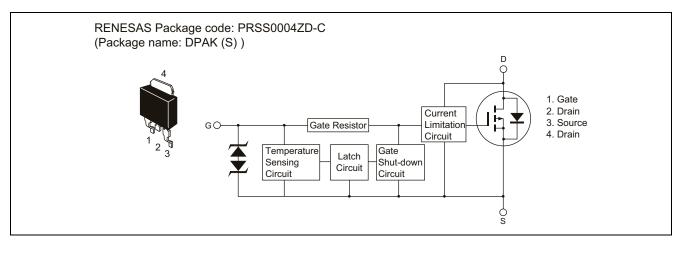


RJE0620JPD

-60V, -10A, P Channel Thermal FET Power Switching

R07DS1235EJ0200 Rev.2.00 Mar 02, 2020

Data Sheet


Description

This FET has the over temperature shut-down capability sensing to the junction temperature. This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc..

Features

- Built-in the over temperature shut-down circuit.
- High endurance capability against to the short circuit.
- Latch type shut down operation (need 0 voltage recovery).
- Built-in the current limitation circuit.
- High density mounting
- Power supply voltage applies 12 V and 24 V.
- AEC-Q101 compliant

Outline

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	-60	V
Gate to source voltage	V _{GSS}	-16	V
	V _{GSS}	2.5	V
Drain current	ID Note3	-10	А
Body-drain diode reverse drain current	I _{DR}	-10	А
Avalanche current	AP Note 2	-7	А
Avalanche energy	E _{AR} Note 2	210	mJ
Channel dissipation	Pch Note 1	40	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes: 1 Tch = $25^{\circ}C$

2. Tch = 25°C, Rg \geq 50 Ω

3. It provides by the current limitation lower bound value.

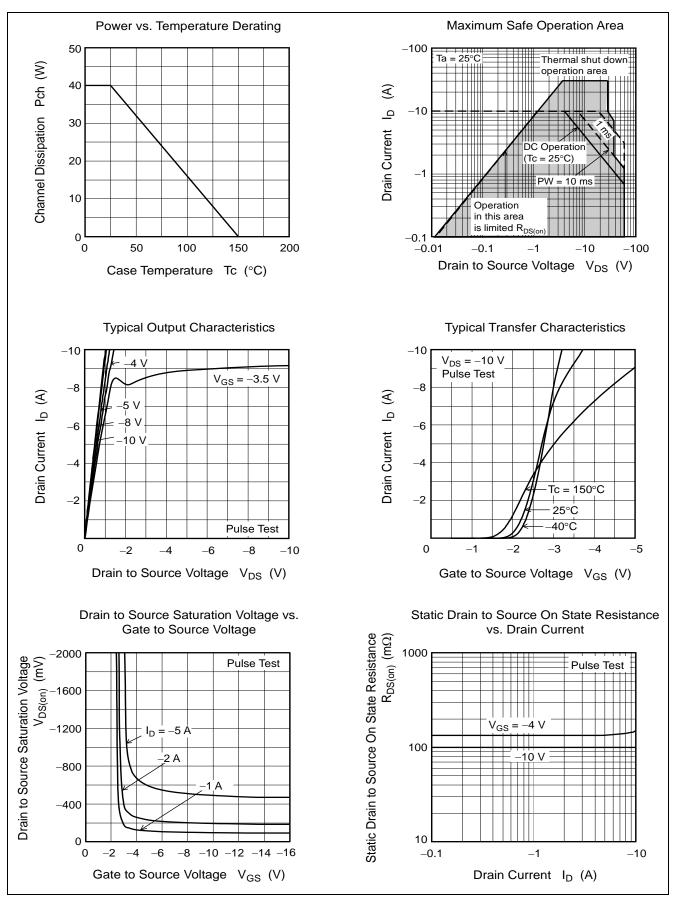
Typical Operation Characteristics

						$(Ta = 25^{\circ}C)$
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage	VIH	-3.5		—	V	
	VIL	—		-1.2	V	
Input current	Іінт	—		-100	μA	$Vi = -8 V, V_{DS} = 0$
(Gate non shut down)	I _{IH2}	—		-50	μA	$Vi = -3.5 V, V_{DS} = 0$
	I⊫	—		-1	μA	$Vi = -1.2 V, V_{DS} = 0$
Input current	I _{IH(sd)1}	—	-0.8	—	mA	$Vi = -8 V, V_{DS} = 0$
(Gate shut down)	I _{IH(sd)2}	—	-0.35	—	mA	$Vi = -3.5 V, V_{DS} = 0$
Shut down temperature	Tsd	—	175	—	°C	Channel temperature
Gate operation voltage	Vop	-3.5	_	-12	V	
Drain current (Current limitation value)	I _{D limt}	-10			A	$V_{GS} = -12 \text{ V}, \text{ V}_{DS} = -10 \text{ V}^{\text{Note 4}}$

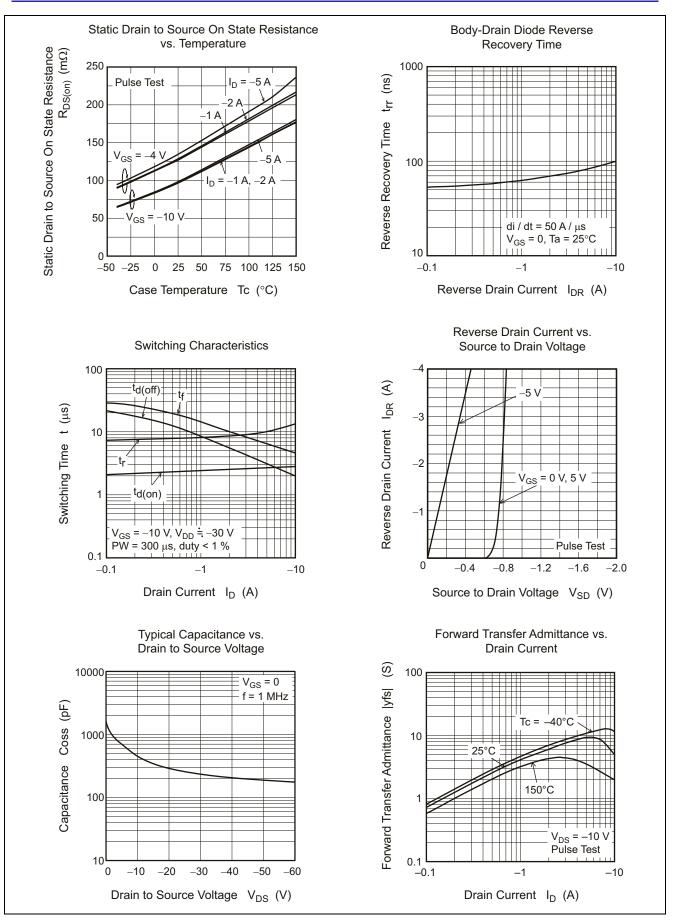
Notes; 4. Pulse test

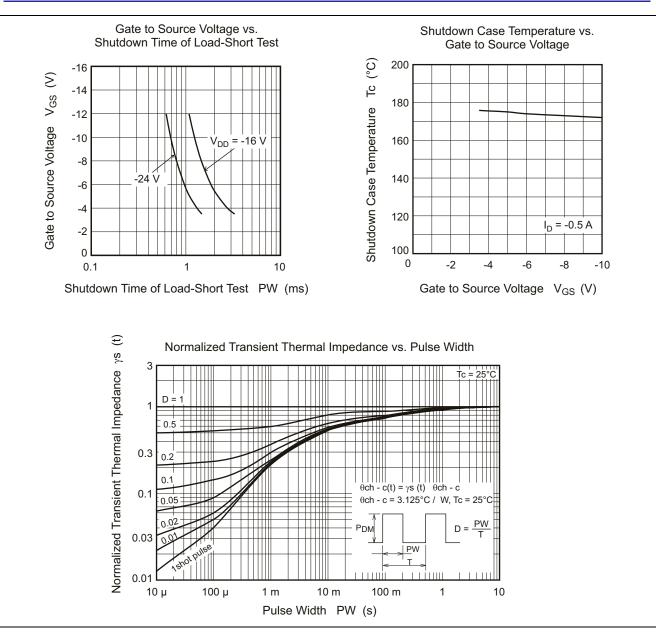
Electrical Characteristics

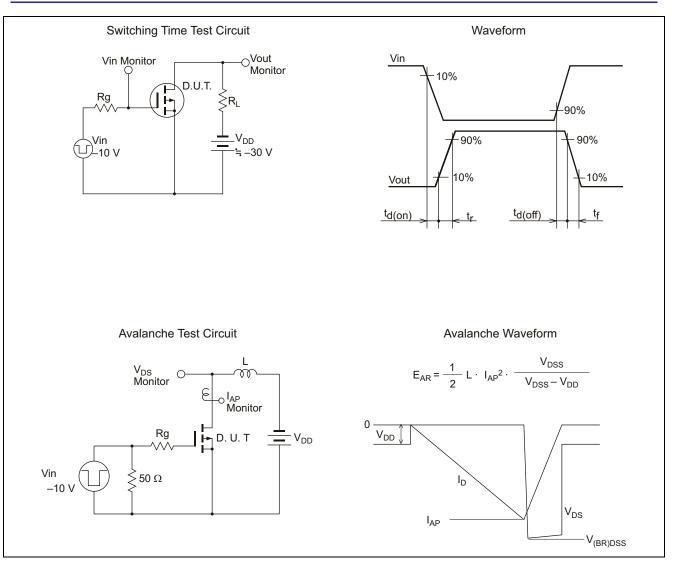
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
		IVIIII	тур	-16	A	$V_{GS} = -3.5 \text{ V}, \text{ V}_{DS} = -10 \text{ V}^{\text{Note 5}}$
Drain current	I _{D1}					
	I _{D2}			-10	mA	$V_{GS} = -1.2 \text{ V}, \text{ V}_{DS} = -10 \text{ V}$
	ID3	-10	—		A	$V_{GS} = -12 \text{ V}, \text{ V}_{DS} = -10 \text{ V}^{\text{Note 5}}$
Drain to source breakdown voltage	V _{(BR)DSS}	-60	—	_	V	$I_D = -10 \text{ mA}, \text{ V}_{GS} = 0$
Gate to source breakdown	V _(BR) GSS	-16	—	—	V	$I_G = -800 \ \mu A, \ V_{DS} = 0$
voltage	V _{(BR)GSS}	2.5	—	_	V	$I_G = 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	IGSS1		_	-100	μA	$V_{GS} = -8 V, V_{DS} = 0$
	Igss2		_	-50	μA	$V_{GS} = -3.5 V, V_{DS} = 0$
	Igss3	_	—	-1	μΑ	$V_{GS} = -1.2 V, V_{DS} = 0$
	Igss4	_	—	100	μΑ	$V_{GS} = 2.4 \text{ V}, V_{DS} = 0$
Input current (shut down)	I _{GS(OP)1}	_	-0.8	—	mA	$V_{GS} = -8 V, V_{DS} = 0$
	I _{GS(OP)2}	_	-0.35	—	mA	$V_{GS} = -3.5 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS1}	_	—	-10	μΑ	$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0$
Gate to source cutoff voltage	V _{GS(off)}	-1.0	—	-2.1	V	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$
Forward transfer admittance	y _{fs}	5	9	—	S	$I_D = -5 \text{ A}, V_{DS} = -10 \text{ V}^{\text{Note 5}}$
Static drain to source on state	R _{DS(on)}	—	131	180	mΩ	$I_D = -5 \text{ A}, V_{GS} = -4 \text{ V}^{\text{Note 5}}$
resistance	R _{DS(on)}	_	100	120	mΩ	$I_D = -5 \text{ A}, V_{GS} = -10 \text{ V}^{\text{Note 5}}$
Output capacitance	Coss	_	444	—	pF	$V_{DS} = -10 V$, $V_{GS} = 0$, f = 1MHz
Turn-on delay time	t _{d(on)}	_	2.6	—	μS	$V_{GS} = -10 \text{ V}, I_D = -5 \text{ A},$
Rise time	tr	_	10.6	_	μS	$R_L = 6 \Omega$
Turn-off delay time	t _{d(off)}		3.1		μS]
Fall time	t _f		6.0	_	μS	1
Body-drain diode forward voltage	V _{DF}	_	-0.93	_	V	$I_F = -10 \text{ A}, V_{GS} = 0^{\text{Note 5}}$
Body-drain diode reverse recovery time	t _{rr}		100	—	ns	$I_F = -10 \text{ A}, V_{GS} = 0$ $di_F/dt = 50 \text{ A}/\mu\text{s}$
Over load shut down	t _{os1}	—	2.2	_	ms	$V_{GS} = -5 V, V_{DD} = -16 V$
operation time Note 6	t _{os2}	_	1.1		ms	$V_{GS} = -5 V, V_{DD} = -24 V$

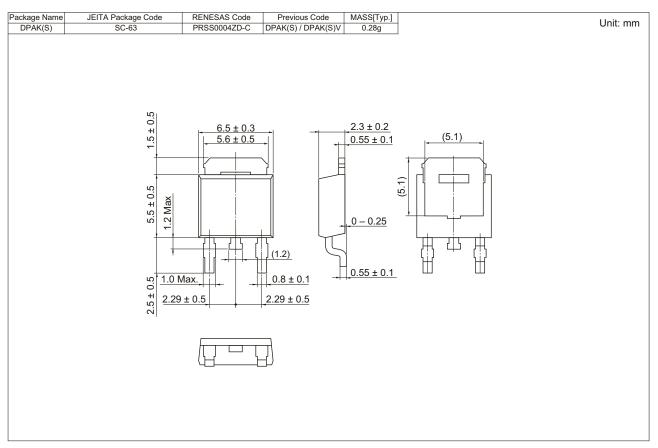

Notes: 5. Pulse test

6. Including the junction temperature rise of the over loaded condition.


R07DS1235EJ0200	Rev.2.00
Mar 02, 2020	


Main Characteristics





Package Dimensions

Ordering Information

Orderable Part Number	Quantity	Shipping Container
RJE0620JPD-00-J3	3000 pcs	Taping

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic "Standard": equipment: industrial robots: etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics, 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, St Tel: +1-905-237-2004 reet, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Uni 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Hong Kong Limited Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
- Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300
- Renesas Electronics Malaysia Sdn.Bhd. Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338