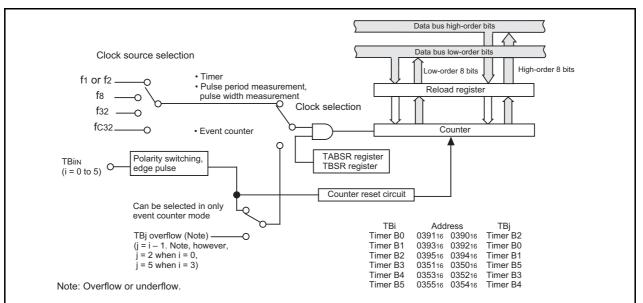
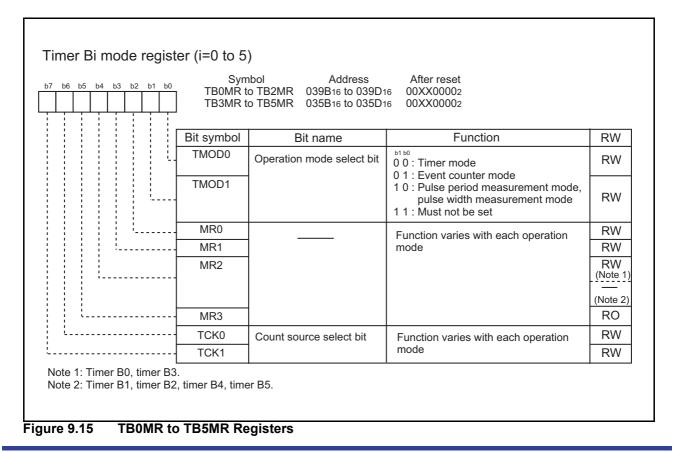



Figure 9.14 Timer B Block Diagram

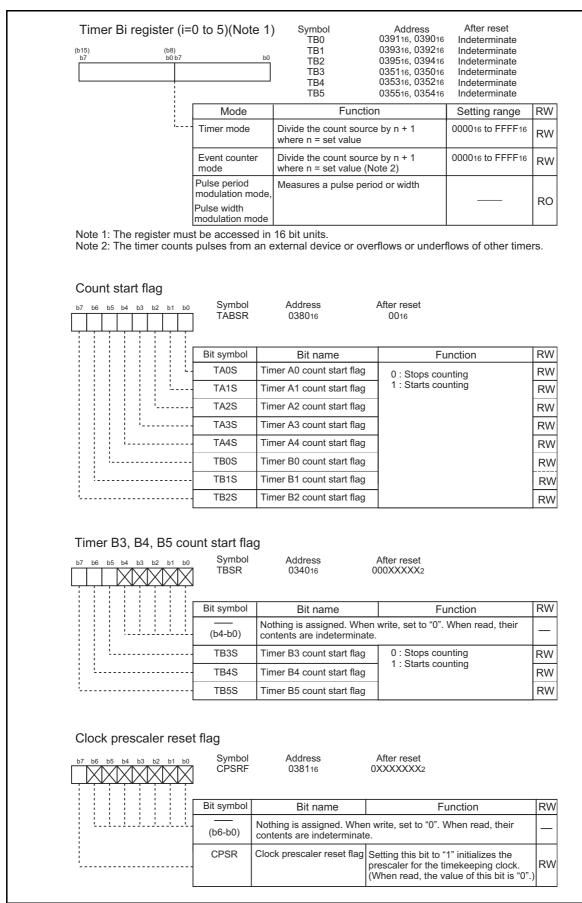


Figure 9.16 TB0 to TB5 Registers, TABSR Register, TBSR Register, CPSRF Register

9.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 9.6). Figure 9.17 shows TBiMR register in timer mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	When the timer underflows, it reloads the reload register contents and
	continues counting
Divide ratio	1/(n+1) n: set value of TBi register (i= 0 to 5) 000016 to FFFF16
Count start condition	Set TBiS bit ^(Note) to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TBilN pin function	I/O port
Read from timer	Count value can be read by reading TBi register
Write to timer	When not counting and until the 1st count source is input after counting start
	Value written to TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TBi register is written to only reload register
	(Transferred to counter when reloaded next)

Table 9.6Specifications in Timer Mode

Note : The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

Jimer Bi mode registe 07 b6 b5 b4 b3 b2 b1 b0 1 1 0 0 0 0 0 0	Sym TB0MR t			
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	0 0 : Timer mode	RW
	TMOD1		0 0 : Timer mode	RW
· · · · · · · · · · · · · · · · · · ·	MR0	Has no effect in timer mode Can be set to "0" or "1"		RW
	MR1			RW
	MR2	TB0MR, TB3MR registers Must be set to "0" in timer mode		RW
		TB1MR, TB2MR, TB4MR, Nothing is assigned. When content is indeterminate	TB5MR registers write, set to "0". When read, its	
	MR3	When write in timer mode, s content is indeterminate.	set to "0". When read in timer mode, its	RO
·[TCK0	Count source select bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

9.2.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers (see Table 9.7). Figure 9.18 shows TBiMR register in event counter mode.

Item	Specification
Count source	• External signals input to TBin pin (i=0 to 5) (effective edge can be selected
	in program)
	 Timer Bj overflow or underflow (j=i-1, except j=2 if i=0, j=5 if i=3)
Count operation	Down-count
	When the timer underflows, it reloads the reload register contents and
	continues counting
Divide ratio	1/(n+1) n: set value of TBi register 000016 to FFFF16
Count start condition	Set TBiS bit ¹ to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TBilN pin function	Count source input
Read from timer	Count value can be read by reading TBi register
Write to timer	When not counting and until the 1st count source is input after counting start
	Value written to TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TBi register is written to only reload register
	(Transferred to counter when reloaded next)

 Table 9.7
 Specifications in Event Counter Mode

Notes:

1. The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

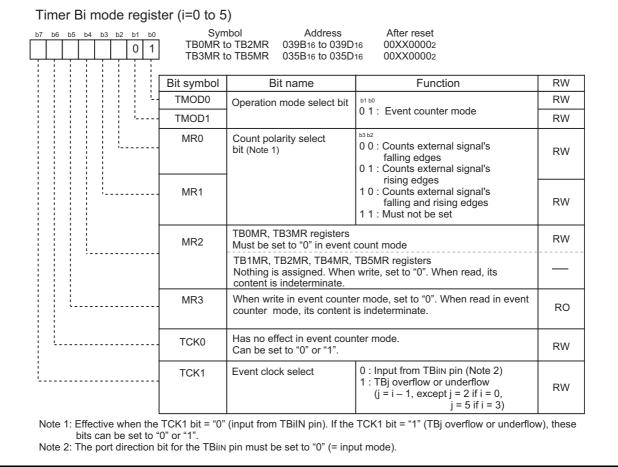


Figure 9.18 TBiMR Register in Event Counter Mode

9.2.3 Pulse Period and Pulse Width Measurement Mode

In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal (see Table 9.8). Figure 9.19 shows TBiMR register in pulse period and pulse width measurement mode. Figure 9.20 shows the operation timing when measuring a pulse period. Figure 9.21 shows the operation timing when measuring a pulse period.

Table 9.8	Specifications in Pulse Period and Pulse Width Measurement Mode
-----------	---

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	• Up-count
	Counter value is transferred to reload register at an effective edge of mea-
	surement pulse. The counter value is set to "000016" to continue counting.
Count start condition	Set TBiS (i=0 to 5) bit ³ to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	When an effective edge of measurement pulse is input ¹
	Timer overflow. When an overflow occurs, MR3 bit of TBiMR register is set
	to "1" (overflowed) simultaneously. MR3 bit is cleared to "0" (no overflow) by
	writing to TBiMR register at the next count timing or later after MR3 bit was
	set to "1". At this time, make sure TBiS bit is set to "1" (start counting).
TBiin pin function	Measurement pulse input
Read from timer	Contents of the reload register (measurement result) can be read by reading TBi register ²
Write to timer	Value written to TBi register is written to neither reload register nor counter

Notes:

1. Interrupt request is not generated when the first effective edge is input after the timer started counting.

2. Value read from TBi register is indeterminate until the second valid edge is input after the timer starts counting.

3. The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

7 b6 b5 b4 b3 b2 b1 b0	TB0MR	to TB2MR 039B16 t	ress After reset o 039D16 00XX00002 o 035D16 00XX00002	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode	1 0 : Pulse period / pulse width	RW
	TMOD1	select bit	measurement mode	RW
	MR0	Measurement mode select bit	 ^{b3 b2} 0 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) 0 1 : Pulse period measurement (Measurement between a rising edge and the next 	RW
	MR1		rising edge of measured pulse) 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse and between a rising edge and the next falling edge) 1 1 : Must not be set.	RW
	MR2	TB0MR and TB3MR r Must be set to "0" in p	egisters ulse period and pulse width measurement mode	RW
			MR, TB5MR registers When write, set to "0". When read, its content turns out to be	_
	MR3	Timer Bi overflow flag (Note)	0 : Timer did not overflow 1 : Timer has overflowed	RO
L	TCK0	Count source select bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : fa2 1 1 : fc32	RW
to the TBiMR registe	er at the next of e TB0S to TB2	ount timing or later afte S bits are assigned to	1 (start counting), the MR3 bit is cleared to "0" (no overflow) b r the MR3 bit was set to "1" (overflowed). The MR3 bit cannot the TABSR register's bit 5 to bit 7, and the TB3S to TB5S bits	be set to

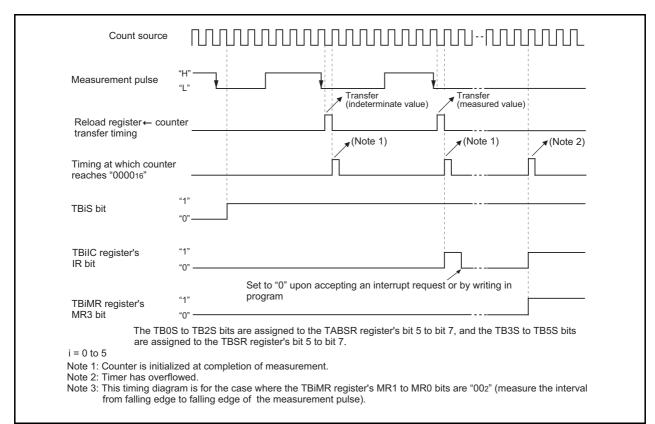


Figure 9.20 Operation timing when measuring a pulse period

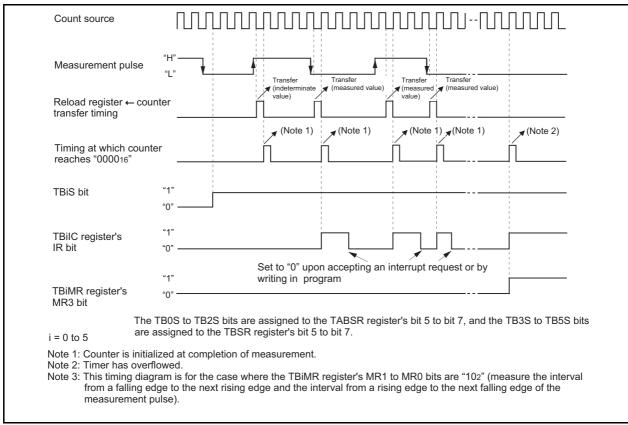


Figure 9.21 Operation timing when measuring a pulse width

10. Serial I/O

Serial I/O is configured with five channels: UART0 to UART2, SI/O3 and SI/O4.


10.1 UARTi (i=0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figure 10.1 shows the block diagram of UARTi. Figures 10.2 shows the block diagram of the UARTi transmit/ receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode) : UART0, UART1
- Special mode 4 (SIM mode) : UART2

Figures 10.3 to 10.8 show the UARTi-related registers. Refer to tables listing each mode for register setting.

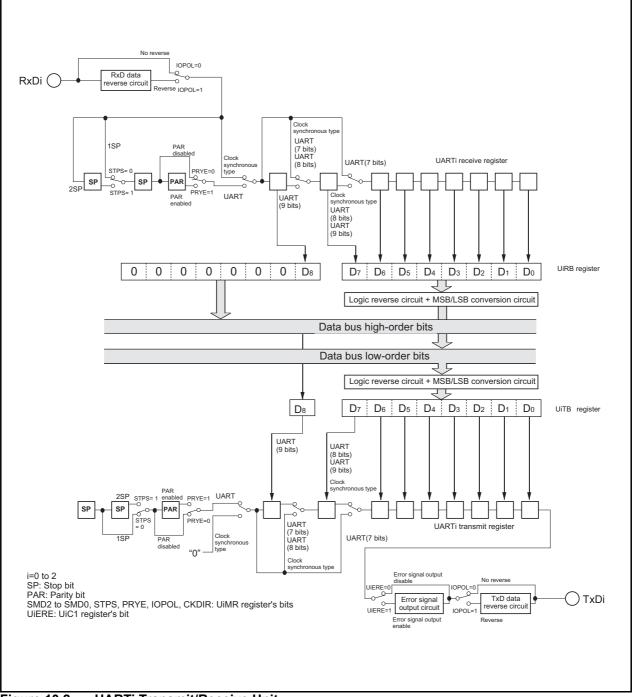


Figure 10.2 UARTi Transmit/Receive Unit

	M	$\langle \rangle$	\land) b7			b0	Ú0TB 03A31 U1TB 03AB1	dress 6-03A2 6-03AA 6-037A	16 Indeterminate		
							[Function		
								Transm	it data				١
									is assigned. tempt to write to these bit	s, write	e "0". The value, if read, turns	out to be indeterminate.	
te: Use	MO	/ in	struc	tion	to write	to this re	gister	r.					
	rece	eive	e bu		r regis	ter (i=0) to	2) ^{b0}	Ú0RB 03A7	dress 6-03A6			
										6-03AE 6-037E			
								Bit symbol	Bit name		Functi	ion	
								(b7-b0)		R	eceive data (D7 to D0)		
				l				(b8)		R	eceive data (D ₈)		
								 (b10-b9)	Nothing is assigned. In an attempt to write to	these	bits, write "0". The value, if re	ead, turns out to be "0".	
		l						ABT	Arbitration lost detecting flag (Note 2)		: Not detected : Detected		
								OER	Overrun error flag (Note		: No overrun error : Overrun error found		
								FER	Framing error flag (Note		: No framing error : Framing error found		
l								PER	Parity error flag (Note 1		: No parity error : Parity error found		
								SUM	Error sum flag (Note 1)		: No error : Error found		
F A ote 2: T	PER, Ilso, The A	FEF the BT	R and PER bit is	l OE and set	R bits a FER bit to "0" by	re set to s are set writing '	"0" (r to "0 0" in	no error). ⁻)" by readi	The SUM bit is set to "0" (ing the lower byte of the I n. (Writing "1" has no effe 2) Symbol Ac U0BRG 0	no erro JiRB re	UiC1 register's RE bit = "0" (r) when all of the PER, FER gister. After reset Indeterminate Indeterminate	reception disabled), all of and OER bits = "0" (no er	the ror).
										379 ₁₆	Indeterminate		
								Assumi	Functi ng that set value = n, UiB		ides the count source	Setting range 0016 to FF16	
									mitting nor receiving.				

Figure 10.3 U0TB to U2TB Register, U0RB to U2RB Register, and U0BRG to U2BRG Register

......

TXEPT

CRD

NCH

CKPOL

UFORM

flag

JAR	Ti tr:	an	sm	nit/rece	ive mod	le register (i=0 to 2)			
7 b6	6 b5 b4 b3 b2 b1 b0			b2 b1 b0	7	Symbol Add DMR to U2MR 03A016, 03A	dress After reset A816, 037816 0016		
					Bit symbol	Bit name	Function	RW	
					SMD0	Serial I/O mode select bit (Note 2)	0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode	RW	
					SMD1		0 1 0 : I ² C mode (Note 3) 1 0 0 : UART mode transfer data 7 bits long	RW	
					SMD2		1 0 1 : UART mode transfer data 8 bits long 1 1 0 : UART mode transfer data 9 bits long Must not be set except above	RW	
					- CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock (Note 1)	RW	
					- STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits	RW	
					PRY	Odd/even parity select bit	Effective when PRYE = 1 0 : Odd parity 1 : Even parity	RW	
(]	- PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW	
]	- IOPOL	TxD, RxD I/O polarity reverse bit	0 : No reverse 1 : Reverse	RW	
Note 2 Note 3 ART	2: To 3: Se Ti tra	o rec et th ans	ceiv ne co sm	ve data, s correspond nit/recei	set the corre ading port d ive conti	direction bit for each CLKi pi responding port direction bit direction bit for SCL and SD. rrol register 0 (i=0 to 2	t for each RxDi pin to "0" (input mode). A pins to "0" (input mode).		
D6	b5 D4			b2 b1 b0	7	Symbol Addr C0 to U2C0 03A416, 03A0	ress After reset C16, 037C16 000010002		
					Bit symbol	Bit name	Function	RW	
					CLK0	BRG count source	0 0 : f1sio or f2sio is selected 0 1 : fasio is selected	RW	
					- CLK1		1 0 : fazsio is selected 1 1 : Must not be set	RW	
					. CRS	select bit	Effective when CRD = 0 0 : CTS function is selected (Note 1) 1 : RTS function is selected	RW	
	1 1	1 1	1		'	. ,			

0 : Data present in transmit register (during transmission)

0 : TxDi/SDAi and SCLi pins are CMOS output 1 : TxDi/SDAi and SCLi pins are N-channel open-drain output

0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge

1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge

(P60, P64 and P73 can be used as I/O ports)

1 : No data present in transmit register

(transmission completed) 0 : CTS/RTS function enabled 1 : CTS/RTS function disabled

(Note 3) Note 1: Set the corresponding port direction bit for each CTSi pin to "0" (input mode).

(Note 2)

Note 2: TxD2/SDA2 and SCL2 are N-channel open-drain output. Cannot be set to the CMOS output. Set the NCH bit of the U2C0 register to "0".

Note 3: Effective for clock synchronous serial I/O mode and UART mode transfer data 8 bits long.

Transmit register empty

CTS/RTS disable bit

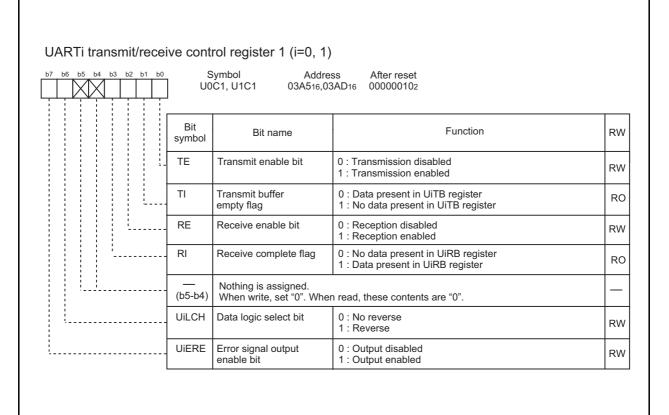
Data output select bit

CLK polarity select bit

Transfer format select bit 0 : LSB first

Note 4: CTS1/RTS1 can be used when the UCON register's CLKMD1 bit = "0" (only CLK1 output) and the UCON register's RCSP bit = "0" (CTS0/RTS0 not separated).

1 : MSB first


RO

RW

RW

RW

RW

UART2 transmit/receive control register 1

b7 b6 b5	b4 b3 b2 b1 b0		ymbol Addres U2C1 037D1		
		Bit symbol	Bit name	Function	RW
		TE	Transmit enable bit	0 : Transmission disabled 1 : Transmission enabled	RW
		ТІ	Transmit buffer empty flag	0 : Data present in U2TB register 1 : No data present in U2TB register	RO
		RE	Receive enable bit	0 : Reception disabled 1 : Reception enabled	RW
		RI	Receive complete flag	0 : No data present in U2RB register 1 : Data present in U2RB register	RC
	·	U2IRS	UART2 transmit interrupt cause select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmit is completed (TXEPT = 1)	RW
·		U2RRM	UART2 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enabled	RW
		U2LCH	Data logic select bit	0 : No reverse 1 : Reverse	RW
		U2ERE	Error signal output enable bit	0 : Output disabled 1 : Output enabled	RW

Figure 10.5 U0C1 to U2C1 Registers

		Symbol Addre JCON 03B0		
	Bit symbol	Bit	Function	RW
	U0IRS	UART0 transmit interrupt cause select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
	U1IRS	UART1 transmit interrupt cause select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
	U0RRM	UART0 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enable	RW
	U1RRM	UART1 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enabled	RW
	CLKMD0	UART1 CLK/CLKS select bit 0	Effective when CLKMD1 = "1" 0 : Clock output from CLK1 1 : Clock output from CLKS1	RW
	CLKMD1	UART1 CLK/CLKS select bit 1 (Note)	0 : CLK output is only CLK1 1 : Transfer clock output from multiple pins function selected	RW
	RCSP	Separate UART0 CTS/RTS bit	0 : <u>CTS/RTS</u> shared pin 1 : CTS/RTS separated (CTS ₀ supplied from the P64 pin)	RW
	(b7)	Nothing is assigned. Whe	en write, set "0". When read, its content is indeterminate.	—
UART2 special mo	50	Symbol A	ddress After reset	
	50	Symbol A SMR to U2SMR 036F16, 0	037316, 037716 X00000002	PW
b7 b6 b5 b4 b3 b2 b1	Bit symbol	Symbol A SMR to U2SMR 036F16, 1 Bit name	D37316, 037716 X00000002 Function	RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol	Symbol A SMR to U2SMR 036F16, (Bit	037316, 037716 X00000002 Function 0 : Other than I ² C mode 1 : I ² C mode	RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol	Symbol A SMR to U2SMR 036F16, 1 Bit name	037316, 037716 X00000002 Function 0 : Other than I ² C mode	RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol	Symbol A SMR to U2SMR 036F16, 0 Bit name I ² C mode select bit Arbitration lost detecting	037316, 037716 X00000002 Function 0 : Other than I ² C mode 1 : I ² C mode 0 : Update per bit	RW RW RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol IICM ABC	Symbol A SMR to U2SMR 036F16, 0 Bit name I ² C mode select bit Arbitration lost detecting flag control bit	037316, 037716 X00000002 Function 0 : Other than I ² C mode 1 : I ² C mode 0 : Update per bit 1 : Update per byte 0 : STOP condition detected	RW RW RW (Note
b7 b6 b5 b4 b3 b2 b1	Bit symbol IICM ABC BBS	Symbol A SMR to U2SMR 036F16, 0 Bit name I ² C mode select bit Arbitration lost detecting flag control bit Bus busy flag	D37316, 037716 X00000002 Function 0 : Other than I ² C mode 1 : I ² C mode 0 : Update per bit 1 : Update per byte 0 : STOP condition detected 1 : START condition detected (busy)	RW RW RW (Note RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol IICM - ABC - BBS - (b3)	Symbol A SMR to U2SMR 036F16, 0 Bit name I ² C mode select bit Arbitration lost detecting flag control bit Bus busy flag Reserved bit Bus collision detect	D37316, 037716 X00000002 Function 0 : Other than I ² C mode 1 1 : I ² C mode 0 0 : Update per bit 1 1 : Update per byte 0 0 : STOP condition detected 1 1 : START condition detected (busy) Set to "0" 0 : Rising edge of transfer clock 0	RW RW (Note RW RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol IICM - ABC - BBS - (b3) - ABSCS	Symbol A SMR to U2SMR 036F16, 0 Bit name I ² C mode select bit Arbitration lost detecting flag control bit Bus busy flag Reserved bit Bus collision detect sampling clock select bit Auto clear function select bit of transmit	D37316, 037716 X00000002 Function 0 : Other than I ² C mode 1 : I ² C mode 0 : Update per bit 1 : Update per byte 0 : STOP condition detected 1 : START condition detected (busy) Set to "0" 0 : Rising edge of transfer clock 1 : Underflow signal of timer Aj (Note 2) 0 : No auto clear function	RW
b7 b6 b5 b4 b3 b2 b1	Bit symbol IICM - ABC - BBS - (b3) - ABSCS - ACSE	Symbol A SMR to U2SMR 036F16, 0 Bit name 1 ² C mode select bit Arbitration lost detecting flag control bit Bus busy flag Reserved bit Bus collision detect sampling clock select bit Auto clear function select bit of transmit enable bit Transmit start condition	D37316, 037716 X00000002 Function 0 : Other than I ² C mode 1 : I ² C mode 0 : Update per bit 1 : Update per byte 0 : STOP condition detected 1 : START condition detected (busy) Set to "0" 0 : Rising edge of transfer clock 1 : Underflow signal of timer Aj (Note 2) 0 : No auto clear function 1 : Auto clear at occurrence of bus collision 0 : Not synchronized to RxDi	RW RW (Note RW RW RW

Figure 10.6 UCON Register and U0SMR to U2SMR Registers

r

7 b6 b5 b4 b3 b2 b1 b0		Symbol SMR2 to U2SMR2 036E	Address After reset 16, 037216, 037616 X00000002	
	Bit symbol	Bit name	Function	RW
	IICM2	I ² C mode select bit 2	Refer to Table 10.12	RW
	CSC	Clock-synchronous bit	0 : Disabled 1 : Enabled	RW
	SWC	SCL wait output bit	0 : Disabled 1 : Enabled	RW
	ALS	SDA output stop bit	0 : Disabled 1 : Enabled	RW
	STAC	UARTi initialization bit	0 : Disabled 1 : Enabled	RW
	SWC2	SCL wait output bit 2	0: Transfer clock 1: "L" output	RW
	SDHI	SDA output disable bit	0: Enabled 1: Disabled (high impedance)	RW
	(b7)	Nothing is assigned. Whe indeterminate.	en write, set "0". When read, its content is	1
JARTi special mode) 7	Symbol	Address After reset D16, 037116, 037516 000X0X0X2	
) 7	Symbol		RW
	Bit	Symbol ISMR3 to U2SMR3 036 Bit name Nothing is assigned.	D16, 037116, 037516 000X0X0X2	RW
	Bit symbol	Symbol ISMR3 to U2SMR3 036 Bit name Nothing is assigned.	ED16, 037116, 037516 000X0X0X2 Function	RW — RW
	Bit symbol (b0)	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned.	D16, 037116, 037516 000X0X0X2 Function n read, its content is indeterminate. 0 : Without clock delay	
	Bit symbol (b0) CKPH	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned.	ED16, 037116, 037516 000X0X0X2 Function n read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay	
	Bit symbol (b0) CKPH (b2)	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned. When write, set "0". Whe Clock output select bit Nothing is assigned.	Function n read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay n read, its content is indeterminate. 0 : CLKi is CMOS output	
	Bit symbol (b0) CKPH (b2) NODC	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned. When write, set "0". Whe Clock output select bit Nothing is assigned. When write, set "0". Whe SDAi digital delay setup bit	iD16, 037116, 037516 000X0X0X2 Function n read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay 1 : With clock delay n read, its content is indeterminate. 0 : CLKi is CMOS output 1 : CLKi is N-channel open drain output n read, its content is indeterminate. 0 : CLKi is N-channel open drain output n read, its content is indeterminate. b7 b6 b5 0 0 0 : Without delay	
	Bit symbol (b0) CKPH (b2) NODC	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned. When write, set "0". Whe Clock output select bit Nothing is assigned. When write, set "0". Whe SDAi digital delay	ID 16, 037116, 037516 000X0X0X2 Function n read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay 1 : With clock delay n read, its content is indeterminate. 0 : CLKi is CMOS output 1 : CLKi is N-channel open drain output n read, its content is indeterminate. 0 : CLKi is N-channel open drain output n read, its content is indeterminate. b7 b6 b5 0 0 0 : Without delay 0 1 : 1 to 2 cycle(s) of UiBRG count source 0 1 0 : 2 to 3 cycles of UiBRG count source 0 1 1 : 3 to 4 cycles of UiBRG count source	RW
	Bit symbol (b0) CKPH (b2) NODC (b4) DL0	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned. When write, set "0". Whe Clock output select bit Nothing is assigned. When write, set "0". Whe SDAi digital delay setup bit	ID 16, 037116, 037516 000X0X0X2 Function n read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay n read, its content is indeterminate. 0 : CLKi is CMOS output 1 : CLKi is N-channel open drain output n read, its content is indeterminate. b7 b6 b5 0 0 0 : Without delay 0 1 : 1 to 2 cycle(s) of UiBRG count source 0 1 0 : 2 to 3 cycles of UiBRG count source	RW RW RW RW

Figure 10.7 U0SMR2 to U2SMR2 Registers and U0SMR3 to U2SMR3 Registers

i7 b6 b5 b4 b3 b2 b1 b0 I		Symbol Ad IR4 to U2SMR4 036C16, 0	ddress After reset 37016, 037416 0016	
	Bit symbol	Bit name	Function	RW
	STAREQ	Start condition generate bit (Note)	0 : Clear 1 : Start	RW
	RSTAREQ	Restart condition generate bit (Note)	0 : Clear 1 : Start	RW
	STPREQ	Stop condition generate bit (Note)	0 : Clear 1 : Start	RW
	STSPSEL	SCL,SDA output select bit	0 : Start and stop conditions not output 1 : Start and stop conditions output	RW
	ACKD	ACK data bit	0 : ACK 1 : NACK	RW
	ACKC	ACK data output enable bit	0 : Serial I/O data output 1 : ACK data output	RW
l	SCLHI	SCL output stop enable bit	0 : Disabled 1 : Enabled	RW
	SWC9	SCL wait bit 3	0 : SCL "L" hold disabled 1 : SCL "L" hold enabled	RW

Figure 10.8 U0SMR4 to U2SMR4 Registers

10.2 Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 10.1 lists the specifications of the clock synchronous serial I/O mode. Table 10.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	• CKDIR bit = "1" (external clock) : Input from CLKi pin
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	• Before transmission can start, the following requirements must be met (Note 1)
	- The TE bit of UiC1 register= 1 (transmission enabled)
	- The TI bit of UiC1 register = 0 (data present in UiTB register)
	$-$ If \overline{CTS} function is selected, input on the \overline{CTS} i pin = "L"
Reception start condition	Before reception can start, the following requirements must be met (Note 1)
•	- The RE bit of UiC1 register= 1 (reception enabled)
	– The TE bit of UiC1 register= 1 (transmission enabled)
	– The TI bit of UiC1 register= 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	- The UilRS bit (Note 3) = 0 (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (Note 2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	CLK polarity selection
	Transfer data input/output can be chosen to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins
	ck is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0"

Table 10.1 Clock Synchronous Serial I/O Mode Specifications

Note 1: When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state. Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

Note 3: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Register	Bit	Function
UiTB(Note3)	0 to 7	Set transmission data
UiRB(Note3)	0 to 7	Reception data can be read
-	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR(Note3)	SMD2 to SMD0	Set to "0012"
	CKDIR	Select the internal clock or external clock
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TxDi pin output mode (Note 2)
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to "1" to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 1)	Select the source of UART2 transmit interrupt
	U2RRM (Note 1)	Set this bit to "1" to use continuous receive mode
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 2	Set to "0"
	NODC	Select clock output mode
	4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when CLKMD1 = 1
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P64 pin
	7	Set to "0"

Table 10.2 Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Note 1: Set the U0C1 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.

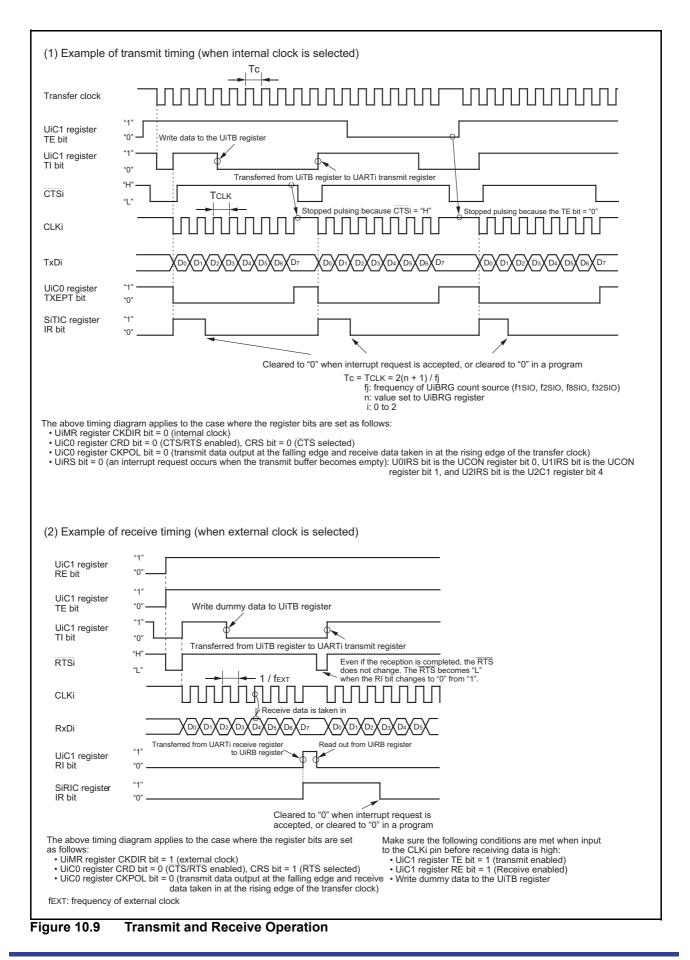
i=0 to 2

Table 10.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 10.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 10.4 lists the P64 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Table 10.3		Pin Functions (When Not Select Multiple Transfer Clock Output Pin Function)					
	Din nomo	Eurotion	Mathed of selection				

.

Pin name	Function	Method of selection
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	PD6 register's PD6_2 bit=0, PD6_6 bit=0, PD7 register's PD7_1 bit=0 (Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	UiMR register's CKDIR bit=0
(P61, P65, P72)	Transfer clock input	UiMR register's CKDIR bit=1 PD6 register's PD6_1 bit=0, PD6_5 bit=0, PD7 register's PD7_2 bit=0
CTSi/RTSi (P60, P64, P73)	CTS input	UiC0 register's CRD bit=0 UiC0 register's CRS bit=0 PD6 register's PD6_0 bit=0, PD6_4 bit=0, PD7 register's PD7_3 bit=0
	RTS output	UiC0 register's CRD bit=0 UiC0 register's CRS bit=1
	I/O port	UiC0 register's CRD bit=1


Table 10.4 **P64 Pin Functions**

	Bit set value						
Pin function	U1C0 register		UCON register			PD6 register	
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4	
P64	1		0	0		Input: 0, Output: 1	
CTS1	0	0	0	0		0	
RTS1	0	1	0	0			
CTS0(Note1)	0	0	1	0		0	
CLKS1				1(Note 2)	1		

Note 1: In addition to this, set the U0<u>C0</u> register's CRD bit to "0" (CTS0/RTS0 enabled) and the U0 C0 register's CRS bit to "1" (RTS0 selected). Note 2: When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:

• High if the U1C0 register's CLKPOL bit = 0

• Low if the U1C0 register's CLKPOL bit = 1

10.2.1 CLK Polarity Select Function

Use the UiC0 register (i = 0 to 2)'s CKPOL bit to select the transfer clock polarity. Figure 10.10 shows the polarity of the transfer clock.

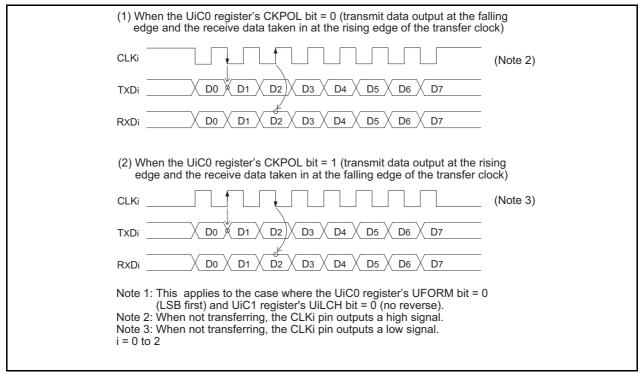


Figure 10.10 Transfer Clock Polarity

10.2.2 LSB First/MSB First Select Function

Use the UiC0 register (i = 0 to 2)'s UFORM bit to select the transfer format. Figure 10.11 shows the transfer format.

(1) When UiC0 register's UFORM bit = 0 (LSB first)
TXDi $1 \times 10 \times 11 \times 12 \times 13 \times 14 \times 15 \times 16 \times 17$
RxDi D0 D1 D2 D3 D4 D5 D6 D7
(2) When UiC0 register's UFORM bit = 1 (MSB first)
TxDi D7 D6 D5 D4 D3 D2 D1 D0
RXDi D7 D6 D5 D4 D3 D2 D1 D0
Note: This applies to the case where the UiC0 register's CKPOL bit = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock) and the UiC1 register's UiLCH bit = 0 (no reverse). i = 0 to 2
Figure 10.11 Transfer Format

10.2.3 Continuous Receive Mode

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the UiC1 register's TI bit is set to "0" (data present in the UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are the UCON register bit 2 and bit 3, respectively, and the U2RRM bit is the U2C1 register bit 5.

10.2.4 Serial Data Logic Switching Function

When the UiC1 register (i = 0 to 2)'s UiLCH bit = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 10.12 shows serial data logic.



Figure 10.12 Serial Data Logic Switching

10.2.5 Transfer Clock Output From Multiple Pins (UART1)

Use the UCON register's CLKMD1 to CLKMD0 bits to select one of the two transfer clock output pins. (See Figure 10.13.) This function can be used when the selected transfer clock for UART1 is an internal clock.

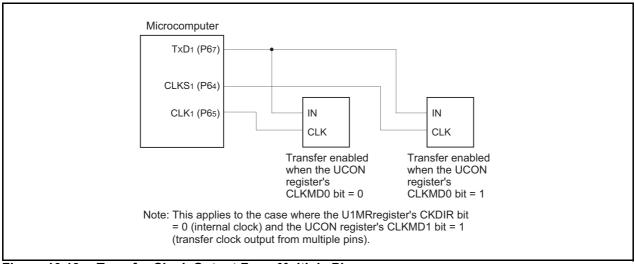


Figure 10.13 Transfer Clock Output From Multiple Pins

10.2.6 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS}}_0/\overline{\text{RTS}}_0$, outputs $\overline{\text{RTS}}_0$ from the P60 pin, and accepts as input the $\overline{\text{CTS}}_0$ from the P64 pin. To use this function, set the register bits as shown below.

- U0C0 register's CRD bit = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U0C0 register's CRS bit = 1 (outputs UART0 $\overline{\text{RTS}}$)
- U1C0 register's CRD bit = 0 (enables UART1 $\overline{\text{CTS}/\text{RTS}}$)
- U1C0 register's CRS bit = 0 (inputs UART1 $\overline{\text{CTS}}$)
- UCON register's RCSP bit = 1 (inputs $\overline{\text{CTS}}$ o from the P64 pin)
- UCON register's CLKMD1 bit = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}/\text{RTS}}$ separate function, UART1 $\overline{\text{CTS}/\text{RTS}}$ function cannot be used.

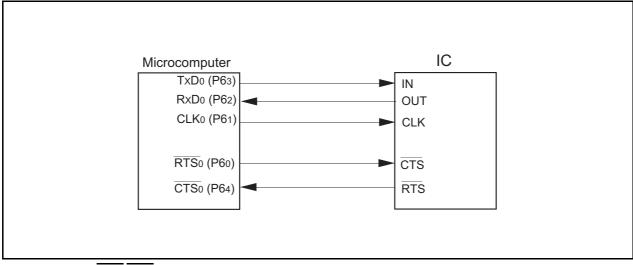


Figure 10.14 CTS/RTS Separat Function

10.3 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 10.5 lists the specifications of the UART mode.

Item	Specification		
Transfer data format	 Character bit (transfer data): Selectable from 7, 8 or 9 bits 		
	Start bit: 1 bit		
	Parity bit: Selectable from odd, even, or none		
	Stop bit: Selectable from 1 or 2 bits		
Transfer clock	UiMR(i=0 to 2) register's CKDIR bit = 0 (internal clock) : fj/ 16(n+1)		
	fj = f1sio, f2sio, f8sio, f32sio. n: Setting value of UiBRG register 0016 to FF16		
	 CKDIR bit = "1" (external clock) : fEXT/16(n+1) 		
	fEXT: Input from CLKi pin. n :Setting value of UiBRG register 0016 to FF16		
Transmission, reception control			
Transmission start condition	Before transmission can start, the following requirements must be met		
	 The TE bit of UiC1 register= 1 (transmission enabled) 		
	- The TI bit of UiC1 register = 0 (data present in UiTB register)		
	– If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = "L"		
Reception start condition	Before reception can start, the following requirements must be met		
	 The RE bit of UiC1 register= 1 (reception enabled) 		
	– Start bit detection		
Interrupt request	For transmission, one of the following conditions can be selected		
generation timing	- The UilRS bit (Note 2) = 0 (transmit buffer empty): when transferring data from the		
generation anning	UiTB register to the UARTi transmit register (at start of transmission)		
	– The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from		
	the UARTi transmit register		
	For reception When transferring data from the UAPTi receive register to the UiPP register (at		
	When transferring data from the UARTi receive register to the UiRB register (at		
Error detection	completion of reception)		
Error detection	• Overrun error (Note 1)		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the bit one before the last stop bit of the next data		
	• Framing error		
	This error occurs when the number of stop bits set is not detected		
	• Parity error		
	This error occurs when if parity is enabled, the number of 1's in parity and		
	character bits does not match the number of 1's set		
	• Error sum flag		
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered		
Select function	LSB first, MSB first selection		
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7		
	can be selected		
	Serial data logic switch		
	This function reverses the logic of the transmit/receive data. The start and stop bits		
	are not reversed.		
	TxD, RxD I/O polarity switch		
	This function reverses the polarities of hte TxD pin output and RxD pin input. The		
	logic levels of all I/O data is reversed.		
	Separate CTS/RTS pins (UART0)		

Table 10.5UART Mode Specifications

Note 1: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change. Note 2: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception	UiRB	0 to 8	Set transmission data (Note 1)			
OER,FER,PER,SUMError flagUiBRG0 to 7Set a transfer rateUiMRSMD2 to SMD0Set these bits to '1002' when transfer data is 7 bits long Set these bits to '1012' when transfer data is 8 bits long Set these bits to '1102' when transfer data is 9 bits longCKDIRSelect the internal clock or external clockSTPSSelect the sop bitPRY, PRYESelect whether parity is included and whether odd or evenIOPOLSelect the TxD/RxD input/output polarityUiC0CLK0, CLK1CRSSelect TS or RTS to useTXEPTTransmit register empty flagCRDEnable or disable the CTS or RTS functionNCHSelect TxDi pin output mode (Note 3)CKPOLSet to "0"UFORMLSB first or MSB first can be selected when transfer data is 8 bits long. Set this bit to "1" to enable transmissionUIC1TESet this bit to "1" to enable transmissionTITransmit buffer empty flagRESet this bit to "1" to enable reception			Set transmission data (Note 1)			
UiBRG0 to 7Set a transfer rateUiMRSMD2 to SMD0Set these bits to '1002' when transfer data is 7 bits long Set these bits to '1012' when transfer data is 8 bits long Set these bits to '1102' when transfer data is 9 bits longCKDIRSelect the internal clock or external clockSTPSSelect the stop bitPRY, PRYESelect the there parity is included and whether odd or evenIOPOLSelect the top bitPRY, CLK0, CLK1Select the count source for the UiBRG registerCRSSelect TS or RTS to useTXEPTTransmit register empty flagCRDEnable or disable the CTS or RTS functionNCHSelect TxDi pin output mode (Note 3)CKPOLSet to "0"UIC1TETESet this bit to "1" to enable transmissionTITransmit buffer empty flagRESet this bit to "1" to enable reception		0 to 8	Reception data can be read (Note 1)			
UiMR SMD2 to SMD0 Set these bits to '1002' when transfer data is 7 bits long Set these bits to '1102' when transfer data is 8 bits long Set these bits to '1102' when transfer data is 9 bits long CKDIR Select the internal clock or external clock STPS Select the stop bit PRY, PRYE Select whether parity is included and whether odd or even IOPOL Select the count source for the UiBRG register CRS Select TS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UIFORM TE TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		OER,FER,PER,SUM	Error flag			
View Set these bits to '1012' when transfer data is 8 bits long Set these bits to '1102' when transfer data is 9 bits long CKDIR Select the internal clock or external clock STPS Select the stop bit PRY, PRYE Select whether parity is included and whether odd or even IOPOL Select the TxD/RxD input/output polarity UiC0 CLK0, CLK1 Select the count source for the UiBRG register CRS Select TS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception	UiBRG	0 to 7	Set a transfer rate			
Image: Set the set the set the set the internal clock or external clockCKDIRSelect the internal clock or external clockSTPSSelect the stop bitPRY, PRYESelect whether parity is included and whether odd or evenIOPOLSelect the TxD/RxD input/output polarityUiC0CLK0, CLK1CLK0, CLK1Select the count source for the UiBRG registerCRSSelect CTS or RTS to useTXEPTTransmit register empty flagCRDEnable or disable the CTS or RTS functionNCHSelect TxDi pin output mode (Note 3)CKPOLSet to "0"UFORMLSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long.UiC1TESet this bit to "1" to enable transmissionTITransmit buffer empty flagRESet this bit to "1" to enable reception	UiMR	SMD2 to SMD0	Set these bits to '1002' when transfer data is 7 bits long			
CKDIR Select the internal clock or external clock STPS Select the stop bit PRY, PRYE Select whether parity is included and whether odd or even IOPOL Select the TxD/RxD input/output polarity UiC0 CLK0, CLK1 Select the count source for the UiBRG register CRS Select TS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception			Set these bits to '1012' when transfer data is 8 bits long			
STPS Select the stop bit PRY, PRYE Select whether parity is included and whether odd or even IOPOL Select the TxD/RxD input/output polarity UiC0 CLK0, CLK1 Select the count source for the UiBRG register CRS Select CTS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception						
PRY, PRYE Select whether parity is included and whether odd or even IOPOL Select the TxD/RxD input/output polarity UiC0 CLK0, CLK1 Select the count source for the UiBRG register CRS Select TTS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UIC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		CKDIR	Select the internal clock or external clock			
IOPOL Select the TxD/RxD input/output polarity UiC0 CLK0, CLK1 Select the count source for the UiBRG register CRS Select CTS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UIC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		STPS	Select the stop bit			
UiC0 CLK0, CLK1 Select the count source for the UiBRG register CRS Select CTS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		PRY, PRYE	Select whether parity is included and whether odd or even			
CRS Select CTS or RTS to use TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		IOPOL	Select the TxD/RxD input/output polarity			
TXEPT Transmit register empty flag CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set this bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception	UiC0	CLK0, CLK1	Select the count source for the UiBRG register			
CRD Enable or disable the CTS or RTS function NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		CRS	Select CTS or RTS to use			
NCH Select TxDi pin output mode (Note 3) CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set thi bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		TXEPT	Transmit register empty flag			
CKPOL Set to "0" UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set this bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		CRD	Enable or disable the CTS or RTS function			
UFORM LSB first or MSB first can be selected when transfer data is 8 bits long. Set this bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		NCH	Select TxDi pin output mode (Note 3)			
bit to "0" when transfer data is 7 or 9 bits long. UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		CKPOL				
UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception		UFORM	LSB first or MSB first can be selected when transfer data is 8 bits long. Set this			
TI Transmit buffer empty flag RE Set this bit to "1" to enable reception			bit to "0" when transfer data is 7 or 9 bits long.			
RE Set this bit to "1" to enable reception	UiC1	TE	Set this bit to "1" to enable transmission			
		ТІ	Transmit buffer empty flag			
RI Recention complete flag		RE	Set this bit to "1" to enable reception			
		RI	Reception complete flag			
U2IRS (Note 2) Select the source of UART2 transmit interrupt		. ,	Select the source of UART2 transmit interrupt			
U2RRM (Note 2) Set to "0"		U2RRM (Note 2)				
UiLCH Set this bit to "1" to use inverted data logic		UiLCH	Set this bit to "1" to use inverted data logic			
UiERE Set to "0"		UiERE				
UiSMR 0 to 7 Set to "0"	UiSMR	0 to 7				
UiSMR2 0 to 7 Set to "0"	UiSMR2	0 to 7	Set to "0"			
UiSMR3 0 to 7 Set to "0"	UiSMR3	0 to 7	Set to "0"			
UiSMR4 0 to 7 Set to "0"	UiSMR4					
UCON U0IRS, U1IRS Select the source of UART0/UART1 transmit interrupt	UCON		Select the source of UART0/UART1 transmit interrupt			
U0RRM, U1RRM Set to "0"		U0RRM, U1RRM	Set to "0"			
CLKMD0 Invalid because CLKMD1 = 0						
CLKMD1 Set to "0"		CLKMD1	Set to "0"			
RCSPSet this bit to "1" to accept as input the UART0 CTS0 signal from the P64 pin						
7 Set to "0"		RCSP				

Table 10.6 Registers to Be Used and Settings in UART Mode

Note 1: The bits used for transmit/receive data are as follows: Bit 0 to bit 6 when transfer data is 7 bits long; bit 0 to bit 7 when transfer data is 8 bits long; bit 0 to bit 8 when transfer data is 9 bits long.

Note 2: Set the U0C1 and U1C1 registers bit 4 to bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.

Note 3: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0". i=0 to 2

Table 10.7 lists the functions of the input/output pins during UART mode. Table 10.8 lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin name	Function	Method of selection	
TxDi (i = 0 to 2) (P63, P67, P70)Serial data output(Outputs dummy data when performing reception only)		(Outputs dummy data when performing reception only)	
RxDi (P62, P66, P71)	Serial data input	PD6 register's PD6_2 bit=0, PD6_6 bit=0, PD7 register's PD7_1 bit=0 (Can be used as an input port when performing transmission only)	
CLKi	Input/output port	UiMR register's CKDIR bit=0	
(P61, P65, P72)	Transfer clock input	UiMR register's CKDIR bit=1 PD6 register's PD6_1 bit=0, PD6_5 bit=0, PD7 register's PD7_2 bit=0	
CTSi/RTSi (P60, P64, P73)	CTS input	UiC0 register's CRD bit=0 UiC0 register's CRS bit=0 PD6 register's PD6_0 bit=0, PD6_4 bit=0, PD7 register's PD7_3 bit=0	
	RTS output	UiC0 register's CRD bit=0 UiC0 register's CRS bit=1	
	Input/output port	UiC0 register's CRD bit=1	

Table 10.7 I/O Pin Functions

Table 10.8 P64 Pin Functions

	Bit set value				
Pin function	U1C0 register		UCON register		PD6 register
	CRD	CRS	RCSP	CLKMD1	PD6_4
P64	1		0	0	Input: 0, Output: 1
CTS1	0	0	0	0	0
RTS1	0	1	0	0	
CTS ₀ (Note)	0	0	1	0	0

Note: In addition to this, set the U0C0 register's CRD <u>bit to</u> "0" (CTS0/RTS0 enabled) and the U0C0 register's CRS bit to "1" (RTS0 selected).

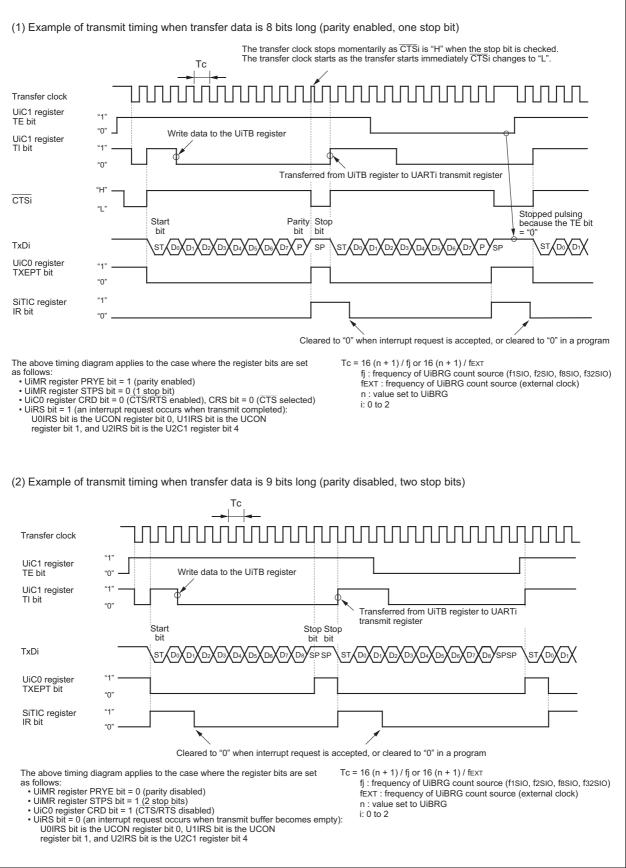


Figure 10.15 Transmit Operation

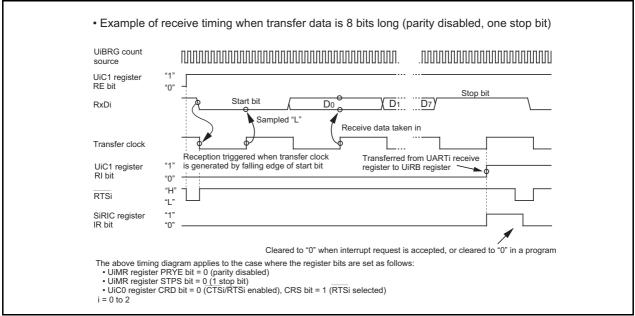


Figure 10.16 **Receive Operation**

Г

10.3.1 LSB First/MSB First Select Function

As shown in Figure 10.17, use the UiC0 register's UFORM bit to select the transfer format. This function is valid when transfer data is 8 bits long.

(1) Wh 	nen UiC0 register's UFORM bit = 0 (LSB first)
CLKi	
TXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
RXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
(2) Wh	nen UiC0 register's UFORM bit = 1 (MSB first)
CLKi	
TXDi _	ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
RXDi	ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
P : Pa	Start bit irity bit Stop bit o 2
t ii b	This applies to the case where the UiC0 register's CKPOL bit = 0 (ransmit data output at the falling edge and the receive data taken n at the rising edge of the transfer clock), the UiC1 register's UiLCH bit = 0 (no reverse), UiMR register's STPS bit = 0 (1 stop bit) and JiMR register's PRYE bit = 1 (parity enabled).

rigure 10.17 Iransfer Format

10.3.2 Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 10.18 shows serial data logic.

(1) When the U	JiC1 register's UiLCH bit = 0 (no reverse)		
Transfer clock			
TxDi (no reverse)	"H"		
(2) When the L	JiC1 register's UiLCH bit = 1 (reverse)		
Transfer clock			
TxDi (reverse)	"H"		
ST : Start bit P : Parity bit SP : Stop bit i = 0 to 2			
(transmit UiC0 reg STPS bit	Note: This applies to the case where the UiC0 register's CKPOL bit = 0 (transmit data output at the falling edge of the transfer clock), the UiC0 register's UFORM bit = 0 (LSB first), the UiMR register's STPS bit = 0 (1 stop bit) and UiMR register's PRYE bit = 1 (parity enabled).		

Figure 10.18 Serial Data Logic Switching

10.3.3 TxD and RxD I/O Polarity Inverse Function

This function inverses the polarities of the TxDi pin output and RxDi pin input. The logic levels of all input/ output data (including the start, stop and parity bits) are inversed. Figure 10.19 shows the TxD pin output and RxD pin input polarity inverse.

(1) When the UiMR register's IOPOL bit = 0 (no reverse)
TxDi "H" ST (D0) D1) D2) D3) D4) D5) D6) D7) P) SP
RxDi "H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP (no reverse) "L"
(2) When the UiMR register's IOPOL bit = 1 (reverse)
TxDi "H"
RxDi "H" ST TOT TOT TOT TOT TOT TOT SP (reverse) "L"
ST : Start bit P : Parity bit SP : Stop bit i = 0 to 2
Note: This applies to the case where the UiC0 register's UFORM bit = 0 (LSB first), the UiMR register's STPS bit = 0 (1 stop bit) and the UiMR register's PRYE bit = 1 (parity enabled).

Figure 10.19 TxD and RxD I/O Polarity Inverse

10.3.4 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS}}_0/\overline{\text{RTS}}_0$, outputs $\overline{\text{RTS}}_0$ from the P60 pin, and accepts as input the $\overline{\text{CTS}}_0$ from the P64 pin. To use this function, set the register bits as shown below.

- U0C0 register's CRD bit = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U0C0 register's CRS bit = 1 (outputs UART0 $\overline{\text{RTS}}$)
- U1C0 register's CRD bit = 0 (enables UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U1C0 register's CRS bit = 0 (inputs UART1 $\overline{\text{CTS}}$)
- UCON register's RCSP bit = 1 (inputs CTS0 from the P64 pin)
- UCON register's CLKMD1 bit = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}/\text{RTS}}$ separate function, UART1 $\overline{\text{CTS}/\text{RTS}}$ function cannot be used.

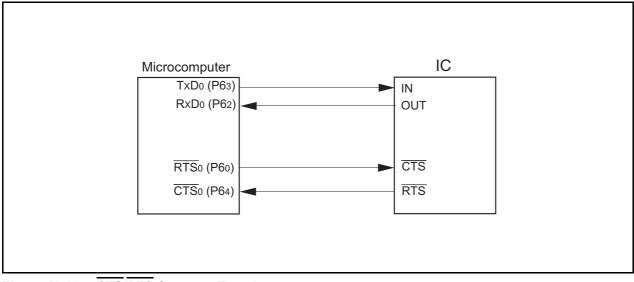


Figure 10.20 CTS/RTS Separate Function

10.4 Special Mode 1 (I²C mode)

I²C mode is provided for use as a simplified I²C interface compatible mode. Table 10.9 lists the specifications of the I²C mode. Table 10.10 to 10.11 lists the registers used in the I²C mode and the register values set, Table 10.12 lists the I²C mode functions. Figure 10.21 shows the block diagram for I²C mode. Figure 10.22 shows SCLi timing.

As shown in Table 10.12, the microcomputer is placed in I²C mode by setting the SMD2 to SMD0 bits to '0102' and the IICM bit to "1". Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Transfer data length: 8 bits During master		
During master		
During master		
UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)		
fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16		
• During slave		
CKDIR bit = "1" (external clock) : Input from SCLi pin		
Before transmission can start, the following requirements must be met (Note 1)		
 The TE bit of UiC1 register= 1 (transmission enabled) 		
– The TI bit of UiC1 register = 0 (data present in UiTB register)		
Before reception can start, the following requirements must be met (Note 1)		
 The RE bit of UiC1 register= 1 (reception enabled) 		
 The TE bit of UiC1 register= 1 (transmission enabled) 		
 The TI bit of UiC1 register= 0 (data present in the UiTB register) 		
When start or stop condition is detected, acknowledge undetected, and acknowledge		
detected		
Overrun error (Note 2)		
This error occurs if the serial I/O started receiving the next data before reading the		
UiRB register and received the 8th bit of the next data		
Arbitration lost		
Timing at which the UiRB register's ABT bit is updated can be selected		
• SDAi digital delay		
No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable		
Clock phase setting		
With or without clock delay selectable		

Table 10.9 I²C Mode Specifications

Note 1: When an external clock is selected, the conditions must be met while the external clock is in the high state.

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

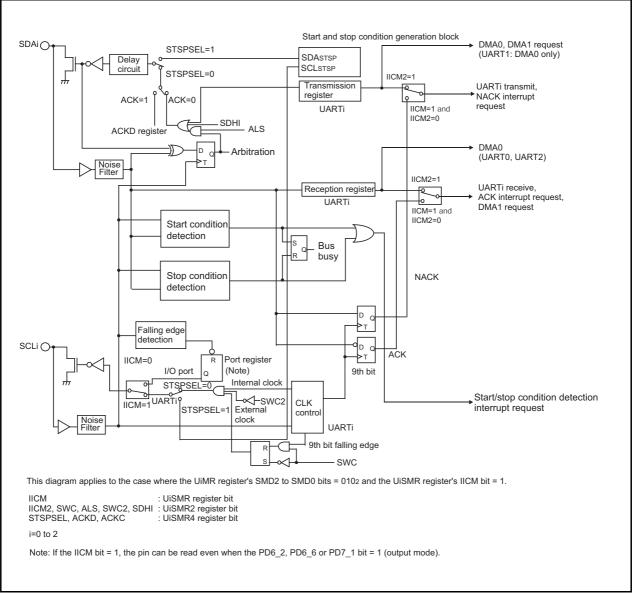


Figure 10.21 I²C Mode Block Diagram

Register	Bit Master		Slave	
UiTB	0 to 7	Set transmission data	Set transmission data	
(Note 3)				
UiRB	0 to 7	Reception data can be read	Reception data can be read	
(Note 3)	8	ACK or NACK is set in this bit	ACK or NACK is set in this bit	
	ABT	Arbitration lost detection flag	Invalid	
	OER	Overrun error flag	Overrun error flag	
UiBRG	0 to 7	Set a transfer rate	Invalid	
UiMR	SMD2 to SMD0	Set to '0102'	Set to '0102'	
(Note 3)	CKDIR	Set to "0"	Set to "1"	
	IOPOL	Set to "0"	Set to "0"	
UiC0	CLK1, CLK0	Select the count source for the UiBRG	Invalid	
0100		register		
	CRS	Invalid because CRD = 1	Invalid because CRD = 1	
	TXEPT	Transmit buffer empty flag	Transmit buffer empty flag	
	CRD	Set to "1"	Set to "1"	
	NCH	Set to "1" (Note 2)	Set to "1" (Note 2)	
	CKPOL	Set to "0"	Set to "0"	
	UFORM	Set to "1"	Set to "1"	
UiC1	TE	Set this bit to "1" to enable transmission	Set this bit to "1" to enable transmission	
	TI	Transmit buffer empty flag	Transmit buffer empty flag	
	RE	Set this bit to "1" to enable reception	Set this bit to "1" to enable reception	
	RI	Reception complete flag	Reception complete flag	
	U2IRS (Note 1)	Invalid	Invalid	
	U2RRM (Note 1),	Set to "0"	Set to "0"	
	UILCH, UIERE			
UiSMR	IICM	Set to "1"	Set to "1"	
	ABC	Select the timing at which arbitration-lost	Invalid	
		is detected		
	BBS	Bus busy flag	Bus busy flag	
	3 to 7	Set to "0"	Set to "0"	
UiSMR2	IICM2	Refer to Table 11.12	Refer to Table 11.12	
	CSC	Set this bit to "1" to enable clock	Set to "0"	
		synchronization		
	SWC	Set this bit to "1" to have SCLi output	Set this bit to "1" to have SCLi output	
		fixed to "L" at the falling edge of the 9th	fixed to "L" at the falling edge of the 9th	
		bit of clock	bit of clock	
	ALS	Set this bit to "1" to have SDAi output	Set to "0"	
		stopped when arbitration-lost is detected		
	STAC	Set to "0"	Set this bit to "1" to initialize UARTi at	
			start condition detection	
	SWC2	Set this bit to "1" to have SCLi output	Set this bit to "1" to have SCLi output	
		forcibly pulled low	forcibly pulled low	
	SDHI	Set this bit to "1" to disable SDAi output	Set this bit to "1" to disable SDAi output	
	7	Set to "0"	Set to "0"	
UiSMR3	0, 2, 4 and NODC	Set to "0"	Set to "0"	
	СКРН	Refer to Table 11.12	Refer to Table 11.12	
	DL2 to DL0	Set the amount of SDAi digital delay	Set the amount of SDAi digital delay	

Table 10.10	Registers to Be Use	ed and Settings in I ₂ C	Mode (1) (Continued)
-------------	---------------------	-------------------------------------	----------------------

i=0 to 2 Notes:

1. Set the U0C1 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

2. TxD2 pin is N channel open-drain output. Set the NCH bit in the U2C0 register to "0".

3. Not all register bits are described above. Set those bits to "0" when writing to the registers in I^2C mode.

Degister	Bit	Function			
Register	DIL	Master	Slave		
UiSMR4	STAREQ	Set this bit to "1" to generate start	Set to "0"		
		condition			
	RSTAREQ	Set this bit to "1" to generate restart	Set to "0"		
		condition			
	STPREQ	Set this bit to "1" to generate stop	Set to "0"		
		condition			
	STSPSEL	Set this bit to "1" to output each condition	Set to "0"		
	ACKD	Select ACK or NACK	Select ACK or NACK		
	ACKC	Set this bit to "1" to output ACK data	Set this bit to "1" to output ACK data		
	SCLHI	Set this bit to "1" to have SCLi output	Set to "0"		
		stopped when stop condition is detected			
	SWC9	Set to "0"	Set this bit to "1" to set the SCLi to "L"		
			hold at the next falling edge of the 9th bit		
			of clock		
IFSR2A	IFSR26, ISFR27	Set to "1"	Set to "1"		
UCON	U0IRS, U1IRS	Invalid	Invalid		
	2 to 7	Set to "0"	Set to "0"		

Table 10.11	Registers to	o Be Used and Settings in I ₂ C Mode (2) (Continued)

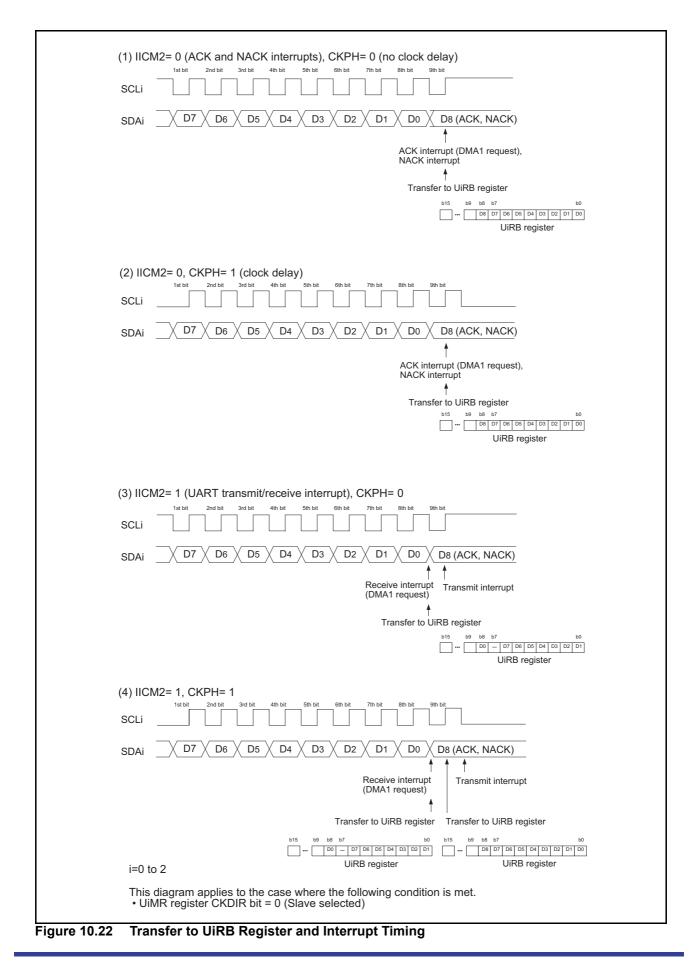
i=0 to 2

Table 10.12 I²C Mode Functions

Function	Clock synchronous serial I/O		02 to SMD0 = 0	102, IICM = 1)	
	mode (SMD2 to SMD0 = 0012, IICM = 0)	IICM2 = 0 (NACK/ACK inte	errupt)	IICM2 = 1 (UART transmit/ rec	eive interrupt)
		CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Factor of interrupt number 6, 7 and 10 (Note 1, 5, 7)				condition detection EL Bit Functions")	
Factor of interrupt number 15, 17 and 19 (Note 1, 6)	UARTi transmission Transmission started or completed (selected by UiIRS)	No acknowledgr detection (NACk Rising edge of S	()	UARTi transmission Rising edge of SCLi 9th bit	UARTi transmission Falling edge of SCL next to the 9th bit
Factor of interrupt number 16, 18 and 20 (Note 1, 6)	UARTi reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgmen (ACK) Rising edge of S		UARTi reception Falling edge of SCL	.i 9th bit
Timing for transferring data from the UART reception shift register to the UiRB register	CKPOL = 1 (falling edge)	Rising edge of S	CLi 9th bit	Falling edge of SCLi 9th bit	Falling and rising edges of SCLi 9th bit
UARTi transmission output delay	Not delayed	Delayed			
Functions of P63, P67 and P70 pins	TxDi output	SDAi input/outpu	ut		
Functions of P62, P66 and P71 pins	RxDi input	SCLi input/outpu	it		
Functions of P61, P65 and P72 pins	CLKi input or output selected	(Cann	ot be used in l ²	² C mode)	
Noise filter width	15ns	200ns			
Read RxDi and SCLi pin levels	Possible when the corresponding port direction bit = 0	Always possible	no matter how	the corresponding p	ort direction bit is set
Initial value of TxDi and SDAi outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in	the port registe	er before setting I ² C r	node (Note 2)
Initial and end values of SCLi		Н	L	Н	L
DMA1 factor (Refer to Fig 10.22)	UARTi reception	Acknowledgmer (ACK)	t detection	UARTi reception Falling edge of SCL	i 9th bit
Store received data	1st to 8th bits are stored in UiRB register bit 0 to bit 7	1st to 8th bits ar UiRB register bit		1st to 7th bits are st bit 6 to bit 0, with 8t register bit 8	ored in UiRB register h bit stored in UiRB
					1st to 8th bits are stored in UiRB register bit 7 to bit 0 (Note 3)
Read received data	UiRB register status is read directly as is				Read UiRB register Bit 6 to bit 0 as bit 7 to bit 1, and bit 8 as bit 0 (Note 4)

i = 0 to 2

Note 1: If the source or cause of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "4" (interrupt requested). (Refer to "precautions for interrupts" of the Usage Notes Reference Book.) If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to clear the IR bit to "0" (interrupt not requested) after changing those bits. SMD2 to SMD0 bits in the UiMR register, IICM bit in the UiSMR register, IICM2 bit in the UiSMR2 register, CKPH bit in the


UiSMR3 register

Note 2: Set the initial value of SDAi output while the UiMR register's SMD2 to SMD0 bits = '0002' (serial I/O disabled). Note 3: Second data transfer to UIRB register (Rising edge of SCLi 9th bit)

Note 4: First data transfer to UiRB register (Falling edge of SCLi 9th bit)

Note 5: Refer to "Figure 10.13. STSPSEL Bit Functions". Note 6: Refer to "Figure 10.22. Transfer to UiRB Register and Interrupt Timing" .

Note 7: When using UART0, be sure to set the IFSR26 bit in the IFSR26 register to "1" (cause of interrupt: UART0 bus collision). When using UART1, be sure to set the IFSR27 bit in the IFSR26 register to "1" (cause of interrupt: UART1 bus collision).

10.4.1 Detection of Start and Stop Condtion

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the UiSMR register's BBS bit to determine which interrupt source is requesting the interrupt.

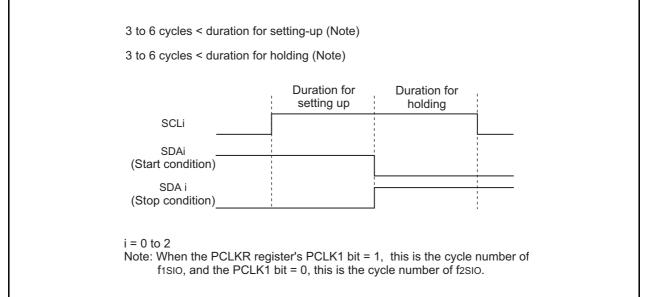


Figure 10.23 Detection of Start and Stop Condition

10.4.2 Output of Start and Stop Condition

A start condition is generated by setting the UiSMR4 register (i = 0 to 2)'s STAREQ bit to "1" (start). A restart condition is generated by setting the UiSMR4 register's RSTAREQ bit to "1" (start). A stop condition is generated by setting the UiSMR4 register's STPREQ bit to "1" (start). The output procedure is described below. Set the STAREQ bit, RSTAREQ bit or STPREQ bit to "1" (start). Set the STSPSEL bit in the UiSMR4 register to "1" (output). The function of the STSPSEL bit is shown in Table 10.13 and Figure 10.24.

Function	STSPSEL = 0	STSPSEL = 1
Output of SCLi and SDAi pins	Output of transfer clock and	Output of a start/stop condition
	data	according to the STAREQ,
	Output of start/stop condition is	RSTAREQ and STPREQ bit
	accomplished by a program	
	using ports (not automatically	
	generated in hardware)	
Start/stop condition interrupt	Start/stop condition detection	Finish generating start/stop condi-
request generation timing		tion

 Table 10.13
 STSPSEL Bit Functions

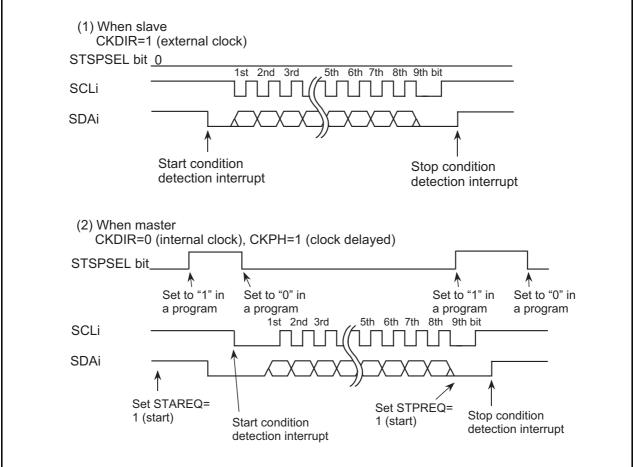


Figure 10.24 STSPSEL Bit Functions

10.4.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the UiSMR register's ABC bit to select the timing at which the UiRB register's ABT bit is updated. If the ABC bit = 0 (updated bitwise), the ABT bit is set to "1" at the same time unmatching is detected during check, and is cleared to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated bytewise, clear the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the UiSMR2 register's ALS bit to "1" (SDA output stop enabled) causes arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

10.4.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 10.24.

The UiSMR2 register's CSC bit is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the UiBRG register value is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The UiSMR2 register's SWC bit allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the UiSMR4 register's SCLHI bit is set to "1" (enabled), SCLi output is turned off (placed in the high impedance state) when a stop condition is detected.

Setting the UiSMR2 register's SWC2 bit = 1 (0 output) makes it possible to forcibly output a low-level signal from the SCLi pin even while sending or receiving data. Clearing the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a low-level signal.

If the UiSMR4 register's SWC9 bit is set to "1" (SCL hold low enabled) when the UiSMR3 register's CKPH bit = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

10.4.5 SDA Output

The data written to the UiTB register bit 7 to bit 0 (D7 to D0) is sequentially output beginning with D7. The ninth bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I2C mode) and the UiMR register's SMD2 to SMD0 bits = '0002' (serial I/O disabled).

The UiSMR3 register's DL2 to DL0 bits allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the UiSMR2 register's SDHI bit = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

10.4.6 SDA Input

When the IICM2 bit = 0, the 1st to 8th bits (D7 to D0) of received data are stored in the UiRB register bit 7 to bit 0. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of received data are stored in the UiRB register bit 6 to bit 0 and the 8th bit (D0) is stored in the UiRB register bit 8. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

10.4.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the cause of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

10.4.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial I/O operates as described below.

The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial I/O starts sending data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.

The receive shift register is initialized, and the serial I/O starts receiving data synchronously with the next clock pulse applied.

The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

10.5 Special Mode 2

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 10.14 lists the specifications of Special Mode 2. Table 10.15 lists the registers used in Special Mode 2 and the register values set. Figure 10.25 shows communication control example for Special Mode 2.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	Master mode
	UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)
	fj = f1sio, f2sio, f8sio, f32sio. n: Setting value of UiBRG register 0016 to FF16
	Slave mode
	CKDIR bit = "1" (external clock selected) : Input from CLKi pin
Transmit/receive control	Controlled by input/output ports
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)
	 The TE bit of UiC1 register= 1 (transmission enabled)
	– The TI bit of UiC1 register = 0 (data present in UiTB register)
Reception start condition	Before reception can start, the following requirements must be met (Note 1)
	 The RE bit of UiC1 register= 1 (reception enabled)
	 The TE bit of UiC1 register= 1 (transmission enabled)
	– The TI bit of UiC1 register= 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	– The UiIRS bit of UiC1 register = 0 (transmit buffer empty): when transferring data
	from the UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (Note 2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	Clock phase setting
	Selectable from four combinations of transfer clock polarities and phases

Table 10.14 Special Mode 2 Specifications

Note 1: When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

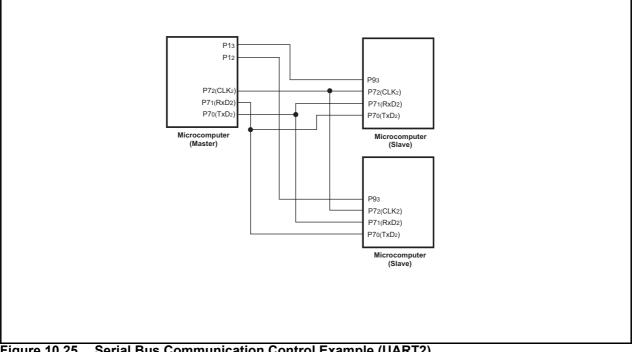


Figure 10.25 Serial Bus Communication Control Example (UART2)

Register	Bit	Function
UiTB(Note3)	0 to 7	Set transmission data
UiRB(Note3)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR(Note3)	SMD2 to SMD0	Set to '0012'
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because CRD = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TxDi pin output format(Note 2)
	CKPOL	Clock phases can be set in combination with the UiSMR3 register's CKPH bit
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 1)	Select UART2 transmit interrupt cause
	U2RRM(Note 1),	Set to "0"
	U2LCH, UIERE	
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	СКРН	Clock phases can be set in combination with the UiC0 register's CKPOL bit
	NODC	Set to "0"
	0, 2, 4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select UART0 and UART1 transmit interrupt cause
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because CLKMD1 = 0
	CLKMD1, RCSP, 7	Set to "0"

Table 10 15	Registers to Be Used and Settings in Special Mode 2
	Registers to be used and settings in special mode z

Note 1: Set the U0C0 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.

i = 0 to 2

10.5.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the UiSMR3 register's CKPH bit and the UiC0 register's CKPOL bit.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated.

- Master (Internal Clock)
- Figure 10.26 shows the transmission and reception timing in master (internal clock).
- Slave (External Clock)

Figure 10.27 shows the transmission and reception timing (CKPH=0) in slave (external clock) while Figure 10.28 shows the transmission and reception timing (CKPH=1) in slave (external clock).

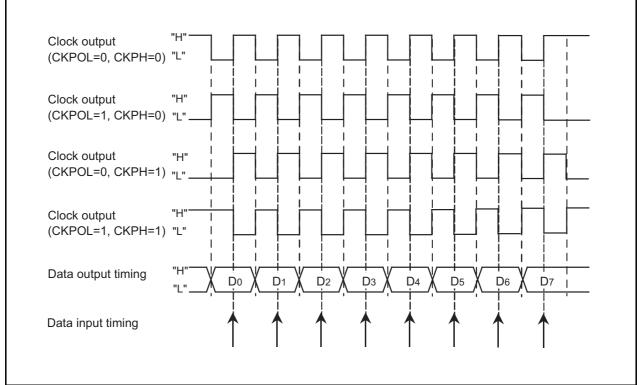


Figure 10.26 Transmission and Reception Timing in Master Mode (Internal Clock)

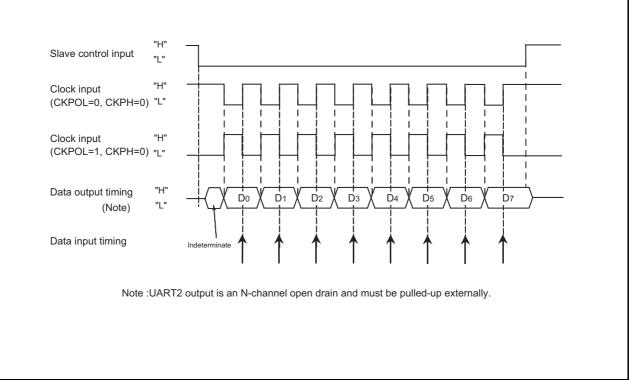
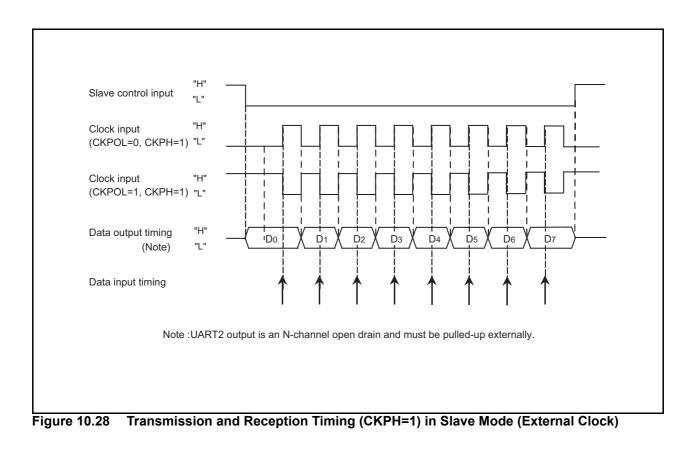



Figure 10.27 Transmission and Reception Timing (CKPH=0) in Slave Mode (External Clock)

10.6 Special Mode 3 (IE mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 10.16 lists the registers used in IE mode and the register values set. Figure 10.29 shows the functions of bus collision detect function related bits.

If the TxDi pin (i = 0 to 2) output level and RxDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use the IFSR2A register's IFSR26 and IFSR27 bits to enable the UART0/UART1 bus collision detect function.

Table 10.16 Registers to Be Used and Settings in IE Mode

Register	Bit	Function
UiTB	0 to 8	Set transmission data
UiRB(Note3)	0 to 8	Reception data can be read
	OER,FER,PER,SUM	Error flag
UiBRG	0 to 7	Set a transfer rate
UiMR	SMD2 to SMD0	Set to '1102'
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Invalid because PRYE=0
	PRYE	Set to "0"
	IOPOL	Select the TxD/RxD input/output polarity
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because CRD=1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TxDi pin output mode (Note 2)
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 1)	Select the source of UART2 transmit interrupt
	UiRRM (Note 1),	Set to "0"
	UiLCH, UiERE	
UiSMR	0 to 3, 7	Set to "0"
	ABSCS	Select the sampling timing at which to detect a bus collision
	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit
	SSS	Select the transmit start condition
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
IFSR2A	IFSR26, IFSR27	Set to "1"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because CLKMD1 = 0
	CLKMD1,RCSP,7	Set to "0"

Note 1: Set the U0C0 and U1C1 registers bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in IEmode. i= 0 to 2

	If ABSCS=0, bus collision is determined at the rising edge of the transfer clock
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
RxDi	Input to TAjın
Timer Aj	If ABSCS=1, bus collision is determined when timer
-	Aj (one-shot timer mode) underflows. hen UART0; timer A4 when UART1; timer A0 when UART2
., .	er ACSE bit (auto clear of transmit enable bit)
Transfer clock	L] L] ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
RxDi	
UiBCNIC register IR bit (Note)	If ACSE bit = 1 (automatically clear when bus collision occurs the TE bit is cleared to "0"
UiC1 register TE bit	(transmission disabled) when the UiBCNIC register's IR bit = (unmatching detected).
	er SSS bit (Transmit start condition select)
(3) UiSMR registe	
(3) UiSMR registe	er SSS bit (Transmit start condition select) e serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UISMR registe If SSS bit = 0, the Transfer clock TxDi	er SSS bit (Transmit start condition select) e serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UISMR registe If SSS bit = 0, the Transfer clock TxDi Trans	er SSS bit (Transmit start condition select) e serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
(3) UiSMR registe If SSS bit = 0, the Transfer clock TxDi Trans If SSS bit = 1, the	er SSS bit (Transmit start condition select) e serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
(3) UISMR registe If SSS bit = 0, the Transfer clock TxDi TxDi If SSS bit = 1, the CLKi	er SSS bit (Transmit start condition select) e serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP mission enable condition is met e serial I/O starts sending data at the rising edge (Note 1) of RxDi
(3) UiSMR registe If SSS bit = 0, the Transfer clock TxDi Trans	er SSS bit (Transmit start condition select) e serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. $ \begin{array}{c} & & \\ $

Figure 10.29 Bus Collision Detect Function-Related Bits

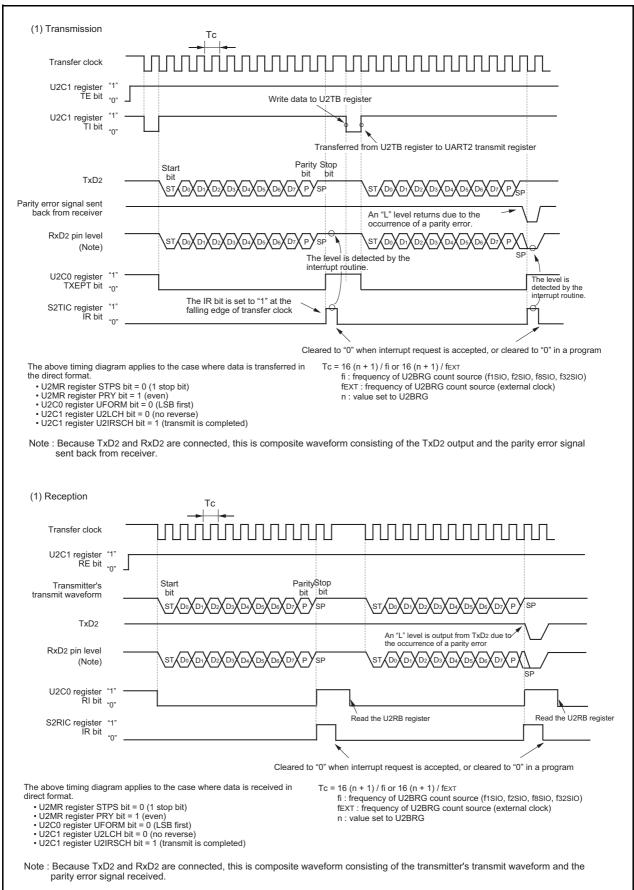
10.7 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TxD2 pin when a parity error is detected.

Tables 10.17 lists the specifications of SIM mode. Table 10.18 lists the registers used in the SIM mode and the register values set.

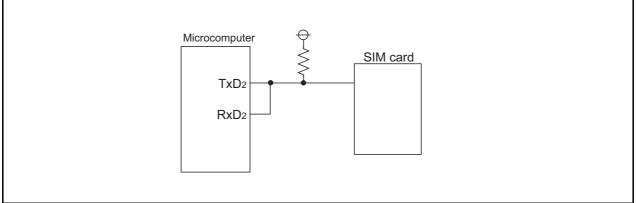
Item	Specification
Transfer data format	Direct format
	Inverse format
Transfer clock	U2MR register's CKDIR bit = "0" (internal clock) : fi/ 16(n+1)
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of U2BRG register 0016 to FF16
	 CKDIR bit = "1" (external clock) : fEXT/16(n+1)
	fEXT: Input from CLK2 pin. n: Setting value of U2BRG register 0016 to FF16
Transmission start condition	 Before transmission can start, the following requirements must be met
	 The TE bit of U2C1 register= 1 (transmission enabled)
	 The TI bit of U2C1 register = 0 (data present in U2TB register)
Reception start condition	 Before reception can start, the following requirements must be met
	 The RE bit of U2C1 register= 1 (reception enabled)
	 Start bit detection
Interrupt request	For transmission
generation timing	When the serial I/O finished sending data from the U2TB transfer register (U2IRS bit =1)
(Note 2)	For reception
	When transferring data from the UART2 receive register to the U2RB register (at
	completion of reception)
Error detection	Overrun error (Note 1)
	This error occurs if the serial I/O started receiving the next data before reading the
	U2RB register and received the bit one before the last stop bit of the next data
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	During reception, if a parity error is detected, parity error signal is output from the TxD2 pin.
	During transmission, a parity error is detected by the level of input to the RxD2 pin when a transmission interrupt occurs
	• Error sum flag
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered

Table 10.17 SIM Mode Specifications


Note 1: If an overrun error occurs, the value of U2RB register will be indeterminate. The IR bit of S2RIC register does not change.

Note 2: A transmit interrupt request is generated by setting the U2C1 register U2IRS bit to "1" (transmission complete) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to clear the IR bit to "0" (no interrupt request) after setting these bits.

Register	Bit	Function
U2TB(Note)	0 to 7	Set transmission data
U2RB(Note)		Reception data can be read
	OER,FER,PER,SUM	
U2BRG	0 to 7	Set a transfer rate
U2MR	SMD2 to SMD0	Set to '1012'
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Set this bit to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because CRD=1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Set to "0"
	CKPOL	Set to "0"
	UFORM	Set this bit to "0" for direct format or "1" for inverse format
U2C1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Set to "1"
	U2RRM	Set to "0"
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format
	U2ERE	Set to "1"
U2SMR(Note)	0 to 3	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"


Table 10.10 Redisters to be used and Settings in Silvi Mod	Table 10.18	Registers to Be Used and Settings in SIM Mode
--	-------------	---

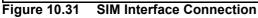

Note: Not all register bits are described above. Set those bits to "0" when writing to the registers in SIM mode.

Figure 10.30 Transmit and Receive Timing in SIM Mode

Figure 10.31 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pull-up.

10.7.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2C1 register's U2ERE bit to "1".

• When receiving

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TxD2 output low with the timing shown in Figure 10.32. If the U2RB register is read while outputting a parity error signal, the PER bit is cleared to "0" and at the same time the TxD2 output is returned high.

When transmitting

A transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RxD2 pin in a transmission-finished interrupt service routine.

Transfer	*
clock	
RxD2	"H"
TxD2	"H" (Note)
U2C1 register RI bit	"1" "0"
This timing diag implemented.	ram applies to the case where the direct format is P : Even Parity
	ut of microcomputer is in the high-impedance state SP : Stop bit externally).

10.7.2 Format

• Direct Format

Set the U2MR register's PRY bit to "1", U2C0 register's UFORM bit to "0" and U2C1 register's U2LCH bit to "0".

• Inverse Format

Set the PRY bit to "0", UFORM bit to "1" and U2LCH bit to "1". Figure 10.33 shows the SIM interface format.

(1) Direct forma	at
Transfer clock	
TxD2	"H" (D0) D1) D2) D3) D4) D5) D6) D7) P /
	P : Even parity
(2) Inverse for	nat
Transfer clock	
TxD2	"H" <u></u>
	P : Odd parity

Figure 10.33 SIM Interface Format

10.8 SI/O3 and SI/O4

SI/O3 and SI/O4 are exclusive clock-synchronous serial I/Os.

Figure 10.34 shows the block diagram of SI/O3 and SI/O4, and Figure 10.35 shows the SI/O3 and SI/O4- related registers.

Table 10.19 shows the specifications of SI/O3 and SI/O4.

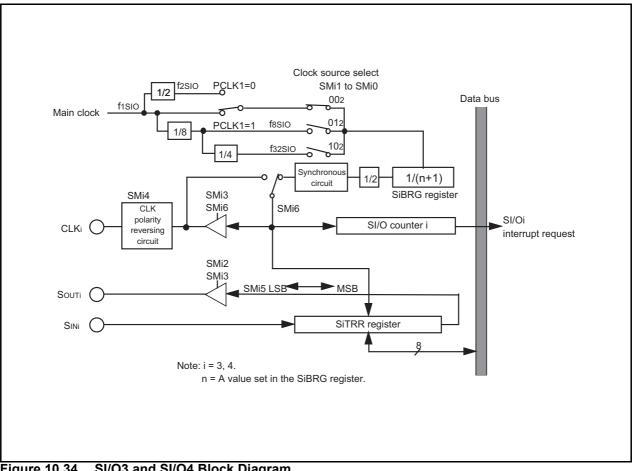


Figure 10.34 SI/O3 and SI/O4 Block Diagram

b7 b6 b5 b4 b3 b2 b1 b0		Symbol Address S3C 036216 S4C 036616	After reset 010000016 010000016		
	Bit symbol	Bit name	Desc	cription	RW
	SMi0	Internal synchronous clock select bit	0 0: Selecting f1sio or f2sio 0 1 : Selecting f8sio		RW
· · · · · · · · · · · · · · · · · · ·	SMi1		1 0 : Selecting f32SIO 1 1 : Must not be set.		RW
	SMi2	Souti output disable bit (Note 4)	0 : Souтi output 1 : Souтi output disable	e(high impedance)	RW
	SMi3	S I/Oi port select bit	0 : Input/output port 1 : Sou⊤i output, CLKi f	unction	RW
· · · · · · · · · · · · · · · · · · ·	- SMi4	CLK polarity select bit	 0 : Transmit data is outputransfer clock and records and	eive data is input at It at rising edge of	RW
	- SMi5	Transfer direction select bit	0 : LSB first 1 : MSB first		RW
	- SMi6	Synchronous clock select bit	0 : External clock (Note 1 : Internal clock (Note		RW
1)	
(write enable). Note 2: Set the SMi3 bit to Note 3: Set the SMi3 bit to	o "1" and th o "1" (Sout t is set to "'	Souri initial value set bit tten to by the next instruction e corresponding port direct	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode	0 R register's PRC2 bit to " »).	1"
(write enable). Note 2: Set the SMi3 bit t Note 3: Set the SMi3 bit t Note 4: When the SMi2 b pin is being used.	gister is wri o "1" and th o "1" (Sour t is set to " ator (i = 3	Souri initial value set bit tten to by the next instruction e corresponding port direct i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indetered	0 R register's PRC2 bit to " a). gardless of which functio reset minate	1"
(write enable). Note 2: Set the SMi3 bit to Note 3: Set the SMi3 bit to Note 4: When the SMi2 b pin is being used. SI/Oi bit rate general	gister is wri o "1" and th o "1" (Sour t is set to " ator (i = 3	Souri initial value set bit tten to by the next instruction i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (S4BRG (Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After	0 R register's PRC2 bit to " e). gardless of which functio reset minate minate	n of tl
(write enable). Note 2: Set the SMi3 bit to Note 3: Set the SMi3 bit to Note 4: When the SMi2 b pin is being used. SI/Oi bit rate general	gister is wri o "1" and th o "1" (Sour t is set to " ator (i = 3	Souri initial value set bit tten to by the next instruction is output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG C S4BRG C Description g that set value = n, BRG is	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indetern 036716 Indetern	0 R register's PRC2 bit to " a). gardless of which functio reset minate	n of tl
(write enable). Note 2: Set the SMi3 bit t Note 3: Set the SMi3 bit t Note 4: When the SMi2 b pin is being used. SI/Oi bit rate genera	gister is wri o "1" and th o "1" (Sour t is set to " ator (i = 3 Assumin source b ter while se	Souri initial value set bit tten to by the next instruction i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (C S4BRG (C Description g that set value = n, BRGi o y n + 1 erial I/O is neither transmitti	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indetern 036716 Indetern divides the count	0 R register's PRC2 bit to " e). gardless of which functio reset minate minate Setting range	
(write enable). Note 2: Set the SMi3 bit to Note 3: Set the SMi3 bit to Note 4: When the SMi2 b pin is being used. SI/Oi bit rate generation b7 b Note 1: Write to this regis Note 2: Use MOV instruct	gister is wri p "1" and th p "1" (Sour t is set to " ator (i = 3 Assumin source b ter while se ion to write	Souri initial value set bit tten to by the next instruction re corresponding port direct i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (C S4BRG (C Description g that set value = n, BRG (C y n + 1 erial I/O is neither transmitting to this register. er (i = 3, 4) (Note 1,	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indetern 036716 Indetern divides the count ng nor receiving. 2)	0 R register's PRC2 bit to " e). gardless of which functio reset minate Setting range 0016 to FF16	n of tl
(write enable). Note 2: Set the SMi3 bit t Note 3: Set the SMi3 bit t Note 4: When the SMi2 b pin is being used. SI/Oi bit rate genera b7 b Note 1: Write to this regis Note 2: Use MOV instruct SI/Oi transmit/receiv	gister is wri p "1" and th p "1" (Sour t is set to " ator (i = 3 Assumin source b ter while se ion to write	Souri initial value set bit tten to by the next instruction re corresponding port direct i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (C S4BRG (C) Description g that set value = n, BRG (C) y n + 1 to this register. er (i = 3, 4) (Note 1, Symbol A S3TRR (C)	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indetern divides the count givides the count	0 R register's PRC2 bit to " e). gardless of which functio reset minate Setting range 0016 to FF16	n of ti
(write enable). Note 2: Set the SMi3 bit t Note 3: Set the SMi3 bit t Note 4: When the SMi2 b pin is being used. SI/Oi bit rate genera b7 b Note 1: Write to this regis Note 2: Use MOV instruct SI/Oi transmit/receiv	gister is wri o "1" and th o "1" (Sour t is set to " ator (i = 3 Assumin source b ter while se ion to write ve regist	Souri initial value set bit tten to by the next instruction re corresponding port direct i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (C S4BRG (C) Description g that set value = n, BRG (C) y n + 1 to this register. er (i = 3, 4) (Note 1, Symbol A S3TRR (C)	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indetern divides the count ng nor receiving. 2) .ddress After	0 R register's PRC2 bit to " e). gardless of which functio reset minate Setting range 0016 to FF16	n of tl
(write enable). Note 2: Set the SMi3 bit t Note 3: Set the SMi3 bit t Note 4: When the SMi2 b pin is being used. SI/Oi bit rate genera b7 b Note 1: Write to this regis Note 2: Use MOV instruct SI/Oi transmit/receiv	gister is wri o "1" and th o "1" (Sour t is set to " ator (i = 3 Assumin source b ter while set ion to write /e regist	Souri initial value set bit tten to by the next instruction re corresponding port direct i output, CLKi function). 1", the target pin goes to a 3, 4) (Notes 1, 2) Symbol A S3BRG (C S4BRG (C) Description g that set value = n, BRG (C) y n + 1 to this register. er (i = 3, 4) (Note 1, Symbol A S3TRR (C)	Effective when SMi3 = 0 : "L" output 1 : "H" output on after setting the PRCF tion bit to "0" (input mode high-impedance state reg ddress After 036316 Indeter 036716 Indeter divides the count ng nor receiving. 2) ddress After 036016 Indeter 036416 Indeter Description iting transmit data to this	0 R register's PRC2 bit to " e). gardless of which functio reset minate Setting range 0016 to FF16 reset minate minate s register. After	n of ti

Item	Specification			
Transfer data format	Transfer data length: 8 bits			
Transfer clock	• SiC (i=3, 4) register's SMi6 bit = "1" (internal clock) : fj/ 2(n+1)			
	fj = f1SIO, f8SIO, f32SIO. n=Setting value of SiBRG register 0016 to FF16.			
	SMi6 bit = "0" (external clock) : Input from CLKi pin (Note 1)			
Transmission/reception	Before transmission/reception can start, the following requirements must be met			
start condition	Write transmit data to the SiTRR register (Notes 2, 3)			
Interrupt request	When SiC register's SMi4 bit = 0			
generation timing	The rising edge of the last transfer clock pulse (Note 4)			
	• When SMi4 = 1			
	The falling edge of the last transfer clock pulse (Note 4)			
CLKi pin function	I/O port, transfer clock input, transfer clock output			
SOUTI pin function	I/O port, transmit data output, high-impedance			
SINi pin function	I/O port, receive data input			
Select function	LSB first or MSB first selection			
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7			
	can be selected			
	Function for setting an SOUTi initial value set function			
	When the SiC register's SMi6 bit = 0 (external clock), the SOUTi pin output level while			
	not transmitting can be selected			
	CLK polarity selection			
	Whether transmit data is output/input timing at the rising edge or falling edge of			
	transfer clock can be selected.			

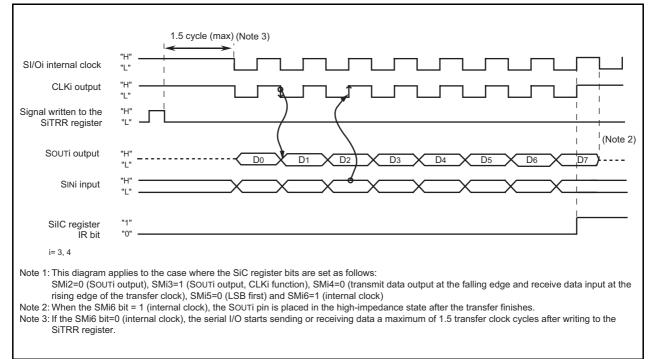
Table 10.19 SI/O3 and SI/O4 Specifications

Note 1: To set the SiC register's SMi6 bit to "0" (external clock), follow the procedure described below.

• If the SiC register's SMi4 bit = 0, write transmit data to the SiTRR register while input on the CLKi pin is high. The same applies when rewriting the SiC register's SMi7 bit.

• If the SMi4 bit = 1, write transmit data to the SiTRR register while input on the CLKi pin is low. The same applies when rewriting the SMi7 bit.

• Because shift operation continues as long as the transfer clock is supplied to the SI/Oi circuit, stop the transfer clock after supplying eight pulses. If the SMi6 bit = 1 (internal clock), the transfer clock automatically stops.


Note 2: Unlike UART0 to UART2, SI/Oi (i = 3 to 4) is not separated between the transfer register and buffer. Therefore, do not write the next transmit data to the SiTRR register during transmission.

Note 3: When the SiC register's SMi6 bit = 1 (internal clock), SOUTi retains the last data for a 1/2 transfer clock period after completion of transfer and, thereafter, goes to a high-impedance state. However, if transmit data is written to the SiTRR register during this period, SOUTi immediately goes to a high-impedance state, with the data hold time thereby reduced.

Note 4: When the SiC register's SMi6 bit = 1 (internal clock), the transfer clock stops in the high state if the SMi4 bit = 0, or stops in the low state if the SMi4 bit = 1.

10.8.1 SI/Oi Operation Timing

Figure 10.36 shows the SI/Oi operation timing

10.8.2 CLK Polarity Selection

The SiC register's SMi4 bit allows selection of the polarity of the transfer clock. Figure 10.37 shows the polarity of the transfer clock.

(1) When SiC register's SMi4 bit = "0"				
CLKi (Note 2)				
SINI DO DI D2 D3 D4 D5 D6 D7				
SOUTI D0 D1 D2 D3 D4 D5 D6 D7				
(2) When SiC register's SMi4 bit = "1"				
CLKi (Note 3)				
SINI D0 D1 D2 D3 D4 D5 D6 D7				
SOUTI D0 D1 D2 D3 D4 D5 D6 D7				
i=3 and 4				
Note 1: This diagram applies to the case where the SiC register bits are set as follows: SMi5=0 (LSB first) and SMi6=1 (internal clock)				
Note 2: When the SMi6 bit=1 (internal clock), a high level is output from the CLKi				
pin if not transferring data. Note 3: When the SMi6 bit=1 (internal clock), a low level is output from the CLKi pin if not transferring data.				
Figure 10.37 Polarity of Transfer Clock				

Rev.2.10 Oct 25, 2006 Page 141 of 326 **REJ03B0152-0210**

10.8.3 Functions for Setting an Souti Initial Value

If the SiC register's SMi6 bit = 0 (external clock), the SOUTi pin output can be fixed high or low when not transferring. Figure 10.38 shows the timing chart for setting an SOUTi initial value and how to set it.

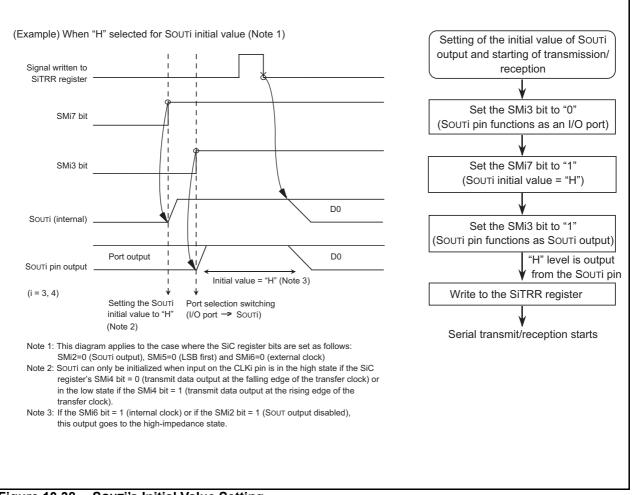


Figure 10.38 SOUTI's Initial Value Setting

11. Multi-master I²C-BUS Interface

The multi-master I²C-BUS interface have each dedicated circuit and operate independently.

The multi-master I²C-BUS interface is a serial communications circuit, conforming to the Philips I²C-BUS data transfer format. This interface i, offering both arbitration lost detection and a synchronous functions, is useful for the multi-master serial communications.

Table 11.1 shows multi-master I2C-BUS interface functions.

This multi-master I²C-BUS interface consists of I²C address register, I²C data shift register, I²C clock control register, I²C control register, I²C status register, I²C transmit buffer register and the other control circuits.

Table 11.1 Clock Generation Circuit Specifications

Item	Function
Format	In conformity with Philips I ² C-BUS standard: 10-bit addressing format 7-bit addressing format High-speed clock mode Standard clock mode
Communication mode	In conformity with Philips I ² C-BUS standard: Master transmission Master reception Slave transmission Slave reception
SCL clock frequency	16.1 kHz to 400 kHz (BCLK = 16 MHz)
Power supply voltage on bus line	(SCL3/SDA3) : Vcc1

Note. Our company doesn't assume the responsibility of the patent of the third party who originates in the use of the function to control the connection of I²C-BUS interface and ports (SCL3, SDA3) and other infringements of right.

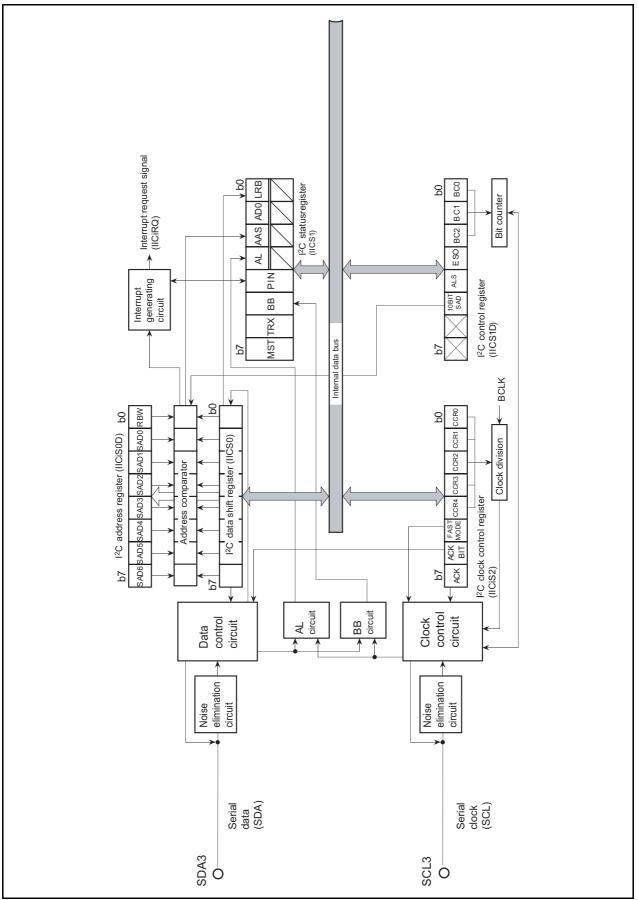
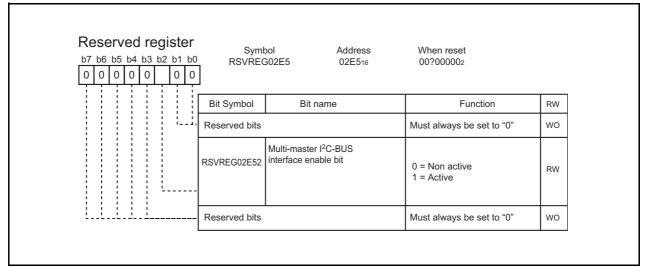
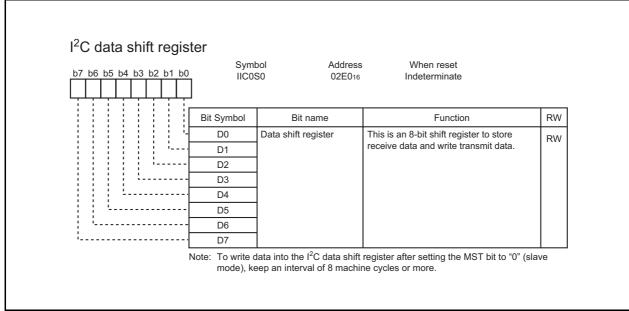
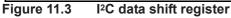



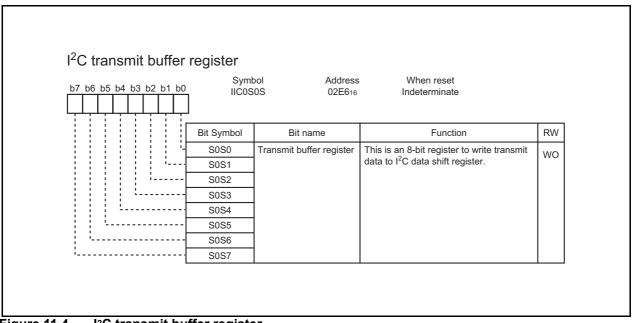
Figure 11.1 Block Diagram of Multi-master I²C-BUS interface

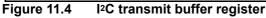
(1) Reserved register

(2) I²C data shift register, I²C transmit buffer register


The I²C data shift register is an 8-bit shift register to store receive data and write transmit data.


When transmit data is written into this register, it is transferred to the outside from bit 7 in synchronization with the SCL clock, and each time one-bit data is output, the data of this register are shifted one bit to the left. When data is received, it is input to this register from bit 0 in synchronization with the SCL clock, and each time one-bit data is input, the data of this register are shifted one bit to the left.


The I²C data shift register is in a write enable status only when the ESO bit of the I²C control register is "1." The bit counter is reset by a write instruction to the I²C data shift register. When both the ESO bit and the MST bit of the I²C status register are "1," the SCL is output by a write instruction to the I²C data shift register. Reading data from the I²C data shift register is always enabled regardless of the ESO bit value.


The I²C transmit buffer register is a register to store transmit data (slave address) to the I²C data shift register before RESTART condition generation. That is, in master, transmit data written to the I²C transmit buffer register is written to the I²C data shift register simultaneously. However, the SCL is not output. The I²C transmit buffer register can be written only when the ESO bit is "1," reading data from the I²C transmit buffer register is disabled regardless of the ESO bit value.

- **Notes 1:** To write data into the I²C data shift register or the I²C transmit buffer register after the MST bit value changes from "1" to "0" (slave mode), keep an interval of 20 BCLK or more.
 - **2:** To generate START/RESTART condition after the I²C data shift register or the I²C transmit buffer register is written, keep an interval of 4 BCLK or more.

(3) I²C address register

The I²C address register consists of a 7-bit slave address and a read/write bit. In the addressing mode, the slave address written in this register is compared with the address data to be received immediately after the START condition are detected.

• Bit 0: read/write bit (RBW)

Not used when comparing addresses, in the 7-bit addressing mode. In the 10-bit addressing mode, the first address data to be received is compared with the contents (SAD6 to SAD0 + RBW) of the I²C address register. The RBW bit is cleared to "0" automatically when the stop condition is detected.

• Bits 1 to 7: slave address (SAD0 to SAD6)

These bits store slave addresses. Regardless of the 7-bit addressing mode and the 10-bit addressing mode, the address data transmitted from the master is compared with the contents of these bits.

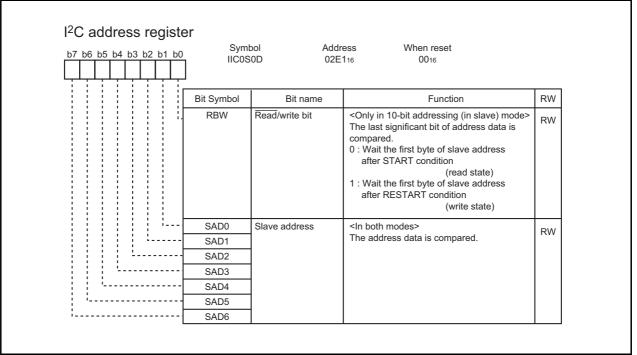


Figure 11.5 I²C address register

(4) I²C clock control register

The I²C clock control register is used to set ACK control, SCL mode and SCL frequency.

• Bits 0 to 4: SCL frequency control bits (CCR0-CCR4)

These bits control the SCL frequency.

• Bit 5: SCL mode specification bit (FAST MODE)

This bit specifies the SCL mode. When this bit is set to "0," the standard clock mode is set. When the bit is set to "1," the high-speed clock mode is set.

• Bit 6: ACK bit (ACK BIT)

This bit sets the SDA status when an ACK clock* is generated. When this bit is set to "0," the ACK return mode is set and SDA goes to LOW at the occurrence of an ACK clock. When the bit is set to "1," the ACK non-return mode is set. The SDA is held in the HIGH status at the occurrence of an ACK clock.

However, when the slave address matches the address data in the reception of address data at ACK BIT = "0," the SDA is automatically made LOW (ACK is returned). If there is a mismatch between the slave address and the address data, the SDA is automatically made HIGH (ACK is not returned).

*ACK clock: Clock for acknowledgement

• Bit 7: ACK clock bit (ACK)

This bit specifies a mode of acknowledgment which is an acknowledgment response of data transmission.

When this bit is set to "0," the no ACK clock mode is set. In this case, no ACK clock occurs after data transmission. When the bit is set to "1," the ACK clock mode is set and the master generates an ACK clock upon completion of each 1-byte data transmission. The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock (make SDA HIGH) and receives the ACK bit generated by the data receiving device.

Note: Do not write data into the I²C clock control register during transmission. If data is written during transmission, the I²C clock generator is reset, so that data cannot be transmitted normally.

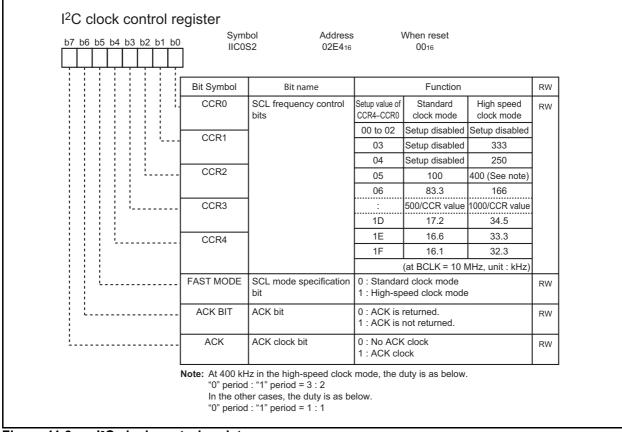


Figure 11.6 I²C clock control register

(5) I²C control register

The I²C control register controls the data communication format.

• Bits 0 to 2: bit counter (BC0-BC2)

These bits decide the number of bits for the next 1-byte data to be transmitted. An interrupt request signal occurs immediately after the number of bits specified with these bits are transmitted.

When a START condition is received, these bits become "0002" and the address data is always transmitted and received in 8 bits.

Note: When the bit counter value = "1112," a STOP condition and START condition cannot be waited.

• Bit 3: I²C-BUS interface use enable bit (ESO)

This bit enables usage of the multimaster I²C-BUS interface i. When this bit is set to "0," the use disable status is provided, so the SDA and the SCL become high-impedance. When the bit is set to "1," use of the interface is enabled.

When ESO = "0," the following is performed.

- PIN = "1," BB = "0" and AL = "0" are set (they are bits of the I²C status register).
- Writing data to the I²C data shift register and the I²C transmit buffer register is disabled.

• Bit 4: data format selection bit (ALS)

This bit decides whether or not to recognize slave addresses. When this bit is set to "0," the addressing format is selected, so that address data is recognized. When a match is found between a slave address and address data as a result of comparison or when a general call (refer to "(6) I²C status register," bit 1) is received, transmission processing can be performed. When this bit is set to "1," the free data format is selected, so that slave addresses are not recognized.

• Bit 5: addressing format selection bit (10BIT SAD)

This bit selects a slave address specification format. When this bit is set to "0," the 7-bit addressing format is selected. In this case, only the high-order 7 bits (slave address) of the I²C address register are compared with address data. When this bit is set to "1," the 10-bit addressing format is selected, all the bits of the I²C address register are compared with address data.

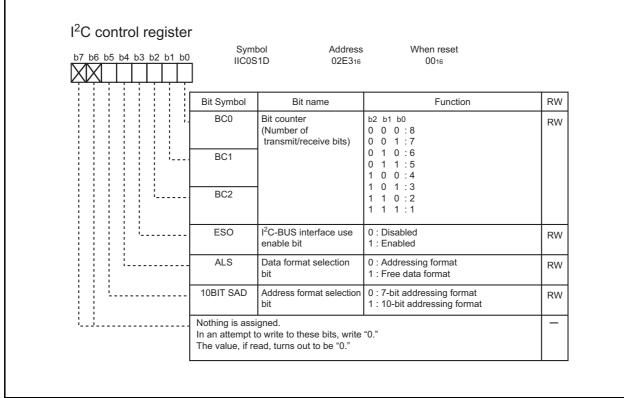


Figure 11.7 I²C control register

(6) I²C status register

The I²C status register controls the I²C-BUS interface status. Bits 0 to 3, 5 are read-only bits and bits 4, 6, 7 can be read out and written to.

• Bit 0: last receive bit (LRB)

This bit stores the last bit value of received data and can also be used for ACK receive confirmation. If ACK is returned when an ACK clock occurs, the LRB bit is set to "0." If ACK is not returned, this bit is set to "1." Except in the ACK mode, the last bit value of received data is input. The state of this bit is changed from "1" to "0" by executing a write instruction to the I²C data shift register or the I²C transmit buffer register.

• Bit 1: general call detecting flag (AD0)

This bit is set to "1" when a general call* whose address data is all "0" is received in the slave mode. By a general call of the master device, every slave device receives control data after the general call.

The AD0 bit is set to i0î by detecting the STOP condition or START condition.

*General call: The master transmits the general call address "0016" to all slaves.

• Bit 2: slave address comparison flag (AAS)

This flag indicates a comparison result of address data.

<<In the slave receive mode, when the 7-bit addressing format is selected, this bit is set to "1" in one of the following conditions.>>

- The address data immediately after occurrence of a START condition matches the slave address stored in the high-order 7 bits of the I²C address register.
- A general call is received.

<<In the slave reception mode, when the 10-bit addressing format is selected, this bit is set to "1" with the following condition.>>

• When the address data is compared with the I²C address register (8 bits consists of slave address and RBW), the first bytes match.

<<The state of this bit is changed from "1" to "0" by executing a write instruction to the I²C data shift register or the I²C transmit buffer register.>>

• Bit 3: arbitration lost* detecting flag (AL)

In the master transmission mode, when a device other than the microcomputer sets the SDA to "L," arbitration is judged to have been lost, so that this bit is set to "1." At the same time, the TRX bit is set to "0," so that immediately after transmission of the byte whose arbitration was lost is completed, the MST bit is set to "0." When arbitration is lost during slave address transmission, the TRX bit is set to "0" and the reception mode is set. Consequently, it becomes possible to receive and recognize its own slave address transmitted by another master device.

<< This bit changes "1" to "0" by writing instruction to I²C data shift register or I²C transmit buffer register.>>

*Arbitration lost: The status in which communication as a master is disabled.

• Bit 4: I²C-BUS interface interrupt request bit (PIN)

This bit generates an interrupt request signal. Each time 1-byte data is transmitted, the state of the PIN bit changes from "1" to "0." At the same time, an interrupt request signal is sent to the CPU. The PIN bit is set to "0" in synchronization with a falling edge of the last clock (including the ACK clock) of an internal clock and an interrupt request signal occurs in synchronization with a falling edge of the PIN bit. When detecting the STOP condition in slave, the multi-master I²C-BUS interface interrupt request bit (IR) is set to "1" (interrupt requested) regardless of falling of PIN bit. When the PIN bit is "0," the SCL is kept in the "0" state and clock generation is disabled. Figure 11.9 shows an interrupt request signal generating timing chart. The PIN bit is set to "1" in any one of the following conditions.

- I ne PIN bit is set to 1 in any one of the foll
- Writing "1" to the PIN bit
- Executing a write instruction to the I²C data shift register or the I²C transmit buffer register (See note).
- When the ESO bit is "0"
- At reset

Note: It takes 12 BCLK cycles or more until PIN bit becomes "1" after write instructions are executed to these registers.

The conditions in which the PIN bit is set to "0" are shown below:

- Immediately after completion of 1-byte data transmission (including when arbitration lost is detected)
- Immediately after completion of 1-byte data reception
- In the slave reception mode, with ALS = "0" and immediately after completion of slave address or general call address reception
- In the slave reception mode, with ALS = "1" and immediately after completion of address data reception

• Bit 5: bus busy flag (BB)

This bit indicates the status of use of the bus system. When this bit is set to "0," this bus system is not busy and a START condition can be generated. When this bit is set to "1," this bus system is busy and the occurrence of a START condition is disabled by the START condition duplication prevention function (See note).

This flag cannot be written with software. In the other modes, this bit is set to "1" by detecting a START condition and set to "0" by detecting a STOP condition. When the ESO bit of the I²C control register is "0" and at reset, the BB flag is kept in the "0" state.

• Bit 6: communication mode specification bit (transfer direction specification bit: TRX)

This bit decides the direction of transfer for data communication. When this bit is "0," the reception mode is selected and the data of a transmitting device is received. When the bit is "1," the transmission mode is selected and address data and control data are output into the SDA in synchronization with the clock generated on the SCL.

When the ALS bit of the I²C control register is "0" in the slave reception mode is selected, the TRX bit is set to "1" (transmit) if the least significant bit (R/W bit) of the address data transmitted by the master is "1." When the ALS bit is "0" and the R/W bit is "0," the TRX bit is cleared to "0" (receive).

The TRX bit is cleared to "0" in one of the following conditions.

- When arbitration lost is detected.
- When a STOP condition is detected.
- When occurrence of a START condition is disabled by the START condition duplication prevention function (Note).
- With MST = "0" and when a START condition is detected.
- With MST = "0" and when ACK non-return is detected.
- At reset

• Bit 7: Communication mode specification bit (master/slave specification bit: MST)

This bit is used for master/slave specification for data communication. When this bit is "0," the slave is specified, so that a START condition and a STOP condition generated by the master are received, and data communication is performed in synchronization with the clock generated by the master.

When this bit is "1," the master is specified and a START condition and a STOP condition are generated, and also the clocks required for data communication are generated on the SCL.

The MST bit is cleared to "0" in one of the following conditions.

- Immediately after completion of 1-byte data transmission when arbitration lost is detected
- When a STOP condition is detected.
- When occurence of a START condition is disabled by the START condition duplication preventing function (See note).
- At reset
- **Note:** The START condition duplication prevention function disables the following: the START condition generation; bit counter reset, and SCL output with the generation. This bit is valid from setting of BB flag to the completion of 1-byte transmission/reception (occurrence of transmission/ reception interrupt request) <IICRQ>.

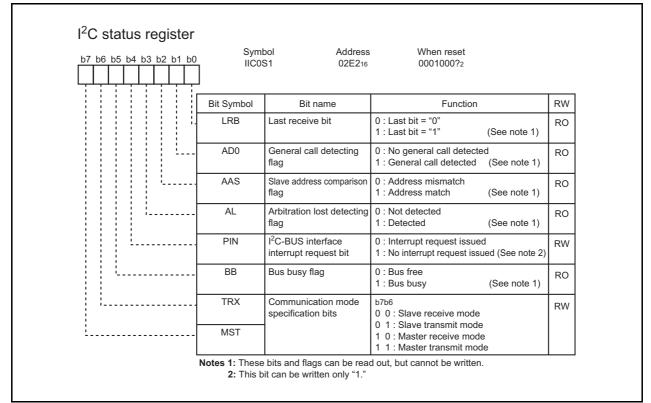
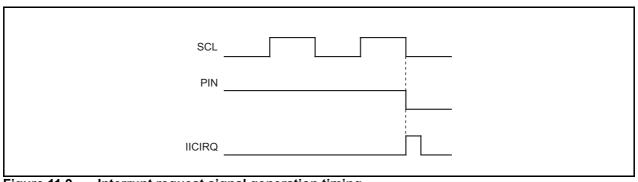



Figure 11.8 I²C status register

(7) START condition generation method

When the ESO bit of the I²C control register is "1," execute a write instruction to the I²C status register to set the MST, TRX and BB bits to "1." A START condition will then be generated. After that, the bit counter becomes "0002" and an SCL for 1 byte is output. The START condition generation timing and BB bit set timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 11.10 for the START condition generation timing diagram, and Table 11.2 for the START condition/STOP condition generation timing table.

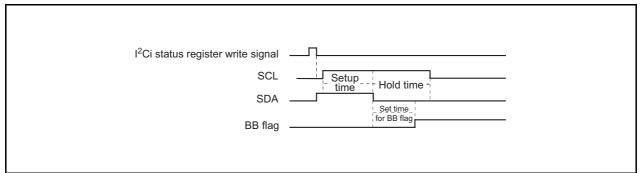


Figure 11.10 START condition generation timing diagram

(8) STOP condition generation method

When the ESO bit of the I²C control register is "1," execute a write instruction to the I²C status register for setting the MST bit and the TRX bit to "1" and the BB bit to "0". A STOP condition will then be generated. The STOP condition generation timing and the BB flag reset timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 11.11 for the STOP condition generation timing diagram, and Table 11.2 for the START condition/STOP condition generation timing table.

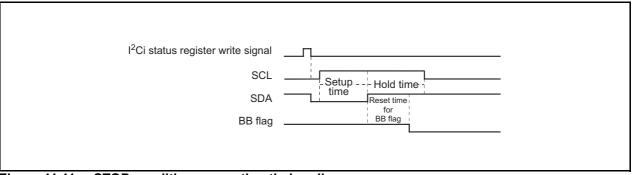


Figure 11.11STOP condition generation timing diagram

Table 11.2	START condition/STOP condition generation timing table
------------	--

Item	Standard Clock Mode	High-speed Clock Mode
Setup time (Min.)	5.6 μs	2.1 μs
Hold time (Min.)	4.8 μs	2.3 μs
Set/reset time for BB flag	3.5 μs	0.75 μs

(9) START/STOP condition detect conditions

The START/STOP condition detect conditions are shown in Figure 11.12 and Table 11.3. Only when the 3 conditions of Table 11.3 are satisfied, a START/STOP condition can be detected.

Note: When a STOP condition is detected in the slave mode (MST = 0), an interrupt request signal <IICRQ> is generated to the CPU.

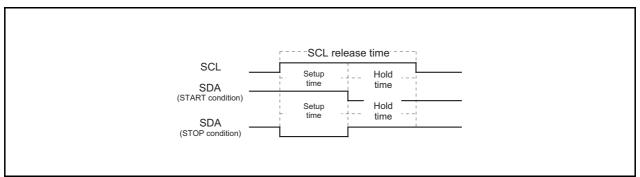


Figure 11.12 START condition/STOP condition detect timing diagram

Table 11.3 START condition/STOP condition detect conditions

Standard Clock Mode	High-speed Clock Mode
6.5 μs < SCL release time	1.0 μs < SCL release time
3.25 μs < Setup time	0.5 μs < Setup time
3.25 μs < Hold time	0.5 μs < Hold time

(10) Address data communication

There are two address data communication formats, namely, 7-bit addressing format and 10-bit addressing format. The respective address communication formats is described below.

• 7-bit addressing format

To meet the 7-bit addressing format, set the 10BIT SAD bit of the I²C control register to "0." The first 7-bit address data transmitted from the master is compared with the high-order 7-bit slave address stored in the I²C address register. At the time of this comparison, address comparison of the RBW bit of the I²C address register is not made. For the data transmission format when the 7-bit addressing format is selected, refer to Figure 11.13 (1) and (2).

10-bit addressing format

To meet the 10-bit addressing format, set the 10BIT SAD bit of the I²C control register to "1." An address comparison is made between the first-byte address data transmitted from the master and the 7-bit slave address stored in the I²C address register. At the time of this comparison, an address comparison between the RBW bit of the I²C address register and the R/W bit which is the last bit of the address data transmitted from the master is made. In the 10-bit addressing mode, the R/W bit which is the last bit of the address data not only specifies the direction of communication for control data but also is processed as an address data bit.

When the first-byte address data matches the slave address, the AAS bit of the I²C status register is set to "1." After the second-byte address data is stored into the I²C data shift register, make an address comparison between the second-byte data and the slave address by software. When the address data of the 2nd bytes matches the slave address, set the RBW bit of the I²C address register to "1" by software. This processing can match the 7-bit slave address and R/\overline{W} data, which are received after a RESTART condition is detected, with the value of the I²C address register. For the data transmission format when the 10-bit addressing format is selected, refer to Figure 11.13, (3) and (4).

(11) Example of Master Transmission

An example of master transmission in the standard clock mode, at the SCL frequency of 100 kHz and in the ACK return mode is shown below.

- (1) Set a slave address in the high-order 7 bits of the I²C address register and "0" in the RBW bit.
- (2) Set the ACK return mode and SCL = 100 kHz by setting "8516" in the I²C clock control register.
- (3) Set "1016" in the I²C status register and hold the SCL at the HIGH.
- (4) Set a communication enable status by setting "0816" in the I²C control register.
- (5) Set the address data of the destination of transmission in the high-order 7 bits of the I²C data shift register and set "0" in the least significant bit.
- (6) Set "F016" in the I²C status register to generate a START condition. At this time, an SCL for 1 byte and an ACK clock automatically occurs.
- (7) Set transmit data in the I²C data shift register. At this time, an SCL and an ACK clock automatically occurs.
- (8) When transmitting control data of more than 1 byte, repeat step (7).
- (9) Set "D016" in the I²C status register. After this, if ACK is not returned or transmission ends, a STOP condition will be generated.

(12) Example of Slave Reception

An example of slave reception in the high-speed clock mode, at the SCL frequency of 400 kHz, in the ACK non-return mode, using the addressing format, is shown below.

(1) Set a slave address in the high-order 7 bits of the I2C address register and "0" in the RBW bit.

(2) Set the no ACK clock mode and SCL = 400 kHz by setting "2516" in the I²C clock control register.

(3) Set "1016" in the I²C status register and hold the SCL at the HIGH.

(4) Set a communication enable status by setting "0816" in the I²C control register.

(5) When a START condition is received, an address comparison is made.

(6)

•When all transmitted address are"0" (general call):

AD0 of the I²C status register is set to "1" and an interrupt request signal occurs.

•When the transmitted addresses match the address set in (1):

ASS of the I²C status register is set to "1" and an interrupt request signal occurs.

•In the cases other than the above:

AD0 and AAS of the I²C status register are set to "0" and no interrupt request signal occurs.

- (7) Set dummy data in the I²C data shift register.
- (8) When receiving control data of more than 1 byte, repeat step (7).
- (9) When a STOP condition is detected, the communication ends.

(13) Precautions when using multi-master I²C-BUS interface

BCLK operation mode

Select the no-division mode.

Used instructions

Specify byte (.B) as data size to access multi-master I²C-BUS interface i-related registers.

Read-modify-write instruction

The precautions when the read-modify-write instruction such as BSET, BCLR etc. is executed for each register of the multi-master I²C-BUS interface are described below.

- I²C data shift register (IICS0) When executing the read-modify-write instruction for this register during transfer, data may become a value not intended.
- I²C address register (IICS0D)

When the read-modify-write instruction is executed for this register at detecting the STOP condition, data may become a value not intended. It is because hardware changes the read/write bit (RBW) at the above timing.

- I²C status register (IICS1) Do not execute the read-modify-write instruction for this register because all bits of this register are changed by hardware.
- I²C control register (IICS1D) When the read-modify-write instruction is executed for this register at detecting the START condition or at completing the byte transfer, data may become a value not intended. Because hardware changes the bit counter (BC0–BC2) at the above timing.
- I²C clock control register (IICS2) The read-modify-write instruction can be executed for this register.
 I²C port selection register (IICS2D)
- Since the read value of high-order 4 bits is indeterminate, the read-modify-write instruction cannot be used.
- I²C transmit buffer register (IICS0S) Since the value of all bits is indeterminate, the read-modify-write instruction cannot be used.

• START condition generating procedure using multi-master

	FCLR BTST JC REE:	I 5, IICS1 BUSBUSY	(Interrupt disabled) (BB flag confirming and branch process)		
	MOV.B NOP NOP NOP NOP	SA, IICS0	(Writing of slave address value <sa>) —</sa>	(1)	(2)
	MOV.B FSET	#F0H, IICS1 I :	(Trigger of START condition generating) (Interrupt enabled)		
BUSB	USY:				
	FSET	1 :	(Interrupt enabled)		

(1) Be sure to add NOP instruction \times 4 between writing the slave address value and setting trigger of START condition generating shown the above procedure example.

- (2) When using multi-master system, disable interrupts during the following three process steps:
 - BB flag confirming

:

- Writing of slave address value
- Trigger of START condition generating

When the condition of the BB flag is bus busy, enable interrupts immediately.

When using single-master system, it is not necessary to disable interrupts above.

RESTART condition generating procedure

MOV.B NOP	SA, IICS0S	(Writing of slave address value <sa>) (1)</sa>
NOP		
MOV.B	#F0H, IICS1	(Trigger of RESTART condition generating)
	:	

(1) Use the I²C transmit buffer register to write the slave address value to the I²C data shift register. And also, be sure to add NOP instruction \times 4.

Writing to I²C status register

Do not execute an instruction to set the PIN bit to "1" from "0" and an instruction to set the MST and TRX bits to "0" from "1" simultaneously. It is because it may enter the state that the SCL pin is released and the SDA pin is released after about one machine cycle. Do not execute an instruction to set the MST and TRX bits to "0" from "1" simultaneously when the PIN bit is "1." It is because it may become the same as above.

Process of after STOP condition generating

Do not write data in the I²C data shift register (IICS0) and the I²C status register (IICS1) until the bus busy flag BB becomes "0" after generating the STOP condition in the master mode. It is because the STOP condition waveform might not be normally generated. Reading to the above registers do not have the problem.

I²C0 Interrupt Control Register

b7	b6	b5	b4	b3	b2	b1	b() Symbol	Address At reset		
				0	0	0	0	EXTIICINT	02D616 0016		
-	ł	Ţ	ł	Ţ	Ţ	Ţ	-				
1	ł	į.	į.	÷.	ł	ł	-	Bit symbol	Bit name Function	R	W
				i.	.j_	÷		· Reserved bits	Must set to "0."	0	0
			¦_					EXTIICINT0	ACK interrupt control bit (Note 1) 0000: Interrupt prohibition (Note 2) 0101: Interrupt permission		
		¦_						EXTIICINT1	Other: Must not be set	0	0
	Ľ.							EXTIICINT2	Please set TA4IC (Note 3) when you use it by "Interrupt permission"		
1.								EXTIICINT3			

Notes 1: Timer A4 and multi master I²C (ACK) interrupt, the vector and the interrupt control register are shared. Please make it to (b7, b6, b5, b4) = (0, 1, 0, 1) when you use multi-master I^2C

are shared. Please make it to (b7, b6, b5, b4) = (0, 1, 0, 1) when you use multi-master I²C (ACK) interrupt. Notes 2: Please set 00002 when you use the interrupt of timer A4. Notes 3: Please refer to "Figure 6.3 interrupt control register" of "6.5 interrupt control". Notes 4: Please change in the part where multi-master I²C (ACK) and timer A4 interrupt request are not generated in the I²C0 interrupt control register. Notes 5: Please permit interrupt after making IR bit of timer A4 (TA4IC) "0" (the interrupt request none) after EXTIICINTi (i = 0 to 3) is changed.

Reserved Register

b7 0	b6 0	b5 0	b4 0	b3	3 b2 0	b1	b0 0	Symbol RSVREG02D	AddressAt reset0702D7160016	
								Bit symbol	Bit name Function	RW
							_	Reserved bit	Must set to "0."	00
						:_		Reserved bit	When use multi-master I ² C-BUS interface, set this bit to "1."	00
	;	ł			i.			Reserved bit	Must set to "0."	00
				į				Reserved bit	When use multi-master I ² C-BUS interface, set this bit to "1."	00
i.		_ <u>_</u>	<u>.</u>					Reserved bits	Must set to "0."	00

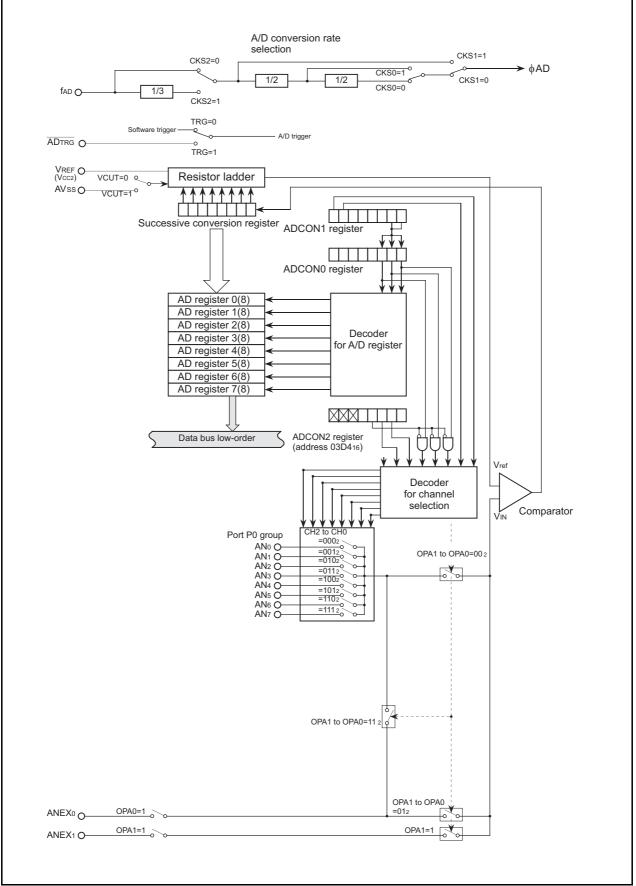
12. A/D Converter

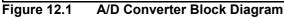
The microcomputer contains one A/D converter circuit based on 8-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P00 to P07, P95 and P96. Similarly, $\overline{AD}TRG$ input shares the pin with P97. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (= input mode).

When not using the A/D converter, set the VCUT bit to "0" (= Vref unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

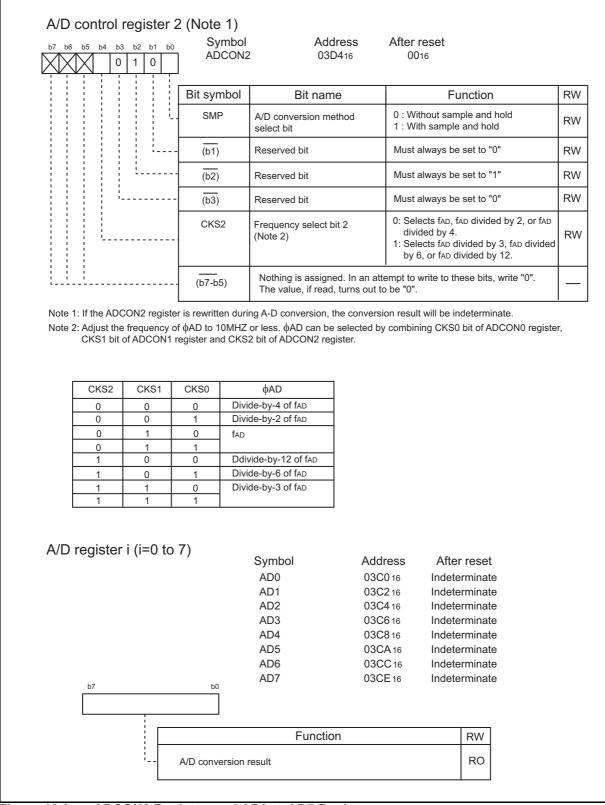
The A/D conversion result is stored in the ADi register bits for ANi pins (i = 0 to 7).

Table 12.1 shows the performance of the A/D converter. Figure 12.1 shows the block diagram of the A/D converter, and Figures 12.2 and 12.3 show the A/D converter-related registers.


Item	Performance
Method of A/D conversion	Successive approximation (capacitive coupling amplifier)
Analog input voltage (Note 1)	0V to AVcc (Vcc)
Operating clock ϕ AD (Note 2)	f AD/divide-by-2 of fAD/divide-by-3 of f AD/divide-by-4 of f AD/divide-by-6 of
	f AD/divide-by-12 of f AD
Resolution	8-bit
Integral nonlinearity error	When AVCC = VREF = 5V
	With 8-bit resolution: ±3LSB
	- ANEX0 and ANEX1 input (including mode in which external operation
	amp is connected) : ±4LSB
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog input pins	8 pins (ANo to AN7) + 2 pins (ANEX0 and ANEX1)
A/D conversion start condition	Software trigger
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
	External trigger (retriggerable)
	Input on the \overline{ADTRG} pin changes state from high to low after the ADST bit is
	set to "1" (A/D conversion starts)
Conversion speed per pin	Without sample and hold function
	8-bit resolution: 49 (AD cycles
	With sample and hold function
	8-bit resolution: 28


Table 12.1 Performance of A/D Converter

Note 1: Does not depend on use of sample and hold function.


Note 2: The ϕ AD frequency must be 10 MHz or less.

Without sample-and-hold function, limit the ϕ AD frequency to 250kHz or more. With the sample and hold function, limit the ϕ AD frequency to 1MHz or more.

b7 b6 b5 b4 b3 b2	b1 b0	Symbol ADCON	Address 0 03D616	After reset 00000XXX2	
		Bit symbol	Bit name	Function	RW
		CH0	Analog input pin select bit	Function varies with each operation mode	RW
	·	CH1			RW
		CH2			RW
		MD0	A/D operation mode select bit 0	0 0 : One-shot mode 0 1 : Repeat mode	RW
		MD1		1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RV
		TRG	Trigger select bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	RV
		ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
		CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	RV
A/D control regi		(Note 1) Symbol ADCON	Address 1 03D716	After reset 0016	
A/D control regi	ister 1	(Note 1)			
b7 b6 b5 b4 b3 b2		Symbol	1 03D716 Bit name	0016 Function	RW
b7 b6 b5 b4 b3 b2		Symbol ADCON	1 03D716	0016	
b7 b6 b5 b4 b3 b2		Symbol ADCON Bit symbol	1 03D716 Bit name	0016 Function	RV
b7 b6 b5 b4 b3 b2	b1 b0	Symbol ADCON Bit symbol SCAN0	1 03D716 Bit name	0016 Function	RV
b7 b6 b5 b4 b3 b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1	1 03D716 Bit name A/D sweep pin select bit	0016 Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1	RW
b7 b6 b5 b4 b3 b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1 MD2	1 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1	0016 Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1	RW RW RW
b7 b6 b5 b4 b3 b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3)	1 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit	0016 Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 Must always be set to "0"	RW RW RW RW
b7 b6 b5 b4 b3 b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3) CKS1	1 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit 1	0016 Function Function varies with each operation mode 0: Any mode other than repeat sweep mode 1 1: Repeat sweep mode 1 Must always be set to "0" See Note 2 for the ADCON2 register 0: Vref not connected	RW RW RW RW RW RW

12.1 One-shot Mode

In this mode, the input voltage on one selected pin is A/D converted once. Table 12.2 shows the specifications of one-shot mode. Figure 12.4 shows the ADCON0 to ADCON1 registers in one-shot mode.

Table 12.2	One-shot Mode Specifications
------------	------------------------------

Item	Specification
Function	The input voltage on one pin selected by the ADCON0 register's CH2 to CH0
	bits and the ADCON1 register's OPA1 to OPA0 bits is A/D converted once.
A/D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
	 When the TRG bit is "1" (ADTRG trigger)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST bit is
	set to "1" (A/D conversion starts)
A/D conversion stop condition	Completion of A/D conversion (If a software trigger is selected, the ADST bit
	is cleared to "0" (A/D conversion halted).)
	• Set the ADST bit to "0"
Interrupt request generation timing	Completion of A/D conversion
Analog input pin	Select one pin from AN0 to AN7, ANEX0 to ANEX1
Reading of result of A/D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

	ADCON	I0 03D616	00000XXX2	
	Bit symbol	Bit name	Function	RW
	CH0	Analog input pin select bit	0 0 0 : AN0 is selected 0 0 1 : AN1 is selected	RW
· · · · · · · · · · · · · · · · · · ·	CH1		0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected	RV
	CH2		1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected (Note 2)	RV
	MD0 MD1	A/D operation mode select bit 0	0 0 : One-shot mode (Note 2)	RV RV
	TRG	Trigger select bit	0 : Software trigger 1 : ADTRG trigger	RW
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	RW
/D control register -	MD1 to MD0 b 1 (Note) 1 Symbol	Address	s over again using another instruction. After reset	
Note 2: After rewriting the	MD1 to MD0 b 1 (Note) Symbol ADCON	Address I1 03D716	After reset 0016	RW
Vote 2: After rewriting the	MD1 to MD0 b (Note) Symbol ADCON Bit symbol	Address I1 03D716 Bit name	After reset 0016 Function	-
/D control register	MD1 to MD0 b 1 (Note) Symbol ADCON	Address I1 03D716	After reset 0016	RW
Note 2: After rewriting the	MD1 to MD0 b 1 (Note) Symbol ADCON Bit symbol SCAN0	Address 11 03D716 Bit name A/D sweep pin	After reset 0016 Function	RW RW
lote 2: After rewriting the	MD1 to MD0 b 1 (Note) Symbol ADCON Bit symbol SCAN0 SCAN1	Address 11 03D716 Bit name A/D sweep pin select bit A/D operation mode	After reset 0016 Function Invalid in one-shot mode	RW RW RW
Note 2: After rewriting the	MD1 to MD0 b (Note) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1	After reset 0016 Function Invalid in one-shot mode Set to "0" when one-shot mode is selected	RW RW RW
/D control register	MD1 to MD0 b 1 (Note) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3)	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit	After reset 0016 Function Invalid in one-shot mode Set to "0" when one-shot mode is selected Must always be set to "0"	RW RW RW RW
Note 2: After rewriting the	MD1 to MD0 b Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3) CKS1	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit1	After reset 0016 Function Invalid in one-shot mode Set to "0" when one-shot mode is selected Must always be set to "0" See Note 2 for the ADCON2 register	RW RW RW RW RW RW RW RW

Figure 12.4 ADCON0 Register and ADCON1 Register (One-shot Mode)

12.2 Repeat mode

In this mode, the input voltage on one selected pin is A/D converted repeatedly. Table 12.3 shows the specifications of repeat mode. Figure 12.5 shows the ADCON0 to ADCON1 registers in repeat mode.

Table 12.3	Repeat Mode Specifications
------------	----------------------------

Item	Specification
Function	The input voltage on one pin selected by the ADCON0 register's CH2 to CH0
	bits and the ADCON1 register's OPA1 to OPA0 bits is A/D converted
	repeatedly.
A/D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST bit is
	set to "1" (A/D conversion starts)
A/D conversion stop condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt request generation timing	None generated
Analog input pin	Select one pin from AN0 to AN7, ANEX0 to ANEX1
Reading of result of A/D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

	Symbol ADCON		After reset 00000XXX2	
	Bit symbol	Bit name	Function	RW
	СН0	Analog input pin select bit	0 0 0 : ANo is selected 0 0 1 : ANi is selected	RW
	СН1	_	0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected	RW
	CH2		1 0 1 : AN5 is selected1 1 0 : AN6 is selected1 1 1 : AN7 is selected(Note 2)	RV
	MD0	A/D operation mode select bit 0	0 1 : Repeat mode (Note 2)	RV
	MD1	Trigger select bit	0 : Software trigger	RW
L	TRG		1 : ADTRG trigger	RW
<u> </u>	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	RW
	MD1 to MD0 t 1 (Note) ۲ Symbol	bits, set the CH2 to CH0 bit Address	the conversion result will be indeterminate. s over again using another instruction. After reset	
Note 2: After rewriting the	MD1 to MD0 to MD0 to MD1 to MD0 to MD1 to MD0 to MD1 to MD0 to MD1 to MD	Address 11 03D716	s over again using another instruction. After reset 0016	
Note 2: After rewriting the	MD1 to MD0 to MD0 to MD1 to MD	Address Address 11 03D716 Bit name	s over again using another instruction. After reset 0016 Function	RW
Note 2: After rewriting the	MD1 to MD0 to (Note) Symbol ADCON Bit symbol SCAN0	Address 11 03D716	s over again using another instruction. After reset 0016	RW
Note 2: After rewriting the	MD1 to MD0 to MD0 to MD1 to MD	Address Address 03D716 Bit name A/D sweep pin select bit A/D operation mode	s over again using another instruction. After reset 0016 Function	RW RW
Note 2: After rewriting the	MD1 to MD0 to MD0 to MD1 to MD0 to MD1 to MD0 to MD1 to MD0 to MD	Address Address 11 03D716 Bit name A/D sweep pin select bit	s over again using another instruction. After reset 0016 Function Invalid in repeat mode	RW RW RW
Note 2: After rewriting the	MD1 to MD0 to MD0 to MD1 to MD0 to MD1 to MD0 to MD1 to MD2	Address Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1	s over again using another instruction. After reset 0016 Function Invalid in repeat mode Set to "0" when this mode is selected	RW RW RW
Note 2: After rewriting the	MD1 to MD0 to MD1 to MD0 to Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3)	Address Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit	s over again using another instruction. After reset 0016 Function Invalid in repeat mode Set to "0" when this mode is selected Must always be set to "0"	RW RW RW RV
Note 2: After rewriting the	MD1 to MD0 to MD1 to MD0 to Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3) CKS1	Address Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit 1	s over again using another instruction. After reset 0016 Function Invalid in repeat mode Set to "0" when this mode is selected Must always be set to "0" See Note 2 for the ADCON2 register	RW RW RW RW RW RW RW

Figure 12.5 ADCON0 Register and ADCON1 Register (Repeat Mode)

12.3 Single Sweep Mode

In this mode, the input voltages on selected pins are A/D converted, one pin at a time. Table 12.4 shows the specifications of single sweep mode. Figure 12.6 shows the ADCON0 to ADCON1 registers in single sweep mode.

Table 12.4	Single Sweep	Mode S	pecifications

Item	Specification
Function	The input voltages on pins selected by the ADCON1 register's SCAN1 to
	SCAN0 bits are A/D converted, one pin at a time.
A/D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
	• When the TRG bit is "1" (ADTRG trigger)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST bit is
	set to "1" (A/D conversion starts)
A/D conversion stop condition	Completion of A/D conversion (If a software trigger is selected, the ADST bit
	is cleared to "0" (A/D conversion halted).)
	• Set the ADST bit to "0"
Interrupt request generation timing	Completion of A/D conversion
Analog input pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), AN0
	to AN7 (8 pins)
Reading of result of A/D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

b6 b5 b4 b3 b2 b1 b0] Symbol ADCON		After reset 00000XXX2	
	Bit symbol	Bit name	Function	R
	СН0	Analog input pin select bit	Invalid in single sweep mode	R
	CH1]		R
	CH2			R۱
· · · · · · · · · · · · · · · · · · ·	MD0	A/D operation mode select bit 0	1 0 : Single sweep mode	R١
	MD1			R١
	. TRG	Trigger select bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	R٧
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	RV
Note: If the ADCON0 reg	ister is rewritte	Address	e conversion result will be indeterminate. After reset 0016	<u> </u>
/D control register ^	ister is rewritter 1 (Note 1) 3 Symbol	Address	After reset	
/D control register ^	ister is rewritter 1 (Note 1) Symbol ADCON	Address I1 03D716	After reset 0016 Function When single sweep mode is selected	R
/D control register ^	ister is rewritter (Note 1) Symbol ADCON Bit symbol	Address I1 03D716 Bit name	After reset 0016 Function	R
/D control register ^	I (Note 1) Symbol ADCON Bit symbol SCAN0	Address I1 03D716 Bit name	After reset 0016 Function When single sweep mode is selected ^{b1 b0} 0 0 : AN0 to AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	R) R) R)
/D control register ^	ister is rewritter (Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode	After reset 0016 Function When single sweep mode is selected ^{b1 b0} 0 0 : ANo to AN1 (2 pins) 0 1 : ANo to AN3 (4 pins) 1 0 : ANo to AN5 (6 pins) 1 1 : ANo to AN7 (8 pins)	
/D control register ^	ister is rewritter (Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2	Address 11 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1	After reset 0016 Function When single sweep mode is selected 0 0 : ANo to AN1 (2 pins) 0 1 : ANo to AN3 (4 pins) 1 0 : ANo to AN3 (6 pins) 1 1 : ANo to AN7 (8 pins) Set to "0" when single sweep mode is selected	
/D control register ^	I (Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3)	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit	After reset 0016 Function When single sweep mode is selected 0 0 : ANo to AN1 (2 pins) 0 1 : ANo to AN3 (4 pins) 1 0 : ANo to AN3 (4 pins) 1 0 : ANo to AN5 (6 pins) 1 1 : ANo to AN7 (8 pins) Set to "0" when single sweep mode is selected Must always be set to "0"	RI RI RI
/D control register ^	ister is rewritter ister is rewritter (Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1 SCAN1 MD2 (b3) CKS1	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit 1	After reset 0016 Function When single sweep mode is selected 0 0 : AN0 to AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) Set to "0" when single sweep mode is selected Must always be set to "0" See Note 2 for the ADCON2 register	

Figure 12.6 ADCON0 Register and ADCON1 Register (Single Sweep Mode)

12.4 Repeat Sweep Mode 0

In this mode, the input voltages on selected pins are A/D converted repeatedly. Table 12.5 shows the specifications of repeat sweep mode 0. Figure 12.7 shows the ADCON0 to ADCON1 registers in repeat sweep mode 0.

Table 12.5 Repea	t Sweep	Mode 0	Specifications
------------------	---------	--------	----------------

Item	Specification
Function	The input voltages on pins selected by the ADCON1 register's SCAN1 to
	SCAN0 bits are A/D converted repeatedly.
A/D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
	• When the TRG bit is "1" (ADTRG trigger)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST bit is
	set to "1" (A/D conversion starts)
A/D conversion stop condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt request generation timing	None generated
Analog input pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), AN0
	to AN7 (8 pins)
Reading of result of A/D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

b7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON	Address 0 03D616	After reset 00000XXX2	
	Bit symbol	Bit name	Function	RV
	CH0	Analog input pin select bit	Invalid in repeat sweep mode 0	RV
	CH1			RV
	CH2			RV
	MD0	A/D operation mode	^{b4 b3} 1 1 : Repeat sweep mode 0 or	RV
	MD1	select bit 0	Repeat sweep mode 1	R\
	TRG	Trigger select bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	RV
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
L	CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	R۱
	ADCON Bit symbol	1 03D716 Bit name	0016 Function	
A/D control register 1	(Note 1) Symbol	Address	After reset	
	Bit symbol	Bit name	Eunction	
		2.1.1.4.1.10	I difetion	RV
	SCAN0	A/D sweep pin select bit	When repeat sweep mode 0 is selected	R
			When repeat sweep mode 0 is selected	RV
	SCAN0		When repeat sweep mode 0 is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	RV
	SCAN0 SCAN1	A/D sweep pin select bit	When repeat sweep mode 0 is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) Set to "0" when repeat sweep mode 0 is	R\ R\ R\
	SCAN0 SCAN1 MD2	A/D sweep pin select bit A/D operation mode select bit 1	When repeat sweep mode 0 is selected ^{b1b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) Set to "0" when repeat sweep mode 0 is selected	
	SCAN0 SCAN1 MD2 (b3)	A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit	When repeat sweep mode 0 is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) Set to "0" when repeat sweep mode 0 is selected Must always be set to "0"	RV RV RV RV
	SCAN0 SCAN1 MD2 (b3) CKS1	A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit 1 Vref connect bit (Note 2) External op-amp connection mode	When repeat sweep mode 0 is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) Set to "0" when repeat sweep mode 0 is selected Must always be set to "0" See Note 2 for the ADCON2 register	
	SCAN0 SCAN1 MD2 (b3) CKS1 VCUT	A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit 1 Vref connect bit (Note 2) External op-amp	When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) Set to "0" when repeat sweep mode 0 is selected Must always be set to "0" See Note 2 for the ADCON2 register 1 : Vref connected b7 b6 0 0 : ANEX0 and ANEX1 are not used	

Figure 12.7 ADCON0 Register and ADCON1 Registers (Repeat Sweep Mode 0)

12.5 Repeat Sweep Mode 1

In this mode, the input voltages on all pins are A/D converted repeatedly, with priority given to the selected pins. Table 12.6 shows the specifications of repeat sweep mode 1. Figure 12.8 shows the ADCON0 to ADCON1 registers in repeat sweep mode 1.

Table 12.6 Repeat Sweep Mode 1 Specification	ons
--	-----

Item	Specification
Function	The input voltages on all selected pins are A/D converted repeatedly, with prior-
	ity given to pins selected by the ADCON1 register's SCAN1 to SCAN0 bits.
	Example : If AN0 selected, input voltages are A/D converted in order of
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A/D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
	• When the TRG bit is "1" (ADTRG trigger)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST bit is
	set to "1" (A/D conversion starts)
A/D conversion stop condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt request generation timing	None generated
Analog input pins to be given	Select from AN0 (1 pins), AN0 to AN1 (2 pins), AN0 to AN2 (3 pins), AN0 to AN3
priority when A/D converted	(4 pins)
Reading of result of A/D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

b6 b5 b4 b3 b2 b1 b0	Symbol ADCON		After reset 00000XXX2	
	Bit symbol	Bit name	Function	R\
	CH0	Analog input pin select bit	Invalid in repeat sweep mode 1	R\
	CH1			R\
	CH2			R\
	MD0	A/D operation mode select bit 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RV
	MD1			RV
	TRG	Trigger select bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	RV
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	RV
e: If the ADCON0 regist Control register 7 1 0 1 1		Address	L conversion result will be indeterminate. After reset 0016	1
control register ²	I (Note 1) Symbol ADCON	Address	After reset 0016	
control register ²	l (Note 1) I Symbol	Address	After reset 0016 Function When repeat sweep mode 1 is selected	
control register ²	I (Note 1) Symbol ADCON Bit symbol SCAN0	Address 1 03D716 Bit name	After reset 0016 Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin)	
control register 7	(Note 1) Symbol ADCON Bit symbol	Address 1 03D716 Bit name	After reset 0016 Function When repeat sweep mode 1 is selected	RV
control register ²	I (Note 1) Symbol ADCON Bit symbol SCAN0	Address 1 03D716 Bit name	After reset 0016 Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins)	RV
ontrol register ²	(Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode	After reset 0016 Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) Set to "1" when repeat sweep mode 1 is	RV RV RV RV RV
control register ²	(Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1	After reset 0016 Function When repeat sweep mode 1 is selected ^{b1b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) Set to "1" when repeat sweep mode 1 is selected	RV RV RV
control register	(Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3)	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit	After reset 0016 Function When repeat sweep mode 1 is selected ^{b1b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) Set to "1" when repeat sweep mode 1 is selected Must always be set to "0"	
control register 7	(Note 1) Symbol ADCON Bit symbol SCAN0 SCAN1 MD2 (b3) CKS1	Address 03D716 Bit name A/D sweep pin select bit A/D operation mode select bit 1 Reserved bit Frequency select bit 1	After reset 0016 Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) Set to "1" when repeat sweep mode 1 is selected Must always be set to "0" See Note 2 for the ADCON2 register	RV RV RV

Figure 12.8 ADCON0 Register and ADCON1 Register (Repeat Sweep Mode 1)

12.6 Sample and Hold

If the ADCON2 register's SMP bit is set to "1" (with sample-and-hold), the conversion speed per pin is increased to 28 \phiAD cycles for 8-bit resolution. Sample-and-hold is effective in all operation modes. Select whether or not to use the sample-and-hold function before starting A/D conversion.

12.7 Extended Analog Input Pins

In one-shot and repeat modes, the ANEX0 and ANEX1 pins can be used as analog input pins. Use the ADCON1 register's OPA1 to OPA0 bits to select whether or not use ANEX0 and ANEX1. The A/D conversion results of ANEX0 and ANEX1 inputs are stored in the AD0 and AD1 registers, respectively.

12.8 External Operation Amp Connection Mode

Multiple analog inputs can be amplified using a single external op-amp via the ANXE0 and ANEX1 pins. Set the ADCON1 register's OPA1 OPA0 bits to '112' (external op-amp connection mode). The inputs from ANi (i = 0 to 7) are output from the ANEX0 pin. Amplify this output with an external op-amp before sending it back to the ANEX1 pin. The A/D conversion result is stored in the corresponding ADi register. The A/D conversion speed depends on the response characteristics of the external op-amp. Note that the ANXE0 and ANEX1 pins cannot be directly connected to each other. Figure 12.9 is an example of how to connect the pins in external operation amp.

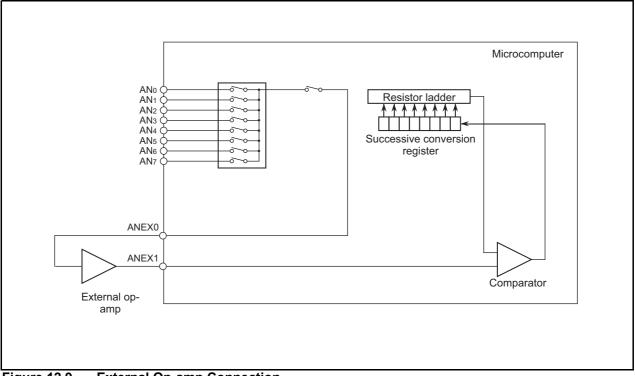


Figure 12.9 External Op-amp Connection

12.9 Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the ADCON1 register's VCUT bit. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to "1" (VREF connected) and then set the ADCON0 register's ADST bit to "1" (A/D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (VREF unconnected) during A/D conversion.

12.10 Analog Input Pin and External Sensor Equivalent Circuit Example

Figure 12.10 shows analog input pin and external sensor equivalent circuit example.

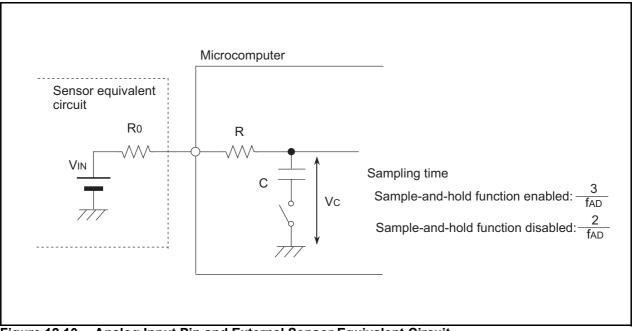


Figure 12.10 Analog Input Pin and External Sensor Equivalent Circuit

12.11 Caution of Using A/D Converter

- (1) Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the ADCON0 register's TGR bit = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).
- (2) To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi (i=0 to 7)) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 12.11 is an example connection of each pin.
- (3) If the CPU reads the ADi register (i = 0 to 7) at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.
 - •When operating in one-shot or single-sweep mode Check to see that A/D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
 - •When operating in repeat mode or repeat sweep mode 0 or 1 Use the main clock for CPU clock directly without dividing it.
- (4) If A/D conversion is forcibly terminated while in progress by setting the ADCON0 register's ADST bit to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of ADi registers irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is cleared to "0" in a program, ignore the values of all ADi registers.

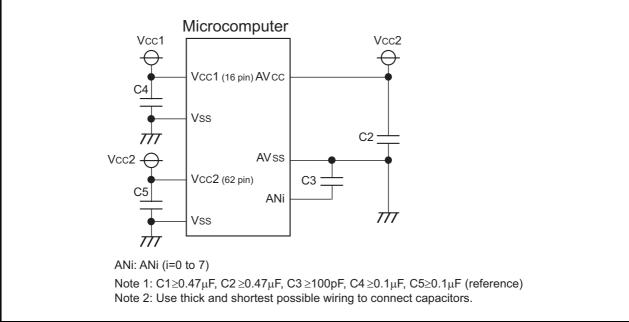


Figure 12.11 Vcc, Vss, AVcc, AVss, VREF and ANi Connection

13. CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8 bit units. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles.

Figure 13.1 shows the block diagram of the CRC circuit. Figure 13.2 shows the CRC-related registers.

Figure 13.3 shows the calculation example using the CRC operation.

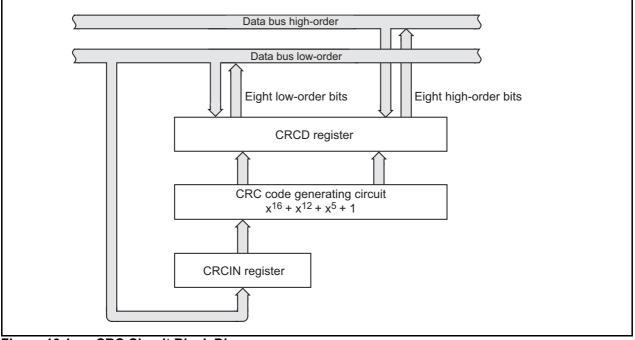


Figure 13.1 CRC Circuit Block Diagram

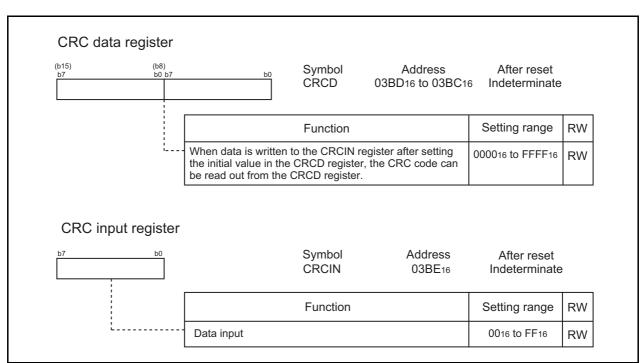
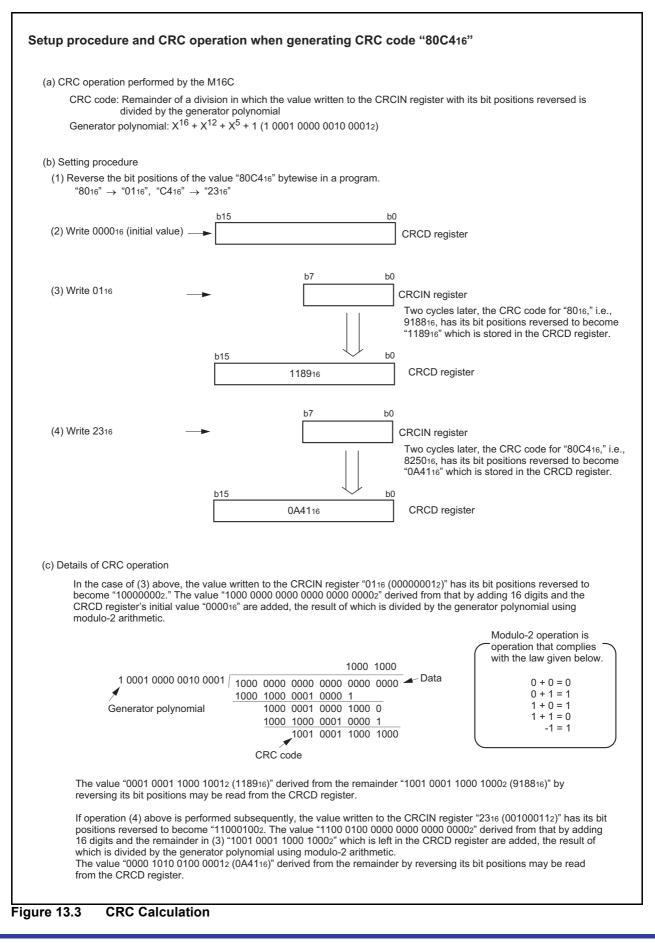



Figure 13.2 CRCD Register and CRCIN Register

14. Expansion Function

14.1 Expansion function description

Expansion function consists of CRC operation function, data slice function and humming decoder function. Each function is controlled by expansion memories.

1. CRC operation function

It performs error detection of a code, and error correction.

2. Data slice function

It performs data acquisition to get such format data as below. Hardware : TELETEXT, PDC, VPS, VBI and EPG-J Software : WSS, CC, CC2X and ID-1

3. Humming decoder function

It performs 8/4 humming and 24/18 humming

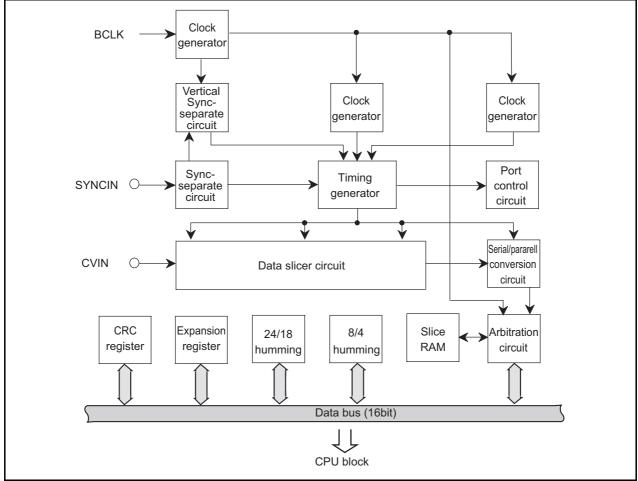


Figure 14.1 Block diagram of expansion function

14.2 Expansion memory

Expansion function memory is divided by 3 patterns; Slice RAM, CRC registers and expansion registers (Humming decoder operates by the register placed on SFR). Data writing and read out to the Slice RAM, CRC registers and the expansion registers are carried out per 16 bit unit by the data setting register (addresses 020E16, 021016, 021216, 021416, 021616 and 021816) placed on SFR.

Contents of each memory and data setting register are shown in Table 14.1.

Table 14.1	Expansion memory compos	ition
------------	-------------------------	-------

Expansion memory	Contents	Data setting register
Slice RAM	This register holds acquired data.	Slice RAM address control register (020E16) Slice RAM data control register (021016)
CRC register	This register controls a set up generation polynomial and code data.	CRC register address control register (021216) CRC register data control register (021416)
Expansion register	This register performs data slicer control and	Expansion register address control register (021616)
	VBI encoder control.	Expansion register data control register (021816)

14.3 Slice RAM

Slice RAM stores 18-line slice data. There are several types of Slice data : PDC, VPS, VBI, XDS, WSS, etc. All data are stored to addresses which corresponds to slice line (ex. 22 line' data is stored to addresses 20016 to 21716). 24 addresses (SR00x to SR17x) are prepared for 1 line, slice data is stored in order from LSB side. Then, slice data type and field information are stored to the top address of each line. Slice RAM composition is shown in Table 14.2.

Slice RAM addresses (SA9 to SA0)	SD15	SD14	SD13	SD12	SD11	SD10	SD9	SD8	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0	Remarks (Note1)
00016	SR00F	SR00E	SR00D	SR00C	SR00B	SR00A	SR009	SR008	SR007	SR006	SR005	SR004	SR003	SR002	SR001	SR000	6th line or 318th line
00116	SR01F	SR01E	SR01D	SR01C	SR01B	SR01A	SR019	SR018	SR017	SR016	SR015	SR014	SR013	SR012	SR011	SR010	slice data
to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	
01616	SR16F	SR16E	SR16D	SR16C	SR16B	SR16A	SR169	SR168	SR167	SR166	SR165	SR164	SR163	SR162	SR161	SR160	
01716	SR17F	SR17E	SR17D	SR17C	SR17B	SR17A	SR179	SR178	SR177	SR176	SR175	SR174	SR173	SR172	SR171	SR170	
01816																	
to								Unus	ed area	a							
01F16																	
02016	SR00F	SR00E	SR00D	SR00C	SR00B	SR00A	SR009	SR008	SR007	SR006	SR005	SR004	SR003	SR002	SR001	SR000	7th line or 319th line
to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	slice data
03716	SR17F	SR17E	SR17D	SR17C	SR17B	SR17A	SR179	SR178	SR177	SR176	SR175	SR174	SR173	SR172	SR171	SR170	
04016																	8th line to 21th line
to																	or 320th line to 333 line
1F716																	slice data
20016	SR00F	SR00E	SR00D	SR00C	SR00B	SR00A	SR009	SR008	SR007	SR006	SR005	SR004	SR003	SR002	SR001	SR000	22th line or 334th line
to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	slice data
21716	SR17F	SR17E	SR17D	SR17C	SR17B	SR17A	SR179	SR178	SR177	SR176	SR175	SR174	SR173	SR172	SR171	SR170	
22016	SR00F	SR00E	SR00D	SR00C	SR00B	SR00A	SR009	SR008	SR007	SR006	SR005	SR004	SR003	SR002	SR001	SR000	23th line or 335th line
to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	slice data
23716	SR17F	SR17E	SR17D	SR17C	SR17B	SR17A	SR179	SR178	SR177	SR176	SR175	SR174	SR173	SR172	SR171	SR170	

Table 14.2 Slice RAM composition

Note 1. This is the line to support when the PAL video signal is sliced and setting the expansion registers to VPS_VP8 to VPS_VP0 (bits 8 to 0 in address 2916) = "416".

For accessing to Slice RAM data, set accessing address (SA9 to SA0) (shown in Table 14.2) to Slice RAM address control register (address 020E16). Then read out data from Slice RAM data control register (address 021016). When end the data reading, Slice RAM address control register increments address automatically. Then, next address data reading is possible. Do not access to unused area of each character codes. Must set address to each line because unused area has no address' automatically increment.

Slice RAM bit composition is shown in Figure 14.2, Slice RAM access registers are shown in Figure 14.3 and Slice RAM access block diagram is shown in Figure 14.4

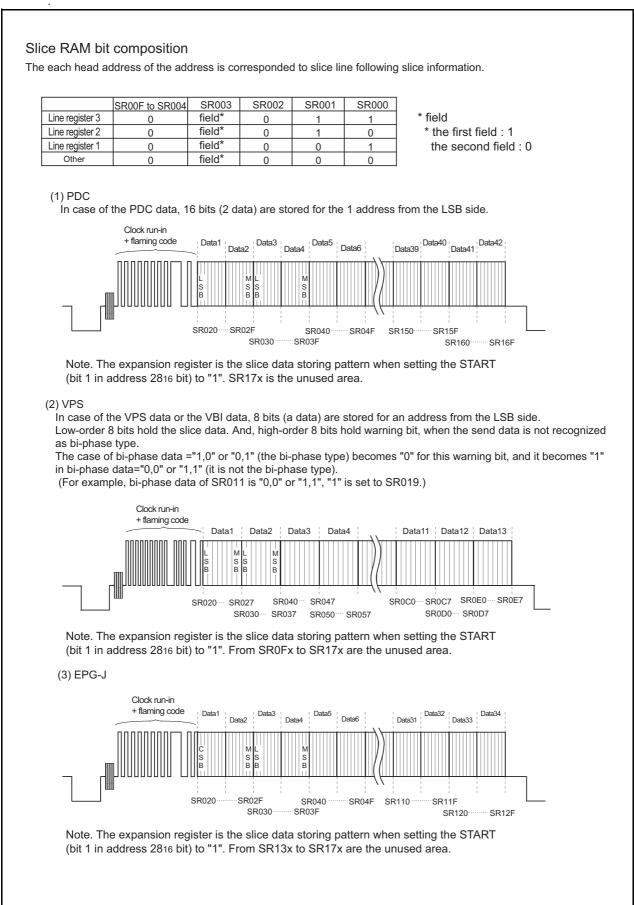
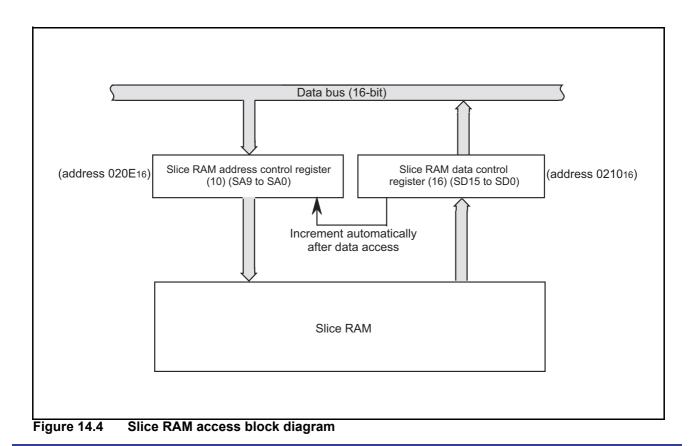
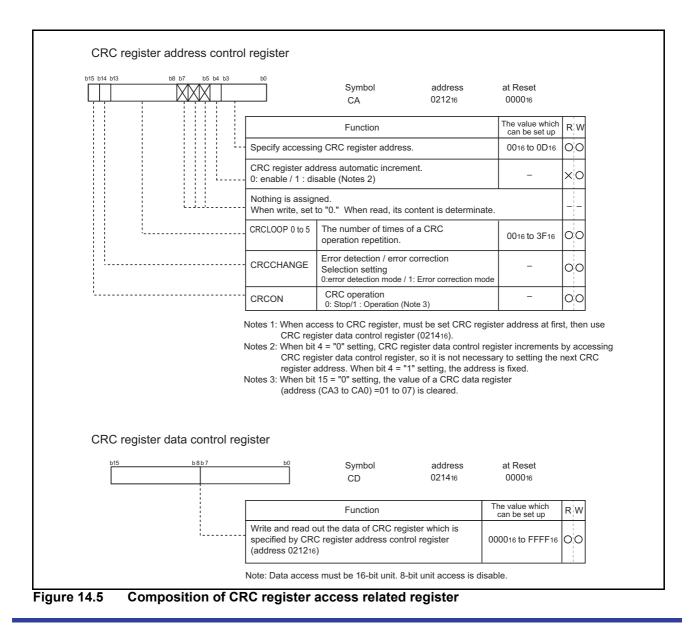



Figure 14.2 Slice RAM bit composition

.

	b8 b7 b0	Symbol SA	Address 020E16	When rese 000016	t
	Fun	ction	Setting	possible value R	Ŵ
	Specify accessing Slice RA	M address	00	D16 to 23716	x 0
	Nothing is assigned. When write, set to "0." When read, its content is in	determinate.	I	-	
	set at first. Slice RAM address co	ntrol register increr	ments by accessing	Slice RAM	
	data control register. So Note 2 : When read Slice RAM after 1 horizontal syncl (refer to 14.6 Expansic period).	, it is not neccesary data by software on nronous period from	/ to setting the next s during slicer operati m the completion of	Blice RAM address. on, access to Slice f a SLICEON	
Slice RAM data co	Note 2 : When read Slice RAM after 1 horizontal syncl (refer to 14.6 Expansic period).	, it is not neccesary data by software on nronous period from	/ to setting the next s during slicer operati m the completion of	Blice RAM address. on, access to Slice f a SLICEON	
Slice RAM data co	Note 2 : When read Slice RAM after 1 horizontal syncl (refer to 14.6 Expansic period).	, it is not neccesary data by software on nronous period from	/ to setting the next s during slicer operati m the completion of	Blice RAM address. on, access to Slice f a SLICEON	e RAN
	Note 2 : When read Slice RAM after 1 horizontal syncl (refer to 14.6 Expansic period).	, it is not neccesary data by software on nonous period from n Register Constru- Symbol	v to setting the next s during slicer operati m the completion or uction Composition Address	Slice RAM address. on, access to Slice f a SLICEON for a SLICEON When reset 000016	e RAN

Figure 14.3 Slice RAM access registers.


14.4 CRC Operation Circuit (EPG-J)

CRC operation circuit (EPG-J) is a circuit for performing error detection and error correction by the 272-190 shortening difference set cyclic code which is a coding system in a data multiplex broadcast.

CRC register consists of registers shown in Figure 14.5. CRC register can perform error detection and error correction by majority logic by setting up a generator polynomial, code data, etc. CRC register composition is shown in Table 14.3.

Table 14.3 CRC register composition

CA3 to CA0	CD15	CD14	CD13	CD12	CD11	CD10	CD9	CD8	CD7	CD6	CD5	CD4	CD3	CD2	CD1	CD0	Remarks
0016	DAOUT15	DAOUT14	DAOUT13	DAOUT12	DAOUT11	DAOUT10	DAOUT9	DAOUT8	DAOUT7	DAOUT6	DAOUT5	DAOUT4	DAOUT3	DAOUT2	DAOUT1	DAOUT0	
0116	-	-	-	-	-	CRC_ERR10	CRC_ERR09	CRC_ERR08	CRC_ERR07	CRC_ERR06	CRC_ERR05	CRC_ERR04	CRC_ERR03	CRC_ERR02	CRC_ERR01	CRC_ERR00	
0216	CRC_66	CRC_67	CRC_68	CRC_69	CRC_70	CRC_71	CRC_72	CRC_73	CRC_74	CRC_75	CRC_76	CRC_77	CRC_78	CRC_79	CRC_80	CRC_81	
0316	CRC_50	CRC_51	CRC_52	CRC_53	CRC_54	CRC_55	CRC_56	CRC_57	CRC_58	CRC_59	CRC_60	CRC_61	CRC_62	CRC_63	CRC_64	CRC_65	
0416	CRC_34	CRC_35	CRC_36	CRC_37	CRC_38	CRC_39	CRC_40	CRC_41	CRC_42	CRC_43	CRC_44	CRC_45	CRC_46	CRC_47	CRC_48	CRC_49	
0516	CRC_18	CRC_19	CRC_20	CRC_21	CRC_22	CRC_23	CRC_24	CRC_25	CRC_26	CRC_27	CRC_28	CRC_29	CRC_30	CRC_31	CRC_32	CRC_33	
0616	CRC_02	CRC_03	CRC_04	CRC_05	CRC_06	CRC_07	CRC_08	CRC_09	CRC_10	CRC_11	CRC_12	CRC_13	CRC_14	CRC_15	CRC_16	CRC_17	
0716	-	_	-	-	_	-	-	-	-	-	-	-	_	-	CRC_00	CRC_01	
0816	REG_C81	REG_C80	REG_C79	REG_C78	REG_C77	REG_C76	REG_C75	REG_C74	REG_C73	REG_C72	REG_C71	REG_C70	REG_C69	REG_C68	REG_C67	REG_C66	
0916	_	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	
0A16	_	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	
0B16	-	_	-	-	-	-	_	-	_	-	_	_	_	-	_	-	
0C16	-	-	-	-	-	-	_	-	_	-	_	_	_	-	_	-	
0D16	-	_	_	-	-	_	-	_	-	_	-	CRC16SEL	-	_	_	-	

For accessing to CRC register data, set accessing address (CA3 to CA0) (shown in Table 14.3) to CRC register address control register (address 021216). Then write data (CD15 to CD0) by CRC register data control register (address 021416). When end the data accessing, CRC register address control register increments address automatically. Then, next address data writing is possible.

CRC register access registers are shown in Figure 14.5, CRC register access block diagram is shown in Figure 14.6. The operation example of CRC operation circuit is shown in Figure 14.7. The example of program is shown in Figure 14.8, and CRC register bit compositions are shown in p191 to p199.

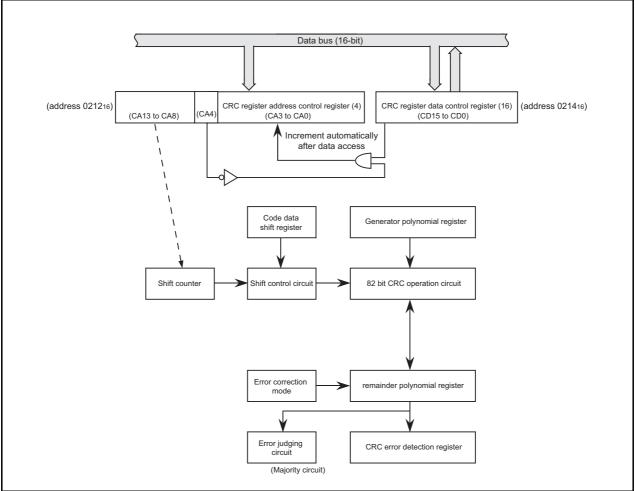


Figure 14.6 Access block diagram for CRC registers

M306H7MG-XXXFP/MC-XXXFP/FGFP

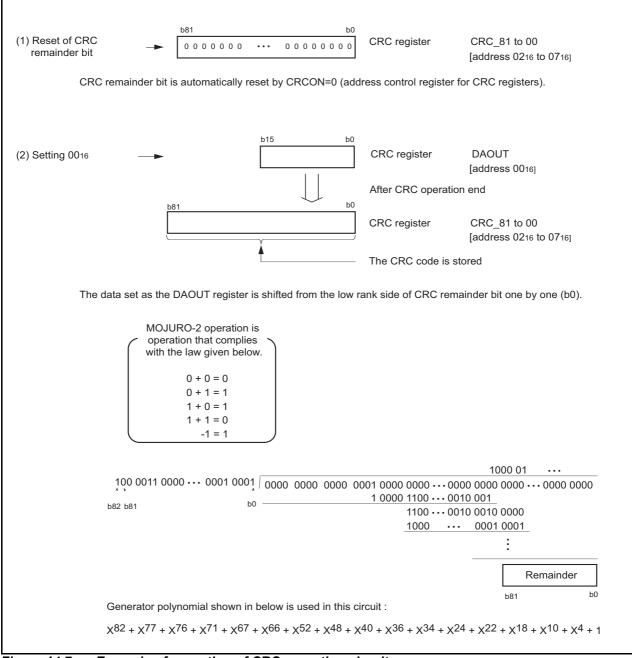


Figure 14.7 Example of operation of CRC operation circuit

M306H7MG-XXXFP/MC-XXXFP/FGFP

		·		
		(Constant definition)		
CRC_A		.equ	00212h	; SFR address of CRC register address control register
CRC_D/	ATA	.equ	00214h	; SFR address of CRC register data control register
SLICE_W	ORD_NUM	.equ	17	; Code data length (in nuits of word)
	Macro def	inition		
wait	.macro			
	nop nop			
	nop			
endm				
		ation routine		
S	etting of gen	erator polynomial		
-	mov.w	#0008H	, _CRC_ADRS	; Set the head address of the generator polynomial register
	_wait			; Wait
	mov.w	0000110000100011B	, _CRC_DATA	; Coefficient of generator polynomial 82nd to 66th (x^77 +x~76 +x^71 +x^67 +x^66)
Writ	ing of code d mov.w	ata #0000H	, _CRC_ADRS	; Initialization of CRC register address control register
	mov.w	#9010H	,_CRC_ADRS	; Set up of CRCON=1, CRCCHANGE=0, CRCLOOP=10H, Increment=ON, and CRC address=00H
	mov.w	#0000H	, A0	; Initialization of a loop variable (A0)
.18:				; Branch label
	cmp.w	#SLICE_WORD_NUM*2	, A0	; Comparison of the loop variable
	jgeu Ide.w	L20 _CrcCodeData[A0]	, _CRC_DATA	; Go to L20 if writing code data is finished. ; Writing code data to the code data shift register.
	add.w	#0002H	,A0	; Increment of the address storing code data.
	jmp	L18		; Return to the head of this loop.
.20:				; Branch label
D	ummy shift -			
		shing writing 272-bit code data,		
	; shift a bi	for dummy surely in error correct	tion mode.	
			M11	
		ng 1-bit is set up by CRCLOOP=0		
	mov.w	ig 1-bit is set up by CRCLOOP=0 #8100H)1H. , _CRC_ADRS	
				; Set up of CRCON=1, CRCCHANGE=0, CRCLOOP=10H, Increment=OFF, and CRC address=00H ; Wait ; Writing data to the code data shift register for dummy shift.
	mov.w _wait mov.w	#8100H #0000H	, _CRC_ADRS	; Wait
	mov.w _wait mov.w	#8100H #0000H	, _CRC_ADRS , _CRC_DATA	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au	#8100H #0000H I	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au	#8100H #0000H tomatic increment in dummy shift rr CRC registers, the processing s	, _CRC_ADRS , _CRC_DATA	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au ccessing othe	#8100H #0000H tomatic increment in dummy shift rr CRC registers, the processing s	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au ccessing other mov.w	#8100H #0000H tomatic increment in dummy shift rr CRC registers, the processing s	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au ccessing othe mov.w _wait mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w e address au ccessing other mov.w _wait mov.w cmp.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au ccessing othe mov.w _wait mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa	; Wait ; Writing data to the code data shift register for dummy shift. here. ry. ; Set up of CRCON=1, CRCCHANGE=0, CRCLOOP=10H, Incremet=OFF and CRC address=01H. ; Wait ; Read of CRC error detection register.
Since the	mov.w _wait mov.w rror detection e address au ccessing other mov.w _wait mov.w cmp.w jeq	#8100H #0000H tomatic increment in dummy shift rr CRC registers, the processing e #9001H , _CRC_ADRS _CRC_DATA #0000H L16	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w e address au ccessing other mov.w _wait mov.w cmp.w	#8100H #0000H tomatic increment in dummy shift rr CRC registers, the processing e #9001H , _CRC_ADRS _CRC_DATA #0000H L16	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w _wait mov.w rror detection e address au ccessing othe mov.w _wait mov.w cmp.w jeq rror correctio	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0	; Wait ; Writing data to the code data shift register for dummy shift. here. iry. ; Set up of CRCON=1, CRCCHANGE=0, CRCLOOP=10H, Incremet=OFF and CRC address=01H. ; Wait ; Read of CRC error detection register. ; Judgement of CRC error. ; In the case of R0=0, branch to L16 since CRC error has not occurred (CRC error correction is skip
Since the When ac	mov.w _wait mov.w rror detection e address au ccessing othe mov.w _wait mov.w cmp.w jeq rror correction mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0	; Wait ; Writing data to the code data shift register for dummy shift.
Since the	mov.w wait mov.w erddreection e address au ccessing other mov.w wait mov.w ijeq mor.w jeq mov.w iwait	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #0000H	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , R0 , A0	: Wait : Writing data to the code data shift register for dummy shift.
Since the When ac	mov.w wait mov.w rror detection e address au ccessing other mov.w wait mov.w cmp.w jeq rror correction mov.w wait mov.w wait mov.w wait	#8100H #0000H tomatic increment in dummy shift or CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #0000H #SLICE_WORD_NUB	CRC_ADRS CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa ., R0 ., R0 ., CRC_ADRS	; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac	mov.w wait mov.w rror detection e address au ccessing othe mov.w wait mov.w cmp.w jeq rror correction mov.w wait mov.w wait mov.w cmp.w jeq	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0000H #0000H #SLICE_WORD_NUB L24	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , R0 , R0 , A0	 ; Wait ; Writing data to the code data shift register for dummy shift. here. iry. ; Set up of CRCON=1, CRCCHANGE=0, CRCLOOP=10H, Incremet=OFF and CRC address=01H. ; Wait ; Read of CRC error detection register. ; Judgement of CRC error. ; In the case of R0=0, branch to L16 since CRC error has not occurred (CRC error correction is skip
Since the When ac	mov.w wait mov.w error detection e address au cocessing othe mov.w wait mov.w cmp.w jeq mor correctio mov.w wait mov.w wait mov.w wait mov.w wait mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #SLICE_WORD_NUB L24 _CrcCodeData[A0]	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , R0 , A0	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac	mov.w wait mov.w rror detection e address au ccessing othe mov.w wait mov.w cmp.w jeq rror correctio mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w	#8100H #0000H tomatic increment in dummy shift or CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #0000H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _waltlong	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac	mov.w wait mov.w error detection e address au cocessing othe mov.w wait mov.w cmp.w jeq mor correctio mov.w wait mov.w wait mov.w wait mov.w wait mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #SLICE_WORD_NUB L24 _CrcCodeData[A0]	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , R0 , R0 , A0	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac	mov.w wait mov.w rror detection e address au ccessing other mov.w wait mov.w cmp.w jeq rror correction mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H , _CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _waitiong _CRC_DATA	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , _CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrCCodeData[A0]	; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac	mov.w wait mov.w error detection e address au cocessing other mov.w wait mov.w cmp.w jeq mor correction mov.w wait mov.w cmp.w jeq cmp.w jeq ide.w jsr mov.w add.w	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H , _CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _waitlong _CRC_DATA #0002H	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , _CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrCCodeData[A0]	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac When a c 22: 22: 22:	mov.w wait mov.w error detection e address au cocessing othe mov.w wait mov.w cmp.w jeq mor.correction mov.w wait jeg mov.w wait mov.w wait mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w jgeu jeg mov.w	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CrCCodeData[A0] _waitlong _CRC_DATA #0002H L22	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , _CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrCCodeData[A0]	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac When a c 22: 22: 22:	mov.w wait mov.w e address au cocessing other mov.w wait mov.w cmp.w jeq mor correctio mov.w wait mov.w cmp.w jeq cmp.w jeu ide.w jsr mov.w jeu dd.w jsr mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _waitlong _CRC_DATA #0002H L22 crcCodeData[A0] _waitlong _CRC_DATA #0002H L22	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , A0 , _CRC_DATA , _CRC_DATA , _CrcCodeData[A0] , A0	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac When a c 22: 22: 22:	mov.w wait mov.w rror detection e address au ccessing othe mov.w wait mov.w cmp.w jeq rror correctio mov.w wait mov.w wat mov.w wat mov.w wat mov.w wat mov.w wat mov.w _action mov.w wat mov.w	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CrCCodeData[A0] _waitlong _CRC_DATA #0002H L22	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , _CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrCCodeData[A0]	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac When a c 22: 22: 22:	mov.w wait mov.w e address au cocessing other mov.w wait mov.w cmp.w jeq mor correctio mov.w wait mov.w cmp.w jeq cmp.w jeu ide.w jsr mov.w jeu dd.w jsr mov.w	#8100H #0000H tomatic increment in dummy shift r CRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _waitlong _CRC_DATA #0002H L22 crcCodeData[A0] _waitlong _CRC_DATA #0002H L22	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , A0 , _CRC_DATA , _CRC_DATA , _CrcCodeData[A0] , A0	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac When a c 22: 22: 22:	mov.w wait mov.w rror detection e address au ccessing othe mov.w wait mov.w cmp.w jeq rror correction mov.w wait mov.w cmp.w jgeu ide.w jsr mov.w add.w jmp	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H , _CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CRC_DATA #0000H #SLICE_WORD_NUB L24 _CRC_CdeData[A0] _waitiong _CRC_DATA #0002H L22 or correction data	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H ihown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CRCCodeData[A0] , A0 , _CRC_ADRS	: Wait : Wait : Writing data to the code data shift register for dummy shift.
24: .16:	mov.w wait mov.w rror detection e address au ccessing othe wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w igeu ide.w jsr mov.w add.w jmp b ccheck of en mov.w wait mov.w	#8100H #0000H tomatic increment in dummy shift or CRC registers, the processing s #9001H , _CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #0000H #\$LICE_WORD_NUB L24 _CrcCodeData[A0] _waitlong _CRC_DATA #0002H L22 crccorection data	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA , _CrcCodeData[A0] , A0 , _CRC_ADRS , R0	 ; Wait ; Writing data to the code data shift register for dummy shift.
22: 22: 16:	mov.w wait mov.w e address au coessing other mov.w wait mov.w cmp.w jeq mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w jeq de.w jsr mov.w jseu de.w jsr mov.w wait mov.w	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0000H #SLICE_WORD_NUB L24 _CRC_DATA #0000H #SLICE_WORD_NUB L24 _CRC_CDATA #0002H L22 or correction data	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H ihown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CRCCodeData[A0] , A0 , _CRC_ADRS	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac 22: 22: 16: The func	mov.w wait mov.w e address au ccessing other mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jde.	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _Wallong _CRC_DATA #0002H L22 or correction data	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrcCodeData[A0] , A0 , _CRC_ADRS , R0	 ; Wait ; Writing data to the code data shift register for dummy shift.
Since the When ac 22: 22: 16: The func	mov.w wait mov.w e address au ccessing other mov.w wait mov.w wait mov.w wait mov.w wait mov.w wait mov.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jgeu jde.w jde.	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _Wallong _CRC_DATA #0002H L22 or correction data	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrcCodeData[A0] , A0 , _CRC_ADRS , R0	: Wait : Writing data to the code data shift register for dummy shift
Since the When ac 22: 22: 16: The func	mov.w wait mov.w e address au coessing other mov.w wait mov.w cmp.w jeq mor.correctio mov.w wait mov.w cmp.w jgeu ide.w jsr mov.w jgeu ide.w jsr occessing other add.w jmp	#8100H #0000H tomatic increment in dummy shift rCRC registers, the processing s #9001H ,_CRC_ADRS _CRC_DATA #0000H L16 n #0D010H #SLICE_WORD_NUB L24 _CrcCodeData[A0] _Wallong _CRC_DATA #0002H L22 or correction data	, _CRC_ADRS , _CRC_DATA (Increment=OFF), set CRC address=01H shown in the following two lines is necessa , R0 , R0 , R0 , CRC_ADRS , A0 , _CRC_DATA , _CRC_DATA , _CrcCodeData[A0] , A0 , _CRC_ADRS , R0	: Wait : Writing data to the code data shift register for dummy shift

Figure 14.8 Example of program

1.Bit composition of a CRC register

1. Address 0016 (=CA3 to 0)

CD15	CD8CD7	CD0				
ĻĻĻ						
			Bit symbol	Bit name	Function	RW
			DAOUT0	The code data shift register write-in bit 0	When write, data is written to "code data shift register" (Note).	00
			DAOUT1	The code data shift register write-in bit 1	When read, data differs between in error detection mode and in error	00
			DAOUT2	The code data shift register write-in bit 2	correction mode.In error detection mode	00
			DAOUT3	The code data shift register write-in bit 3	(CRCCHANGE=0) 000016 is read after shift end. When read during shift operation, its	00
			DAOUT4	The code data shift register write-in bit 4	content is indeterminate.	00
			DAOUT5	The code data shift register write-in bit 5	(CRCCHANGE=1) Corrected data is read after the original data is written in and some	00
			DAOUT6	The code data shift register write-in bit 6	interval of data shift.	00
			DAOUT7	The code data shift register write-in bit 7		00
			DAOUT8	The code data shift register write-in bit 8		00
			DAOUT9	The code data shift register write-in bit 9		00
			DAOUT10	The code data shift register write-in bit 10		00
			DAOUT11	The code data shift register write-in bit 11		00
			DAOUT12	The code data shift register write-in bit 12		00
-			DAOUT13	The code data shift register write-in bit 13		00
			DAOUT14	The code data shift register write-in bit 14		00
			DAOUT15	The code data shift register write-in bit 15		00

Note: Refer to Figure 14.16 Access block diagram for CRC registers.

2. Address 0116 (=CA3 to 0)

CD15	CD8CD7	CD0					
			Bit symbol	Bit name	Function	R	w
			CRC_ERR00	The CRC bit 81 to 74 error detection bit	Logical OR of the CRC remainder bits 81 to 74 (address 0216)	0	×
			CRC_ERR01	The CRC bit 73 to 66 error detection bit	Logical OR of the CRC remainder bits 73 to 66 (address 0216)	0	×
			CRC_ERR02	The CRC bit 65 to 58 error detection bit	Logical OR of the CRC remainder bits 65 to 58 (address 0316)	0	×
			CRC_ERR03	The CRC bit 57 to 50 error detection bit	Logical OR of the CRC remainder bits 57 to 50 (address 0316)	0	×
			CRC_ERR04	The CRC bit 49 to 42 error detection bit	Logical OR of the CRC remainder bits 49 to 42 (address 0416)	0	×
		; 	CRC_ERR05	The CRC bit 41 to 34 error detection bit	Logical OR of the CRC remainder bits 41 to 34 (address 0416)	0	×
			CRC_ERR06	The CRC bit 33 to 26 error detection bit	Logical OR of the CRC remainder bits 33 to 26 (address 0516)	0	×
			CRC_ERR07	The CRC bit 25 to 18 error detection bit	Logical OR of the CRC remainder bits 25 to 18 (address 0516)	0	×
			CRC_ERR08	The CRC bit 17 to 10 error detection bit	Logical OR of the CRC remainder bits 17 to 10 (address 0616)	0	×
			CRC_ERR09	The CRC bit 09 to 02 error detection bit	Logical OR of the CRC remainder bits 09 to 02 (address 0616)	0	×
			CRC_ERR10	The CRC bit 01 to 00 error detection bit	Logical OR of the CRC remainder bits 01 to 00 (address 0716)	0	×
				Nothing is assigned. The value is "0" when it reads	5.	×	×

3. Address 0216 (=CA3 to 0)

CD15	CD8CD7 CD0				
	_┍ ┹ _┲ ┹ _┍ ┚ _┍	Bit symbol	Bit name	Function	RW
		CRC_81	81th remainder polynomial coefficient bit	The coefficient of each degree of a remainder polynomial is set up.	Оx
		CRC_80	80th remainder polynomial coefficient bit	It is shown in below when a remainder polynomial is made into CRC_MOD.	Оx
		CRC_79	79th remainder polynomial coefficient bit	$CRC_MOD = \sum_{n=0}^{81} CRC_n \cdot X^{n}$	Оx
		CRC_78	78th remainder polynomial coefficient bit		Оx
		CRC_77	77th remainder polynomial coefficient bit		Оx
		CRC_76	76th remainder polynomial coefficient bit		Оx
		CRC_75	75th remainder polynomial coefficient bit		Оx
		CRC_74	74th remainder polynomial coefficient bit		Оx
		CRC_73	73th remainder polynomial coefficient bit		Оx
		CRC_72	72th remainder polynomial coefficient bit		Оx
		CRC_71	71th remainder polynomial coefficient bit		Оx
		CRC_70	70th remainder polynomial coefficient bit		Оx
		CRC_69	69th remainder polynomial coefficient bit		о×
		CRC_68	68th remainder polynomial coefficient bit		о×
		CRC_67	67th remainder polynomial coefficient bit		Оx
		CRC_66	66th remainder polynomial coefficient bit		О×

4. Address 0316 (=CA3 to 0)

CD15	CD8CD7	CD0				
	╶┨┥┨╺┨╺┨		Bit symbol	Bit name	Function	RW
			CRC_65	65th remainder polynomial coefficient bit	Refer to CRC_81 to 66 (address 0216).	Ox
		_	CRC_64	64th remainder polynomial coefficient bit		Оx
			CRC_63	63th remainder polynomial coefficient bit		0 x
			CRC_62	62th remainder polynomial coefficient bit		Оx
			CRC_61	61th remainder polynomial coefficient bit		О×
			CRC_60	60th remainder polynomial coefficient bit		Оx
			CRC_59	59th remainder polynomial coefficient bit		Оx
			CRC_58	58th remainder polynomial coefficient bit	-	Оx
			CRC_57	57th remainder polynomial coefficient bit		Оx
			CRC_56	56th remainder polynomial coefficient bit		О×
			CRC_55	55th remainder polynomial coefficient bit		Оx
			CRC_54	54th remainder polynomial coefficient bit		Ox
			CRC_53	53th remainder polynomial coefficient bit		О×
· · · · · · · · · · · · · · · · · · ·			CRC_52	52th remainder polynomial coefficient bit		О×
			CRC_51	51th remainder polynomial coefficient bit		Оx
			CRC_50	50th remainder polynomial coefficient bit		О×

5. Address 0416 (=CA3 to 0)

CD15	CD8CD7 CD0				
	╶┨┊┨┊┨┊┨┊┨┊┨┊┨┊┨	Bit symbol	Bit name	Function	RW
		CRC_49	49th remainder polynomial coefficient bit	Refer to CRC_81 to 66 (address 0216).	Оx
		CRC_48	48th remainder polynomial coefficient bit		Оx
		CRC_47	47th remainder polynomial coefficient bit		Оx
		CRC_46	46th remainder polynomial coefficient bit		Оx
		CRC_45	45th remainder polynomial coefficient bit		Оx
	· · · · · · · · · · · · · · · · · · ·	CRC_44	44th remainder polynomial coefficient bit		Оx
	· · · · · · · · · · · · · · · · · · ·	CRC_43	43th remainder polynomial coefficient bit		Оx
		CRC_42	42th remainder polynomial coefficient bit		Оx
		CRC_41	41th remainder polynomial coefficient bit		О×
		CRC_40	40th remainder polynomial coefficient bit		О×
	l	CRC_39	39th remainder polynomial coefficient bit		Оx
		CRC_38	38th remainder polynomial coefficient bit		Оx
		CRC_37	37th remainder polynomial coefficient bit		О×
		CRC_36	36th remainder polynomial coefficient bit		О×
		CRC_35	35th remainder polynomial coefficient bit		Оx
		CRC_34	34th remainder polynomial coefficient bit		О×

6. Address 0516 (=CA3 to 0)

CD15	CD8CD7 CD0				
	╶╫┥┙┙┙	Bit symbol	Bit name	Function	RW
		CRC_33	33th remainder polynomial coefficient bit	Refer to CRC_81 to 66 (address 0216).	Оx
		CRC_32	32th remainder polynomial coefficient bit		Оx
		CRC_31	31th remainder polynomial coefficient bit		Оx
		CRC_30	30th remainder polynomial coefficient bit		Оx
	· · · · · · · · · · · · · · · · · · ·	CRC_29	29th remainder polynomial coefficient bit	•	Ox
	· · · · · · · · · · · · · · · · · · ·	CRC_28	28th remainder polynomial coefficient bit	•	Оx
	· · · · · · · · · · · · · · · · · · ·	CRC_27	27th remainder polynomial coefficient bit		Оx
		CRC_26	26th remainder polynomial coefficient bit	-	Оx
		CRC_25	25th remainder polynomial coefficient bit		Ox
	<u>.</u>	CRC_24	24th remainder polynomial coefficient bit		О×
	l	CRC_23	23th remainder polynomial coefficient bit		Оx
		CRC_22	22th remainder polynomial coefficient bit		Оx
		CRC_21	21th remainder polynomial coefficient bit		О×
		CRC_20	20th remainder polynomial coefficient bit		О×
l		CRC_19	19th remainder polynomial coefficient bit		О×
		CRC_18	18th remainder polynomial coefficient bit		О×

7. Address 0616 (=CA3 to 0)

CD15	CD8CD7	7 CD0				
		╶┰┰┰┰┰	Bit symbol	Bit name	Function	RW
			CRC_17	17th remainder polynomial coefficient bit	Refer to CRC_81 to 66 (address 0216).	О×
			CRC_16	16th remainder polynomial coefficient bit		Оx
			CRC_15	15th remainder polynomial coefficient bit		О×
			CRC_14	14th remainder polynomial coefficient bit		Оx
			CRC_13	13th remainder polynomial coefficient bit		О×
		,	CRC_12	12th remainder polynomial coefficient bit		Оx
			CRC_11	11th remainder polynomial coefficient bit		Оx
			CRC_10	10th remainder polynomial coefficient bit		Оx
			CRC_09	09th remainder polynomial coefficient bit		Ox
			CRC_08	08th remainder polynomial coefficient bit		О×
			CRC_07	07th remainder polynomial coefficient bit		Оx
			CRC_06	06th remainder polynomial coefficient bit		Ox
	L	[CRC_05	05th remainder polynomial coefficient bit		О×
		[CRC_04	04th remainder polynomial coefficient bit		O×
·			CRC_03	03rd remainder polynomial coefficient bit		О×
		[CRC_02	02nd remainder polynomial coefficient bit		О×

8. Address 0716 (=CA3 to 0)

	Bit symbol	Bit name	Function	RW
	 CRC_01	01st remainder polynomial coefficient bit	Refer to CRC_81 to 66 (address 0216).	О×
	 CRC_00	00th remainder polynomial coefficient bit		О×
		Nothing is assigned. The value is "0" when it reads.		××

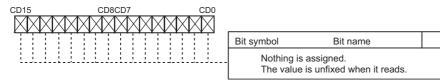
9. Address 0816 (=CA3 to 0)

CD15	CD8CI	D7 CD0				
				1		
			Bit symbol	Bit name	Function	RW
			REG_C0	Coefficient bit of the 66/0th generation polynomials	The coefficient of each degree of the generation polynomial	00
			REG_C1	Coefficient bit of the 67/1th generation polynomials	is set.	00
			REG_C2	Coefficient bit of the 68/2th generation polynomials	The coefficient from 81 to the 66th is set for 82 bit CRC mode.	00
			REG_C3	Coefficient bit of the 69/3th generation polynomials	The 15th in case of 16 bit CRC mode. The 0th coefficients are set.	00
			REG_C4	Coefficient bit of the 70/4th generation polynomials	When generation polynomial to be CRC GP,	00
			REG_C5	Coefficient bit of the 71/5th generation polynomials	$CRC_GP = X^{82}$	00
			REG_C6	Coefficient bit of the 72/6th generation polynomials	$\sum_{n=0}^{15} REG_Cn \cdot X^{n+66}$	00
			REG_C7	Coefficient bit of the 73/7th generation polynomials	$ + x^{56} + x^{52} + x^{48} + x^{40} $ $ + x^{36} + x^{34} + x^{24} + x^{22} $	00
			REG_C8	Coefficient bit of the 74/8th generation polynomials	$+ X^{18} + X^{10} + X^4 + 1$	00
			REG_C9	Coefficient bit of the 75/9th generation polynomials	(For 82 bit CRC mode)	00
			REG_C10	Coefficient bit of the 76/10th generation polynomials	$CRC_GP = X^{16} + \sum_{n=0}^{15} RE6_Cn \cdot X^n$ (For 16 bit CRC mode)	00
			REG_C11	Coefficient bit of the 77/11th generation polynomials		00
			REG_C12	Coefficient bit of the 78/12th generation polynomials	_	00
			REG_C13	Coefficient bit of the 79/13th generation polynomials		00
			REG_C14	Coefficient bit of the 80/14th generation polynomials		00
			REG_C15	Coefficient bit of the 81/15th generation polynomials		00

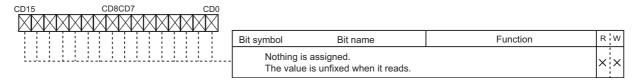
10. Address 0916 (=CA3 to 0)

CD15	CD8CD7	CD0				
			Bit symbol	Bit name	Function	RW
				assigned. is unfixed when it reads.		××

Function


R¦W

xix


11. Address 0A16 (=CA3 to 0)

12. Address 0B16 (=CA3 to 0)

13. Address 0C16 (=CA3 to 0)

14. Address 0D16 (=CA3 to 0)

CD15	CD8CD7	CD0						
		0000						
			Bit symbol	Bit name		F	unction	RW
		· · · · · · · · · · · · · · · · · · ·	Reserved	bit	ſ	Must set to "	0."	00
			CRC16SEL	CRC mode select bit	s	elects 82 bit 0	CRC/16 bit CRC mode	
						CRC16SEL	CRC mode	00
						0	82 bit CRC	
						1	16 bit CRC	
				Nothing is assigned Indet	erm	inate at readir	ng	××

14.5 Expansion Register

Control Data slice function. Expansion register composition is shown in Table 14.4.

Table 14.4 Expansion register composition

00:0 Lh 01:0 Lh 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 02:0 1 03:0 1 03:0 1 04:0 1 05:0 1 05:0 1 05:0 1 05:0 1 10:0 0 06:0 1 11:0 0 11:0 1 11:0 1 15:0 1	UNI5_EV0 L UNI7_EV1 L UNI7_EV1 L UNI7_EV1 L UNI7_EV1 L UNI5_EV1 L UNI5_EV1 L UNI5_EV1 L UNI5_EV1 L UNI5_EV1 L UNI5_EV1 L ONS1 L <td< th=""><th>LUNIA_EV7 LUNIA_EV7 LUNIA_EV7 LUNIA_E07 LUNI4_007 DIV60 DIV0</th><th>LIN13_EV0 LIN13_EV1 </th><th>LN12_EV1 LN12_EV1 LN12_EV1 LN12_OD0 LN12_OD1 FLC12 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0</th><th>LN11_EV1 LN11_EV1 </th><th>LN10_EV0 LN10_EV1 </th><th>LN9_EV0 LN9_EV1 </th><th>LN8_EV1 LN8_EV1 </th><th>LN7_EV0 LN7_EV1 LN17_OD0 LN17_OD1</th><th>LN6_EV0 LN16_EV1 LN16_OD0</th><th>LN5_EV0 </th><th>LN4_EV0 LN4_EV1</th><th>LN3_EV1</th><th>LN2_EV0 LN2_EV1 _</th><th>LN1_EV0 LN1_EV1 </th><th>LN0_EV1</th><th>Line register</th></td<>	LUNIA_EV7 LUNIA_EV7 LUNIA_EV7 LUNIA_E07 LUNI4_007 DIV60 DIV0	LIN13_EV0 LIN13_EV1 	LN12_EV1 LN12_EV1 LN12_EV1 LN12_OD0 LN12_OD1 FLC12 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0	LN11_EV1 LN11_EV1 	LN10_EV0 LN10_EV1 	LN9_EV0 LN9_EV1 	LN8_EV1 LN8_EV1 	LN7_EV0 LN7_EV1 LN17_OD0 LN17_OD1	LN6_EV0 LN16_EV1 LN16_OD0	LN5_EV0 	LN4_EV0 LN4_EV1	LN3_EV1	LN2_EV0 LN2_EV1 _	LN1_EV0 LN1_EV1 	LN0_EV1	Line register
				LN12_EV1	LN11_EV1 		LN9_EV1	LN8_EV1	LN7_EV1 LN17_OD0 LN17_OD1	LN16_EV1 LN16_OD0	LN5_EV1	LN4_EV1		LN2_EV1	LN1_EV1	LN0_EV1	Line register
						1 1	LN9 OD0	LN8_OD0	LN17_OD1	1 M16 OD1		1 1			LN1 OD0		Line register
				LM12_000 LM12_001 FLC12 FLC12 CHK_FLC12 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0	LN11_OD0 LN11_OD1 	1	LN9 OD0	LN8_OD0			1	1		1	LN1 OD0		
				LIN12_001	LN11_OD1 	LN10_OD0			LN7_OD0	LN6_OD0	LN5_OD0	LN4_OD0	LN3_OD0	LN2_OD0		LN0_OD0	
				FLC12 CHK_FLC12 CHK_FLC12 GETPEEK0 GETPEEK0 GETPEEK0 GETPEEK0	- FLC11 CHK_FLC11	LN10_OD1	LN9_OD1	LN8_OD1	LN7_OD1	LN6_OD1	LN5_OD1	LN4_OD1	LN3_OD1	LN2_OD1	LN1_OD1	LN0_OD1	
				CHK_FLC12 CHK_FLC12 GETPEEK0 GETPEEK0 CHK_FLC12 CHK_FLC12 CHK_FLC12 CHK_FLC12	CHK FLC11		-			1	-	-	1	1	1	1	
+++++++++++++++++++++++++++++++++++++++				CHK_FLC72 GETPEEK0 - - - FLC12 CHK_FLC12 CHK_FLC12 CHK_FLC12 CHK_FLC12 CHK_FLC12 CHK_FLC12	CHK FLC11	FLC10	FLC9	FLC8	FLC7	FLC6	FLC5	FLC4	FLC3	FLC2	FLC1	FLC0	
				GETPEEK0 GETPEEK0 	DIEON	CHK_FLC10	CHK_FLC9	CHK_FLC8	CHK_FLC7	CHK_FLC6 SEVIG	CHK_FLC5	CHK_FLC4	CHK_FLC3	CHK_FLC2	CHK_FLC1	CHK_FLC0 SEKID	Chatria modiator 1
					5	0.00	GET HP1	GET HP0	SLS HP7	SLS HP6	SLS HP5	SLS HP4	SLS HP3	SLS HP2	SLS HP1	SLS HP0	
				ELC12 CHK_FLC12 CHK_FLC12	1 1	1 1											
				FLC12 FLC12 CHK_FLC12 GETPEEK0	1	1	1		SLS7	9STS	SLS5	SLS4	SLS3	SLS2	SLS1	0STS	
				FLC12 CHK_FLC12 GETPEEK0		1	1	1				ı	1	I	I	1	
				GHK_FLC12 GETPEEK0	FLC11	FLC10	FLC9	FLC8	FLC7	FLC6	FLC5	FLC4	FLC3	FLC2	FLC1	FLC0	
				GETPEEK0	CHK_FLC11	CHK_FLC10	CHK_FLC9	CHK_FLC8	CHK_FLC7	CHK_FLC6	CHK_FLC5	CHK_FLC4	CHK_FLC3	CHK_FLC2	CHK_FLC1	CHK_FLC0	
				GETPEEK0	BIFON	SLSLVL1	SLSLVL0	1	SEKI7	SEKI6	SEK 15	SEKI4	SEK13	SEKI2	SEK11	SEKIO	Status register 2
					I	I	GET_HP1	GET_HP0	SLS_HP7	SLS_HP6	SLS_HP5	SLS_HP4	SLS_HP3	SLS_HP2	SLS_HP1	SLS_HP0	
	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++		1	1	1	1	1	SI S7	- SI SR	CI CK	SI S4	1 23	5150	1212	00.00	
				1	1		1	I									
				FLC12	FLC11	FLC10	FLC9	- FLC8	- FLC7	- FLC6	FLC5	- FLC4	- FLC3	- FLC2	FLC1	FLC0	
1616 CH				CHK_FLC12	CHK FLC11	CHK_FLC10	CHK_FLC9	CHK_FLC8	CHK_FLC7	CHK_FLC6	CHK_FLC5	CHK_FLC4	CHK FLC3	CHK_FLC2	CHK_FLC1	CHK FLC0	
-		JETPEEK2 FRAM GSTTIM	GETPEEK1	1	BIFON	SLSLVL1	SLSLVLO	1	SEKI7	SEKI6	SEK15	SEKI4	SEK13	SEKI2	SEK11	SEKIO	Status register 3
		FRAM GSTTIM		GETPEEK0	-	1	GET_HP1	GET_HP0	SLS_HP7	SLS_HP6	SLS_HP5	SLS_HP4	SLS_HP3	SLS_HP2	SLS_HP1	SLS_HP0	
1916		GSTTIM	1	1	I	I	I	I	1		1	1	I	I	I	-	
1A16	- DSTART		SELSTART	1	1	I	I	I	SLS7	SLS6	SLS5	SLS4	SLS3	SLS2	SLS1	SLSO	
+	TARI	1		-	1	1	1	1	1	1	1	1	1	1	1	1	
+		1	EXI_PUC2	1	1	1					1	1	1	1	1	1	
1E %	1	1	1	1	I	1					1	1	I	I	I	1	for read
1F16	1	1	1	1	1	1	1	I	MACRO ON			FLD1V	I	1	I		for read
2016		MPAL	NXP	1	1		LEVELA	NORMAL	-	SEPV0	-	1	1	1	1	1	
2116	1	1	1	1	I	I	I	I	I	ı	I	I	I	I	I	I	
+	HM84SEL	1	1	1	DIV_PDC8	DIV_PDC7	DIV_PDC6	DIV_PDC5	DIV_PDC4	DIV_PDC3	DIV_PDC2	DIV_PDC1	DIV_PDC0	DIV_PDCS2	DIV_PDCS1	DIV_PDCS0	
2316	1	1	1	HORAX_ON	DIV_VPS8	DIV_VPS7	DIV_VPS6	DIV_VPS5	DIV_VPS4	DIV_VPS3	DIV_VPS2	DIV_VPS1	DIV_VPS0	DIV_VPSS2	DIV_VPSS1	DIV_VPSS0	
2416 2546	1	1	1	1	-	1	1	1	1	1	1	SI ION TIM	1	1	ADON TIM	ADSEI	
+		DIVA CK6	DIVV CK5	DIVA CKA	DIVA CK3				DIVD CK7	DIVD CK6	DIVD CK5		DIVD CK3	DIVD CK3			
+	+		202	WEIGHT4	WEIGHT3	WEIGHT2	WEIGHT1	WEIGHTO	DLYSEL7	DLYSEL6	DLYSEL5	DLYSEL4	DLYSEL3	DLYSEL2	DLYSEL1	DLYSELO	
2816		1		1	I	INTDA	INTAD	ADON	SYNLVL2	SYNLVL1	SYNLVL0		6BITOFF	I	START	ADLAT	
2916	1	1	1	1	STBSYNCSEP (SYNCSEP_ON0	SLI_GO	VPS_VP8	VPS_VP7	VPS_VP6	VPS_VP5	VPS_VP4	VPS_VP3	VPS_VP2	VPS_VP1	VPS_VP0	
	1	1	1			1	I	1	MASK7	MASK6	MASK5	MASK4	MASK3	MASK2	MASK1	MASKO	
+	SEL_PDEC	1	SEL_VPSH	SEL_PDCH	1	1	-	-	1	1	1	-	ı	I	1	1	
2C16	1	1	1	1	1	1	1	PLSPOS8	PLSPOS7	PLSPOS6	PLSPOS5	PLSPOS4	PLSPOS3	PLSPOS2	PLSPOS1	PLSPOS0	
+		LCOUNT14			LCOLNT41			PLSNEG8	PLSNEG/	PLSNE G0 HCOINTE	PLSNEG5	PLSNEG4	PLSNEG3	PLSNEG2	PLSNEG1	PLSNEGU HCOI INTO	for sour
+	-	-	-	-				-	1000			-		1100001			
3016	1		ı	1	I	1	I	1	1	1	1	1		1	1	1	
_	-	1	1	1	-	-	-	-	-	-	-		-		-		
33.6			1	VEDTY					DMTHD4(7)	DMTHD1(6)	DMTHD1(5)	DMTHD4(4)	DMTHD4(3)				
+						1									fi li minari		
\square	EXAOFF	1 1	1 1	1		PTD8	PTC8	8	HINT_LINE7	HINT_LINE6	HINT_LINE5	HINT_LINE4	HINT_LINE3	HINT_LINE2	HINT_LINE1	HINT_LINE0	
_		SECINT2	SECINT1	SECINT0	HINT3	HINT2	HINT1	HINTO	INTRMT3	INTRMT2	INTRMT1	INTRMT0	VINT3	VINT2	VINT1	VINTO	
37 16	I	I	Y UKOU1(5)	YUKOU1(4)	YUKOU1(3)	YUKOU1(2)	YUKOU1(1)	YUKOU1(0)	1	ı	YUKOU0(5)	YUKOU0(4)	YUKOU0(3)	YUKOU0(2)	YUKOU0(1)	YUKOU0(0)	
		1	1	1	1	ı	1	-	1	ı	-			1	I III	1 0 0 0 0 0 0	
3916 SI	ECIUSI	1	1	1	1	- MINOLIT10	- WINCLITQ	MINOLITE	- MINOUIT7	- MINOLITE	MINOUTE	MINOUTA	SECOUI3 MINOLIT3	SECOUT2 MINOLIT2	MINOUT1	MINOLITIO	
+	DAYCUONT15 DAY	YCUONT14 E	DAYCUONT14 DAYCUONT13 DAYCUONT12	_	DAYCUONT11	0			~	6	1.0	4	DAYCUONT3	DAYCUONT2	1.	DAYCUONTO	
1	RMT_TM(7) RI	RMT_TM(6)	RMT_TM(5)			RMT_TM(2)	RMT_TM(1)	-	+	+	+	-	IRPOL(2)	IRPOL(1)	+	RMTSTART	
				RMT_TMH(4)	RMT_TMH(3)	RMT_TMH(2)	RMT_TMH(1)	RMT_TMH(0)	RMT_TML(7)	RMT_TML(6)	RMT_TML(5)	RMT_TML(4)	RMT_TML(3)	RMT_TML(2)	RMT_TML(1)	RMT_TML(0)	
3E16	- IROI	IROUT_SLICEON	1	1	1	1	I	I	1	1	1	1	RMTTXINT(3)	RMTTXINT(2)	RMTTXINT(1)	RMTTXINT(0)	
3F16	1	1	I	I	1	1	1	'	1	1	1	1	1	1	I	1	

For accessing to expansion register data, set accessing address (DA5 to DA0) (shown in Table 14.4) to expansion register address control register (address 021616). Then write data (DD15 to DD0) to expansion register data control register (address 021816). When end the data accessing, expansion register address control register increments address automatically. Then, next address data writing is possible. After reset, the value of expansion register become "0" all, except for the clock timer.

Expansion register access registers are shown in Figure 14.9, expansion register access block diagram is shown in Figure 14.10, and expansion register bit compositions are shown in p202 to p239.

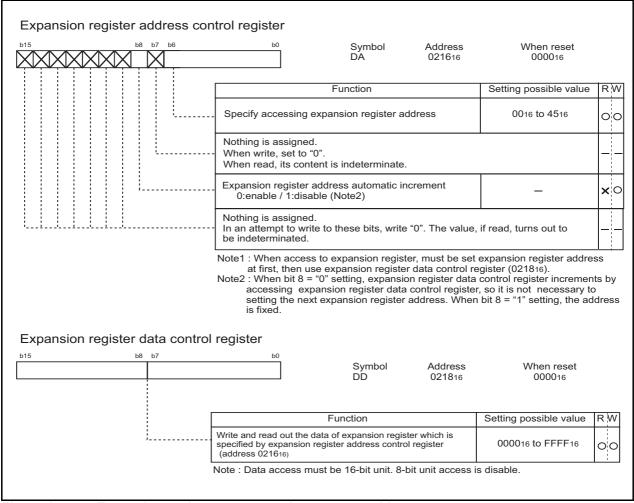


Figure 14.9 Expansion register access registers composition

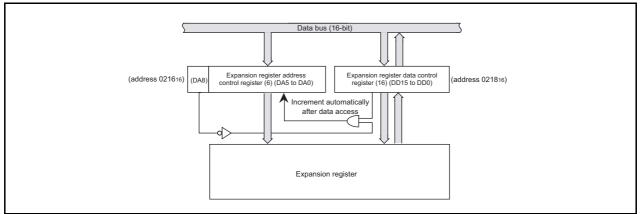
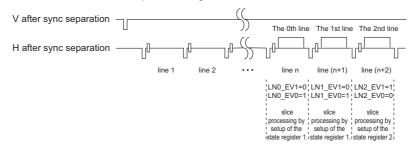


Figure 14.10 Expansion register access block diagram

Bit composition of an expansion register

1. Address 0016 (=DA5 to 0)


DD15	DD8DD7	DD0				
					1	
			Bit symbol	Bit name	Function	RW
		· · · · · · · · · · · · · · · · · · ·	LN0_EV0	The 0th line state register selection bit	As for the slicing method of the n-th line (Notes 1), it is chosen which set of the	
			LN1_EV0	The 1st line state register selection bit	state register settings of the three sets (Notes 2) is used with the combination of LNn_EV0 (address 0016 and 0216,	
			LN2_EV0	The 2nd line state register selection bit	n = 0 to 17) and LNn_EV1 (address 0116 and 0316, n= 0 to 17.)	00
			LN3_EV0	The 3rd line state register selection bit	Four kinds of following state registers can be chosen for every line (Notes 3.)	00
			LN4_EV0	The 4th line state register selection bit	LNn_EV1 LNn_EV0 State register(Notes 2) 0 0 Do not set up	00
			LN5_EV0	The 5th line state register selection bit	0 1 State register 1 1 0 State register 2 1 1 State register 3	00
			LN6_EV0	The 6th line state register selection bit		00
			LN7_EV0	The 7th line state register selection bit		00
			LN8_EV0	The 8th line state register selection bit		00
			LN9_EV0	The 9th line state register selection bit		00
			LN10_EV0	The 10th line state register selection bit		00
			LN11_EV0	The 11th line state register selection bit		00
			LN12_EV0	The 12th line state register selection bit		00
			LN13_EV0	The 13th line state register selection bit		00
			LN14_EV0	The 14th line state register selection bit		00
!			LN15_EV0	The 15th line state register selection bit		00

Notes 1. The n-th line: The number of lines after a slice start.

Please refer to the supplement (3) of 15.6 expansion register composition (P229) for details.

Notes 2. 06h to 0Ch address: State register 1 0Dh to 13h address: State register 2 14h to 1Ah address: State register 3

Notes 3. The example of a setting.

DD15

2. Address 0116 (=DA5 to 0)

DD0

		Bit symbol	Bit name	Function	RW
	· · · · · · · · · · · · · · · · · · ·	LN0_EV1	The 0th line state register selection bit	Refer to LNn_EV0 (address 0016)	00
		LN1_EV1	The 1st line state register selection bit	_	00
		LN2_EV1	The 2nd line state register selection bit	_	00
		LN3_EV1	The 3rd line state register selection bit	_	00
		LN4_EV1	The 4th line state register selection bit		00
		LN5_EV1	The 5th line state register selection bit		00
		LN6_EV1	The 6th line state register selection bit		00
		LN7_EV1	The 7th line state register selection bit		00
		LN8_EV1	The 8th line state register selection bit		00
		LN9_EV1	The 9th line state register selection bit		00
		LN10_EV1	The 10th line state register selection bit		00
· · · · · · · · · · · · · · · · · · ·		LN11_EV1	The 11th line state register selection bit		00
		LN12_EV1	The 12th line state register selection bit		00
		LN13_EV1	The 13th line state register selection bit	_	00
l		LN14_EV1	The 14th line state register selection bit		00
		LN15_EV1	The 15th line state register selection bit		00

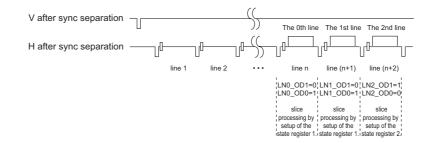
3. Address 0216 (=DA5 to 0)

	Bit symbol	Bit name	Function	RW
	Nothing is	assigned.		××
	 LN16_OD0	The 16th line state register selection bit	Refer to LNn_OD0 (address 0416)	00
· · · · ·	 LN17_OD0	The 17th line state register selection bit		00
 <u></u>	 Nothing is	assigned.		××
 	 LN16_EV0	The 16th line state register selection bit	Refer to LNn_EV0 (address 0016)	00
 	 LN17_EV0	The 17th line state register selection bit		00

4. Address 0316 (=DA5 to 0)

	Bit symbol	Bit name	Function	RW
	Nothing is	assigned.		××
	LN16_OD1	The 16th line state register selection bit	Refer to LNn_OD0 (address 0416)	00
	LN17_OD1	The 17th line state register selection bit		00
	Nothing is	assigned.		××
 	LN16_EV1	The 16th line state register selection bit	Refer to LNn_EV0 (address 0016)	00
 	LN17_EV1	The 17th line state register selection bit		00

5. Address 0416 (=DA5 to 0)


DD15	DD8DD7	DD0				
		╷╵┼┼╀┼┙	Bit symbol	Bit name	Function	RW
			LN0_OD0	The 0th line state register selection bit	As for the slicing method of the n-th line (Notes 1), it is chosen which set of the	00
			LN1_OD0	The 1st line state register selection bit	state register settings of the three sets (Notes 2) is used with the combination of LNn_OD0 (address 0416 and 0216,	
			LN2_OD0	The 2nd line state register selection bit	n = 0 to 17) and LNn_OD1 (address 0516 and 0316, n= 0 to 17.)	00
			LN3_OD0	The 3rd line state register selection bit	Four kinds of following state registers can be chosen for every line. (Notes 3)	00
			LN4_OD0	The 4th line state register selection bit	LNn_EV1 LNn_EV0 State register(Notes 2) 0 0 Do not set up	00
			LN5_OD0	The 5th line state register selection bit	0 1 State register 1 1 0 State register 2 1 1 State register 3	00
			LN6_OD0	The 6th line state register selection bit		00
			LN7_OD0	The 7th line state register selection bit		00
			LN8_OD0	The 8th line state register selection bit		00
			LN9_OD0	The 9th line state register selection bit		00
			LN10_OD0	The 10th line state register selection bit		00
			LN11_OD0	The 11th line state register selection bit		00
			LN12_OD0	The 12th line state register selection bit		00
			LN13_OD0	The 13th line state register selection bit		00
			LN14_OD0	The 14th line state register selection bit		00
! 			LN15_OD0	The 15th line state register selection bit		00

Notes 1. The n-th line: The number of lines after a slice start.

Please refer to the supplement (3) of 14.6 expansion register composition for details.

Notes 2. 06h to 0Ch address: State register 1 0Dh to 13h address: State register 2 14h to 1Ah address: State register 3

Notes 3. The example of a setting.

DD15

6. Address 0516 (=DA5 to 0)

DD0

	Bit symbol	Bit name	Function	RV
	LN0_OD1	The 0th line state register selection bit	Refer to LNn_OD0 (address 0416)	00
	LN1_OD1	The 1st line state register selection bit	_	00
· · · · · · · · · · · · · · · · · · ·	LN2_OD1	The 2nd line state register selection bit	_	00
	LN3_OD1	The 3rd line state register selection bit		00
· · · · · · · · · · · · · · · · · · ·	LN4_OD1	The 4th line state register selection bit		00
	LN5_OD1	The 5th line state register selection bit		00
	LN6_OD1	The 6th line state register selection bit		00
	LN7_OD1	The 7th line state register selection bit		00
	LN8_OD1	The 8th line state register selection bit		00
 	LN9_OD1	The 9th line state register selection bit		00
 	LN10_OD1	The 10th line state register selection bit		00
 	LN11_OD1	The 11th line state register selection bit		00
 	LN12_OD1	The 12th line state register selection bit		00
 	LN13_OD1	The 13th line state register selection bit		00
 	LN14_OD1	The 14th line state register selection bit		00
 	LN15_OD1	The 15th line state register selection bit		00

7. Address 0616, 0D16, 1416 (=DA5 to 0)

	Bit symbol	Bit name		Function	RW
	 Reserved b	its	1	Must set to "0."	×O
	 Reserved b	its	1	Must set to "1."	×O
	 Nothing is a	issigned.			××
	SELVCO	The PLL selection bit for	0	PDC	-00
	 SELVCO	slice	1	VPS	
	 DIVS0	The clock division bit for slice		DIVS1DIVS0divided value00no division01divided by 2	
L	 DIVS1			0 1 0 divided by 3 1 0 divided by 3 1 1 1 divided by 5 1	

8. Address 0716, 0E16, 1516 (=DA5 to 0)

DD15	DD8DD7	DD0				
ĢĻĻ		ļΠ	Ditoymhol	Dit nome	Function	RW
			Bit symbol	Bit name		
			FLC0	Framing code selection bit	Framing code is set up	00
			FLC1		Clock Framing Data	00
			FLC2		, Setup	00
			FLC3		FLC0 to FLC15	00
			FLC4		16 bits are checked at maximum. However, the bit of CHK_FLCn (addresses 0816, 0F16 and 1616)	00
	·		FLC5		= "1" is not checked.	00
			FLC6			00
			FLC7			00
			FLC8			00
	· · · · · · · · · · · · · · · · · · ·		FLC9			00
			FLC10			00
	L		FLC11			00
	L		FLC12			00
			FLC13			00
			FLC14			00
			FLC15			00

RENESAS

DD15

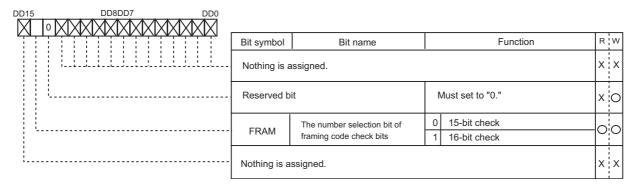
, 01						
DD8D						
	Bit symbol	Bit name		F	unction	RW
	 CHK_FLC0	Framing code check selection bit	tra	ming code set i	ata, it sets up whether up by FLC 0 to 15	00
	 CHK_FLC1		che Da	ecked or not pe ta will be acqui	red if the n-th bit	00
	 CHK_FLC2		wh	ich is set as ch	eck is in agreement.	00
	CHK_FLC3			CHK_FLCn	n-th bit	00
				0	check	
	 CHK_FLC4			1	No check	00
	CHK_FLC5					00
	 CHK_FLC6					00

		Bit symbol	Bit name	Function	R۱	N
		 CHK_FLC0	Framing code check selection bit	When acquiring data, it sets up whether framing code set up by FLC 0 to 15 (addresses 0716, 0E16, and 1516) is	0	С
		 CHK_FLC1		checked or not per bit. Data will be acquired if the n-th bit	00	
		 CHK_FLC2		which is set as check is in agreement.	0	С
		 CHK_FLC3		CHK_FLCn n-th bit 0 check	00	С
		 CHK_FLC4		1 No check	00	С
		 CHK_FLC5			0	С
		 CHK_FLC6			00	С
		 CHK_FLC7			0	С
	·	 CHK_FLC8			0	С
		 CHK_FLC9			0	С
		 CHK_FLC10			0	С
		 CHK_FLC11			00	С
		 CHK_FLC12			0	С
		 CHK_FLC13			0	С
		 CHK_FLC14			0	С
<u>.</u>		 CHK_FLC15			00	С

10. Address 0916, 1016, 1716 (=DA5 to 0)

DD15 DD8DD7 DD0					
	Bit symbol	Bit name	Function	R	w
· · · · · · · · · · · · · · · · · · ·	SEKIO	Data slicer control bit 1	SEKI1 SEKI0 N 0 0 5 (Note1) 0 1 4 (Note2) 1 0 6 (Note3)	0	0
	SEKI1		1 1 8 (Note4) N-times the digital value after SEKI7.6.	0	0
· · · · · · · · · · · · · · · · · · ·	- SEKI2	Data slicer control bit 2	SEKI3 SEKI2 N 0 0 4 0 1 3 1 0 1	0	0
· · · · · · · · · · · · · · · · · · ·	SEKI3		1 No differentiation It differentiates from the digitized data in front of N/8 cycles (clock run-in cycle) to the digital value after SEKI0 and 1.	0	0
	- SEKI4	Data slicer control bit 3	SEKI5 SEKI4 N 0 0 4 0 1 3 1 0 1	0	0
	SEKI5		1 No differentiation It differentiates from the digitized data in after N/8 cycles (clock run-in cycle) to the digital value after SEKI3 and 2.	0	0
	- SEKI6	Data slicer control bit 4	SEKI6 Leveling existence of the following A-D convert value 0 Average for four clocks 1 It doesn't level	0	0
	SEKI7	Data slicer control bit 5	The differentiation by SEKI2, 3, SEKI4, and 5 is differentiated by one time the value. The differentiation by SEKI2, 3, SEKI4, and 5 is differentiated by twice the value.	0	0
	Nothing is as	ssigned.		×	×
	SISLVLO	Slice level control bit	0 The clock line average level is used 1 The slice level selection bit (0C16,1316, 1A16, and house number SLS7?0) is used.	0	0
	SISLVL1	Slice level measurement period selection bit	0 2 cycles of Clock run-in 1 4 cycles of Clock run-in	0	0
	BIFON	Data format selection bit	0 Non Return Zero 1 Bi-phase type	0	0
	- Reserved I	bit	Must set to "0."	×	0
	Reserved	bits	Must set to "1."	×	0
<u> </u>	Reserved	bit	Must set to "0."	×	0

Note 1. When selecting 5 times with SEKI0, 1 and twice with SEKI7, select "none" for any one of SEKI2, 3 or SEKI4, 5.


Note 2. When selecting 8 times for SEKI0, 1, select "none" for both SEKI2, 3 and SEKI4, 5.
 Note 3. When selecting 6 times for SEKI0, 1 and twice for SEKI7, select "none" for any one of SEKI2, 3 or SEKI4, 5.

Note 4. When selecting "none" for both SEKI2, 3 and SEKI4, 5, do not select 4 times, and select 8 times for SEKI0, 1.

11. Address 0A16, 1116, 1816 (=DA5 to 0)

DD15	DI	D8DD7 DD0				
	0 1					
			Bit symbol	Bit name	Function	RW
			SLS_HP0	Slice check start position selection bit	It will become below if data slice start position is made into SLS_HS.	00
			SLS_HP1		SLS_HS = $T2 \times \sum_{n=0}^{7} SLS_HPn$	00
		· · · · · · · · · · · · · · · · · · ·	SLS_HP2		T2 : Clock run-in cycle /2	00
			SLS_HP3			00
		· · · · · · · · · · · · · · · · · · ·	SLS_HP4			00
			SLS_HP5		The position where framing code	00
			SLS_HP6		begins to be checked is set up. Setup in a 1-bit unit is possible.	00
			SLS_HP7			00
		· · ·	GET_HP0	Phase fine-tuning bit	Slice data 0/1 judging clock is tuned finely.	00
			GET_HP1			00
			Reserved b	it	Must set to "1."	5 O
			Reserved bi	it	Must set to "0."	5 O
			GETPEEK0	Peak detection period selection bit 0	GETPEEK1 GETPEEK0 Clock run-in period 0 0 2 0 1 4	00
			GETPEEK1	Peak detection period selection bit 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00
			GETPEEK2	Peak detection period selection bit 2	0 With clock compensation 1 With no clock compensation	00
			GETPEEK3	Peak detection period selection bit 3	0 Only a mountain is detected.1 A mountain and a valley are detected.	00

12. Address 0B16, 1216, 1916 (=DA5 to 0)

13. Address 0C16, 1316, 1A16 (=DA5 to 0)

DD15	DD8I	DD7 DD0					
0	00000						
1			Bit symbol	Bit name		Function	RW
			SLS0	Slice level selection bit		will become below if a slice level is nade into SLS_LVL.	00
			SLS1				00
			SLS2				00
			SLS3			► Data	00
			SLS4			At the time of SLS7 = "H" SLS_LVL = $\sum_{n=0}^{6} 2^n$ SLSn - 128	00
			SLS5			At the time of SLS7 = "L"	00
			SLS6			$SLS_LVL = \sum_{n=0}^{6} SLSn$	00
		l	SLS7				00
			Reserved bi	its	r	Must set to "0."	×O
			SELSTART	Slice start condition selection bit	0	Slice beginning after slice check period (SLS_HP7 to 0 of addresses 0A,11 and 18) passes	00
					1	Slice beginning after standing up of clock run-in after slice check period (SLS_HP7 to 0 of addresses 0A,11 and 18) passes	
			GSTTIM	Ghost correct control bit	0	Ghost correct OFF	00
					1	Ghost correct ON	
	 		Reserved bit			Must set to "0."	×O

14. Address 1B16 (=DA5 to 0)

DD15	DD8DD7	DD0			
000	0000010000	0			
		Bit symbol	Bit name	Function	RW
		Reserved	bits	Must set to "0."	×O
		Reserved	bit	Must set to "1."	×O
		Reserved	bits	Must set to "0."	× O
		Nothing is	assigned.		××
		Reserved	bits	Must set to "0."	×O

15. Address 1C16 (=DA5 to 0)

DD15	DD0 DD0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
		Bit symbol	Bit name		Function	R	W
		Reserved b	its	N	lust set to "0."	x	0
	 	Reserved b	it		ust set to "1" when EPG-J is acquired. therwise, set to "0."	x	0
		Reserved b	its	N	lust set to "0."	x	0
	 	EXT_PDC2	Selection of PLL divided-in-3	0	no divided		
		LAT_FD02	frequency bit for PDC	1	divided-in-3]	
	 	Reserved bi	it	N	lust set to "0."	x	0
	 	ADSTART	A/D conversion completion bit	0	Conversion completion		
		ADSTART		1	Under conversion	70	

16. Address 1D16 (=DA5 to 0)

DD15					DI	38C	DD7	1					DI	D0							
M	0	0	0	C		Τ			0	0	0	Х	$\langle \! \rangle$	3		_					
								-	-			-	-		Bit symbol		Bit name		Function	R	w
												<u>.</u>	<u>.</u>		Nothing is a	as	ssigned.			×	×
															Reserved b	oit	s	ſ	Aust set to "0."	×	0
															PDC_VCO_ON		PDC clock oscillation selection bit	0 1	PDC clock stop PDC clock oscillation	0	0
															PDC_VCO_R0		PDC clock oscillation change bit	F	PDC_VCO R1 _R0		
															PDC_VCO_R1				0 0 Select PDC clock 1 0 Select EPG-J clock 0 1 Do not set up 1 1 Do not set up	×	0
															VPS_VCO_ON		VPS clock oscillation selection bit	0 1	VPS clock stop VPS clock oscillation	0	0
															Reserved b	oit	S	ſ	Aust set to "0."	×	0
!															Nothing is a	as	ssigned.			×	×

17. Address 1E16 (=DA5 to 0)

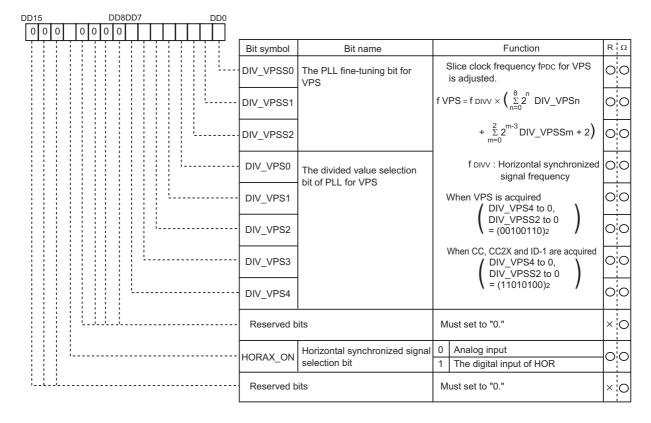
DD15	DD8DD7	DD0				
		000				
			Bit symbol	Bit name	Function	RW
			Reserved bi	its	Must set to "0."	×O
			Nothing is a	ssigned.		××

18. Address 1F16 (=DA5 to 0)

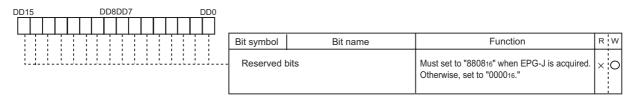
	0 0					
		Bit symbol	Bit name		Function	RW
		 Nothing is a	assigned.			××
				0	Even field	Ox
		FLD1V	Field state flag	1	Odd field	
		 Reserved b	bits	N	lust set to "0."	хо
		 MACRO_ON	Synchronized signal search flag	0	normal	Ox
		 MACINO_ON	Gynenionized signal search hag	1	unusual	
		 Nothing is a	assigned.			××

19. Address 2016 (=DA5 to 0)

DD15	DD8	DD7 DD0							
0	0 0 0								
			Bit symbol	Bit name		Function	R	W	
			Reserved bits		Must set to "0."		×	0	
			Nothing is	assigned.			×	×	
			SEPV0	Vertical synchronous separation standard selection bit	0	Detected in L period of 15ms/22ms.			
					1	Detected in L period of 22ms.			
			Reserved bit		Must set to "0."			0	
			NORMAL	Framing code check control bit	0	Check (Data is acquired if Framing code is in agreement).		00	
					1	No check (All data is acquired).	Ľ		
			LEVELA	Synchronous signal slice potential generating control bit	0	Synchronous signal slice potential generating circuit OFF Synchronous signal slice potential generating			
		·			·	circuit ON	\vdash	+	
			Reserved bits		Must set to "0."			0	
			NXP	Broadcast method selection bit		NXP MPAL Broadcast method	C		
				Broadcast method selection bit		0 0 NTSC 0 1 M-PAL	_	<u> </u>	
			MPAL			1 0 PAL 1 1 Do not set up	С	0	
i[Reserved bit		Must set to "0."		×	0	


20. Address 2116 (=DA5 to 0)

Bit symbol	Bit name	Function	RW
Nothing is assigned.			××
 Reserved I	bit	Must set to "1."	×O
 Reserved	bit	Must set to "0."	×O


21. Address 2216 (=DA5 to 0)

DD15	DI	D8DD7	DD0				
\square							
				Bit symbol	Bit name	Function	RW
				DIV_PDCS0	The PLL fine-tuning bit for PDC	Slice clock frequency fPDC for PDC is adjusted.	00
				DIV_PDCS1		$f PDC = fDIVP \times \left(\sum_{n=0}^{8} 2^n DIV_PDCn\right)$	00
				DIV_PDCS2		+ $\sum_{m=0}^{2} 2^{m-3}$ DIV_PDCSm+2)	00
				DIV_PDC0	The divided value selection bit of PLL for PDC	f DIVP : Horizontal synchronized signal frequency	00
				DIV_PDC1		• When teletext (PDC) data is acquire	00
				DIV_PDC2		$ \left(\begin{array}{c} DIV_PDC4 \text{ to } 0, DIV_PDCS2 \text{ to } 0 \\ = (00100011)_2 \end{array}\right) $	00
				DIV_PDC3		• When EPG-J is acquired (DIV_PDC4 to 0, DIV_PDCS2 to 0 = (00010011)2)	00
		L		DIV_PDC4			00
				Nothing is a	issigned.		××
					8/4 humming polarity	0 Normal	
				HM84SEL	selection bit	1The 4-bit data of 8/4 humming is reversal-outputted.	00

22. Address 2316 (=DA5 to 0)

23. Address 2416 (=DA5 to 0)

24. Address 2516 (=DA5 to 0)

DD15 DD8DD7 DD0						
	Bit symbol	Bit name		Function	R	w
	ADSEL	A/D conversion slice bit	0	Normal The digital value after A/D conversion is given from outside (with register).	C	0
	ADON TIM	A/D operation control bit	0			
		A/D operation control bit	1	Slice period		
· · · · · · · · · · · · · · · · · · ·	Reserved b	bits	м	ust set to "0."	0	
	SLICEON TIM	Slice selection bit	0	Every line (CHECK_START)	0	0
		1	Programmable (PRE_START)	Ľ	Ľ	
	Reserved bits		М	ust set to "0."	×	0
	Reserved b	Reserved bits		Must set to "1."		0
	Reserved b	pits	м	ust set to "0."	×	0
	Reserved b	Reserved bit		ust set to "1."	×	0
	Reserved b	bits	м	ust set to "0."	×	0

25. Address 2616 (=DA5 to 0)

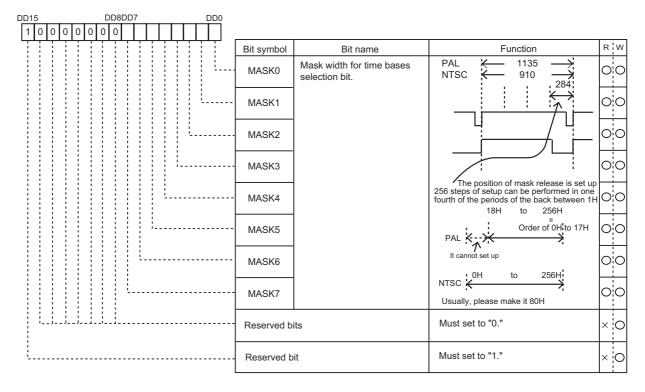
DD15	DD8DI	D7	DD0				
ĻĻĻĻ	╷╷╷╷╷╷╷╷	╷╷╷╷╷╷	ЦЦЦ		1	1	
				Bit symbol	Bit name	Function	RW
			DIVP_CK0	The clock division value selection bit for phase comparison with a PDC clock	The divided clock used for the phase comparison with a PDC clock is set up.		
		DIVP_CK1		$f_{ISC} = f_{DIVP} \times \left(\sum_{n=0}^{7} 2^n DIVS_CKn + 2\right)$	00		
				DIVP_CK2		fDIVP: The slice clock frequency	00
				DIVP_CK3		for PDC (please refer to DIV_PDCS0 to 2 and DIV_PDC0 to 4	00
				DIVP_CK4		(address 2216).) When teletext (PDC) data is acquired	00
			DIVP_CK5		DIVP_CK7 to 0 = (00001110) ² When EPG-J is acquired	00	
		<u> </u>		DIVP_CK6		DIVP_CK7 to 0 = (00001001)2	00
			DIVP_CK7			00	
				DIVV_CK0	The clock division value selection bit for phase comparison with a VPS clock	The divided clock used for the phase comparison with a VPS clock is set up.	00
				DIVV_CK1		(7 n)	00
	· · · · · · · · · · · · · · · · · · ·			DIVV_CK2		$frsc = fDIVV \times \left(\sum_{n=0}^{7} 2^n DIVV_CKn + 2\right)$	00
				DIVV_CK3		fDIVV : The slice clock frequency for VPS (refer to DIV_VPSS0 to 2 and	00
				DIVV_CK4		DIV_VPS0 to 4 (address 2316).)	00
				DIVV_CK5		When VPS is acquired DIVV_CK7 to 0 = (00001110)2	00
				DIVV_CK6		When CC, CC2X and ID-1 are acquired DIVV_CK7 to 0 = (01010011) ₂	00
				DIVV_CK7			00

26. Address 2716 (=DA5 to 0)

DD15	DD8D		DD0				
				Bit symbol	Bit name	Function	RW
			DLYSEL0	Data slicer control bit5	These are the control bits of the ghost correction circuit.	00	
			DLYSEL1			00	
				DLYSEL2			00
				DLYSEL3			00
			DLYSEL4			00	
			DLYSEL5			00	
			DLYSEL6			00	
		L		DLYSEL7			00
				WEIGHT0	Data slicer control bit6	These are the control bits of the ghost correction circuit.	00
	i			WEIGHT1	-		00
				WEIGHT2			00
				WEIGHT3			00
				WEIGHT4			00
				Reserved b	its	Must set to "0."	×O

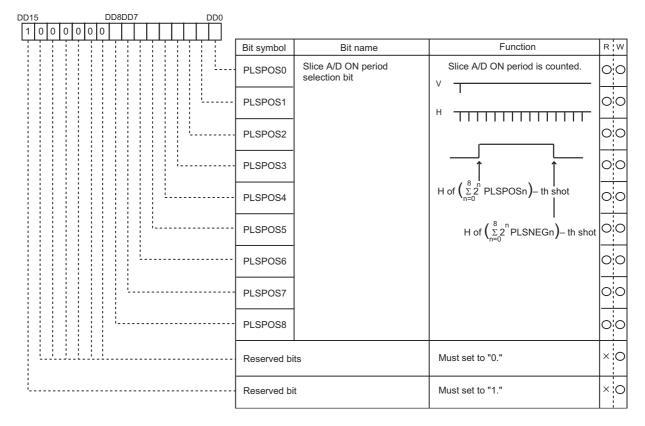
27. Address 2816 (=DA5 to 0)

DD15	DD8DD	07	DI	00						
00000			0							
					Bit symbol	Bit name		Function	R	w
						Data acquisition selection bit	0	Acquisition of slice data	0	0
					ADLAT		1	Acquisition of A/D data	Ľ	
			START	Slice data selection bit	of F	rning on the output after slice RAM Flaming code detection position (8 bits) d the average of the clock run-in level pits)and turning off are set (note.)	0	0		
					Reserved	bit	м	ust set to "0."	×	0
					6BITOFF	A/D lower bit selection bit	0 1	Normal Stop by 6th bit of A/D	0	0
					Reserved bit			ust set to "1" when EPG-J is acquired. therwise, set to "0."	×	0
					SYNLVL0	Synchronous signal slice level control bit		LVL2 SYNLVL1 SYNLVL0 Slice level 0 0 0 approx.1.10V±0.10V 0 0 1 approx.1.15V±0.10V		
					SYNLVL1			0 1 0 1 00 1 00 1 00	0	0
					SYNLVL2			1 0 1 approx.1.35V±0.10V 1 1 0 approx.1.40V±0.10V 1 1 1 approx.1.45V±0.10V		
					ADON	Data slicer control bit	101	Data slicer OFF. (The amplifier for slicer is also turned off). Data slicer ON (see INTAD and the INTDA about the amplifier for slicer)	0	0
					INTAD	The amplifier control bit for data slicers		Always data slicer ON. On 3 to 23 lines and 315 to 335 line amplifier ON. On other line amplifier OFF	0	0
				INTDA	The rudder resistance control		Always ladder resistance for data slicer ON.	0	0	
					bit for data slicers			On 3 to 23 lines and 315 to 335 line Ladder resistance ON. On other line Ladder resistance OFF	Ľ	
					Reserved	bits	м	lust set to "0."	×	0


Note. Slice RAM: Refer to Figure "Slice RAM bit construction"

28. Address 2916 (=DA5 to 0)

DD15	DD8DD7	DD0				
0000					1	
			Bit symbol	Bit name	Function	RW
			VPS_VP0	Setup of a slice start line (Shared by the first field and	If a slice start line is made into SLI_VS	00
			VPS_VP1	the second field)	At PAL <the field="" first=""></the>	00
		VPS_VP2	P2	SLI_VS = $\sum_{n=0}^{\infty} 2^n$ VPS_VPn + 2 <the field="" second=""></the>	00	
			VPS_VP3		$SLI_VS = \sum_{n=0}^{8} 2^n VPS_VPn + 315$	00
			VPS_VP4		At NTSC <the field="" first=""></the>	00
			VPS_VP5		$SLI_VS = \sum_{n=0}^{8} 2^n VPS_VPn + 5$	00
			VPS_VP6		<the field="" second=""> SLI_VS $=\sum_{n=0}^{8} 2^n$ VPS_VPn + 268</the>	00
			VPS_VP7		The data for 18 lines is stored in Slice RAM from the line set up by	00
			VPS_VP8		this register.	00
		[SLI_GO	Slice ON/OFF control bit	0 Slice OFF 1 Slice ON	00
			SYNCSEP_ON0	Synchronous separate selection bit	0 Synchronous separate circuit OFF 1 Synchronous separate circuit ON	00
				Synchronous separate input	0 SYNCIN analog input	00
			STBSYNCSEP	control bit	1 SYNCIN digital input	
<u></u>			Reserved bi	ts	Must set to "0."	×O


29. Address 2A16 (=DA5 to 0)

30. Address 2B16 (=DA5 to 0)

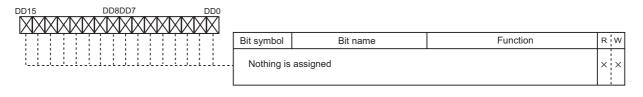
DD15 DD8DD7 DD0				
	Bit symbol	Bit name	Function	RW
	Reserved bit	is	Must set to "0."	×О
	Nothing is assigned.			××
	Reserved bits		Must set to "0."	×О
	SEL_PDCH	The internal H selection bit for data slicers	SEL_PDCH SEL_VPSH 0 0 External Hsync 0 1 From PLL for VPS	00
	SEL_VPSH		0 1 0 From PLL for PDC 1 1 VPS or PDC	00
	Reserved bit	t	Must set to "0."	×О
<u> </u>	SEL_PDEC	The clock selection bit for a PLL lock	0 VPS and a PLL lock from Hsync. 1 VPS and a PLL lock from a X'tal system.	00

31. Address 2C16 (=DA5 to 0)

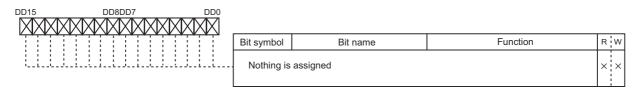
32. Address 2D16 (=DA5 to 0)

DD15 DI	D8DD7 DD0				
00000			1		
		Bit symbol	Bit name	Function	RW
		PLSNEG0	Slice-ON period selection bit	Refer to PLSPOS0 to 8 (Address 2C16)	00
		PLSNEG1			00
	· · · · · · · · · · · · · · · · · · ·	PLSNEG2			00
		PLSNEG3			00
		PLSNEG4			00
	· · · · · · · · · · · · · · · · · · ·	PLSNEG5			00
	<u> </u>	PLSNEG6			00
		PLSNEG7			00
	l	PLSNEG8			00
		Reserved b	its	Must set to "0."	×O
		Reserved b	it	Must set to "1" when teletext (PDC) data is acquired.	×O
		Reserved b	its	Must set to "0."	×O

RENESAS


33. Address 2E16 (=DA5 to 0)

DD15	DD8DD7	7 DD0				
						.
			Bit symbol	Bit name	Function	RW
			HCOUNT0	Synchronous detection bit	A horizontal synchronized signal is counted. These bits are reset by set	о×
			HCOUNT1		the VERTX bit (address 3316) to "0."	о×
	· · · · · · · · · · · · · · · · · · ·		HCOUNT2			о×
			HCOUNT3			о×
			HCOUNT4			о×
			HCOUNT5			о×
			HCOUNT6	-		о×
			HCOUNT7			о×
			HCOUNT8			о×
			HCOUNT9			о×
			HCOUNT10			о×
			HCOUNT11			о×
	L		HCOUNT12			о×
· · · ·						о×
						о×
			HCOUNT15			о×


34. Address 2F16 (=DA5 to 0)

DD15	DD8DD7	DD0						
0 X								_
			Bit symbol	Bit name		Function	R	w
	Nothing is assigned							×
			Reserved b	it	Set to "0" usually			0
			STB_RES	Extended register all reset bit	0	Normal It resets to address 0016 to the address 2E16 extended register.	0	0

35. Address 3016 (=DA5 to 0)

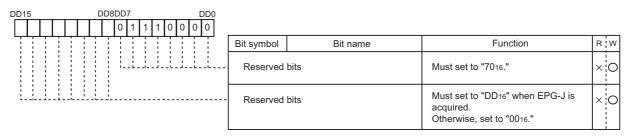
36. Address 3116 (=DA5 to 0)

37. Address 3216 (=DA5 to 0)

DD15	DD8DD7 DD0				
		Bit symbol	Bit name	Function	RW
	· · · · · · · · · · · · · · · · · · ·	RMHTD0(0)	Remote control header length selection bit	In order to detect a remote control pulse in standby mode, the header length to the oscillation for clocks	00
		RMHTD0(1)		(address 3216) is chosen.	00
		RMHTD0(2)		pulse	00
		RMHTD0(3)		A C pulse width	00
		RMHTD0(4)		← Header part	00
		RMHTD0(5)		$A = T_{XCIN} \times \sum_{n=0}^{8} 2^{n} RMHTD0(n)$ $C = T_{XCIN} \times \sum_{n=0}^{8} 2^{n} RMHTD1(n)$	00
		RMHTD0(6)		$B = T_{XCIN} \times FILDIV0 \times \sum_{n=0}^{5} YUKOU0(n)$	00
		RMHTD0(7)		D = Txcin × FILDIV0 × $\sum_{n=0}^{5}$ YUKOU1(n) Txcin : XCIN pin input cycle	00
		RMHTD0(8)		Division value set by FILDIV0 (bit 9 of address 3316)	00
		JSTCKDIV0	Clock division value of JUST CLOCK filter selection bit.	JSTCKDIV1 JSTCKDIV0 Main clock divided value 0 0 32 divided	00
		JSTCKDIV1		0 1 64 divided 1 0 128 divided 1 1 256 divided	00
		JSTCKON	ON/OFF of JUST CLOCK filter selection bit.	0 Filter OFF 1 Filter ON	00
		Nothing is a	assigned.		××
		RMTSEL	Remote control header polarity selection bit	0 No reverse 1 reverse	00

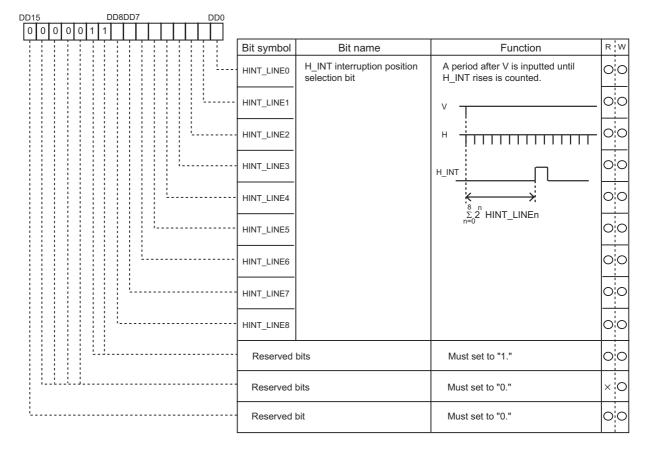
RENESAS

38. Address 3316 (=DA5 to 0)


DD15				DD8D	D7				DDC)					
	0		0												
						-					Bit symbol	Bit name		Function	RW
									1 .		RMHTD1(0)	Remote control header length selection bit		Refer to RMHTD0 (0) to (8) (address 3216).	00
									[RMHTD1(1)				00
								Į.			RMHTD1(2)			(00
											RMHTD1(3)			(00
											RMHTD1(4)			-	00
											RMHTD1(5)			-	00
						/					RMHTD1(6)			-	00
					[RMHTD1(7)			-	00
											RMHTD1(8)			-	00
											FILDIV0	Clock division value of remote control pulse selection bit	me	bck division value for Remote control tolerance period vasurement is selected. (Note 1) Image: selected value of the selecte	00
											Reserved b	Dit	r	Must set to "0. "	00
			<u> </u>								FILON	Filter ON/OFF of remote contro pulse selection bit (Notes 2, 3)	0		00
											VERTX	Synchronous detection reset bit	0	Reset Horizontal synchronized signal count	00
									Reserved b	Dit	r	Must set to "0. "	00		
							FILDIV1(0)	Filter of remote control clock divide value selection bit		FILDIV1(1) FILDIV1(0) Sub clock divided value 0 0 2 0 1 4	00				
											FILDIV1(1)			1 0 8	00

Notes 1. Refer to RMHTD0 (0) to (8) (address 3216)

Notes 2. Change these bits at initialization and do not rewrite during remote control receive. Notes 3. The remote control pulse filter is only for the sub clock. Set it to OFF


when the sub clock is not mounted.

39. Address 3416 (=DA5 to 0)

RENESAS

40. Address 3516 (=DA5 to 0)

41. Address 3616 (=DA5 to 0)

DD15	DD8DD7		DD0				
	╷╷╷╷╷╷	╷╷╷╷╷╷╷	\square				<u> </u>
				Bit symbol	Bit name	Function	RW
				VINT0	SLICEON interruption control test bit	0000 : Interrupt disabled (Note 3) 1011 : Interrupt enabled	00
				VINT1		Others : Do not set up	00
				VINT2		When the period of data acquisition expires, the interrupt occurs by setting these bits to 1011.	00
				VINT3		Set up the TB5IC register (Note 4) when use by "Interrupt enabled."	00
				INTRMT0	Remote control interruption control bit (Note 1)	0000 : Interrupt disabled (Note 3) 1010 : Interrupt enabled	00
				INTRMT1		Others : Do not set up	00
				INTRMT2		Set up the TB4IC register (Note 4) when use by "Interrupt enabled."	00
				INTRMT3			00
				HINT0	HINT interruption control test bit (Note 2)	0000 : Interrupt disabled (Note 3) 1001 : Interrupt enabled	00
				HINT1		Others : Do not set up	00
				HINT2		Set up the TB3IC register (Note 4) when use by "Interrupt enabled."	00
				HINT3			00
				SECINT0	Clock timer interruption control bit	0000 : Interrupt disabled (Note 3) 1000 : Interrupt enabled (Note 5)	00
				SECINT1		Others : Do not set up	00
· · · · · · · · · · · · · · · · · · ·				SECINT2		Set up the TB2IC register (Note 4) when use by "Interrupt enabled."	00
l				SECINT3			00

Notes 1. Refer to 15.6 Expansion Register Construction Composition.

Notes 2. Refer to the function of HINT_LINEn (Address 3516.)

Notes 3. Set these bits to 0000 when use the interrupt of Timer B2, Timer B3, Timer B4, or Timer B5.

Notes 4. Refer to Figure 6.3 Interrupt Control Registers.

Notes 5. When the second counter (Address 3916) is changed, an interrupt is generated every 1 second.

Notes 6. Please do not change data after setting initial data to address 3616 corresponding interrupt control bit VINTi, INTRMTi, HINTi, and SECINTi (i = 0 to 3) when you use the SLICEON, remote control, HINT, and the clock timer interrupt.

42. Address 3716 (=DA5 to 0)

	╷╙╷╙╷╢╷╹╷╹╷╹╷╹╷╹╷╹	Bit symbol	Bit name	Function	RW
		YUKOU0(0)	Remote control header judging pulse length	Refer to RMTHD0(0) to (8) (Address 3216)	00
	· · · · · · · · · · · · · · · · · · ·	YUKOU0(1)	selection bit 0		00
	· · · · · · · · · · · · · · · · · · ·	YUKOU0(2)			00
		YUKOU0(3)			00
		YUKOU0(4)			00
	· · · · · · · · · · · · · · · · · · ·	YUKOU0(5)			00
	<u> </u>	Nothing is	assigned.		××
		YUKOU1(0)	Remote control header judging pulse length	Refer to RMTHD0(0) to (8) (Address 3216)	00
		YUKOU1(1)	selection bit 1		00
		YUKOU1(2)			00
		YUKOU1(3)			00
		YUKOU1(4)			00
		YUKOU1(5)			00
[]]		Nothing is	assigned.		××

43. Address 3816 (=DA5 to 0)\

DD15	DD8DD7	DD0				
0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0				
			Bit symbol	Bit name	Function	RW
			Reserved	bit	Must set to "0."	00

44. Address 3916 (=DA5 to 0)

DD15 DD8DD7 DD	0			
]			
	Bit symbol	Bit name	Function	RW
	SECOUT0	Clock Timer Second Setting Bit	Set seconds (0 to 59 seconds) of clock timer.	00
· · · · · · · · · · · · · · · · · · ·	SECOUT1		The settable values are 0 to 59.	00
· · · · · · · · · · · · · · · · · · ·	SECOUT2	_		00
· · · · · · · · · · · · · · · · · · ·	SECOUT3	_		00
	SECOUT4	4		00
	SECOUT5			00
	Nothing is a	assigned.		××
	RTCON	Clock Timer Operation Selection Bit	O Clock timer stops Clock timer operates	00
	Nothing is a	assigned.		××
	SECJUST	Second Just Setting Bit	When writing "1", less than second of the clock timer is reset. When reading, the value is "0".	×O
	L	1	1	

45. Address 3A16 (=DA5 to 0)

DD15	DD8DD7	DD0				
			Bit symbol	Bit name	Function	RW
			MINOUT0	Clock Timer Minute Setting Bit	Set hours and minutes of the clock timer by the minute.	00
			MINOUT1		The settable values are 0 to 1439 (00:00 to 23:59)	00
			MINOUT2			00
			MINOUT3			00
			MINOUT4			00
			MINOUT5			00
			MINOUT6			00
			MINOUT7			00
			MINOUT8			00
			MINOUT9			00
			MINOUT10			00
			Nothing is a	ssigned.		××

RENESAS

46. Address 3B16 (=DA5 to 0)

DD15	DD8DD7				
	· · · · · · · · · · · · · · · · · · ·	Bit symbol	Bit name	Function	RW
		 DAYCUONT0	Clock Timer Day Setting Bit	Set days of the clock timer. The settable value are 0 to 65535.	00
		 DAYCUONT1			00
		 DAYCUONT2			00
		 DAYCUONT3			00
		 DAYCUONT4			00
		 DAYCUONT5			00
		 DAYCUONT6			00
		 DAYCUONT7			00
		 DAYCUONT8			00
		 DAYCUONT9			00
		 DAYCUONT10			00
		 DAYCUONT11			00
		 DAYCUONT12			00
		 DAYCUONT13			00
		 DAYCUONT14			00
		 DAYCUONT15			00

47. Address 3C16 (=DA5 to 0) (Note 1)

D15	DD8DD						
└╌┸╌┸╌╴	┕╌┛╌┚╌┚	┖╤┸╤┹╤┹╤		Bit symbol	Bit name	Function	RW
				RMTSTART	Remote control transmission start bit	Start and the stop of wave form output is selected. 0: Stop 1: Start	oc
			l	- IRPOL(0)	Carrier selection bit	The output mode of remote control transmission wave form is selected.	oc
				- IRPOL(1)		000: External wave, Carrier and AND output. 010: External wave, Carrier and OR output.	
				- IRPOL(2)		101: Only external wave is output (carrier none.) Additionally: Setting prohibition.	
				- RMCDIV(0)	Carrier clock source selection bit	Carrier's clock source is selected. 00: The main clock (There is not dividing frequency.) 01: 2.5 dividing of the main clock.	OC
				RMCDIV(1)		10: 8 dividing of the main clock. 11: Setting prohibition.	
				RMTDIV(0)	External wave clock source selection bit	The clock source of external wave is selected. 00: The main clock (There is not dividing frequency.) 01: 8 dividing of the main clock.	OC
				RMTDIV(1)		10: 64 dividing of the main clock. 11: 256 dividing of the main clock.	
				RMT_TM(0)	External wave clock dividing frequency value setting bit	Dividing frequency value which is selected by RMTDIV(1, 0) Set RMT_TM.	00
				RMT_TM(1)	inequency value setting bit		
				RMT_TM(2)		$RMT_{T}TM = \sum_{n=0}^{\prime} 2^{n} \cdot RMT_{T}TMO(n)$	
	L			RMT_TM(3)			
4				- RMT_TM(4)			
				- RMT_TM(5)			
				- RMT_TM(6)			
<u> </u>				- RMT_TM(7)			

Note 1. Refer to 14.6 "(6) Remote control transmission function."

48. Address 3D16 (=DA5 to 0) (Note 1)

DD15	DD8	8DD7	DD0				
ЦЦ			Ц,			1	
				Bit symbol	Bit name	Function	RW
			·	RMT_TML(0)	Carrier L period setting bit	Carrier's L period is set.	00
				RMT_TML(1)		$RMT_TML = \sum_{n=0}^{7} 2^n \cdot RMT_TML(n)$	
				RMT_TML(2)			
				RMT_TML(3)			
		· · · · · · · · · · · · · · · · · · ·		RMT_TML(4)			
				RMT_TML(5)			
			[RMT_TML(6)			
				RMT_TML(7)			
				RMT_TMH(0)	Carrier H period setting bit	Carrier's H period is set.	00
			[RMT_TMH(1)		$RMT_TMH = \sum_{n=0}^{7} 2^n \cdot RMT_TMH(n)$	
				RMT_TMH(2)			
	L		· · · · · · ·	RMT_TMH(3)			
			·	RMT_TMH(4)			
			••••••[RMT_TMH(5)			
				RMT_TMH(6)			
<u> </u>				RMT_TMH(7)			

Note 1. Refer to 14.6 "(6) Remote control transmission function."

49. Address 3E16 (=DA5 to 0) (Note 1)

DD15	DD8DD7	DD0					
0							_
			Bit symbol	Bit name	Function	R	N
			RMTTXINT(0)	Remote control transmission interrupt control	0000: Interrupt prohibition (Note 2) 0001: Interrupt permission	0	С
		· · · · · · · · · · · · · · · · · · ·	RMTTXINT(1)	(Note 1, Note 4)	Additionally: Setting prohibition		
			RMTTXINT(2)		Please set INT2IC register when using it by "Interrupt permission."		
		<u>.</u>	RMTTXINT(3)				
			Reserved bit		Must set to "0."	×	С
			Nothing is assig	ned.		×>	×
			IROUT_SLICEON	P84 output signal selection bit 2 (Note 3)	0: Normal setting (When use P84 I/O port or INT2 interrupt.) 1: Remote control transmission pulse output	00	C
			Reserved bit		Must set to "0."	×	S
		1	Notes 2. Set and u	14.6 "(6) Remote control transr use 00002 when use INT2 inter bit b4 of port P8 direction regi		nissic	on

Notes 4. Please do not change data after setting the initialization data to remote control transmission interrupt control bit RMTTXINT(i) (i = 0 to 3) when you use the remote control transmission interrupt.

50. Address 3F16 (=DA5 to 0) (Note 1)

	Bit symbol	Bit name	Function	RW
	Nothing is a	issigned.		××
	Reserved b	it	Must set to "0."	×O

Note 1. Refer to 14.6 "(6) Remote control transmission function."

51. Address 4016 (=DA5 to 0)

CD15	CD8CD7	CD0				
				1		
			Bit symbol	Bit mane	Function	RW
			FPLS_MIN0	Fixed length pulse lower bound value setting bit	The fixed length pulse lower bound value is set. (note 1)	00
			FPLS_MIN1			00
			FPLS_MIN2			00
			FPLS_MIN3			00
			FPLS_MIN4			00
	/		FPLS_MIN5			00
			FPLS_MIN6			00
			FPLS_MIN7			00
			FPLS_MAX0	Fixed length pulse upper bound value setting bit	The fixed length pulse upper bound value is set. (note 1)	00
			FPLS_MAX1			00
			FPLS_MAX2			00
			FPLS_MAX3			00
			FPLS_MAX4			00
			FPLS_MAX5			00
			FPLS_MAX6			00
			FPLS_MAX7			00

*Note 1: The fixed value pulse is a pulse ("H" or "L" part) where 0/1 is not judged. It does according to enhancing register VBITPOL (Address 4316 and bit 13) at H period of 0/1 judgments or it does at L period or it selects it.

52. Address 4116 (=DA5 to 0)

CD15	CD8CD7	7 CD0				
			Bit symbol	Bit name	Function	RW
			DT0_MIN0	"0" data pulse length lower bound value setting bit	"0" data pulse length lower bound value is set.	00
			DT0_MIN1			00
			DT0_MIN2			00
			DT0_MIN3			00
			DT0_MIN4			00
			DT0_MIN5			00
		·	DT0_MIN6			00
			DT0_MIN7			00
			DT0_MAX0	"0" data pulse elder limit value setting bit	"0" data pulse elder limit value is set	00
			DT0_MAX1			00
			DT0_MAX2			00
	·		DT0_MAX3			00
	L		DT0_MAX4			00
			DT0_MAX5			00
			DT0_MAX6			00
!			DT0_MAX7			00

53. Address 4216 (=DA5 to 0)

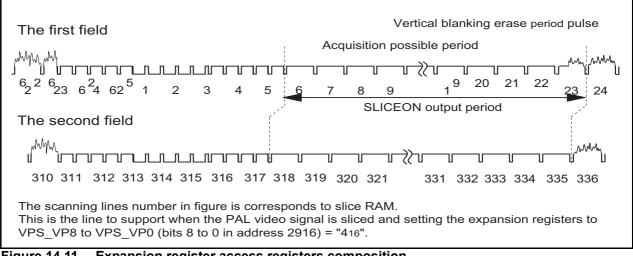
CD15		CD8	CD7					CI	00					
					\Box	\Box					1	r		_
							÷			Bit symbol	Bit name	Function	R	w
										DT1_MIN0	"1" data pulse length lower bound value setting bit	"1" data pulse length lower bound value is set.	0	
								!		DT1_MIN1			0	0
							ĺ.,			DT1_MIN2			0	0
						Ì.				DT1_MIN3	-		0	
										DT1_MIN4			0	
										DT1_MIN5			0	
										DT1_MIN6	-		0	
			Į							DT1_MIN7			0	
										DT1_MAX0	"1" data pulse elder limit value setting bit	"1" data pulse elder limit value is set.	00	2
										DT1_MAX1	_		0	b
										DT1_MAX2	-		0	
										DT1_MAX3	-		0	
	·			1						DT1_MAX4	-		0	
										DT1_MAX5	-		00	
·										DT1_MAX6	•		00	
i							1			DT1_MAX7			0	Э

54. Address 4316 (=DA5 to 0)

CD15	CD8C	CD7		CD0				
					Bit symbol	Bit name	Function	RW
					MAXBIT0	The maximum reception bit number setting bit	The number of maximum reception bits is set.	00
					MAXBIT1			00
			1		- MAXBIT2			00
					- MAXBIT3			00
			 		MAXBIT4			00
			 		MAXBIT5			00
			 		MINBITO	Minimum reception bit number setting bit	The number of minimum reception bits is set.	00
		[- MINBIT1			00
			 		- MINBIT2			00
			 		MINBIT3			00
			 		MINBIT4			00
	 		 		MINBIT5	-		00
	 		 		RMTLSB	LSB/MSB reception selection bit	0:It receives it with MSB. 1:It receives it with LSB.	00
	 		 		VBITPOL	0/1 judgment level selection bit	0:0/1 is judged at L period. 1:0/1 is judged at H period.	00
	 		 		INTSEL	Interrupt selection bit	0:After it matches it, interrupt is generated. 1:When a reception of the data of the 16th bit and the maximum data are received, interrupt is generated	-00
İ	 		 		GET_DATA	Bit that takes data	1:When "1" is written from the reception buffer in the reception register, the data of the reception buffer is written in the reception register. (The value when reading it is 0.)	×O

55. Address 4416 (=DA5 to 0)

CD8CD						
		Bit symbol	Bit name	Function	R	W
	· · · · · · · · · · · · · · · · · · ·	DATAOL0	Number of receive data bits	The number of bits of received data is displayed.		
		DATAOL1				
		DATAOL2			С) ×
		DATAOL3				
		DATAOL4				
		DATAOL5				
		NU0	Number of receive data words	16 piece nbit data was received. (n=0,1,2)		
		NU1); ×
		INTRMTFL0	One word reception completion flag	The reception completion of 0/1 data for one word (16 bits) is shown.		
·				0:The data of the 16th bit is not received.		×
		INTRMTFL1	Flag that received data of number of maximum bits	1:The data of the 16th bit was received0:The data of the number of maximumbits was not received.	c); ×
				1:The data of the number of maximum bits was received		
			Flag that received the	0:Everything did not receive the data.		İ
		INTRMTFL2	data everything	1:Everything received the data.	Ľ);×
 		NG	NG flag bit of reception	1:There was NG while receiving it.	C	
		Nothing is			×	×


56. Address 4516 (=DA5 to 0)

CD15	CD8CI	D7 CD0				
				T	1	
			Bit symbol	Bit name	Function	RW
			RMTDA0	Reception register	The received data ("H" data 0/1 judgments by the period of "L")	0 ×
		· · · · · · · · · · · · · · · · · · ·	RMTDA1		is stored.	0 ×
		· · · · · · · · · · · · · · · · · · ·	RMTDA2			O ×
			RMTDA3			0 ×
			RMTDA4			O ×
			RMTDA5			0 ×
		<u>.</u>	RMTDA6	-		0 ×
			RMTDA7	-		0 ×
			RMTDA8	_		0 ×
			RMTDA9	-		0 ×
			RMTDA10			0 ×
			RMTDA11	_		0 ×
			RMTDA12			0 ×
			RMTDA13			0 ×
			RMTDA14			O ×
			RMTDA15			O ×

14.6 Expansion Register Construction Composition

(1) Acquisition timing

The SLICEON signal is output in the acquisition possible period.

Figure 14.11 Expansion register access registers composition

(2) Synchronized signal detection circuit

The number of pulses of the horizontal synchronized signal of a compound video signal is counted during a fixed period. The horizontal synchronous number of pulses can always be read from an expansion register. A block diagram is shown in Figure. 14.12.

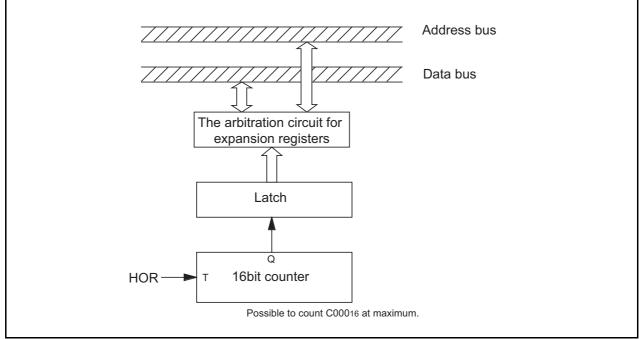


Figure 14.12 Block diagram of Synchronized detection circuit

(3) Register related to Slicer

The relation between V, H signal, and the register related to slicer is shown in Figure. 14.13 and Figure. 14.14.

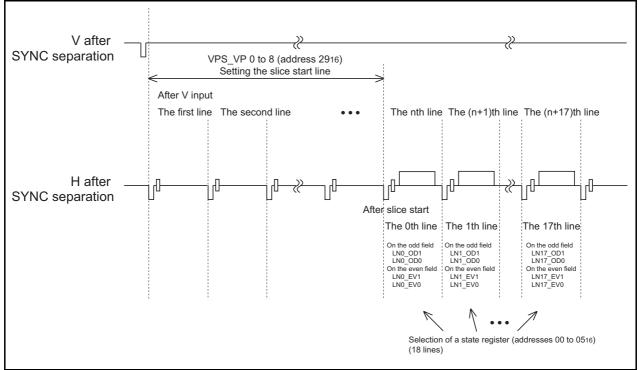


Figure 14.13 Register related to slicer (1)

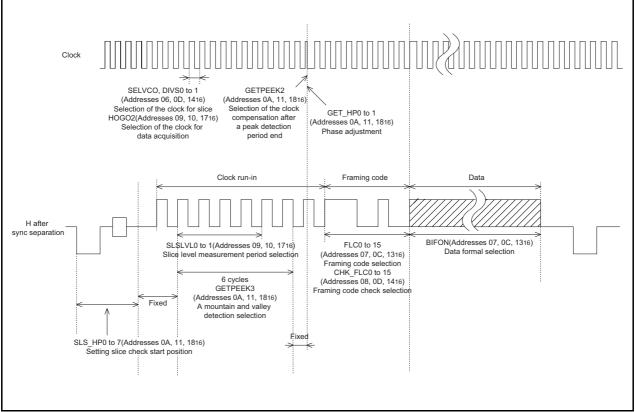


Figure 14.14 Register related to slicer (2)

(4) Remote control pattern recognition

Pattern matching of remote control is performed using a sub clock oscillation. Remote control input is input from RMTIN terminal. Interruption is generated when pattern matching is in agreement.

4 times match noise filter is being included, in front of the pattern matching circuit. A block diagram is shown in Figure 14.15.

The example of a waveform of pattern matching is shown in Figure.14.16. The flow of pattern matching is shown in Figure.14.17.

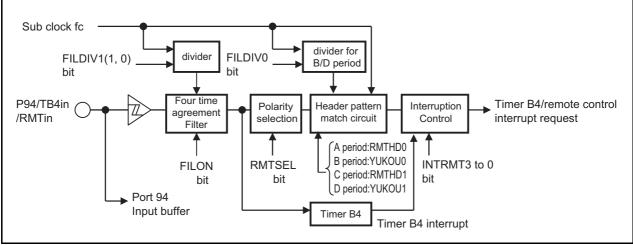


Figure 14.15 Remote control pattern recognition block diagram

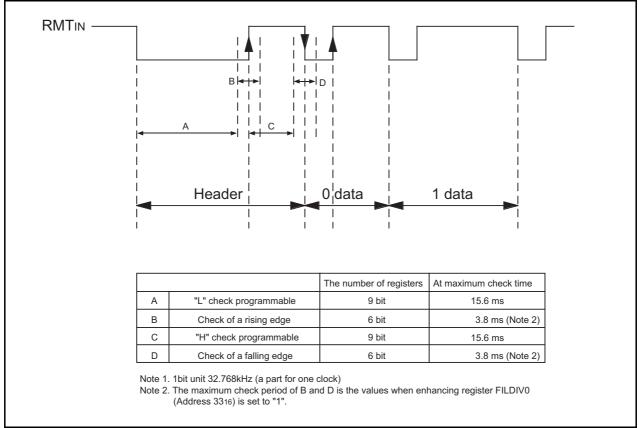


Figure 14.16 Example of waveform of pattern matching

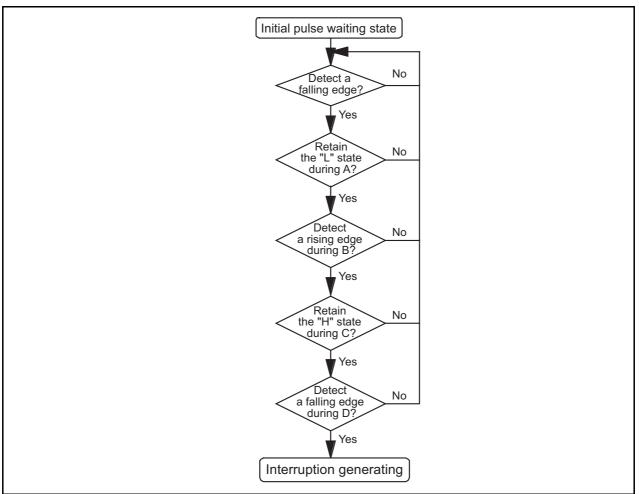


Figure 14.17 Flow of pattern matching

4 times match process operation

This is a 4 times match digital filter using the sub clock oscillation. The input signal of the RMTin pin is sampled 4 times and the output level will change only when the level matches 4 times. When using this filter, set the FILON bit (bit11) in the expansion register 33H to "1". The signal after passing 4 times match filter is applied to the header pattern matching circuit and timer B4 at filter ON. The sampling rate can be changed by the FILDIV1 (1, 0) bit in the expansion register 33H. Refer to the FILDIV1 bit of the expansion register 33H function description for details. The input signal is through supplied to the latter circuit at filter OFF. (no clock delay).Since this filter operates only with the sub clock and cannot be used for the main clock, set the filter to OFF (FILON bit ="0") when the sub clock is not mounted.

(5) Clock timer function

The sub clock is selected as the count source and the clock timer can set and read the count value every day, minute and second. It has the following functions.

Clock function

- 1. This timer is dedicated clock function which is independent from timer A and timer B.
- 2. The settable ranges of day, minute and second are 0 to 65535 days, 0 to 1439 minutes and 0 to 59 seconds.
- 3.Second just setting is available (reset the count value of less than second).

1 second interrupt

1. The interrupt request is generated when second of the clock timer is incremented. (The interrupt request is not generated at the second just setting.)

(6) Remote control transmission function

The career is synthesized to two kinds of pulses of external wave, and the remote control transmission circuit is output from the microcomputer pin.

The specification of the remote control transmitter is shown in Table 14.5, The remote control transmission circuit output wave form is shown in Figure 14.18, and The remote control transmission circuit block chart is shown in Figure 14.19.

The feature is shown below.

- Career is a continuous pulse of the arbitrary width obtained by dividing the main clock (Figure 14.18 Wave forms 2 and 3.)
- External wave is a shape of waves generated from the transmission data buffer with reading pin output value ("H"/"L") and the pulse width one by one (Figure 14.18 Wave form 4.)
- The shape of waves that can synthesize the career to external wave is output from the pin (Figure 14.18 Wave form 5.)

ltem	Specifications
Count source	Carrier: Selection from f1 (There is not XIN dividing frequency), f2.5 (XIN 2.5 dividing frequency), and f8 (XIN 8 dividing frequency.) External wave: Selection from f1 (There is not XIN dividing frequency), f8 (XIN 8 dividing frequency), f64 (XIN 64 dividing frequency), and f256 (XIN 256 dividing frequency.)
Count operation (carrier)	 Down count The register for "H" width setting is read by standing up about the pulse, and it continues the count. The register for "L" width setting is read by standing up about the pulse, and it continues the count.
Comparing of dividing frequency (carrier)	● "H" period and "L" period are 1 to 256.
Count operation (external wave)	 Down count Wave form output value ("H"/"L") and the count value are read from the remote control transmission data buffer with stand up/fall down of the pulse, and the port output and the count are continued.
Comparing of dividing frequency (external wave)	1 to 16384 (14bit)
Start of counting condition	The remote control transmission start bit is set to "1."
Count stop condition	 The remote control transmission start bit is set to "0." After the untransmission data number reference bit is empty and the count value is underflow
Interrupt generation timing	• When external wave stand up/fall down (When the value of the interrupt setting bit read from the remote control transmission data buffer is only 1.)
Remote control transmission mode	 OR output of career and external wave Only external wave is output (carrier none.)

 Table 14.5
 Specification of remote control transmission function

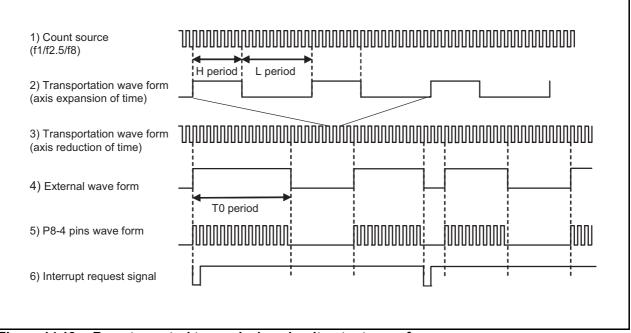


Figure 14.19 Remote control transmission circuit block chart

D15 D		Symbol RMT_TMHL	Address 20016	When reset 000016	
		Bit symbol	Bit name	Function	RV
		RMT_TMHL (0)	External wave pulse period setting/Untransmission data	When writing in: Set one pulse period of the remote control transmission external wave.	00
		RMT_TMHL (1)	number reference bit	When reading out: The number of data (number of untransmission data) that remains in the remote	
		RMT_TMHL (2)		control transmission data buffer is read out.	
		RMT_TMHL (3)			
		RMT_TMHL (4)			
		RMT_TMHL (5)			
	 	RMT_TMHL (6)	1		
	 	RMT_TMHL (7)			
	 	RMT_TMHL (8)			
	 	RMT_TMHL (9)			
	 	RMT_TMHL (10)			
	 	RMT_TMHL (11)			
	 	RMT_TMHL (12)			
	 	RMT_TMHL (13)			
	 	RMT_TMHL (14)	Interrupt setting bit	The presence of the interrupt generation is specified at the change of the external wave output. 0:The interrupt request signal is not generated. 1:The interrupt request signal is generated.	00
	 	RMT_TMHL (15)	External wave output data setting bit	The remote control transmission external wave data is set.	00

transmission.)

14.7 8/4 Humming Decoder

8/4 humming decoder operates only by written the data which is 8/4 humming- encoded to 8/4 humming register (address 021A16). 8/4 humming register consists of 16 bits, can decode two data at once. Can obtain the decoded result by reading 8/4 humming register, and the decoded value and error information are output. Corrects and outputs the decoded value for single error, and outputs only error information for double error. Decoded result is shown in Figure 14.21 and humming 8/4 register composition is shown in Figure 14.22.

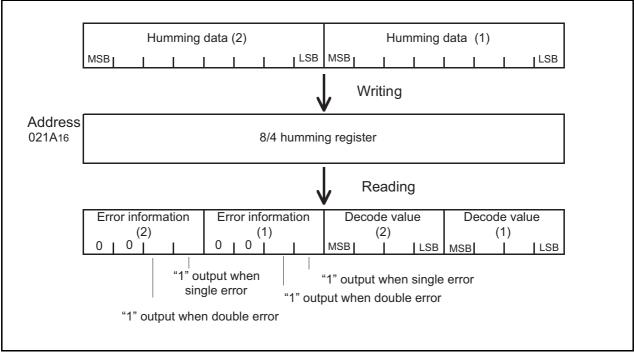
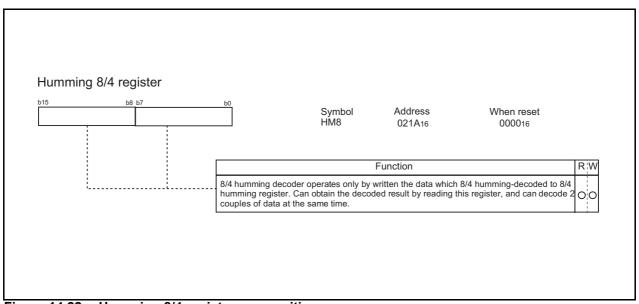
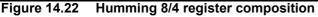




Figure 14.21 Decoded result

14.8 24/18 Humming Decoder

24/18 humming decoder operates only by written the data which is 24/18 humming-encoded to 24/18 humming register 0 (address $021C_{16}$) and 1 (address $021E_{16}$). Can obtain the decoded result by reading the same 24/18 humming register, and the decoded value and error information are output.

Decoded result is shown in Figure 14.23 and humming 24/18 register composition is shown in Figure 14.24.

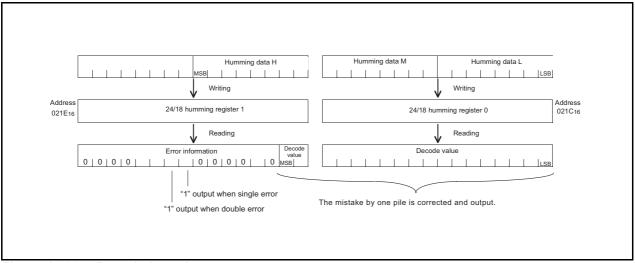


Figure 14.23 Decoded result

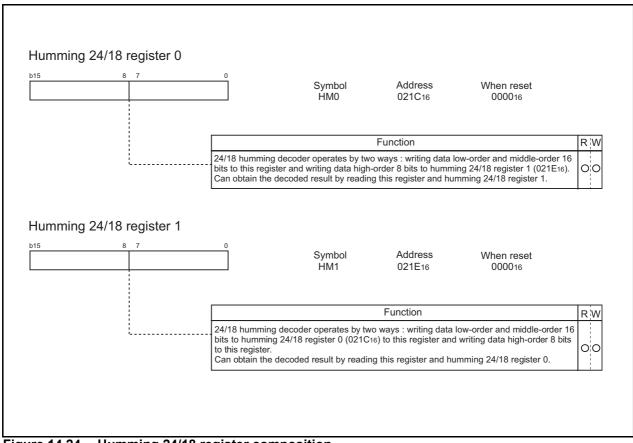
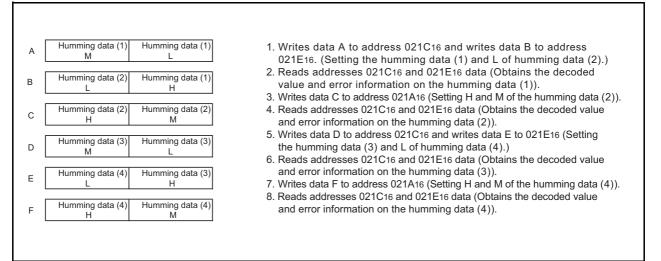
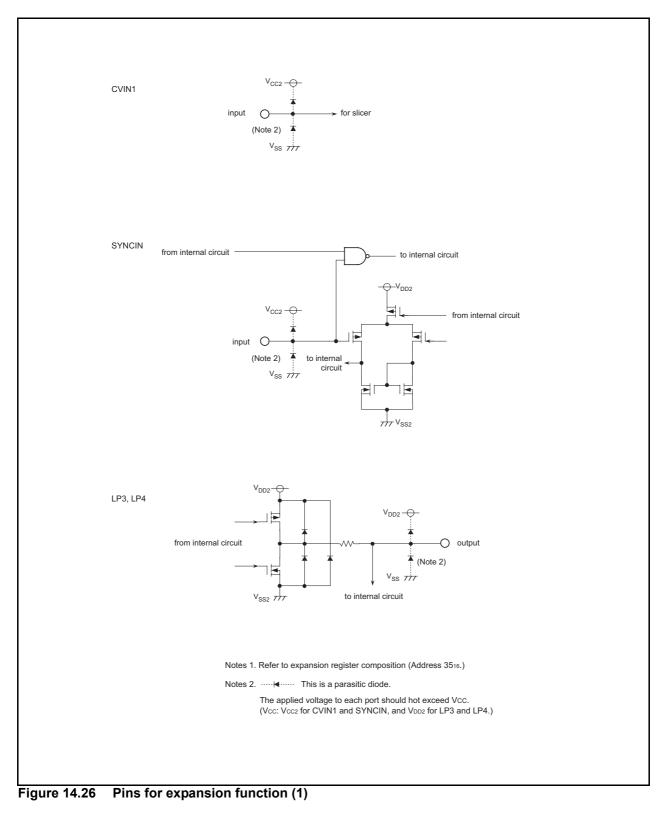



Figure 14.24 Humming 24/18 register composition

Continuous error correction

When uses humming 8/4 (address 021A16) at the same time as humming 24/18, can do the continuous error correction.

Continuous error correction sequence is shown in Figure 14.25.


Figure 14.25 Continuous error correction sequence

Then, because using a part of circuit of humming 8/4 about this operation, cannot use this operation at the same time.

When using the humming circuit, do the decoded result reading operation at once after the setting data of humming. And do not access other memories (Including the humming circuit) before reading of the decoded result.

14.9 I/O Composition of pins for Expansion Function

Figure 14.26 and figure 14.27 show pins for expansion function.

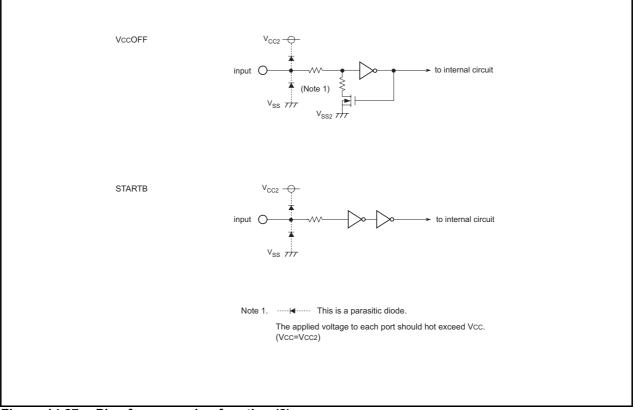


Figure 14.27 Pins for expansion function (2)

15. Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 79 lines P0 toP9 (except P85). Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P85 is an input-only port and does not have a pull-up resistor. Port P85 shares the pin with $\overline{\text{NMI}}$, so that the $\overline{\text{NMI}}$ input level can be read from the P8 register P8_5 bit.

Figures 15.1 to 15.5 show the I/O ports. Figure 15.6 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions is directed for output no matter how the corresponding direction bit is set.

15.1 Port Pi Direction Register (PDi Register, i = 0 to 9)

Figure 15.7 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

No direction register bit for P85 is available.

15.2 Port Pi Register (Pi Register, i = 0 to 9)

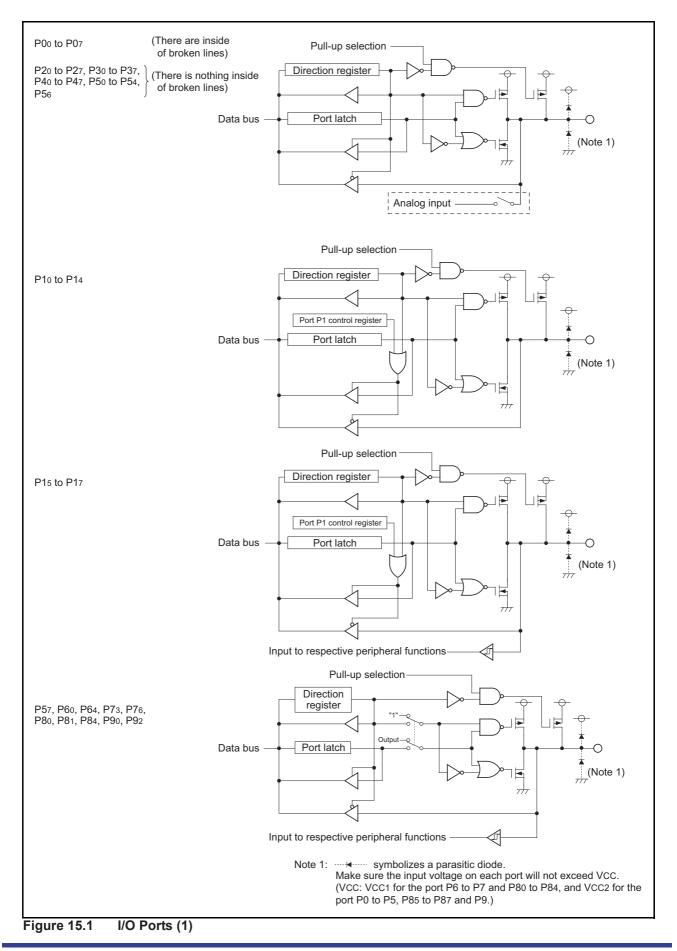
Figure 15.8 show the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

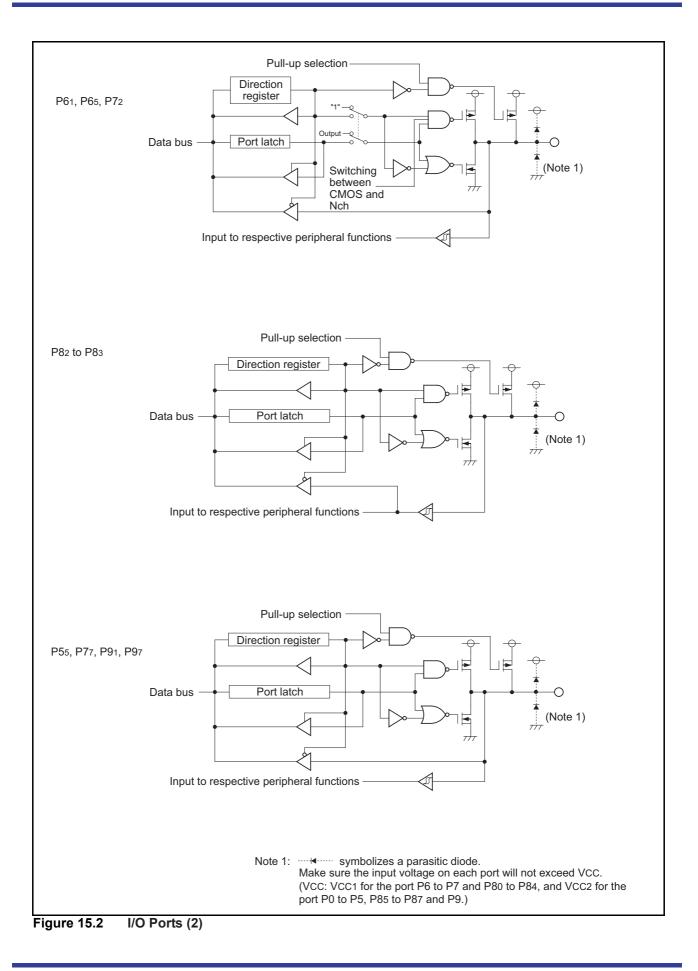
For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

15.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)

Figure 15.9 shows the PUR0 to PUR2 registers.


The PUR0 to PUR2 register bits can be used to select whether or not to pull the corresponding port high in 4 bit units. The port chosen to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

15.4 Port Control Register


Figure 15.10 shows the port control register.

When the P1 register is read after setting the PCR register's PCR0 bit to "1", the corresponding port latch can be read no matter how the PD1 register is set.

M306H7MG-XXXFP/MC-XXXFP/FGFP

RENESAS

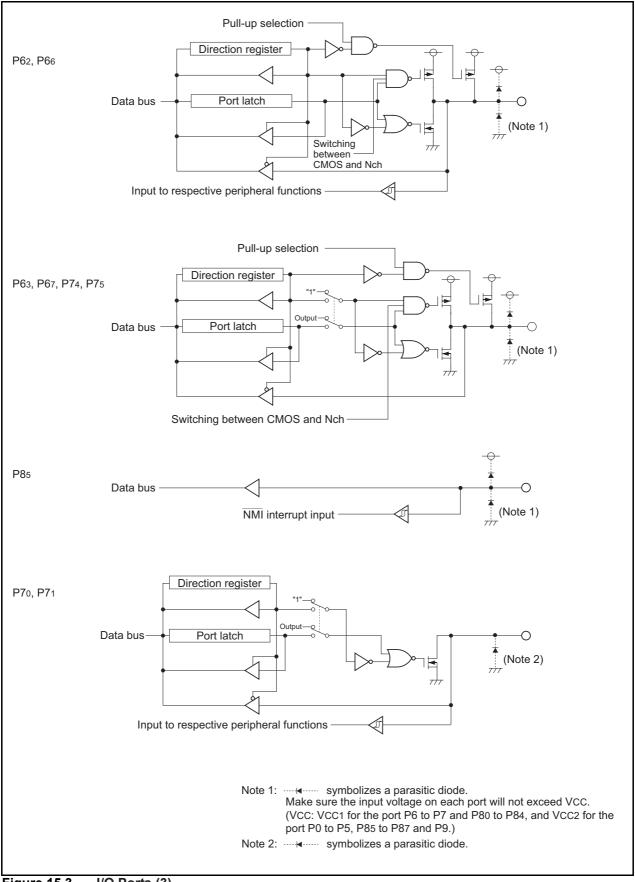
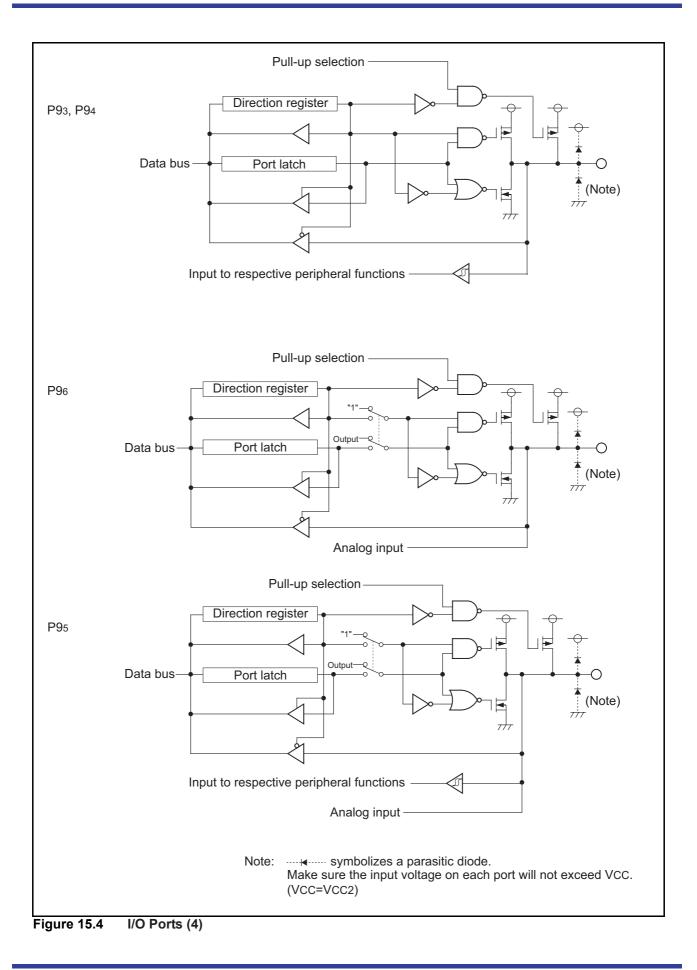



Figure 15.3 I/O Ports (3)

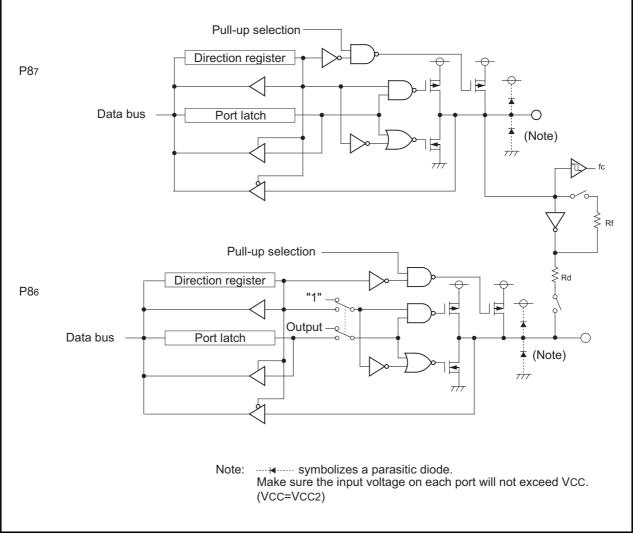


Figure 15.5 I/O Ports (5)

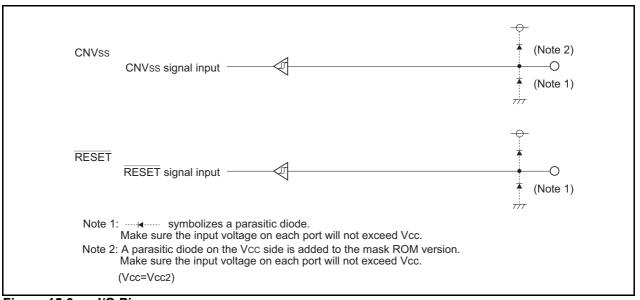
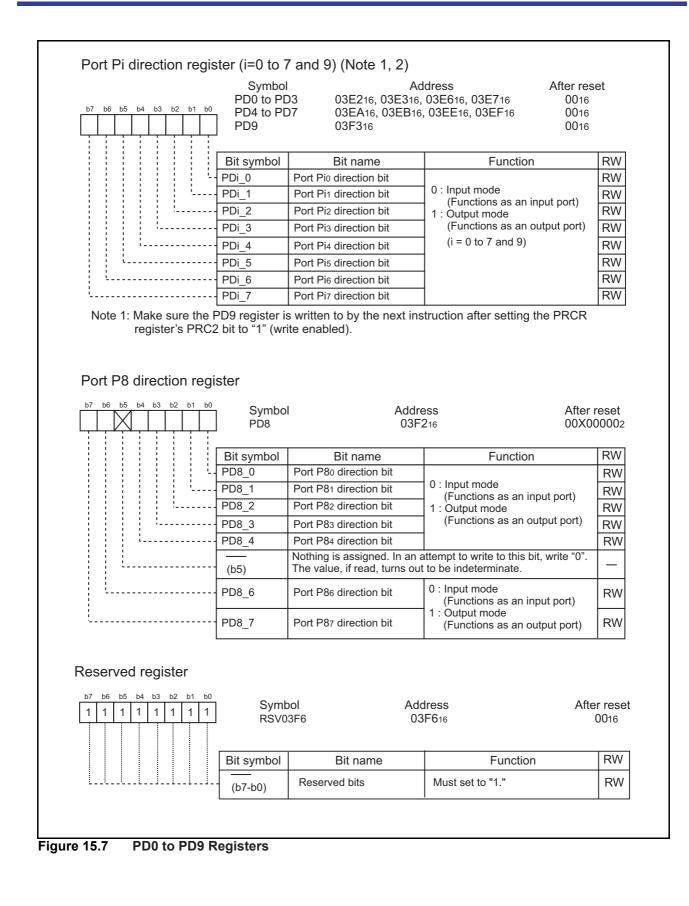
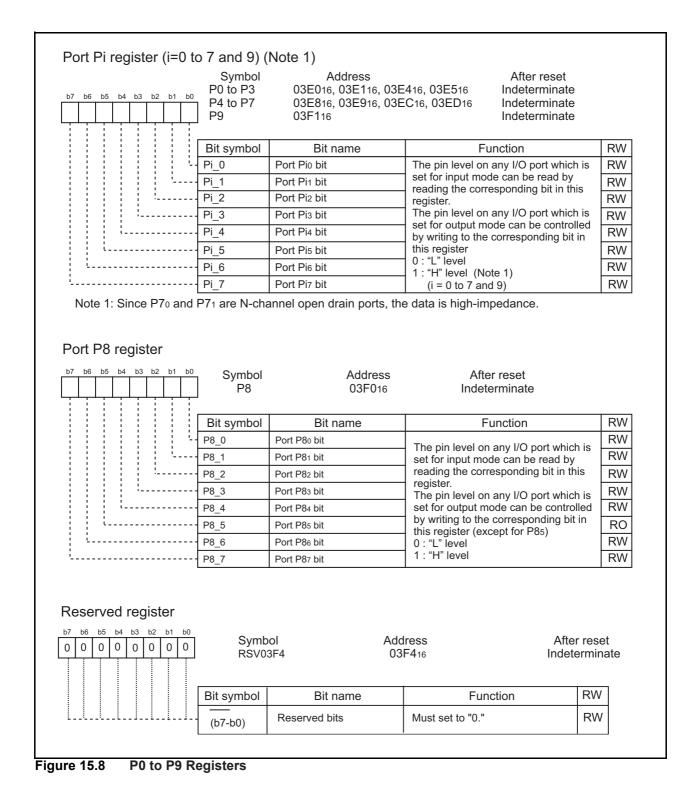
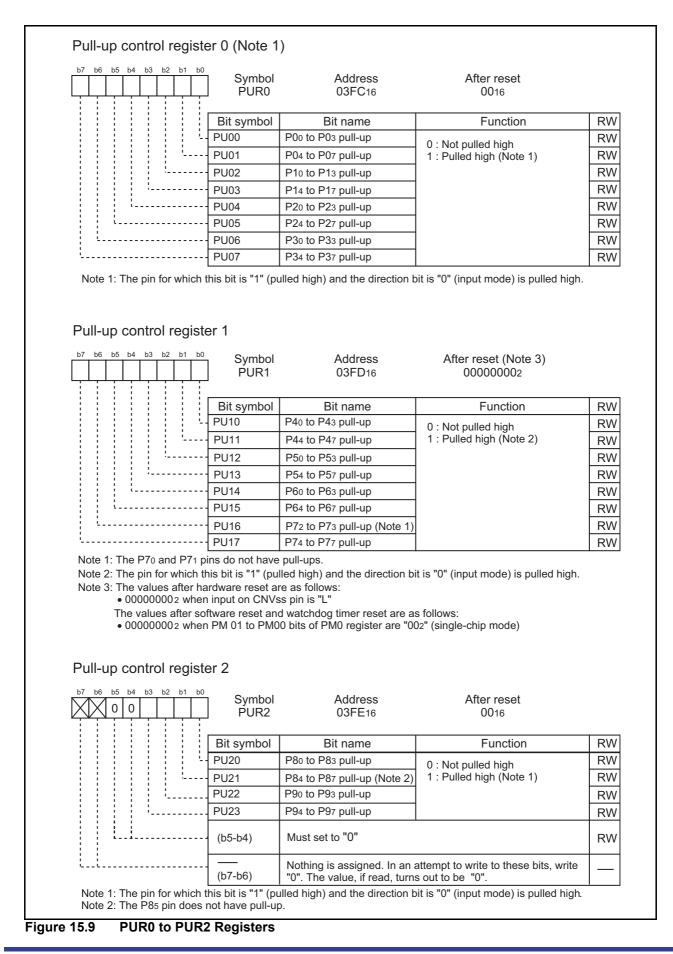





Figure 15.6 I/O Pins

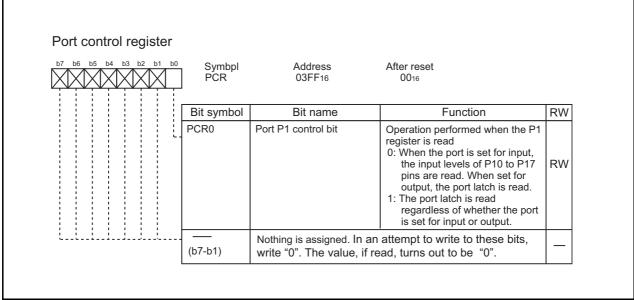
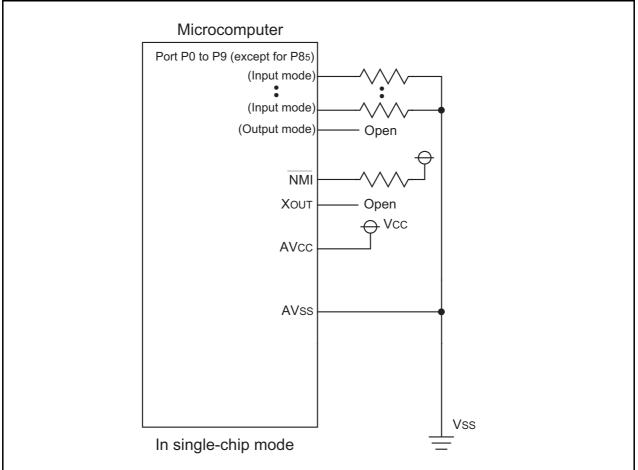


Figure 15.10 PCR Register

Pin name	Connection
Ports P0 to P7, P80 to P84, P86 to P87, P9	After setting for input mode, connect every pin to Vss via a resistor(pull-down); or after setting for output mode, leave these pins open. (Note 1, 2,3)
XOUT (Note 4)	Open
NMI (P85)	Connect via resistor to Vcc (pull-up)
AVcc	Connect to Vcc
AVss	Connect to Vss


Table 15.1	Unassigned Pin Handling in Single-chip Mode
------------	---

Note 1: When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode. Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.

Note 2: Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).

Note 3: When the ports P70 and P71 are set for output mode, make sure a low-level signal is output from the pins. The ports P70 and P71 are N-channel open-drain outputs.

Note 4: With external clock input to XIN pin.

16. Electrical Characteristics

Symbol	Parameter		Condition	Rated value	Unit
VCC1, VCC2	Supply volt	age	Vcc2=AVcc	-0.3 to 6.0	V
Vcc1	Supply volt	age	Vcc1	-0.3 to Vcc2	V
AVcc	Analog sup	pply voltage	Vcc2=AVcc	-0.3 to 6.0	V
VDD2	Analog sup	pply voltage	VCC2=VDD2	-0.3 to 6.0	V
Vi	Input voltage	RESET, CNVss P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P85 to P87, P90 to P97, XIN, M1, STARTB		-0.3 to Vcc2 + 0.3	v
		P60 to P67, P70 to P77, P80 to P84		-0.3 to Vcc1 + 0.3	V
		P70, P71		-0.3 to 6.0	V
Vo	Output voltage	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P86, P87, P90 to P97, XOUT		-0.3 to Vcc2 + 0.3	v
		P60 to P67, P70 to P77, P80 to P84		-0.3 to Vcc1 + 0.3	V
		P70, P71		-0.3 to 6.0	V
Pd	Power diss	ipation	Topr=25 °C	550	mW
Topr	Operating	ambient temperature		-20 to 70	°C
Tstg	Storage ter	nperature		-20 to 125	°C

Table 16.1 Absolute Maximum Ratings

Note: Following setting is required: Vcc1 \leq Vcc2

Cumph cl	Devenueter				11.21		
Symbol		Parameter	arameter		Тур.	Max.	Unit
VCC1, VCC2	Supply volta	ge (Vcc1 ≤ Vcc2)		2.0	5.0	5.5	V
AVcc	Analog supp	ly voltage			Vcc2		V
VDD2	Analog supp	ly voltage			V CC2		V
Vss	Supply volta	ge			0		V
AVss	Analog supp	ly voltage			0		V
	HIGH input	P31 to P37, P40 to P47, P50 to P57		0.8Vcc2		Vcc2	V
	voltage	P00 to P07, P10 to P17, P20 to P27, P30		0.8Vcc2		V CC2	V
Vih		P60 to P67, P72 to P77, P80 to P84		0.8Vcc1		Vcc1	V
· · · ·		P85 to P87, P90 to P97 XIN, RESET, CNVss, M1, STARTB		0.8Vcc2		Vcc2	V
		P70, P71				5.75	V
	LOW input	P31 to P37, P40 to P47, P50 to P57		0		0.2Vcc2	V
	voltage	P00 to P07, P10 to P17, P20 to P27, P30	200 to P07, P10 to P17, P20 to P27, P30			0.2Vcc2	V
Vil		P60 to P67, P70 to P77, P80 to P84		0		0.2Vcc1	V
		P85 to P87, P90 to P97, XIN, RESET, CNVss, M1, STARTB		0		0.2Vcc2	V
Vcvin	Composite vi	deo input voltage CVIN, SYNCIN			2VP-P		V
IOH (peak)	HIGH peak ou current (Note2					- 10.0	mA
I OH (avg)	HIGH averag	P40 to P47 P50 to P57 P60 to P67				- 5.0	mA
IOL (peak)	LOW peak output curren	LOW peak P00 to P07,P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P70 to P77, P80 to P84,P86,P87,P90 to P97				10.0	mA
OL (avg)	LOW average output curren					5.0	mA
f (Xin)	Main clock input oscillation frequency (Note 4)		Vcc2=2.9 to 5.5V	0		16	MHz
f (Xcin)	Sub-clock os	cillation frequency	Vcc2=2.0 to 5.5V(Note 5)		32.768	50	kHz
f (BCLK)	CPU operatio	n clock	1	0		16	MHz

Table 16.2 **Recommended Operating Conditions (Note 1)**

Note 1: Referenced to Vcc = Vcc1 = Vcc2 = 2.0 to 5.5V at Topr = -20 to 70 °C unless otherwise specified.

Note 2: The mean output current is the mean value within 100ms.

Note 3: The total IoL (peak) for ports P0, P1, P2, P3, P4, P5, P86, P87, P9 must be 80mA max. The total IoL (peak)

for ports P6, P7andP80 to P84 must be 80mA max. The total IOH (peak) for ports P0, P1, and P2 must be -40mA max.

The total IOH (peak) for ports P3, P4andP5 must be -40mA max. Note 4: Use the Vcc1 and Vcc2 power supply voltage on the following conditions.

• Vcc1 = 3.00V to Vcc2, Vcc2 = 4.00V to 5.5V (at f(XIN) = 16MHz)

• Vcc1 = 2.90V to Vcc2, Vcc2 = 2.90V to 5.5V (at f(XIN) = 16MHz, at divide-by-8 or 16)

Note 5: Use in low power dissipation mode. When operating on low voltage (Vcc = 3.0V), only single-chip mode can be used. If the Vcc2 supply voltage is less than 2.6 V, be aware that only the CPU, RAM, clock timer, interrupt, and Input/Output ports can be used. Other control circuits (e.g., timers A and B, serial I/O, UART) cannot be used.

Table 16.3	A/D Conversion Characteristics (Note 1)	
------------	---	--

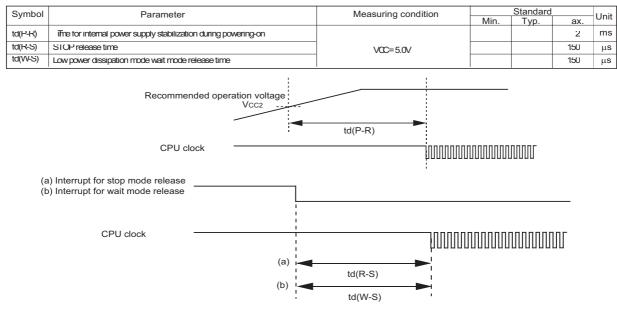
Sumbol	nbol Parameter		Macauring condition		Standard			
Symbol	Farameter	IN IN	leasuring condition	Min.	Тур.	Max.	Unit	
-	Resolution	Vref =V	/cc			8	Bits	
_	Absolute accuracy	VREF=	ANo to AN7 input			±3	LSB	
		VREF= Vcc = 5V	ANEX0, ANEX1 input External operation amp			±4	LSB	
tconv	Conversion time(8bit), Sample & hold function available	Vref =Vcc=5V, øad=10MHz		2.8			μS	
t SAMP	Sampling time			0.3			μs	
Vref	Reference voltage			4.5		Vcc	V	
Via	Analog input voltage			0		VREF	V	

Note 1: Referenced to Vcc2=AVcc=VREF=4.5 to 5.5V, Vss=AVss=0V at Topr = -20 to 70 °C unless otherwise specified. Note 2: AD operation clock frequency (ØAD frequency) must be 10 MHz or less.

Note 3: A case without sample & hold function turn ØAD frequency into 250 kHz or more.

A case with sample & hold function turn ØAD frequency into 1 MHz or more.

Table 16.4 Flash Memory Version Electrical Characteristics (Note 1)


Symbol	Parameter	Measuring condition				
Symbol	Falameter	Measuring condition	Min.	Тур.	Max	Unit
	Word program time			30	200	μs
_	Block erase time			1	4	s
—	Lock bit program time			30	200	μs
tps	Flash memory circuit stabilization wait time				15	μs

Note 1: Referenced to Vcc2=4.75 to 5.25V at Topr = 0 to 60 °C unless otherwise specified.

Table 16.5 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (Topr = 0 to 60°C

Flash program, erase voltage	Flash read operation voltage
Vcc2 = 5.0 ± 0.25 V	Vcc2 = 2.0 to 5.5 V

Table 16.6 Power Supply Circuit Timing Characteristics

Table 16.7Electrical Characteristics (1) (Note 1)

VCC1 = VCC2 = 5V

Symbol	Parameter			Measuring condition		Standard		
5,11001				weasuring condition	Min	Typ.	Max.	Unit
Vон	HIGH output voltage P0o to P07, P1o to P17, P2o to P27, P3o to P37, P4o to P47, P5o to P57, P86, P87, P9o to P97		Іон=-5mA	Vcc2-2.0		Vcc2	V	
		P60 to P67, P72 to F	977, P80 to P84	Іон=-5mA	Vcc1-2.0		Vcc1	V
Vон	HIGH output voltage	P00 to P07, P10 to F P30 to P37, P40 to F P86, P87, P90 to P9	47, P50 to P57,	Іон=-200μΑ	Vcc2-0.3		Vcc2	v
		P60 to P67, P72 to F	P77, P80 to P84	Іон=-200μА	Vcc1-0.3		Vcc1	V
Vон	HIGH output voltage	LP3, LP4		Vcc=4.5V, Iон=-0.05mA	3.75			V
	HIGH output	No.	HIGHPOWER	Іон=-1mA	Vcc2-2.0		Vcc2	
Vон	voltage	Хоит	LOWPOWER	Іон=-0.5mA	Vcc2-2.0		Vcc2	V
	HIGH output voltage	Хсоит	HIGHPOWER	With no load applied		2.5		v
			LOWPOWER	With no load applied		1.6		
Vol	voltage	P00 to P07, P10 to P P30 to P37, P40 to P P86, P87, P90 to P97	47, P50 to P57,	IoL=5mA			2.0	V
		P60 to P67, P70 to P	77, P80 to P84	lol=5mA			2.0	V
Vol	voltage	P00 to P07, P10 to P P30 to P37, P40 to P P86, P87, P90 to P97	47, P50 to P57,	loL=200μA			0.45	V
		P60 to P67, P70 to P77, P80 to P84		Ιοι=200μΑ			0.45	V
Vol	LOW output voltage	LP3 to LP4		Vcc=4.5V, Io∟=0.05mA			0.4	V
Vol	LOW output	Хоит	HIGHPOWER	loL=1mA			2.0	v
VOL	voltage	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LOWPOWER	IoL=0.5mA			2.0	v
	LOW output	Хсоит	HIGHPOWER	With no load applied		0		v
Vt+-Vt-	voltage LOWPOWER Hysteresis TA0in to TA4in, TB0in to TB5in, INTo to INT5, NMI, ADTRG, CTSo to CTS2, SCL, SDA, CLK0 to CLK4,TA2out to TA4out, RxD0 to RxD2, Sin3, Sin4		With no load applied	0.2	0	1.0	V	
Vt+-Vt-	Hysteresis	RESET			0.2		2.2	V
Ін	HIGH input current	P00 to P07, P10 to P P30 to P37, P40 to P P60 to P67, P70 to P P90 to P97 XIN, RESET, CNVss M1, STARTB	47, P50 to P57, 77, P80 to P87,	Vi=5V			5.0	μΑ
l _{IL}	LOW input current	LOW input P00 to P07, P10 to P17, P20 to P27,		Vi=0V			-5.0	μA
Rpullup	Pull-up resistance	P00 to P07, P10 to P P30 to P37, P40 to P P60 to P67, P72 to P P86, P87, P90 to P97	47, P50 to P57, 77, P80 to P84,	VI=0V	30	50	170	kΩ
R _{fXIN}	Feedback resistance XIN					1.5		M۵
R _{fXCIN}	Feedback resistance Xcin				15		MΩ	
VRAM	RAM retention voltage		Stop mode	2.0			V	
VSYNCIN	Sync voltage	e amplitude			0.3	0.6	1.2	V
V _{dat(text)}	Teletext data voltage amplitude				0.6	0.9	1.4	V
fн	Horizontal sy	ynchronous signal fre	auencv		14.6	15.625	17.0	kHz

Note 1: Referenced to Vcc=Vcc1=Vcc2=4.50 to 5.50 V, Vss=0V at Topr = -20 to 70 °C, f(BCLK)=16MHz unless otherwise specified.

RENESAS

Table 16.8	Electrical Characteristics (2) (Note)
------------	---------------------------------------

VCC1 = VCC2 = 3V

Sumbel	Parameter			Measuring condition	Standard			Linit	
Symbol				measuring condition	Min.	Тур.	Max.	Unit	
Vон	HIGH output voltage			Іон = - 1 mA	Vcc2 - 0.5		Vcc	v	
		P60 to P67, P72	2 to P77, P80 to P84	Іон = -1 mA	Vcc1 - 0.5		Vcc	V	
	HIGH output	Xout	HIGHPOWER	Іон = -0.1 mA	Vcc2 - 0.5		V CC2	- V	
Vон	voltage		LOWPOWER	Іон = -50 μА	Vcc2 - 0.5		V CC2	v	
	HIGH output	Хсоит	HIGHPOWER	With no load applied		2.5		v	
	voltage		LOWPOWER	With no load applied		1.6		V	
Vol	LOW output voltage	P40 to P47, P5	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P84, P86, P87, P90 to P97				0.5	V	
Vol	LOW output voltage		Хоит	HIGHPOWER	IoL = 0.1 mA			0.5	v
Voltage			LOWPOWER	Ιοι = 50 μΑ			0.5	V	
	LOW output voltage	Хсоит	HIGHPOWER	With no load applied		0		v	
		voltage	70001	LOWPOWER	With no load applied		0		V
VT+-VT-	Hysteresis		TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT5 TA2 OUT to TA4OUT		0.2		0.8	v	
VT+-VT-	Hysteresis	RESET			0.2	(0.7)	1.8	V	
Ін	HIGH input voltage	P40 to P47, P5 P80 to P87, P9	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97 XIN, RESET, CNVss, M1, STARTB				4.0	μA	
lı.	HIGH input voltage	P40 to P47, P5 P80 to P87, P9	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97 XIN, RESET, CNVss, M1, STARTB				-4.0	μΑ	
Rpullup	Pull-up resistance	P40 to P47, P5	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97		50	100	500	kΩ	
Devenue	Feedback resistance	XIN				3.0		MΩ	
Rfxcin	Feedback resistance	Xcin				25		MΩ	

Note : Referenced to Vcc = Vcc1 = Vcc2 = 3.0 V, Vss = 0 V at Topr = -20 to 70 °C, f (XciN) = 32kHz unless otherwise specified. Use in single-chip mode and low power dissipation mode.

Symbol	Parameter		N/	Measuring condition		Standard		
Cymbol					Min.	Тур.	Max.	Unit
		In single-chip mode, the output pins are open and other pins are	Mask ROM	f(BCLK)=16MHz, Vcc=5.0V		50	100	mA
		Vss	Flash memory	f(BCLK)=16MHz, Vcc=5.0V		50	100	mA
			Flash memory Program	f(BCLK)=16MHz, Vcc=5.0V		15		mA
			Flash memory Erase	f(BCLK)=16MHz, Vcc=5.0V		25		mA
Icc	Power supply current		Mask ROM	f(Xcin)=32kHz, Low power dissipation mode, ROM(Note 3), (Note4) Vcc=5.0V		25		μA
		Flash men	Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3), (Note4) Vcc=5.0V		25		μA
			Flash memory(Note 3), (Note	f(BCLK)=32kHz Low power dissipation mode, Flash memory(Note 3), (Note4) Vcc=5.0V		420		μΑ
			Mask ROM	f(BCLK)=32kHz, Wait mode (Note 2), (Note4) Oscillation capacity High		7.5		μA
			Flash memory	f(BCLK)=32kHz, Wait mode(Note 2), (Note4) Oscillation capacity Low Vcc=5.0V		5.0	10.0	μA
				f(BCLK)=32kHz, Wait mode (Note 2), (Note4) Oscillation capacity High Vcc=3.0V		6.0		μA
				f(BCLK)=32kHz, Wait mode(Note 2), (Note4) Oscillation capacity Low Vcc=3.0V		2.0	8.0	μA
				Stop mode, (Note4) Topr=25°C Vcc=5.0V		0.8	5.0	μΑ

Table 16.9 **Electrical Characteristics (2) (Note 1)**

Note 1: Referenced to Vcc1=Vcc2= 5V, Vss=0V at Topr =25 °C, f(BCLK)=16MHz unless otherwise specified. Note 2: With one timer operated using fc32. (Slicer operation OFF) Note 3: This indicates the memory in which the program to be executed exists.

Note 4: • All of VDD2 is at the same potential level as Vcc2.

Extension registers (addresses 0016 through 3F16) are set to the initial state.
Inputs to the SYNCIN and CVIN pins are disabled.
For current consumption reducing, set the level of Vss or Vcc to the ports used in input mode.

Table 16.10 Video signal input conditions (Note 1)

Symbol	Deverseter		Standa		rd	Linit	
	ymbol	Parameter	Measuring condition	Min	Тур.	Max.	Unit
Vi	N-cu	Composite video signal input clamp voltage	Sync-chip voltage		1.0		V

Note 1: Referenced to Vcc2 = 5.0 V at Topr = -20 to 70 °C unless otherwise specified.

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 70°C unless otherwise specified)

Table 16.11 External Clock Input (XIN input)

VCC1 = VCC2 = 5V

Symbol	Parameter	Standard Min. Max.	dard	Unit
	Falameter		Unit	
tc	External clock input cycle time	62.5		ns
tw(H)	External clock input HIGH pulse width	30		ns
tw(L)	External clock input LOW pulse width	30		ns
tr	External clock rise time		15	ns
tr	External clock fall time		15	ns

Table 16.12 Remote Control Pulse Input

VCC1 = VCC2 = 5V

Symbol	Parameter	Standard Min. Max.	Unit	
	Parameter			
Tw(RMTH)	RMTIN input HIGH pulse width	61		μs
Tw(RMTL)	RMTIN input LOW pulse width	61		μs

Table 16.13 JUST CLOCK Input

VCC1 = VCC2 = 5V

Symbol	Parameter	Standard		Unit
	Parameter	Min. Max.	Unit	
Tw(JSTH)	JSTIN input HIGH pulse width	61		μs
Tw(JSTL)	JSTIN input LOW pulse width	61		μs

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 70°C unless otherwise specified)

Table 16.14 Timer A Input (Counter Input in Event Counter Mode)

VCC1 = VCC2 = 5V

Quarter	December	Standard Min. Max.	dard	
Symbol	Parameter		Unit	
tc(TA)	TAin input cycle time	100		ns
tw(TAH)	TAin input HIGH pulse width	40		ns
tw(TAL)	TAin input LOW pulse width	40		ns

Table 16.15 Timer A Input (Gating Input in Timer Mode)

VCC1 = VCC2 = 5V

		Stan	Standard	
Symbol	Parameter	Min. I	Max.	Unit
tc(TA)	TAin input cycle time	400		ns
tw(TAH)	TAin input HIGH pulse width	200		ns
tw(TAL)	TAil input LOW pulse width	200		ns

Table 16.16 Timer A Input (External Trigger Input in One-shot Timer Mode)

VCC1 = VCC2 = 5V

Symbol	Parameter	Stan	Standard	
	Falanlelei	Min. Ma	Max.	Unit
tc(TA)	TAin input cycle time	200		ns
tw(TAH)	TAiın input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 16.17 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

VCC1 = VCC2 = 5V

Symbol	Decomptor	Standard		Unit
	Parameter	Min. Max.		
tw(TAH)	TAilN input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 16.18 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

VCC1 = VCC2 = 5V

Symbol	Descentes	Standard		11.21
	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAiout input HIGH pulse width	1000		ns
tw(UPL)	TAiout input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 70°C unless otherwise specified)

Table 16.19 Timer B Input (Counter Input in Event Counter Mode)

		VCC1 = VCC2 = 5			
Currence al	Parameter	Stan	Standard	Linit	
Symbol	Farameter	Min.	Max.	Unit	
tc(TB)	TBilN input cycle time (counted on one edge)	100		ns	
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns	
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns	
tc(TB)	TBin input HIGH pulse width (counted on both edges)	200		ns	
tw(TBH)	TBin input LOW pulse width (counted on both edges)	80		ns	
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns	

Table 16.20 Timer B Input (Pulse Period Measurement Mode))

		VCC1 :	= VCC	2 = 5V
	Determeter	Standard Min. Max. Uni	dard	
Symbol	Parameter		Unit	
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 16.21 Timer B Input (Pulse Width Measurement Mode))

	N	VCC1 =	= VCC	2 = 5V
Oursehal	Parameter	Standard		Unit
Symbol	Parameter	Min. Ma	Max.	
tc(TB)	TBilN input cycle time	400		ns
tw(TBH)	TBilN input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 16.22 A/D Trigger Input

	N	VCC1 :	= VCC	2 = 5V
Cumbal	Parameter	Stan	dard	Linit
Symbol	r arameter	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 16.23 Serial I/O

VCC1 = VCC2 = 5V

0 1 1	Parameter	Standard		
Symbol	Farameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(C-D)	RxDi input hold time	90		ns

Table 16.24 External Interrupt INTi Input

VCC1 = VCC2 = 5					
0 male al	Parameter	Standard		11.21	
Symbol	Parameter	Min.	Max.	Unit	
tw(INH)	INTi input HIGH pulse width	250		ns	
tw(INL)	INTi input LOW pulse width	250		ns	

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 70°C unless otherwise specified)

Table 16.25 External Clock Input (XIN Input)

VCC1 = VCC2 = 3V

Symbol	Parameter	Standard		Unit	
Symbol	Falameter	Min.	Max.	Unit	
tc	External clock input cycle time	100		ns	
tw(H)	External clock input HIGH pulse width	40		ns	
tw(L)	External clock input LOW pulse width	40		ns	
tr	External clock rise time		18	ns	
tf	External clock fall time		18	ns	

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 70°C unless otherwise specified)

Table 16.26 Timer A Input (Counter Input in Event Counter Mode)

VCC1 = VCC2 = 3V

Quarter		Standard		
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	150		ns
tw(TAH)	TAin input HIGH pulse width	60		ns
tw(TAL)	TAin input LOW pulse width	60		ns

Table 16.27 Timer A Input (Gating Input in Timer Mode)

	N N	VCC1 :	= VCC	2 = 3V
		Standard		
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	600		ns
tw(TAH)	TAin input HIGH pulse width	300		ns
tw(TAL)	TAin input LOW pulse width	300		ns

Table 16.28 Timer A Input (External Trigger Input in One-shot Timer Mode)

	· · · · · · · · · · · · · · · · · · ·	VCC1	= Vcc	2 = 3V
Cumbol	Standard			
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	300		ns
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 16.29 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

	N	VCC1 :	= VCC	2 = 3V
Cumbal	Deremeter	Stan	dard	Linit
Symbol	Parameter	Min.	Max.	Unit
tw(TAH)	TAin input HIGH pulse width	150		ns
ťw(TAL)	TAiın input LOW pulse width	150		ns

Table 16.30 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

VCC1 = VCC2 =	: 3V
---------------	------

Quarter	Deremeter	Standard		11.21
Symbol	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 70°C unless otherwise specified)

Table 16.31 Timer B Input (Counter Input in Event Counter Mode)

		VCC1 =	= VCC	2 = 3\
O	Descenter	Stan	dard	11-24
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	120		ns

Table 16.32 Timer B Input (Pulse Period Measurement Mode)

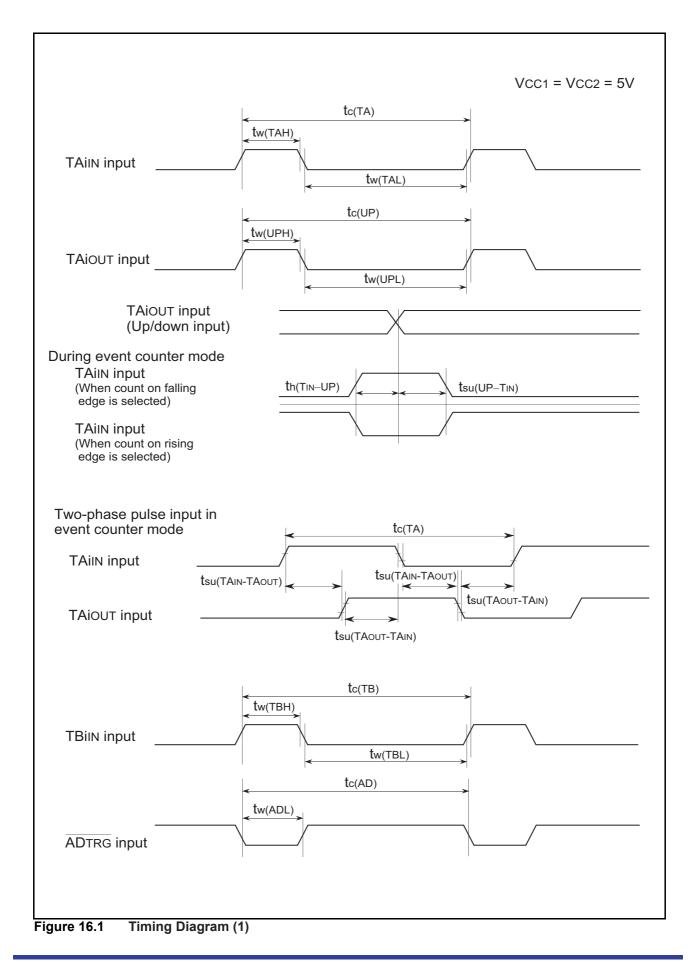
	N	/CC1 =	= VCC	2 = 3V
Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

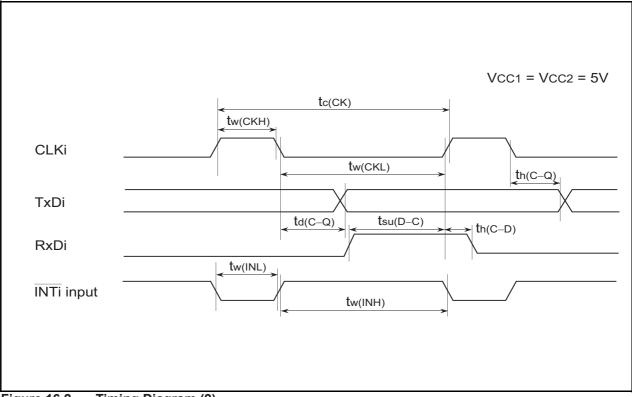
Table 16.33 Timer B Input (Pulse Period Measurement Mode)

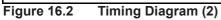
1/001		1/000		α
VCC1	=	VCC2	=	3V

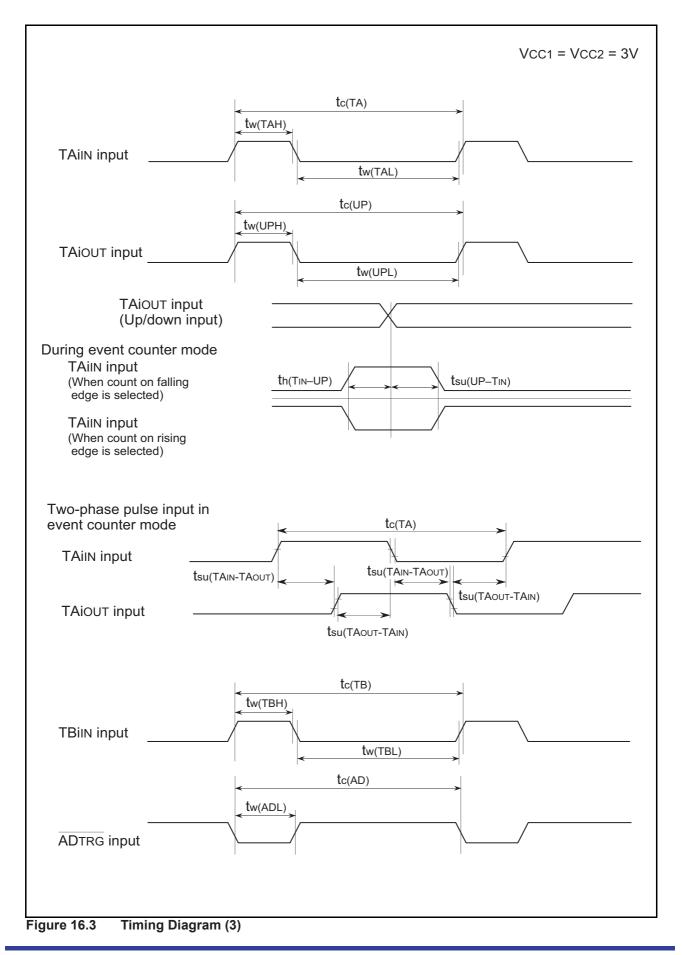
1/00/

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width			ns
tw(TBL)	TBin input LOW pulse width			ns


Table 16.34 Serial I/O (Pulse Period Measurement Mode)


		VCC1 :	= VCC	2 = 3V
Symbol	Parameter	Standard		Unit
	Falallelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width			ns
tw(CKL)	CLKi input LOW pulse width			ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	70		ns
th(C-D)	RxDi input hold time	90		ns


Table 16.35 External Interrupt INTi Input (Pulse Period Measurement Mode)


VCC1 = VCC2 = 3V

Symbol Parameter		Standard		Unit
		Min.	Max.	Onit
tw(INH)	INTi input HIGH pulse width			ns
tw(INL)	INTi input LOW pulse width			ns

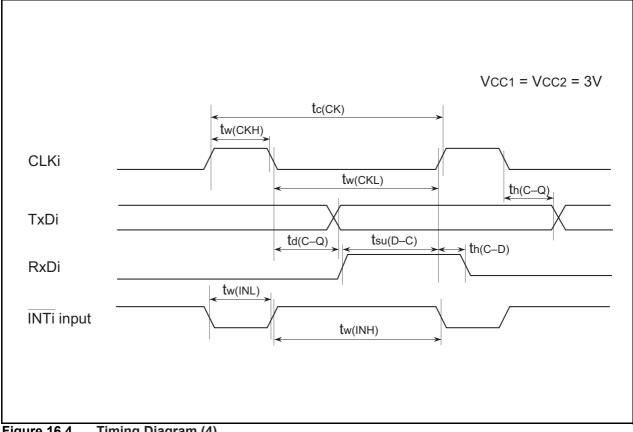


Figure 16.4 Timing Diagram (4)

17. Flash Memory Version

17.1 Flash Memory Performance

The flash memory version is functionally the same as the mask ROM version except that it internally contains flash memory.

The flash memory version has three modes-CPU rewrite, standard serial input/output, and parallel input/output modes-in which its internal flash memory can be operated on.

Table 17.1 shows the outline performance of flash memory version (see Table 1.1 for the items not listed in Table 17.1.).

I	tem	Specification	
Flash memory	operating mode	3 modes (CPU rewrite, standard serial I/O, parallel I/O)	
Erase block	User ROM area	See Figure 17.1	
	Boot ROM area	1 block (4 Kbytes) (Note 1)	
Method for pro	ogram	In units of word	
Method for erasure		Block erase	
Program, erase control method		Program and erase controlled by software command	
Protect method		Protected for each block by lock bit	
Number of commands		7 commands	
Number of program and erasure		100 times	
Data Retention		10 years	
ROM code protection		Parallel I/O and standard serial I/O modes are supported.	

Table 17.1 Flash Memory Version Specifications

Note 1: The boot ROM area contains a standard serial I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel input/output mode.

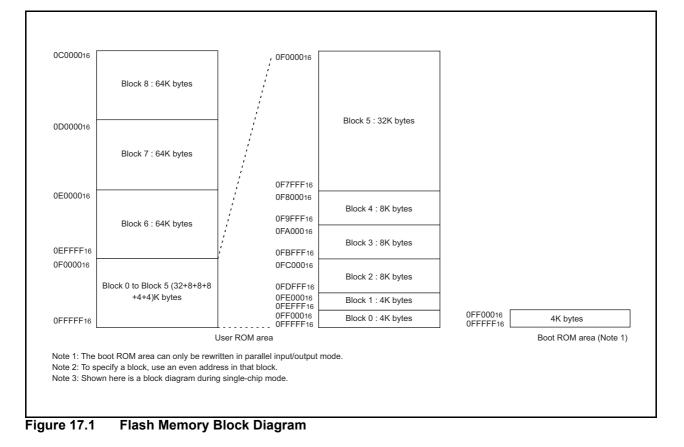
Flash memory	CPU rewrite mode (Note 1)	Standard serial I/O mode	Parallel I/O mode
rewrite mode			
Function	The user ROM area is rewrit- ten by executing software commands from the CPU. EW0 mode: Can be rewritten in any area other than the flash memory (Note 2) EW1 mode: Can be rewritten in the flash memory	The user ROM area is rewrit- ten by using a dedicated se- rial programmer. Standard serial I/O mode 1: Clock sync serial I/O Standard serial I/O mode 2: UART	The boot ROM and user ROM areas are rewritten by using a dedicated parallel programmer.
Areas which	User ROM area	User ROM area	User ROM area
can be rewritten			Boot ROM area
Operation	Single chip mode	Boot mode	Parallel I/O mode
mode	Boot mode (EW0 mode)		
ROM	None	Serial programmer	Parallel programmer
programmer			

Table 17.2	Flash Memory Re	write Modes Overview
	I luon montory ite	

Note 1: Bit 3 of processor mode register 1 remains set to "1" while the FMR0 register FMR01 bit = 1 (CPU rewrite mode enabled).

Bit 3 of processor mode register 1 is reverted to its original value by clearing the FMR01 bit to "0" (CPU rewrite mode disabled). However, if bit 3 of processor mode register 1 is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is cleared to "0".

Note 2: When in CPU rewrite mode, bit 0 and bit 3 in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM.


17.2 Memory Map

The ROM in the flash memory version is separated between a user ROM area and a boot ROM area. Figure 17.1 shows the block diagram of flash momoery.

The user ROM area is divided into several blocks, each of which can individually be protected (locked) against programming or erasure. The user ROM area can be rewritten in all of CPU rewrite, standard serial input/output, and parallel input/output modes.

The boot ROM area is located at addresses that overlap the user ROM area, and can only be rewritten in parallel input/output mode. After a hardware reset that is performed by applying a high-level signal to the CNVss and P50 pins and a low-level signal to the M1 pin, the program in the boot ROM area is executed.

After a hardware reset that is performed by applying a low-level signal to the CNVss pin, the program in the user ROM area is executed (but the boot ROM area cannot be read).

17.3 Boot Mode

After a hardware reset which is performed by applying a low-level signal to the M1 pin and a high-level signal to the CNVss and P50 pins, the microcomputer is placed in boot mode, thereby executing the program in the boot ROM area.

During boot mode, the boot ROM and user ROM areas are switched over by the FMR05 bit in the FMR0 register. The boot ROM area contains a standard serial input/output mode based rewrite control program which was stored in it when shipped from the factory.

The boot ROM area can be rewritten in parallel input/output mode. Prepare an EW0 mode based rewrite control program and write it in the boot ROM area, and the flash memory can be rewritten as suitable for the system.

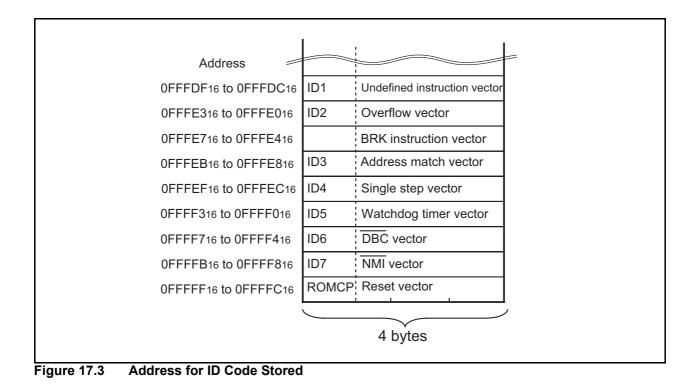
17.4 Functions To Prevent Flash Memory from Rewriting

To prevent the flash memory from being read or rewritten easily, parallel input/output mode has a ROM code protect and standard serial input/output mode has an ID code check function.

17.4.1 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel input/ output mode. Figure 17.2 shows the ROMCP register.

The ROMCP register is located in the user ROM area. The ROMCP1 bit consists of two bits. The ROM code protect function is enabled by clearing one or both of two ROMCP1 bits to "0" when the ROMCR bits are not '002,' with the flash memory thereby protected against reading or rewriting. Conversely, when the ROMCR bits are '002' (ROM code protect removed), the flash memory can be read or rewritten. Once the ROM code protect function is enabled, the ROMCR bits cannot be changed during parallel input/output mode. Therefore, use standard serial input/output or other modes to rewrite the flash memory.


17.4.2 ID Code Check Function

Use this function in standard serial input/output mode. Unless the flash memory is blank, the ID codes sent from the programmer and the ID codes written in the flash memory are compared to see if they match. If the ID codes do not match, the commands sent from the programmer are not accepted. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFFF316, 0FFFFF316, 0FFFFF316, 0FFFFF316, 0FFFFF316, memory.

			16 (Note 4)	
	Bit symbol	Bit name	Function	RW
	·	Reserved bit	Set this bit to "1"	RW
		Reserved bit	Set this bit to "1"	RW
		Reserved bit	Set this bit to "1"	RW
		Reserved bit	Set this bit to "1"	RW
· · · · · · · · · · · · · · · · · · ·	ROMCR	ROM code protect reset bit (Note 2, Note 4)	00: Removes protect	RW
			10: Enables ROMCP1 bit	RW
	ROMCP1	ROM code protect level 1 set bit (Note 1, Note 3, Note 4)	00: 01: Protect enabled	RW
			10: J 11: Protect disabled	RW
	ect enabled) put mode.	, the flash memory is disabl	DMCP1 bits are set to other than led against reading and rewriting evel 1 is removed. However, bec	ı in

contains the ROMCP register is erased, the ROMCP register is set to "FF16."

Figure 17.2 ROMCP Register

17.5 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU.

Therefore, the user ROM area can be rewritten directly while the microcomputer is mounted on-board without having to use a ROM programmer, etc.

In CPU rewrite mode, only the user ROM area shown in Figure 17.1 can be rewritten and the boot ROM area cannot be rewritten. Make sure the Program and the Block Erase commands are executed only on each block in the user ROM area.

During CPU rewrite mode, the user ROM area be operated on in either Erase Write 0 (EW0) mode or Erase Write 1 (EW1) mode. Table 17.3 lists the differences between Erase Write 0 (EW0) and Erase Write 1 (EW1) modes.

Item	EW0 mode	EW1 mode
Operation mode	Single chip mode	Single chip mode
	Boot mode	
Areas in which a	User ROM area	User ROM area
rewrite control	Boot ROM area	
program can be located		
Areas in which a	Must be transferred to any area other	Can be executed directly in the user
rewrite control	than the flash memory (RAM)	ROM area
program can be executed	before being executed (Note 2)	
Areas which can be	User ROM area	User ROM area
rewritten		However, this does not include the area
		in which a rewrite control program
		exists
Software command	None	Program, Block Erase command
limitations		Cannot be executed on any block in
		which a rewrite control program exists
		 Read Status Register command
		Cannot be executed
Modes after Program or	Read Status Register mode	Read Array mode
Erase		
CPU status during Auto	Operating	Hold state (I/O ports retain the state in
Write and Auto Erase		which they were before the command
		was executed) ^(Note 1)
Flash memory status	• Read the FMR0 register's FMR00,	Read the FMR0 register's FMR00,
detection	FMR06, and FMR07 bits in a	FMR06, and FMR07 bits in a program
	program	
	• Execute the Read Status Register	
	command to read the status	
	register's SR7, SR5, and SR4 flags.	

Table 17.3 EW0 Mode and EW1 Mode

Note 1: Make sure no interrupts (except NMI and watchdog timer interrupts) and DMA transfers will occur. Note 2: When in CPU rewrite mode, bit 0 and bit 3 in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM.

17.5.1 EW0 Mode

The microcomputer is placed in CPU rewrite mode by setting the FMR0 register's FMR01 bit to "1" (CPU rewrite mode enabled), ready to accept commands. In this case, because the FMR1 register's FMR11 bit = 0, EW0 mode is selected. The FMR01 bit can be set to "1" by writing "0" and then "1" in succession.

Use software commands to control program and erase operations. Read the FMR0 register or status register to check the status of program or erase operation at completion.

17.5.2 EW1 Mode

EW1 mode is selected by setting FMR11 bit to "1" (by writing "0" and then "1" in succession) after setting the FMR01 bit to "1" (by writing "0" and then "1" in succession).

Read the FMR0 register to check the status of program or erase operation at completion. The status register cannot be read during EW1 mode.

Figure 17.4 shows the FMR0 and FMR1 registers.

Registers FMR0 and FMR1 are shown in Figure 17.4.

FMR00 Bit

This bit indicates the operating status of the flash memory. The bit is "0" when the Program, Erase, or Lock Bit program is running; otherwise, the bit is "1".

FMR01 Bit

The microcomputer is made ready to accept commands by setting the FMR01 bit to "1" (CPU rewrite mode). During boot mode, make sure the FMR05 bit also is "1" (user ROM area access).

FMR02 Bit

The lock bit set for each block can be disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to the description of the data protect function.) The lock bits set are enabled by setting the FMR02 bit to "0". The FMR02 bit only disables the lock bit function and does not modify the lock bit data (lock bit status flag). However, if the Erase command is executed while the FMR02 bit is set to "1", the lock bit data changes state from "0" (locked) to "1" (unlocked) after Erase is completed.

FMSTP Bit

This bit is provided for initializing the flash memory control circuits, as well as for reducing the amount of current consumed in the flash memory. The internal flash memory is disabled against access by setting the FMSTP bit to "1". Therefore, make sure the FMSTP bit is modified in other than the flash memory. In the following cases, set the FMSTP bit to "1":

- •. When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to "1" (ready))
- •. When entering low power mode

Figure 17.7 shows a flow chart to be followed before and after entering low power mode.

Note that when going to stop or wait mode, the FMR0 register does not need to be set because the power for the internal flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

FMR05 Bit

This bit switches between the boot ROM and user ROM areas during boot mode. Set this bit to "0" when accessing the boot ROM area (for read) or "1" (user ROM access) when accessing the user ROM area (for read, write, or erase).

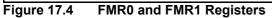
FMR06 Bit

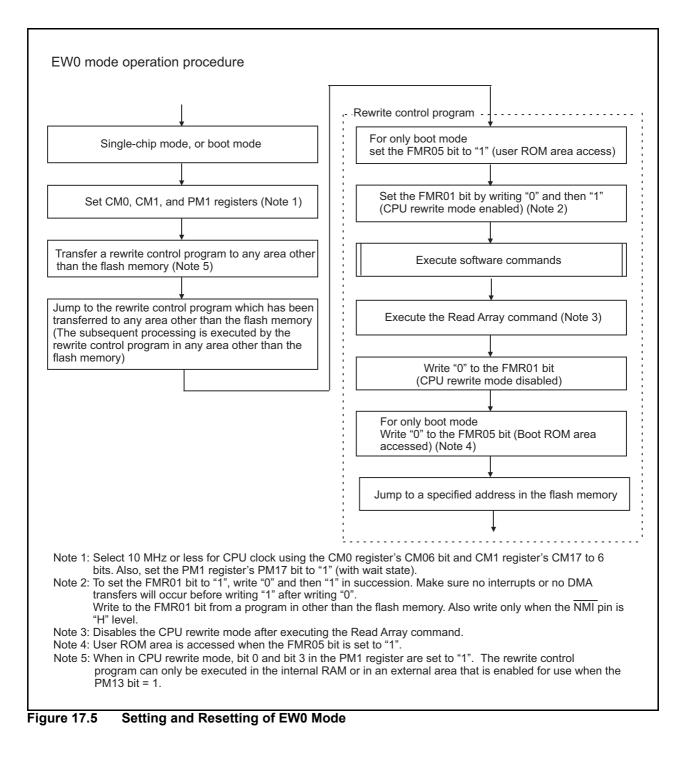
This is a read-only bit indicating the status of auto program operation. The bit is set to "1" when a program error occurs; otherwise, it is cleared to "0". For details, refer to the description of the full status check.

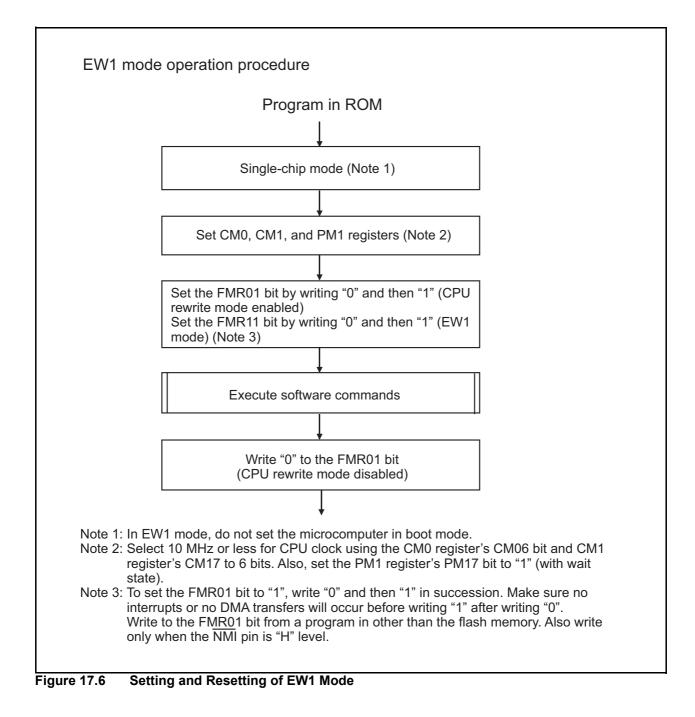
FMR07 Bit

This is a read-only bit indicating the status of auto erase operation. The bit is set to "1" when an erase error occurs; otherwise, it is cleared to "0". For details, refer to the description of the full status check.

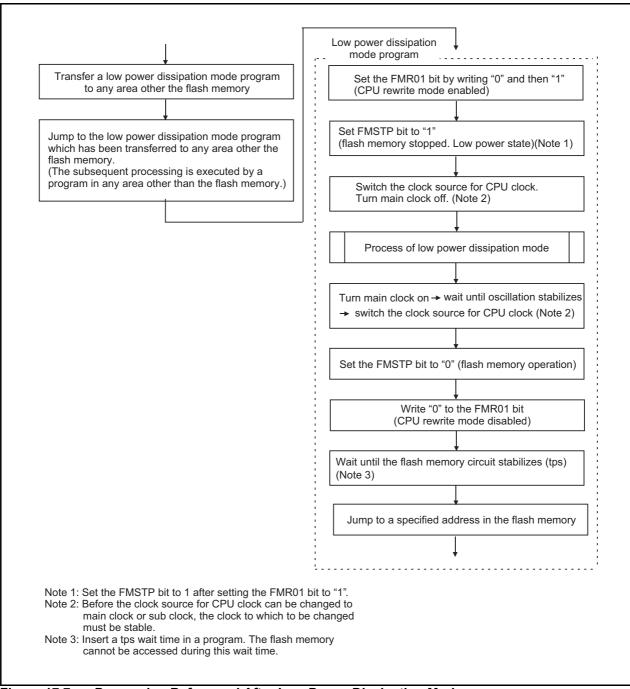
Figure 17.5 and 17.6 show the setting and resetting of EW0 mode and EW1 mode, respectively.


FMR11 Bit


Setting this bit to "1" places the microcomputer in EW1 mode.


FMR16 Bit

This is a read-only bit indicating the execution result of the Read Lock Bit Status command.


	Sym FM	nbol Address R0 01B7 ₁₆	After reset XX0000012	
	Bit symbol	Bit name	Function	RW
	FMR00	RY/BY status flag	0: Busy (being written or erased) 1: Ready	RO
	FMR01	CPU rewrite mode select bit (Note 1)	0: Disables CPU rewrite mode 1: Enables CPU rewrite mode	RW
	FMR02	Lock bit disable select bit (Note 2)	0: Enables lock bit 1: Disables lock bit	RW
	FMSTP	Flash memory stop bit (Note 3, Note 5))	0: Enables flash memory operation 1: Stops flash memory operation (placed in low power mode, flash memory initialized)	RW
	(b4)	Reserved bit	Must always be set to "0"	RW
	FMR05	User ROM area select bit (Note 3) (Effective in only boot mode)	0: Boot ROM area is accessed 1: User ROM area is accessed	RW
	FMR06	Program status flag (Note 4)	0: Terminated normally 1: Terminated in error	RO
	FMR07	Erase status flag (Note 4)	0: Terminated normally 1: Terminated in error	RO
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in	e writing "1" when the Ni emory. "1", write "0 DMA transfe o other than	after writing "0". MI pin is in the high state. Als and then "1" in succession ers will occur before writing " the flash memory.	-	it in oth
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized.	e writing " <u>1"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by the FMR01 I ' by writing '	after writing "0". MI pin is in the high state. Als and then "1" in succession ers will occur before writing " the flash memory. a executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0".	it in oth no //STP bi mode
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing " <u>1"</u> when the NI emory. "1", write "0 DMA transfe o other than red to "0" by the FMR01 I ' by writing ' ides writing of register	after writing "0". MI pin is in the high state. Als and then "1" in succession ers will occur before writing " the flash memory. executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co	it in oth no //STP bi mode
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe to other than red to "0" by the FMR01 I ' by writing ' udes writing	after writing "0". MI pin is in the high state. Als and then "1" in succession ers will occur before writing " the flash memory. v executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 bol Address	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power	it in oth no //STP bi mode
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing " <u>1"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by the FMR01 I ' by writing ' ides writing ol register	after writing "0". MI pin is in the high state. Als and then "1" in succession ers will occur before writing " the flash memory. v executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 bol Address	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset	it in oth no //STP bi mode
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe other than red to "0" by the FMR01 I ' by writing ' ides writing ol register Sym FM	after writing "0". MI pin is in the high state. Als " and then "1" in succession ers will occur before writing " the flash memory. v executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 bol Address R1 01B516	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset 0X00XX0X2	it in oth no ∕ISTP bi mode mmand
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by the FMR01 I ' by writing ' ides writing ol register Bit symbol	after writing "0". MI pin is in the high state. Als and then "1" in succession ers will occur before writing " the flash memory. executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 bol Address R1 01B516 Bit name	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset 0X00XX0X2 Function The value in this bit when read is	It in oth no MSTP bi mode mmand
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by he FMR01 I ' by writing ' ides writing ol register Bit symbol (b0)	after writing "0". II pin is in the high state. Als " and then "1" in succession ers will occur before writing " the flash memory. or executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 hool Address R1 01B516 Bit name Reserved bit	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset 0X00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode	It in oth no MSTP bi mode mmand RW
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by the FMR01 I ' by writing ol register Bit symbol (b0) FMR11	after writing "0". MI pin is in the high state. Als " and then "1" in succession ers will occur before writing " the flash memory. o executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 abol Address R1 01B516 Bit name Reserved bit EW1 mode select bit (Note)	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset 0X00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode 1: EW1 mode The value in this bit when read is	It in oth no MSTP bi mode mmand RW RO RW
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by the FMR01 I ' by writing ' ides writing ol register Bit symbol (b0) FMR11 (b3-b2)	after writing "0". MI pin is in the high state. Als " and then "1" in succession ers will occur before writing " the flash memory. o executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 hbol Address R1 01B516 Bit name Reserved bit EW1 mode select bit (Note) Reserved bit	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset 0X00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode 1: EW1 mode The value in this bit when read is indeterminate.	It in oth no MSTP bi mode mmand RW RO RO
will occur before Write to this bit than the flash m Note 2: To set this bit to interrupts or no Note 3: modify this bit in Note 4: This flag is clea Note 5: Effective when can be set to "1 nor initialized. Note 6: This status inclu	e writing "1 <u>"</u> when the NI emory. "1", write "0 DMA transfe o ther than red to "0" by he FMR01 I ' by writing ' ides writing ol register Bit symbol (b0) FMR11 (b3-b2) (b5-b4)	after writing "0". II pin is in the high state. Als " and then "1" in succession ers will occur before writing " the flash memory. of executing the Clear Status bit = 1 (CPU rewrite mode). I '1" in a program, the flash m or reading with the Lock Bit 1 hool Address R1 01B516 Bit name Reserved bit EW1 mode select bit (Note) Reserved bit Reserved bit	so, while in EW0 mode, modify this b when the FMR01 bit = 1. Make sure 1" after writing "0". command. If the FMR01 bit = 0, although the FM emory is neither placed in low power Program or Read Lock Bit Status co After reset 0X00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode 1: EW1 mode The value in this bit when read is indeterminate. Must always be set to "0" 0: Lock	It in oth no MSTP bi mode mmand RW RO RW RO RW

M306H7MG-XXXFP/MC-XXXFP/FGFP

17.5.3 Precautions on CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

(1) Operation Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or less for BCLK using the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

(2) Instructions to Prevent from Using

The following instructions cannot be used in EW0 mode because the flash memory's internal data is referenced: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

(3) Interrupts

EW0 Mode

•Any interrupt which has a vector in the variable vector table can be used providing that its vector is transferred into the RAM area.

•The NMI and watchdog timer interrupts can be used because the FMR0 register and FMR1 register are initialized when one of those interrupts occurs. The jump addresses for those interrupt service routines should be set in the fixed vector table.

Because the rewrite operation is halted when a $\overline{\text{NMI}}$ or watchdog timer interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

•The address match interrupt cannot be used because the flash memory's internal data is referenced.

EW1 Mode

•Make sure that any interrupt which has a vector in the variable vector table or address match interrupt will not be accepted during the auto program or auto erase period.

•Avoid using watchdog timer interrupts.

•The NMI interrupt can be used because the FMR0 register and FMR1 register are initialized when this interrupt occurs. The jump address for the interrupt service routine should be set in the fixed vector table.

Because the rewrite operation is halted when a $\overline{\text{NMI}}$ interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

(4) How to Access

To set the FMR01, FMR02, or FMR11 bit to "1", write "0" and then "1" in succession. This is necessary to ensure that no interrupts or DMA transfers will occur before writing "1" after writing "0". Also only when NMI pin is "H" level.

(5) Writing in the User ROM Space

EW0 Mode

•If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

EW1 Mode

•Avoid rewriting any block in which the rewrite control program is stored.

(6) DMA Transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR0 register Åfs FMR00 bit = 0 (during the auto program or auto erase period).

(7) Writing Command and Data

Write the command code and data at even addresses.

(8) Wait Mode

When shifting to wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

(9) Stop Mode

When shifting to stop mode, the following settings are required:

•Set the FMR01 bit to "0" (CPU rewrite mode disabled) and disable DMA transfers before setting the CM10 bit to "1" (stop mode).

•Execute the JMP.B instruction subsequent to the instruction which sets the CM10 bit to "1" (stop mode)

Example program BSET 0, CM1 ; Stop mode JMP.B L1 L1:

Program after returning from stop mode

(10) Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

•Program

Block erase

Lock bit program

17.5.4 Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit units, to and from even addresses in the user ROM area. When writing command code, the 8 high order bits (D1t–D8) are ignored.

		First bus cycl	le	Second bus cycle			
Command	Mode	Address	Data (Do to D15)	Mode	Address	Data (Do to D7)	
Read array	Write	Х	xxFF16				
Read status register	Write	Х	xx7016	Read	Х	SRD	
Clear status register	Write	Х	xx5016				
Program	Write	WA	xx4016	Write	WA	WD	
Block erase	Write	Х	xx20 16	Write	BA	xxD016	
Lock bit program	Write	BA	xx77 16	Write	BA	xxD016	
Read lock bit status	Write	Х	xx71 16	Write	BA	xxD016	

Table 17.4 Software Commands

SRD: Status register data (D7 to D0)

WA: Write address (Make sure the address value specified in the the first bus cycle is the same even address as the write address specified in the second bus cycle.)

WD: Write data (16 bits)

BA: Uppermost block address (even address, however)

X: Any even address in the user ROM area

xx: High-order 8 bits of command code (ignored)

Read Array Command (FF16)

This command reads the flash memory.

Writing 'exxFF16' in the first bus cycle places the microcomputer in read array mode. Enter the read address in the next or subsequent bus cycles, and the content of the specified address can be read in 16-bit units. Because the microcomputer remains in read array mode until another command is written, the contents of multiple addresses can be read in succession.

Read Status Register Command (7016)

This command reads the status register.

Write 'exx7016' in the first bus cycle, and the status register can be read in the second bus cycle. (Refer to "Status Register.") When reading the status register too, specify an even address in the user ROM area. Do not execute this command in EW1 mode.

Clear Status Register Command

This command clears the status register to "0".

Write 'exx5016' in the first bus cycle, and the FMR06 to FMR07 bits in the FMR0 register and SR4 to SR5 in the status register will be cleared to "0".

Program Command

This command writes data to the flash memory in 1 word (2 byte) units.

Write 'exx4016' in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

Check the FMR00 bit in the FMR0 register to see if auto programming has finished. The FMR00 bit is "0" during auto programming and set to "1" when auto programming is completed.

Check the FMR06 bit in the FMR0 register after auto programming has finished, and the result of auto programming can be known. (Refer to "Full Status Check.")

Each block can be protected against programming by a lock bit. (Refer to "Data Protect Function.") Be careful not to write over the already programmed addresses.

In EW1 mode, do not execute this command on any address at which the rewrite control program is located.

In EW0 mode, the microcomputer goes to read status register mode at the same time auto programming starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto programming starts, and set back to "1" when auto programming finishes. In this case, the microcomputer remains in read status register mode until a read command is written next. The result of auto programming can be known by reading the status register after auto programming has finished.

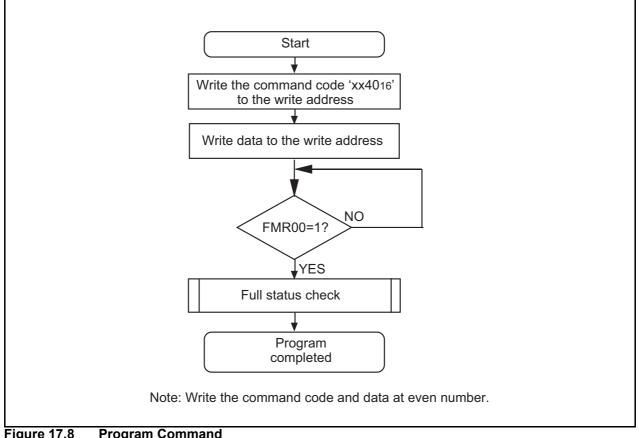


Figure 17.8 **Program Command**

Block Erase

Write 'exx2016' in the first bus cycle and write 'exxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and an auto erase operation (erase and verify) will start.

Check the FMR0 register's FMR00 bit to see if auto erasing has finished.

The FMR00 bit is "0" during auto erasing and set to "1" when auto erasing is completed.

Check the FMR0 register's FMR07 bit after auto erasing has finished, and the result of auto erasing can be known. (Refer to "Full Status Check.")

Figure 17.9 shows an example of a block erase flowchart.

Each block can be protected against erasing by a lock bit. (Refer to "Data Protect Function.") In EW1 mode, do not execute this command on any address at which the rewrite control program is located.

In EW0 mode, the microcomputer goes to read status register mode at the same time auto erasing starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto erasing starts, and set back to "1" when auto erasing finishes. In this case, the microcomputer remains in read status register mode until the Read Array or Read Lock Bit Status command is written next.

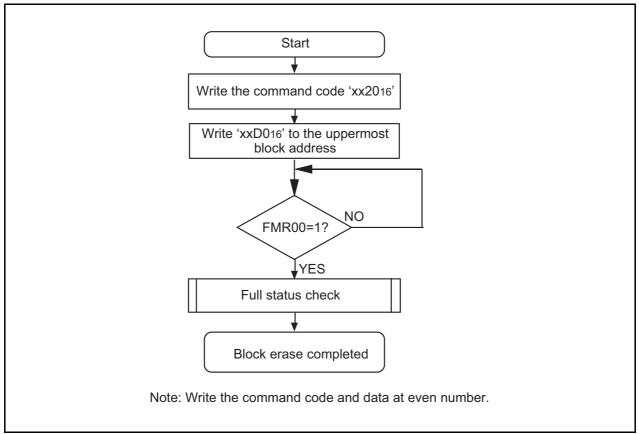
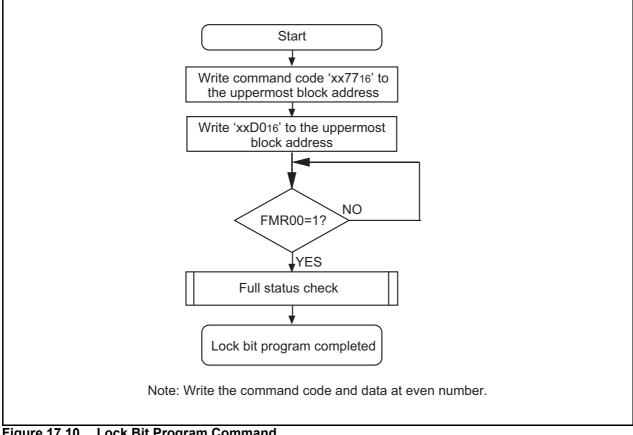


Figure 17.9 Block Erase Command

Lock Bit Program Command

This command sets the lock bit for a specified block to "0" (locked).


Write 'exx7716' in the first bus cycle and write 'exxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0".

Make sure the address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

Figure 17.10 shows an example of a lock bit program flowchart. The lock bit status (lock bit data) can be read using the Read Lock Bit Status command.

Check the FMR0 register's FMR00 bit to see if writing has finished.

For details about the lock bit function, and on how to set the lock bit to "1", refer to "Data Protect Function."

Figure 17.10 Lock Bit Program Command

Read Lock Bit Status Command

This command reads the lock bit status of a specified block.

Write 'exx7116' in the first bus cycle and write 'exxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit status of the specified block is stored in the FMR1 register's FMR16 bit. Read the FMR16 bit after the FMR0 register's FMR00 bit is set to "1" (ready).

Figure 17.11 shows an example of a read lock bit status flowchart.

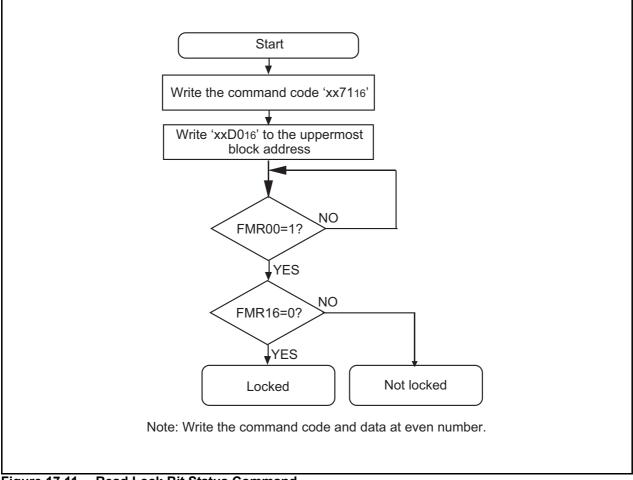


Figure 17.11 **Read Lock Bit Status Command**

17.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is effective when the FMR02 bit = 0 (lock bit enabled). The lock bit allows each block to be individually protected (locked) against programming and erasure. This helps to prevent data from inadvertently written to or erased from the flash memory. The following shows the relationship between the lock bit and the block status.

- When the lock bit = 0, the block is locked (protected against programming and erasure).
- When the lock bit = 1, the block is not locked (can be programmed or erased).

The lock bit is cleared to "0" (locked) by executing the Lock Bit Program command, and is set to "1" (unlocked) by erasing the block. The lock bit cannot be set to "1" by a command. The lock bit status can be read using the Read Lock Bit Status command.

The lock bit function is disabled by setting the FMR02 bit to "1", with all blocks placed in an unlocked state. (The lock bit data itself does not change state.) Setting the FMR02 bit to "0" enables the lock bit function (lock bit data retained).

If the Block Erase command is executed while the FMR02 bit = 1, the target block or all blocks are erased irrespective of how the lock bit is set. The lock bit for each block is set to "1" after completion of erasure. For details about the commands, refer to "Software Commands."

17.7 Status Register

The status register indicates the operating status of the flash memory and whether an erase or programming operation terminated normally or in error. The status of the status register can be known by reading the FMR0 register's FMR00, FMR06, and FMR07 bits.

Table 17.5 shows the status register.

In EW0 mode, the status register can be read in the following cases:

- (1) When a given even address in the user ROM area is read after writing the Read Status Register command
- (2) When a given even address in the user ROM area is read after executing the Program, Block Erase, or Lock Bit Program command but before executing the Read Array command.

Sequencer Status (SR7 and FMR00 Bits)

The sequence status indicates the operating status of the flash memory. SR7 = 0 (busy) during auto programming, auto erase, and lock bit write, and is set to "1" (ready) at the same time the operation finishes.

Erase Status (SR5 and FMR07 Bits)

Refer to "Full Status Check."

Program Status (SR4 and FMR06 Bits)

Refer to "Full Status Check."

Status register	FMR0 register	Status name			Value after
bit	bit	otatao hamo	"0"	"1"	reset
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1
SR6 (D6)		Reserved	-	-	
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0
SR3 (D3)		Reserved	-	-	
SR2 (D2)		Reserved	_	-	
SR1 (D1)		Reserved	-	-	
SR0 (D0)		Reserved	-	-	

Table 17.5Status Register

• D0 to D7: Indicates the data bus which is read out when the Read Status Register command is executed.

• The FMR07 bit (SR5) and FMR06 bit (SR4) are cleared to "0" by executing the Clear Status Register command.

• When the FMR07 bit (SR5) or FMR06 bit (SR4) = 1, the Program, Block Erase, and Lock Bit Program commands are not accepted.

17.8 Full Status Check

When an error occurs, the FMR0 register's FMR06 to FMR07 bits are set to "1", indicating occurrence of each specific error. Therefore, execution results can be verified by checking these status bits (full status check). Table 17.6 lists errors and FMR0 register status. Figure 17.12 shows a full status check flowchart and the action to be taken when each error occurs.

FRM00) register		
(status i	register)		
sta	atus	Error	Error occurence condition
FMR07	FMR06		
(SR5)	(SR4)		
1	1	Command	When any command is not written correctly
		sequence error	• When invalid data was written other than those that can be writ-
			ten in the second bus cycle of the Lock Bit Program or Block
			Erase command (i.e., other than 'xxD016' or 'xxFF16') (Note 1)
1	0	Erase error	When the Block Erase command was executed on locked blocks (Note 2)
			• When the Block Erase command was executed on unlocked
			blocks but the blocks were not automatically erased correctly
0	1	Program error	• When the Program command was executed on locked blocks (Note 2)
			• When the Program command was executed on unlocked blocks
			but the blocks were not automatically programmed correctly.
			• When the Lock Bit Program command was executed but not pro-
			grammed correctly

Table 17.6 Errors and FMR0 Register Status

Note 1: If "xxFF16" is written by the 2nd bus cycle of these commands, it will become lead array mode and the command code written by the 1st bus cycle will become invalid simultaneously.

Note 2: When FMR02 bit is "1" (lock bit is invalid), an error is not generated on these conditions.

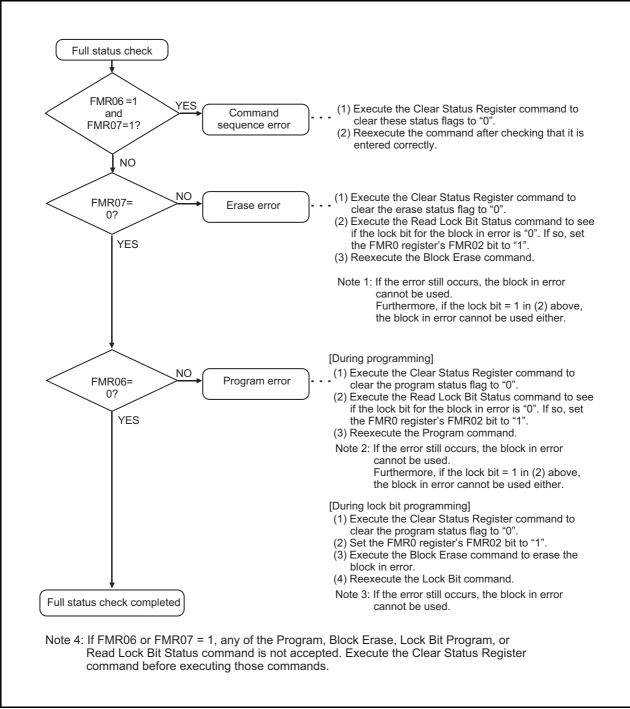


Figure 17.12 Full Status Check and Handling Procedure for Each Error

17.9 Standard Serial I/O Mode

In standard serial input/output mode, the user ROM area can be rewritten while the microcomputer is mounted onboard by using a serial programmer suitable for M306H7FGFP. For more information about serial programmers, contact the manufacturer of your serial programmer. For details on how to use, refer to the user's manual included with your serial programmer.

Table 17.7 lists pin functions (flash memory standard serial input/output mode). Figures 17.13 show pin connections for serial input/output mode.

17.9.1 ID Code Check Function

This function determines whether the ID codes sent from the serial programmer and those written in the flash memory match. (Refer to the description of the functions to inhibit rewriting flash memory version.)

	Pin	Name	1/0	Description
VCC1, VCC2, VSS		Power input	1/0	Input Vcc1 to Vcc1 pin. Input 4.75 to 5.25V to Vcc2 pin. Input condition is Vcc1 ≤ Vcc2.
CNVss		CNVss		Connect to Vcc2 pin.
	SET	Reset input	1	Reset input pin. While RESET pin is "L" level, input a 20 cycle or longer clock to XIN pin.
M1		Mode select	I	Connect to Vss pin.
ST	ARTB	Oscillation selection input	1	Connect to Vss pin.
Xin	l	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and XOUT pins. To input an externally generated clock, input it to XIN pin
Хо	UT	Clock output	0	and open Xout pin.
AV	cc, AV ss	Analog power supply input		Connect AVss to Vss and AVcc to Vcc2, respectively Apply Vcc2 to AVcc pin and 0V to AVss pin
P0	0 to P07	Input port P0	I	Input "H" or "L" level signal or open.
P1	0 to P17	Input port P1	I	Input "H" or "L" level signal or open.
P2	0 to P27	Input port P2	I	Input "H" or "L" level signal or open.
P3	0 to P37	Input port P3	I	Input "H" or "L" level signal or open.
P4	0 to P47	Input port P4	I	Input "H" or "L" level signal or open.
P5	P51 to P57	Input port P5	I	Input "H" or "L" level signal or open.
PD	P50	CE input	I	Input "H" level signal.
	P60 to P63	Input port P6	I	Input "H" or "L" level signal or open.
	P64/RTS1	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin Standard serial I/O mode 2: Monitors the boot program operation check signal output pin.
P6	P65/CLK1	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Input "L".
	P66/RXD1	RxD input	I	Serial data input pin
	P67/TXD1	TxD output	0	Serial data output pin (Note 1)
P7(o to P77	Input port P7	I	Input "H" or "L" level signal or open.
P8 P8	0 to P84, P86, 7	Input port P8	I	Input "H" or "L" level signal or open.
P8	5/NM1	NMI input	I	Connect this pin to Vcc2.
P9	o to P97	Input port P9	I	Input "H" or "L" level signal or open.
Vdi	D2, Vss2	Power input		Connect VDD2 pin to VCC2 and connect VSS2 pin to VSS. Apply VCC2 to VDD2 pin and 0V to VSS2 pin.
LP	3, LP4	Filter output	0	Open
CV	N1, SYNCIN	Compound video input	I	Input "H" or "L" level signal or open.
VC	COFF	Vcc1 faction power supply input switch	I	Input "L" level signal.

Table 17.7	Pin Functions (Flash Memory Standard Serial I/O Mode)
------------	---

Note 1: When using standard serial input/output mode 1, the TxD pin must be held high while the RESET pin is pulled low. Therefore, connect this pin to Vcc1 via a resistor. Because this pin is directed for data output after reset, adjust the pull-up resistance value in the system so that data transfers will not be affected.

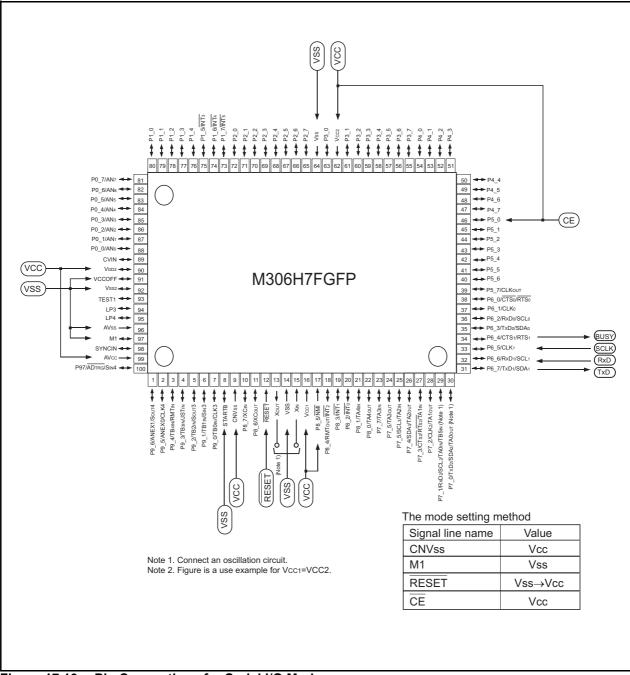


Figure 17.13 Pin Connections for Serial I/O Mode

17.9.2 Example of Circuit Application in the Standard Serial I/O Mode

Figure 17.14 and 17.15 show example of circuit application in standard serial I/O mode 1 and mode 2, respectively. Refer to the user's manual for serial writer to handle pins controlled by a serial writer.

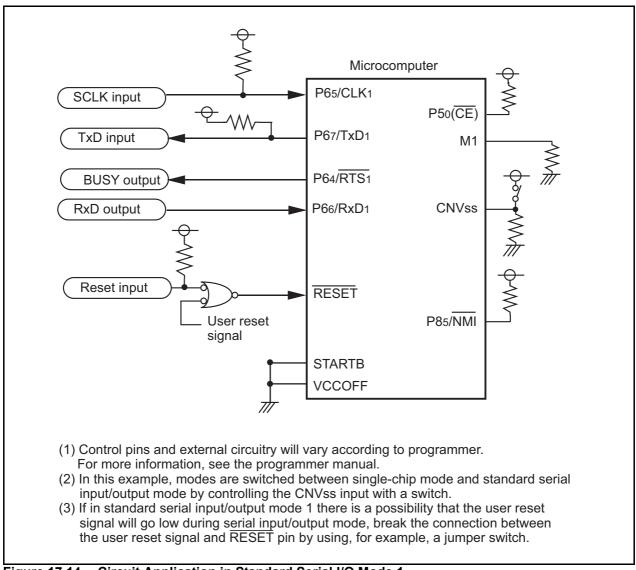
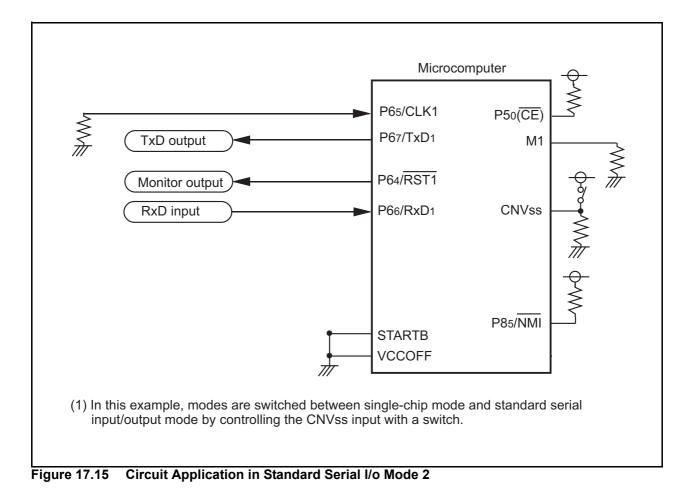
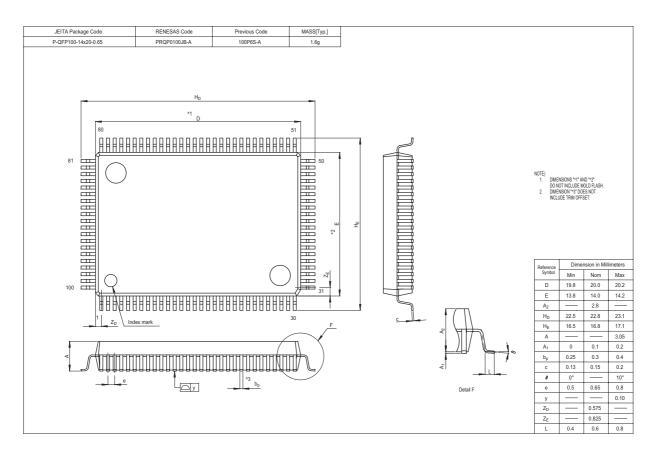



Figure 17.14 Circuit Application in Standard Serial I/O Mode 1

17.10 Parallel I/O Mode

In parallel input/output mode, the user ROM and boot ROM areas can be rewritten by using a parallel programmer suitable for M306H7FGFP. For more information about parallel programmers, contact the manufacturer of your parallel programmer. For details on how to use, refer to the user's manual included with your parallel programmer.

17.10.1 User ROM and Boot ROM Areas


In the boot ROM area, an erase block operation is applied to only one 4 Kbyte block. The boot ROM area contains a standard serial input/output mode based rewrite control program which was written in it when shipped from the factory. Therefore, when using a serial programmer, be careful not to rewrite the boot ROM area.

When in parallel output mode, the boot ROM area is located at addresses 0FF00016 to 0FFFF16. When rewriting the boot ROM area, make sure that only this address range is rewritten. (Do not access other than the addresses 0FF00016 to 0FFFF16.)

17.10.2 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten. (Refer to the description of the functions to inhibit rewriting flash memory version.)

18. Package Outline

19. USEGE NOTES

19.1 Precautions for Power Control

- (1) When exiting stop mode by hardware reset, set $\overline{\text{RESET}}$ pin to "L" until a main clock or sub clock oscillation is stabilized.
- (2) Insert more than four NOP instructions after an WAIT instruction or a instruction to set the CM10 bit of CM1 register to "1". When shifting to wait mode or stop mode, an instruction queue reads ahead to the next instruction to halt a program by an WAIT instruction and an instruction to set the CM10 bit to "1" (all clocks stopped). The next instruction may be executed before entering wait mode or stop mode, depending on a combination of instruction and an execution timing.
- (3) Wait until the main clock oscillation stabilization time, before switching the clock source for CPU clock to the main clock.

Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.

- (4) Suggestions to reduce power consumption
 - Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

• A/D converter

When A/D conversion is not performed, set the VCUT bit of ADiCON1 register to "0" (no VREF connection). When A/D conversion is performed, start the A/D conversion at least 1 fEs or longer after setting the VCUT bit to "1" (VREF connection).

• Stopping peripheral functions

Use the CM0 register CM02 bit to stop the unnecessary peripheral functions during wait mode. However, because the peripheral function clock (fC32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. If low speed mode or low power dissipation mode is to be changed to wait mode, set the CM02 bit to "0" (do not peripheral function clock stopped when in wait mode), before changing wait mode.

- Switching the oscillation-driving capacity
- Set the driving capacity to "LOW" when oscillation is stable.
- External clock

When using an external clock input for the CPU clock, set the CM0 register CM05 bit to "1" (stop). Setting the CM05 bit to "1" disables the XOUT pin from functioning, which helps to reduce the amount of current drawn in the chip. (When using an external clock input, note that the clock remains fed into the chip regardless of how the CM05 bit is set.)

19.2 Precautions for Protect

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

19.3 Precautions for Interrupts

19.3.1 Reading address 0000016

Do not read the address 0000016 in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 0000016 during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to "0".

If the address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is cleared to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

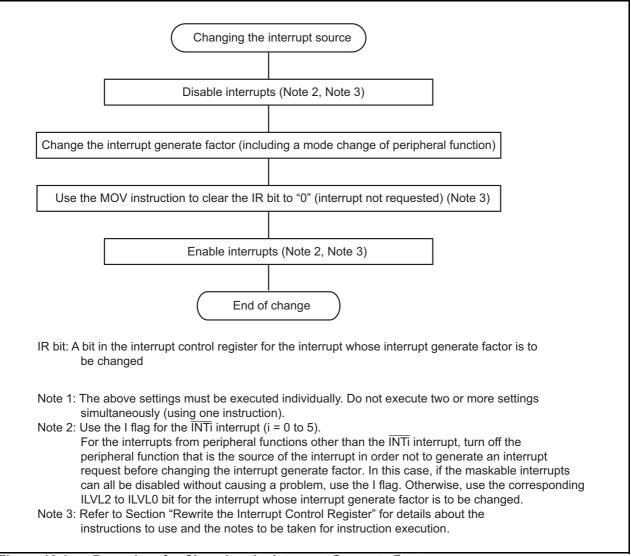
19.3.2 Setting the SP

Set any value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is cleared to '000016' after reset. Therefore, if an interrupt is accepted before setting any value in the SP (USP, ISP), the program may go out of control.

Especially when using $\overline{\text{NMI}}$ interrupt, set a value in the ISP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including $\overline{\text{NMI}}$ interrupt are disabled.

19.3.3 The NMI Interrupt

- (1) The $\overline{\text{NMI}}$ interrupt cannot be disabled. If this interrupt is unused, connect the $\overline{\text{NMI}}$ pin to VCC via a resistor (pull-up).
- (2) The input level of the NMI pin can be read by accessing the P8 register's P8_5 bit. Note that the P8_5 bit can only be read when determining the pin level in NMI interrupt routine.
- (3) Stop mode cannot be entered into while input on the NMI pin is low. This is because while input on the NMI pin is low the CM1 register's CM10 bit is fixed to "0".
- (4) Do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- (5) The low and high level durations of the input signal to the <u>NMI</u> pin must each be 2 CPU clock cycles + 300 ns or more.


19.3.4 Changing the Interrupt Generate Factor

If the interrupt generate factor is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested).

"Changing the interrupt generate factor" referred to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested) after making such changes.

Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 19.1 shows the procedure for changing the interrupt generate factor.

Figure 19.1 Procedure for Changing the Interrupt Generate Factor

19.3.5 INT Interrupt

- (1) Either an "L" level of at least tW(INL) or an "H" level of at least tW(INH) width is necessary for the signal input to pins INT0 through INT5 regardless of the CPU operation clock.
- (2) If the POL bit in the INTOIC to INT5IC registers or the IFSR7 to IFSR0 bits in the IFSR register are changed, the IR bit may inadvertently set to 1 (interrupt requested). Be sure to clear the IR bit to 0 (interrupt not requested) after changing any of those register bits.

19.3.6 Rewrite the Interrupt Control Register

- (1) The interrupt control register for any interrupt should be modified in places where no requests for that interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.
- (2) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the instruction to be used.

• Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified occurs, the IR bit in the register may not be set to "1" (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register. Usable instructions: AND, OR, BCLR, BSET

• Changing the IR bit

Depending on the instruction used, the IR bit may not always be cleared to "0" (interrupt not requested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(3) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (2) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to "1" (interrupts enabled) before the interrupt control register is rewrited, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to keep the program waiting until the interrupt control register is modified

INT_SW	ITCH1:	
FCLR	Ι	; Disable interrupts.
AND.B	#00h, 0055h	; Set the TA0IC register to "0016".
NOP;		
NOP		
FSET	Ι	; Enable interrupts.
		-

The number of NOP instruction is as follows. PM20=1(1 wait) : 2, PM20=0(2 wait) : 3, when using HOLD function : 4.

Example 2: Using the dummy read to keep the FSET instruction waiting

INT_SW	INT SWITCH2:						
FCLR	Ι	; Disable interrupts.					
AND.B	#00h, 0055h	; Set the TA0IC register to "0016".					
MOV.W	MEM, R0	; <u>Dummy read</u> .					
FSET	Ι	; Enable interrupts.					

Example3: Using the POPC instruction to changing the I flag

INT_SW	INT_SWITCH3:						
PUSHC	FLG						
FCLR	Ι	; Disable interrupts.					
AND.B	#00h, 0055h	; Set the TA0IC register to "0016".					
POPC	FLG	; Enable interrupts.					

• Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt occurs.

19.4 Precautions for DMAC

19.4.1 Write to DMAE Bit in DMiCON Register

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously (*1). Step 2: Make sure that the DMAi is in an initial state (*2) in a program. If the DMAi is not in an initial state, the above steps should be repeated.

Notes

- *1 The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0", "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained. Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to
- the DMAS bit in order to maintain a DMA request which is generated during execution.
 *2 Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register 1.) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

19.5 Precautions for Timers

Precautions for Timer A

19.5.1 Timer A

(1) Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

(2) While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFF16" is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

19.5.2 Timer A (Event Counter Mode)

- (1) The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, the ONSF register TAZIE, TAOTGL and TAOTGH bits and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the UDF register, the ONSF register TAZIE, TAOTGL and TAOTGL and TAOTGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- (2) While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFF16" can be read in underflow, while reloading, and "000016" in overflow. When setting TAi register to a value during a counter stop, the setting value can be read before a counter starts counting.

19.5.3 Timer A (One-shot Timer Mode)

- (1) The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the ONSF register TA0TGL and TA0TGH bits and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the ONSF register TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- (2) When setting TAiS bit to "0" (count stop), the followings occur:
 - •A counter stops counting and a content of reload register is reloaded.
 - •TAiOUT pin outputs "L".
 - •After one cycle of the CPU clock, the IR bit of TAIIC register is set to "1" (interrupt request).
- (3) Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAiIN pin and output in one-shot timer mode.
- (4) The IR bit is set to "1" when timer operation mode is set with any of the following procedures:•Select one-shot timer mode after reset.
 - •Change an operation mode from timer mode to one-shot timer mode.

•Change an operation mode from event counter mode to one-shot timer mode.

To use the timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.

(5) When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

19.5.4 Timer A (Pulse Width Modulation Mode)

- (1) The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the ONSF register TA0TGL and TA0TGH bits and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the ONSF register TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- (2) The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:•Select the PWM mode after reset.
 - •Change an operation mode from timer mode to PWM mode.

•Change an operation mode from event counter mode to PWM mode.

To use the timer Ai interrupt (interrupt request bit), set the IR bit to "0" by program after the above listed changes have been made.

- (3) When setting TAiS register to "0" (count stop) during PWM pulse output, the following action occurs:
 •Stop counting.
 - •When TAiOUT pin is output "H", output level is set to "L" and the IR bit is set to "1".
 - •When TAiOUT pin is output "L", both output level and the IR bit remains unchanged.

Precautions for Timer B

19.5.5 Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

(2) A value of a counter, while counting, can be read in TBi register at any time. "FFFF16" is read while reloading. Setting value is read between setting values in TBi register at count stop and starting a counter.

19.5.6 Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

(2) The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFF16." If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

19.5.7 Timer B (Pulse Period/pulse Width Measurement Mode)

- (1) The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 5) register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts). Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To clear the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit = "1" (count starts), be sure to write the same value as previously written to the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits and a 0 to the MR2 bit.
- (2) The IR bit of TBiIC register (i=0 to 5) goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit of TBiMR register within the interrupt routine.
- (3) If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times timer B has overflowed.
- (4) To set the MR3 bit to "0" (no overflow), set TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).
- (5) Use the IR bit of TBiIC register to detect only overflows. Use the MR3 bit only to determine the interrupt factor within the interrupt routine.
- (6) When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.
- (7) A value of the counter is indeterminate at the beginning of a count. MR3 may be set to "1" and timer Bi interrupt request may be generated between a count start and an effective edge input.
- (8) For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

19.6 Precautions for Serial I/O (Clock-synchronous Serial I/O)

19.6.1 Transmission/reception

With an external clock selected, and choosing the $\overline{\text{RTS}}$ function, the output level of the $\overline{\text{RTS}}$ ipin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the $\overline{\text{RTS}}$ ipin goes to "H" when reception starts. So if the $\overline{\text{RTS}}$ ipin is connected to the $\overline{\text{CTS}}$ ipin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the RTS function has no effect.

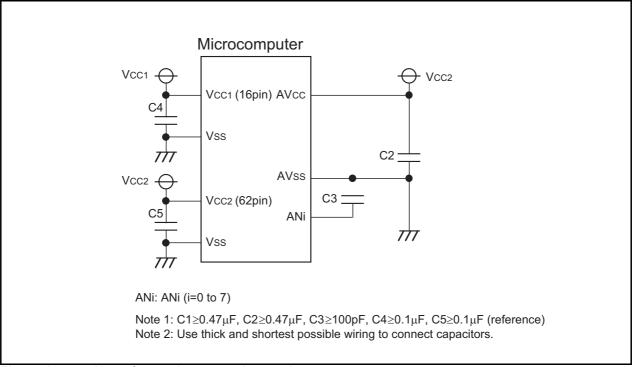
19.6.2 Transmission

When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit of UiC1 register= "1" (transmission enabled)
- The TI bit of UiC1 register = "0" (data present in UiTB register)
- If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTSi}}$ pin = "L"

19.6.3 Reception

- (1) In operating the clock-synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TxDi pin when receiving data.
- (2) When an internal clock is selected, set the UiC1 register (i = 0 to 2)'s TE bit to 1 (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the UiC1 register (i = 0 to 2)'s TE bit to 1 and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.
- (3) When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the UiC1 register (i = 0 to 2)'s RE bit = "1" (data present in the UiRB register), an overrun error occurs and the UiRB register OER bit is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the SiRIC register IR bit does not change state.
- (4) To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.
- (5) When an external clock is selected, the conditions must be met while if the CKPOL bit = "0", the external clock is in the high state; if the CKPOL bit = "1", the external clock is in the low state.
 - •. The RE bit of UiC1 register= "1" (reception enabled)
 - •. The TE bit of UiC1 register= "1" (transmission enabled)
 - •. The TI bit of UiC1 register= "0" (data present in the UiTB register)


19.7 Precautions for Serial I/O (UART Mode)

19.7.1 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2C1 register U2IRS bit to "1" (transmission complete) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to clear the IR bit to "0" (no interrupt request) after setting these bits.

19.8 Precautions for A/D Converter

- (1) Set ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).
- (2) When the VCUT bit of ADCON1 register is changed from "0" (Vref not connected) to "1" (Vref connected), start A/D conversion after passing 1 µs or longer.
- (3) To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVCC and analog input pins (ANi (i=0 to 7)) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 19.2 is an example connection of each pin.
- (4) Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the ADCON0 register's TGR bit = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).
- (5) The φAD frequency must be 10 MHz or less. Without sample-and-hold function, limit the φAD frequency to 250kHz or more. With the sample and hold function, limit the φAD frequency to 1MHz or more.
- (6) When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits of ADCON0 register and the SCAN1 to SCAN0 bits of ADCON1 register.
- (7) If the CPU reads the ADi register (i = 0 to 7) at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.
 - When operating in one-shot or single-sweep mode Check to see that A/D conversion is completed before reading the target ADi register. (Check the ADIC register's IR bit to see if A/D conversion is completed.)
 - When operating in repeat mode or repeat sweep mode 0 or 1 Use the main clock for CPU clock directly without dividing it.
- (8) If A/D conversion is forcibly terminated while in progress by setting the ADCON0 register's ADST bit to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of ADi registers irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is cleared to "0" in a program, ignore the values of all ADi registers.

19.9 Precautions for Programmable I/O Ports

- (1) Setting the SM32 bit in the S3C register to "1" causes the P92 pin to go to a high-impedance state. Similarly, setting the SM42 bit in the S4C register to "1" causes the P96 pin to go to a high-impedance state.
- (2) The input threshold voltage of pins differs between programmable input/output ports and peripheral functions.

Therefore, if any pin is shared by a programmable input/output port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable input/ output port or the peripheral function—is currently selected.

19.10 Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flush memory version.

19.11 Precautions for Flash Memory Version

19.11.1 Precautions for Functions to Inhibit Rewriting Flash Memory Rewrite

ID codes are stored in addresses 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFF716, and 0FFFFB16. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode.

The ROMCP register is mapped in address 0FFFF16. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors.

19.11.2 Precautions for Stop mode

When shifting to stop mode, the following settings are required:

• Set the FMR01 bit to "0" (CPU rewrite mode disabled) and disable DMA transfers before setting the CM10 bit to "1" (stop mode).

1; Stop mode

• Execute the JMP.B instruction subsequent to the instruction which sets the CM10 bit to "1" (stop mode)

Example program BSET 0, CM JMP.B L1

L1:

Program after returning from stop mode

19.11.3 Precautions for Wait mode

When shifting to wait mode, set the FMR01 bit to "0" (CPU rewrite mode diabled) before executing the WAIT instruction.

19.11.4 Precautions for Low power dissipation mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

- Program
- Block erase
- Lock bit program

19.11.5 Writing command and data

Write the command code and data at even addresses.

19.11.6 Precautions for Program Command

Write 'xx4016' in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

19.11.7 Precautions for Lock Bit Program Command

Write 'xx7716' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0". Make sure the address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

19.11.8 Operation speed

Before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or less for CPU clock using the CM0 register's CM06 bit and CM1 register's CM17–6 bits. Also, set the PM1 register's PM17 bit to 1 (with wait state).

19.11.9 Instructions inhibited against use

The following instructions cannot be used in EW0 mode because the flash memory's internal data is referenced: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

19.11.10 Interrupts

EW0 Mode

- Any interrupt which has a vector in the variable vector table can be used providing that its vector is transferred into the RAM area.
- The NMI and watchdog timer interrupts can be used because the FMR0 register and FMR1 register are initialized when one of those interrupts occurs. The jump addresses for those interrupt service routines should be set in the fixed vector table.

Because the rewrite operation is halted when a $\overline{\text{NMI}}$ or watchdog timer interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

• The address match interrupt cannot be used because the flash memory's internal data is referenced.

EW1 Mode

- Make sure that any interrupt which has a vector in the variable vector table or address match interrupt will not be accepted during the auto program or auto erase period.
- Avoid using watchdog timer interrupts.
- The NMI interrupt can be used because the FMR0 register and FMR1 register are initialized when this interrupt occurs. The jump address for the interrupt service routine should be set in the fixed vector table. Because the rewrite operation is halted when a NMI interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

19.11.11 How to access

To set the FMR01, FMR02, or FMR11 bit to "1", write "0" and then "1" in succession. This is necessary to ensure that no interrupts or DMA transfers will occur before writing "1" after writing "0". Also only when $\overline{\text{NMI}}$ pin is "H" level.

19.11.12 Writing in the user ROM area

EW0 Mode

• If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

EW1 Mode

• Avoid rewriting any block in which the rewrite control program is stored.

19.11.13 DMA transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR0 register's FMR00 bit = 0 (during the auto program or auto erase period).

19.11.14 Regarding Programming/Erasure Times and Execution Time

As the number of programming/erasure times increases, so does the execution time for software commands (Program, Block Erase, and Lock Bit Program). Especially when the number of programming/erasure times exceeds 100, the software command execution time is noticeably extended.

Therefore, the software command wait time that is set must be greater than the maximum rated value of electrical characteristics.

The software commands are aborted by hardware reset 1, $\overline{\text{NMI}}$ interrupt, and watchdog timer interrupt. If a software command is aborted by such reset or interrupt, the block that was in process must be erased before reexecuting the aborted command.

19.12 Other Notes

19.12.1 When the power is being turned on or off

Start VCC1, VCC2, VDD2 and AVCC simultaneously.

While this device is operating, set these pins to the same electric potential.

Also, turn off VCC1, VCC2, VDD2 and AVCC simultaneously when the power supply is being turned off.

When using VCC1 < VCC2, ensure voltage of VCC1 will not exceed voltage of VCC2 while the power is being turned on or off.

Execute in the following procedure when VCC1 is turned off (VCC2 voltage is supplied).

19.12.2 Procedure of VCC1 OFF(Note 1)

- (1) Disable an interrupt which uses pins related to VCC1.
- (2) Stop peripheral functions related to VCC1 (Note 2).
- (3) Set pins related to VCC1 to input mode.
- (4) VCCOFF pin is switched from "L" to "H".
- (5) Turn off VCC1.

19.12.3 Procedure of VCC1 ON

- (1) Turn on VCC1.
- (2) VCCOFF pin (91-pin) is switched from "H" to "L".
- (3) Set pins VCC1, Peripheral function and Interrupt.

Note 1: Refer to the following "Additions" for details of procedures (1) to (4). Note 2: Only when the input from pins related to VCC1 is used. Refer to the following "Additions" for details.

<Additions>

(1) Disable an affected interrupt by pins related to VCC1.

Disable an affected interrupt by pins related to VCC1 by setting the interrupt priority level selection and the interrupt request bits in the the following interrupt control register to "0".

In the transitional state when changing the power supply voltage including being turned on or off, ensure each voltage of VCC1, VDD2, and VDD3 will not exceed voltage of VCC2.

TA0IC to TA4IC (timer A interrupt control register) INT0 to INT2IC (external interrupt control register) S0RIC to S2RIC (UART receive interrupt control register)

Even if other interrupts are disabled without any problem in software, clear the I flag and it is also possible to execute the above interrupt disable process after the procedure (4).

(2) Stop peripheral functions related to VCC1

Stop the function when pins related to VCC1 input affect.

When pins related to VCC1 input affect as follows:

- •When operating in timer A (TA0 to TA4) and the event count mode
- •When the gate input function is used in the event count mode, the one-shot timer, and PWM mode. (When the MR2 bit in the timer A mode registers TA0MR to TA4MR are set to "1")
- •When UART to UART2 reception are set

Set the following in these cases.

•Timer A

Set the timer count start flags of timers A0 to A4 (TA0S to TA4S bits in the TABSR register) to "0". •UART reception

Set the RE and TE bits in the U0C1 to U2C1 registers to "0".

19.12.4 Precautions when sub clock starts

When a signal "H" is applied to the STARTB pin and a reset is deserted, a sub clock divided-by-8 becomes a CPU clock.

When using in this condition, set the CM07 bit in the CM0 register to "1" and switch the CPU clock to sub clock (no division).

19.12.5 Power supply noise and latch-up

In order to avoid power supply noise and latch-up, connect a bypass capacitor (more than 0.1μ F) directly between the VCC pin and VSS pin, VDD2 pin and VSS2 pin, AVCC pin and AVSS pin using a heavy wire. And, connect VSS (GND) to the TEST1 pin (93 pin) via the capacitor (more than 0.1μ F).

19.12.6 When oscillation circuit stop for data slicer

Expansion register XTAL_VCO, PDC_VCO_ON,VPS_VCO_ON is set at "L", when the data slicer is not used, and the oscillation is stopped. When starting oscillation again, set data at the following order.

(a) Set expansion register XTAL VCO = "H."

(b) Set expansion register PDC_VCO_ON, VPS_VCO_ON = "H."

(c) 60 ms or more is a waiting state (stability period of internal oscillation circuit + data slice prepara tion).

* To operate slice RAM, set expansion register XTAL_VCO = "H." Access the memories after wating for 20 ms certainly when resuming synchronous oscillation from the off state.

19.12.7 When operation start from stand-by mode (clock is stopped)

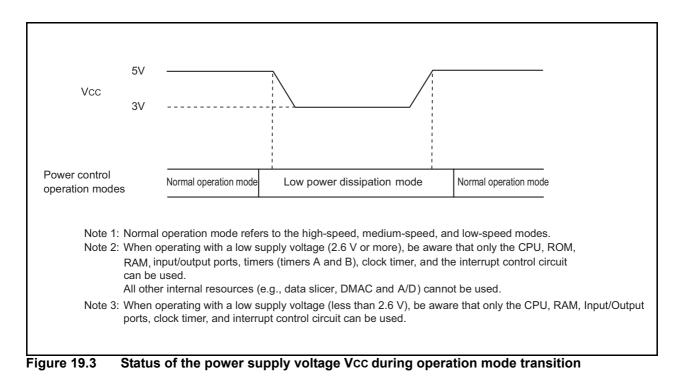
Set up an extended register as follows in standby mode.

(a) Set extended register XTAL_VCO, PDC_VCO_ON, and VPS_VCO_ON as "L."

When you return to an oscillation state from a clock oscillation stop, set up as the notes of the oscillation circuit stop for data slicers.

19.12.8 Notes concerning address 3616 expansion registers and address 3E16 data setting

Please do not change data after setting initial data to the corresponding addresses 3616 and 3E16 interrupt control bits when you use the interrupt of the expansion feature (SLICEON, remote control, HINT, clock timer, and remote control transmission interrupt).


19.12.9 Notes on operating with a low supply voltage (VCC = 2.0 V to 5.5 V, f(XCIN) = 32 kHz)

When in single-chip mode, this product can operate with a low supply voltage only during low power dissipation mode. Before operating with a low supply voltage, always be sure to set the relevant register bits to select low power dissipation mode (BCLK : f(XCIN), main clock XIN : stop, subclock XCIN : oscillating). Then reduce the power supply voltage VCC to 3.0 V.

Also, when returning to normal operation, raise the power supply voltage to 5.0V while in low power consumption mode before entering normal operation mode.

When moving from any operation mode to another, make sure a state transition occurs according to the state transition diagram (Figure 4.9) in Section 4.4, "Power control."

The status of the power supply voltage VCC during operation mode transition is shown in Figure 19.3 below.

19.13 Serial I/O (RxDi input setup time)

For the RxDi input setup time, refer to the rated values shown below, as well as Electrical Characteristics Table 16.23, "Serial I/O."

Table 19.1 Serial I/O (Vcc=5V)

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tsu(D-C)	RxDi input setup time	70		ns

Note: Refer to "Table 16.23. Serial I/O of the Electrical Characteristics.

19.14 Precautions for LP3 and LP4 pins

Cannect capacitors to LP3 and LP4 as shown in Figure 19.4.

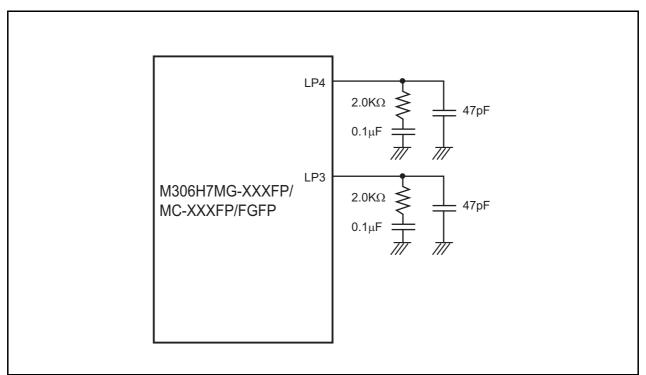


Figure 19.4 Use of capacitors to reduce noise

Notes on pins CVIN, SYNCIN, and SVREF

Please connect pins CVIN, SYNCIN, and SVREF with GND when you do not use the data slicer.

REVISION HISTORY

M306H7MG-XXXFP/MC-XXXFP/FGFP Datasheet

Devi	Dete		Description		
Rev.	Date	Page	Summary		
1.00	Sep 02, 2005	323	First Edition issued		
1.01	Sep 15, 2005	9	DESCRIPTION Table 1.5 Pin Description (3) The polarity of STARTB was opposite> it corrected.		
1.02	Oct 27, 2005	162	I ² C0 Interrupt Control Register and Reserved Register are added.		
2.00	Mar 31, 2006	162	Reserved Register is changed.		
		211	Figure of 13. Address 0C16, 1316, 1A16 is changed.		
		212	Figure of 15. Address 1C16 is changed.		
		215	Figure of 21. Address 2216 is changed.		
		216	Figure of 22. Address 2316 is changed.		
		217	Figure of 23. Address 2416 is changed.		
		218	Figure of 25. Address 2616 is changed.		
		220	Figure of 27. Address 2816 is changed.		
		223	Figure of 32. Address 2D16 is changed.		
		225	Figure of 35. Address 3016 is changed. Figure of 36. Address 3116 is changed.		
		226	Figure of 39. Address 3416 is changed.		
		227	Figure of 40. Address 3516 is changed.		
		232 to 234	Figure of 47. Assress 3C16 to 50. Assress 3F16 are changed.		
		241	F.14.14 is changed.		
		244 to 246	14.6 (6) Remote control transmission function is added.		
		277	Notes of T.17.2 are changed.		
		281	Note 2 of T.17.3 is changed.		
		285	Note 5 of T.17.5 is changed.		
		300	T.17.7 is changed.		
		301	F.17.13 is changed.		
2.10	Oct 25, 2006	19	Table of register address is changed.		
		23	F.3.4 is changed.		
		36	T.4.2 is changed.		
		38	T.4.4 is changed.		
		47	T.6.2 is changed.		
		53	F.6.6 is changed.		
		56	F.6.9 is changed.		
		57	L9 to L10 are added.		
		64	Notes of F.8.2 is changed.		
		65	Notes of F.8.3 is changed.		
		143	T.11.1 is changed.		
		162	Figure of I ² C0 Interrupt Control Register is changed.		
		166	Notes of F.12.3 is changed.		

REVISION HISTORY

M306H7MG-XXXFP/MC-XXXFP/FGFP Datasheet

Boy	Rev. Date				Description
Rev. Dale		Page	Summary		
2.10	Oct 25, 2006	182	F.14.1 is changed.		
		200	T.14.4 is changed.		
		211	Figure of 13. Address 0C16, 1316, 1A16, is changed.		
		218	Figure of 25. Address 2616 is changed.		
		226	Figure of 38. Address 3316 is changed.		
		228	Figure of 41. Address 3616 is changed.		
		233	Figure of 49. Address 3E16 is changed.		
		253	F.15.1 is changed.		
		260	F.15.9 is changed.		
		262	Note of F.15.11 is delated.		
		267	T.16.8 is changed.		
		293	T.17.4 is changed.		
		303	T.17.7 is changed.		
		304	F.17.13 is changed.		
		305	F.17.14 is changed.		
		306	F.17.15 is changed.		
		324	19.12.8 Notes concerning address 3616 expansion registers and address 3E16 is added.		

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Al Information included in this document, but as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, we have been purchasing or using any Renesas products for the tendes of the date their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a state of the date date different information in the date their document.
 When using or otherwise relevance on their document.
 When using or otherwise relevance on their document.
 When using or otherwise relevance on their document.
 When using or otherwise relevance on their document.
 When using or otherwise relevance on their document in the document.
 When u

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com