
 Application Note

R01AN7287EJ0100 Rev.1.00 Page 1 of 45
Apr. 8.24

RL78/G22
Wi-Fi Communication (Soft AP mode) with DA16200/DA16600
Introduction
The station (STA) mode of the Wi-Fi device is used in connection with the access point (AP) mode. The
station (STA) mode of the Wi-Fi device is used in connection with the access point (AP) mode. Therefore,
devices that operate mainly in station (STA) mode, such as smartphones, are generally used by connecting
to the access point (AP) of a Wi-Fi router. By operating a Wi-Fi device in access point (AP) mode, user can
direct connect without using a Wi-Fi router. As a result, it is possible to communicate one-on-one with TCP
clients such as smartphones without the need for a Wi-Fi router, and it can be used to control devices from
smartphones and notify to smartphones of device status. With this function, it can be applied to “ Wi-Fi
Garage Door Control ”.

This application note describes how to use the RL78/G22 and DA16200 / DA16600 for Wi-Fi communication
in AP mode. DA16200 / DA16600 for STA mode and AP mode. It is a module capable of Wi-Fi
communication, connected to the host MCU via UART communication, and controlled by AT commands. The
RL78/G22 acts as a host MCU for DA16200 / DA16600. In the sample program, the host MCU RL78/G22
controls the DA16200/DA16600 and perform TCP communication. In addition, a program is implemented to
send AT commands from the RL78/G22 to the DA16200 / DA16600 using the AT command management
framework. By using the AT command management framework, it is possible to implement applications that
take advantage of various communication protocols supported by DA16200 / DA16600 Wi-Fi communication
functions. This application note provides a detailed explanation of the Wi-Fi communication application and
the AT command management framework implemented in this sample program.

Target Device
RL78/G22

DA16200 / DA16600

Related Documents
 RL78/G22 User's Manual: Hardware (R01UH0978)

 RL78/G22 Fast Prototyping Board User's Manual (R20UT5121)

 RL78/G22 Fast Prototyping Board Quick Start Guide (R20UT5123)

 DA16200 / DA16600 Host Interface and AT Command User Manual (UW-WI-0003)

 DA16200 / DA16600 SDK Update Guide(R12AN0129)

PmodTM is registered to Digilent Inc.

https://www.renesas.com/us/en/applications/industrial/building-automation/wi-fi-garage-door-control
https://www.renesas.com/us/en/applications/industrial/building-automation/wi-fi-garage-door-control

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 2 of 45
Apr. 8.24

Contents

1. Overview ... 3
1.1 Operation overview.. 3
1.2 Description of the Software ... 4
1.2.1 Sample program Configuration ... 4
1.2.2 Hierarchy of sample programs .. 4
1.2.3 Used peripheral function ... 5
1.2.4 List of Option Byte Settings ... 5
1.2.5 Folder/File structure .. 6
1.2.6 Code size ... 6

2. TCP Communication Application ... 7
2.1 Application environment .. 7
2.2 Application operation ... 15

3. AT Command Management Framework .. 20
3.1 Framework Overview... 20
3.2 API functions ... 22
3.2.1 Management API ... 22
3.2.1.1 R_WIFI_Init ... 23
3.2.1.2 R_WIFI_Execute ... 23
3.2.2 AT command API .. 24
3.2.2.1 R_WIFI_OM_Config .. 25
3.2.2.2 R_WIFI_Restart ... 25
3.2.2.3 R_WIFI_RestartWait ... 26
3.2.2.4 R_WIFI_NW_Config .. 26
3.2.2.5 R_WIFI_PUSH_Message.. 27
3.3 Callback function ... 28
3.4 User Specific Configuration ... 33
3.5 Smart Configurator module used in the framework ... 36
3.5.1 UARTA module.. 36
3.5.2 TAU module ... 37
3.5.3 Interrupt function.. 37
3.5.4 UART0 module .. 37

4. Application development using AT Command Management Framework 38
4.1 Overview of application development.. 38
4.2 Adding an AT command API ... 41
4.3 Guideline of error handling .. 44

Revision History .. 45

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 3 of 45
Apr. 8.24

1. Overview
1.1 Operation overview
The DA16200 / DA16600 is a module with Wi-Fi communication function support. Wi-Fi communication
function can be controlled by AT commands via the UART from RL78/G22.

Figure 1-1 DA16200 / DA16600

In this sample program, AT command framework software, which controls Wi-Fi communication of DA16200
/ DA16600 using the RL78/G22 as the host MCU. The RL78/G22 sends AT command as string data to
DA16200 / DA16600 via UART communication. The response string data for the AT command is also
received by UART communication. Through these exchanges, the RL78/G22 utilizes the Wi-Fi
communication function of the DA16200 / DA16600.

Figure 1-2 Communication between RL78/G22 and DA16200 / DA16600

DA16200 /
DA16600 RL78/G22

AT command

Response

UART
Communication

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 4 of 45
Apr. 8.24

1.2 Description of the Software
This sample program initializes it to operate as a TCP Server in Wi-Fi Soft AP mode. After connecting in STA
mode of Wi-Fi such as a smartphone and connecting from TCP Client, if TCP client send “on” with ASCII
data, the LED of RL78/G22 Fast Prototyping Board (RL78/G22 FPB) will turn on, and then with ASCII data
Sending “off” turns off the RL78/G22 FPB LED. Send the string to the TCP Client by pressing the switch
(SW) on the RL78/G22 FPB.

1.2.1 Sample program Configuration
[Table 1-1 Contents of this Application Note] shows the configuration of this sample program.

Table 1-1 Contents of this Application Note

File Name Description
r01an7287xxrrrr--wifi-sample.pdf

xx: Language classification, Creation country
rrrr: Revision number

This Document

sample_rl78g22_DA16200 / DA16600 Sample Program for Soft AP Mode Operation

1.2.2 Hierarchy of sample programs
Software configuration of this sample framework is shown below.

Smart Configurator is an automatic code generation tool, and the three green functions use a program
generated by Smart Configurator.

Figure 1-3 Software Configuration

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 5 of 45
Apr. 8.24

The sample program is a program that performs TCP communication using the DA16200 / DA16600 module.
The application is implemented on the host MCU side. This program consists of two features, TCP
communication application, which calls APIs for the TCP communication and the AT command framework,
which sends the AT command to the DA16200 / DA16600.

The TCP communication application is a program that turns LED on and off after receiving data from a TCP
client. TCP communication applications are created using the AT command management framework's URC
reception. For a detailed description about the TCP communication application, refer to [2 TCP
Communication Application].

The AT Command Management Framework is a framework for implementing the transmission of AT
commands to the DA16200 / DA16600 and the processing of responses received from the DA16200 /
DA16600. By calling the API function implemented on the AT Command Management Framework, multiple
AT commands are sent to the DA16200 / DA16600, and application is notified by a callback function.

In this sample program, a framework-based program is implemented using a framework so that the
RL78/G22 can perform TCP communication through the DA16200 / DA16600. The AT Command
Management Framework is intended to be used as a base for application development when using functions
of the DA16200 / DA16600 other than TCP communication. For a detailed description about AT Command
Management Framework, refer to [3 AT Command Management Framework].

1.2.3 Used peripheral function
[Table 1-2 Peripheral Functions to be used and their purpose] shows the peripheral functions used in this
sample program.

Table 1-2 Peripheral Functions to be used and their purpose

Peripheral Function Purpose
TAU00 AT command communication timeout
UARTA(P72/TxDA0) UART TX
UARTA(P71/RxDA0) UART RX
PORT(P70) RTS signal for UART (Unused)
PORT(P50) CTS signal for UART (Unused)
PORT(P17) DA16200 / DA16600 RESET control (Unused)
SW(P137/INTP0） User switch external pin interrupt
INTP(P51/INTP2) DA16200 / DA16600 INT signal external pin interrupt (Unused)
UART(P12/TxD0) UART TX for monitor log output

1.2.4 List of Option Byte Settings
[Table 1-3 Option Byte Settings] shows the option byte settings.

Table 1-3 Option Byte Settings

Address Setting Value Contents
000C0H/020C0H 11101111B Watchdog time counter operation disable

(Counting stopped after reset)
000C1H/020C1H 11111100B LVD0 detection voltage: Reset mode

At rising edge TYP. 2.67 V (2.59 V to 2.75 V)
At falling edge TYP. 2.62 V (2.54 V to 2.70 V)

000C2H/020C2H 11101000B HS mode,
High-speed on-chip oscillator clock (fIH): 32 MHz

000C3H/020C3H 10000100B Enables on-chip debugging

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 6 of 45
Apr. 8.24

1.2.5 Folder/File structure
[Table 1-4 Sample Program file structure] shows the file structure of the sample program provided in this
application note.

Table 1-4 Sample Program file structure

Folder name, File name Description
r01an7287_rl78g22_wifi Program storage folder
┣ src Source files
┃ ┣ da16 DA16200 / DA16600 related source files
┃ ┣ smc_gen Smart configurator generation
┃ ┃ ┣ Config_INTC
┃ ┃ ┣ Config_PORT
┃ ┃ ┣ Config_TAU0_1
┃ ┃ ┣ Config_UART0
┃ ┃ ┣ Config_UARTA0
┃ ┃ ┣ general
┃ ┃ ┣ r_bsp
┃ ┃ ┣ r_config
┃ ┃ ┣ r_pincfg
┃ ┣ wifi_entry.c Main program of the sample program
┃ ┣ wifi_entry.h
┃ ┣ main.c
┃ ┣ main.h

1.2.6 Code size
[Table 1-4 ROM/RAM Sizes] shows ROM/RAM Sizes of the RL78/G22’s sample program provided in this
application note.

Table 1-5 ROM/RAM Sizes

Resource Size
ROM 17,898 Byte
RAM 1,390 Byte

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 7 of 45
Apr. 8.24

2. TCP Communication Application
2.1 Application environment
This section describes the environment to operate the TCP communication application.
This application operates in the following hardware environment.

Table 2-1 Hardware environment

Hardware Description
RL78/G22 Fast Prototyping
Board (RL78/G22 FPB)

Evaluation board with RL78/G22
(RTK7RLG220C00000BJ)

US159-DA16200EVZ DA16200
Wi-Fi Pmod™ board *

PMOD board with DA16200 module
(US159-DA16200MEVZ)

US159-DA16600EVZ Wi-Fi +
Bluetooth® Low Energy
Combo Pmod™ Board *

PMOD board with DA16600 module
(US159-DA16600EVZ)

Windows PC RL78/G22’s application development environment and debug console
for operation conformation

* DA16200 / DA16600 software uses DA16200 DA16600 FreeRTOS SDK Image v3.2.8.1.

This sample program has been developed and checked with the following software environment.

Table 2-2 Software environment of sample program

Item Description
Integrated development
environment (e2 studio)

Made by Renesas Electronics Corporation
e2 studio V2024-01 (24.1.0)

C compiler (e2 studio) Made by Renesas Electronics Corporation
CC-RL V1.13.00

Integrated development
environment (CS+)

Made by Renesas Electronics Corporation
CS+ for CC V8.11

C compiler (CS+)
Made by Renesas Electronics Corporation
CC-RL V1.13.00

Smart Configurator Made by Renesas Electronics Corporation
V1.9.0

Board support package (BSP)
Made by Renesas Electronics Corporation
V1.62

Renesas Flash Programmer (RFP) Made by Renesas Electronics Corporation
V3.14.00

https://www.renesas.com/RTK7RLG220C00000BJ/
https://www.renesas.com/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16200mevz-ultra-low-power-wi-fi-pmod-board-renesas-quick-connect-iot
https://www.renesas.com/us/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board-renesas-quick-connect-iot
https://www.renesas.com/jp/ja/document/sws/da16200-da16600-freertos-sdk-image-v3281

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 8 of 45
Apr. 8.24

For application operation, follow these steps:

1. Update the firmware on the US159-DA16200EVZ / US159-DA16600EVZ to the latest version just to be
sure.
For the update method, refer to DA16200/DA16600 SDK Update Guide (renesas.com).
The operation is checked with DA16200 DA16600 FreeRTOS SDK Image v3.2.8.1.

2. Connect RL78/G22 FPB and US159-DA16200EVZ / US159-DA16600EVZ with PMOD connector.
Please use PMOD2 connector for RL78/G22 FPB.

Figure 2-1 Connect RL78/G22 FPB and DA16200 / DA16600

3. Connect USB cables to RL78/G22 FPB.

Figure 2-2 Connect USB cable

Connect to
PMOD2 of RL78/G22

J17
2-3 short:3.3V

Connects USB cable for debug
connection to RL78/G22 FPB

https://www.renesas.com/document/apn/da16200da16600-sdk-update-guide
https://www.renesas.com/jp/ja/document/sws/da16200-da16600-freertos-sdk-image-v3281

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 9 of 45
Apr. 8.24

4. Import sample project

The sample program is provided in the project format of e2 studio. This chapter shows how to import the

project to e2 studio and CS+.

- Importing a Project into e2 studio

To use sample programs in e2 studio, follow the steps below to import them into e2 studio. In projects
managed by e2 studio, do not use space codes, multibyte characters, and symbols such as "$", "#", "%"
in folder names or paths to them.

(Note that depending on the version of e2 studio you are using, the interface may appear somewhat
different from the screenshots below.)

Figure 2-3 Importing a Project into e2 studio

Select menu [File] >>
[Import…].

Select [Existing Projects into Workspace].

Select [Select root directory:].

Select specify the directory which stored the project to import.
e.g.: r01an7287_rl78g22_wifi
Each application note has its own project name.

Select [Copy project to workspace (C)] when copy the selected
project to the workspace.

Select [Add project to working
sets] when using the working sets.

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 10 of 45
Apr. 8.24

- Importing a Project into CS+

To use sample programs in CS+, follow the steps below to import them into CS+. In projects managed
by CS +, do not use space codes, multibyte characters, and symbols such as "$", "#", "%" in folder
names or paths to them.

(Note that depending on the version of CS+ you are using, the interface may appear somewhat different
from the screenshots below.)

Figure 2-4 Importing a Project into CS+

Start the CS+, and select [Open Existing e2 studio / CubeSuite
/High-performance Embedded Workshop / PM+ Project]

Select a project (e.g. r01an7287_rl78g22_wifi).
Each application note has its own project name.

Select a .rcpc file, and click the button [Open].

Confirm that it is a project file (*.rcpc) for
MCU Simulator Online/e2 studio

Select [Empty Application (CC-RL)] in [Kind of
project:], and specify [Project name:] and [Place:]

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 11 of 45
Apr. 8.24

5. Change the SSID, password, country name, security protocol, and cipher type. The IP address and
subnet mask used to connect to the Wi-Fi network. Start IP and end IP of the DHCP server
configuration range. And the local port of the TCP server is specified. Change these values to match
your application. The files to be modified are as follows.

- wifi_entry.c

 Refer to the following documentation for detail on the settings.

UM-WI-003 DA16200 DA16600 Host Interface and AT Command User Manual (renesas.com)

Figure 2-5 Setting of SSID, password, etc. (wifi_entry.c)

Based on this setting, the following AT command is executed.

Figure 2-6 Command Execution Content (Soft AP Mode Setting)

ATF
+INIT:DONE,0
AT+TMRFNOINIT=0
OK
AT+WFMODE=1
OK
AT+WFSAP=test1234,3,1,12345678,0,JP
+WFSAP:test1234
OK
AT+RESTART
OK
+INIT:DONE,1

 (The received URC is different between DA16200 and DA16600.)
AT+NWIP=1,10.0.0.1,255.255.255.0,10.0.0.1
OK
AT+NWDHS=1,10.0.0.2,10.0.0.11,1800
OK
AT+TRTS=10194
+TRTS:0
OK
AT+TRTRM=0
OK
AT+TRTS=10194
+TRTS:0
OK

https://www.renesas.com/jp/ja/document/mas/um-wi-003-da16200-da16600-host-interface-and-command-user-manual?r=1600061

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 12 of 45
Apr. 8.24

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 13 of 45
Apr. 8.24

6. The DA16200 and DA16600 of the Wi-Fi module have different initialization times after reset or restart,
and different wait times can be set. If you set the DA16600 to DA16600 due to the long initialization
time, the DA16200 and DA16600 can operate with the same program. By default, the sample program
is set to DA16600.The files to be modified are as follows.

・da16\r_wifi_da.c

Figure 2-7 Select of DA16200 / DA16600

7. Set Motorola S-record file output.

(1): Right mouse click on the project.

(2): Select property.

(3): Select Settings → Converter Output, check "Output hex file",

confirm that Output Motorola S-record file is selected, click Apply and Close.

Figure 2-8 Motorola S-record file output setting

(1)

(2)

(3)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 14 of 45
Apr. 8.24

8. Build the sample project. When you build, Motorola S-record file (.mot) will be output.

9. Program the Motorola S-record file to the RL78/G22 FPB using the Renesas Flash Programmer.

(1): Select File → New Project…

(2): Select RL78/G2x from the pull-down menu.

(3): Specify an arbitrary name and arbitrary folder for the Project Name and Project folder.

(4): Select COM port and 2 wire UART from the pull-down menu.

(5): Click Tool Details…

(6): Specify COM port of RL78/G22 FPB

(7): Click OK

(8): Click Connect (If the connection is successful, proceed to (9). In case of error, please check the
settings before (6).

(9): Specify Motorola S-record file generated by build.

(10): Click Start to start programing.

Figure 2-9 Programing file

10. Prepare for monitoring.

The execution log of the sample program is output from USB of RL78/G22 FPB. Specify the COM port
of RL78/G22 FPB with terminal software such as TeraTerm.

Baud rate is 115200bps, data is 8bit, parity is none, stop bit is 1bit. The line feed code reception setting
is “LF”.

(1)

(2)

(3)
Arbitrary name
Arbitrary folder

(4)

(5)

(6)
Specify COM port of RL78/G22 FPB to program.

(7)

(8)

(9) Specify mot file to write.

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 15 of 45
Apr. 8.24

2.2 Application operation
This sample program is initialized to operate as a TCP Server in Soft AP mode of Wi-Fi, and after connecting
from a STA mode of Wi-Fi connect such as a smartphone and a TCP Client, it sends "on" in ASCII data to
turn on the LED of the RL78/G22 FPB. Sending "off" in ASCII data turns off the LED on the RL78/G22 FPB.
Also, by pressing the switch(SW) on the RL78/G22 FPB, a string of characters is sent to the smartphone.

Figure 2-10 sample program system configuration.

When the sample program is executed, the RL78/G22 resets the DA16200 / DA16600 module. After
resetting the DA16200 / DA16600, go to the Operation Modo settings and set the Soft-AP mode. Then
restart the module. In the Network settings, configure the IP settings, DHCP settings, TCP server operation
settings, and local port settings. The execution log of the terminal software is shown below.

Figure 2-11 RL78/G22 FPB log display (terminal software) settings.

RL78/G22 DA16200 /
DA16600

Wi-Fi Connect

TCP Connect

TCP Data

TCP Data

PROGRAM START

+INIT:DONE,0

OM COMFIG COMP

RESTART....

RESTART COMP

NW COMFIG COMP

Reset

Operation Modo Setting

Restart

Network Setting

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 16 of 45
Apr. 8.24

The following is an example of operation after setting the operation.

TCP Client uses TCP Client software such as TCP Client - Apps on Google Play. A smartphone example is
explained inTCP Client - Apps on Google Play.

(1) Make a Wi-Fi connection from your smartphone. In the terminal software connected to the RL78/G22
FPB, "URC: +WFCST:XX:XX:XX:XX:XX" is displayed.

(2) Set the TCP Address to "10.0.0.1" and the Port to "10194" on the smartphone and make a TCP
connection. In the terminal software connected to the RL78/G22 FPB, "TCP connected" is displayed. In
addition, LED1 of the RL78/G22 FPB turns on during the TCP connection.

(3) When "on\n" is sent from the smartphone, "LED on" is displayed in the terminal software connected to
the RL78/G22 FPB. It also turns on LED2 on the RL78/G22 FPB.

(4) When "off\n" is sent from the smartphone, "LED off" is displayed in the terminal software connected to
the RL78/G22 FPB. It also turns off LED2 on the RL78/G22 FPB.

(5) When you press the switch (SW) of the RL78/G22 FPB, "Switch: X" (where X is increment) is sent from
the RL78/G22 FPB. The smartphone is displayed the data.

(6) Make a TCP disconnect on your smartphone. When TCP is disconnected, "TCP disconnected" is
displayed in the terminal software connected to the RL78/G22 FPB. In addition, LED1 of the RL78/G22
FPB is turned off during the TCP connection.

(7) Disconnect the Wi-Fi from smartphone. In the terminal software connected to the RL78/G22 FPB,
"URC: +WFDST:XX:XX:XX:XX" is displayed.

The execution log of the terminal software of the operation example is shown below by the item number of
the operation example.

Figure 2-12 RL78/G22 FPB Log Display (Terminal Software) TCP operation.

PROGRAM START

+INIT:DONE,0

OM COMFIG COMP

RESTART....

RESTART COMP

NW COMFIG COMP

URC: +WFCST:XX:XX:XX:XX:XX:XX

TCP connected

LED on

LED off

SW PUSH

SEND MESSAGE: Switch: 1

SEND PUSH MESSAGE COMP

TCP disconnected

URC: +WFDST:XX:XX:XX:XX:XX:XX

(1)

(2)

(3)

(4)

(5)

(6)

(7)

https://play.google.com/store/apps/details?id=com.hardcodedjoy.tcpclient&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.hardcodedjoy.tcpclient&hl=en&gl=US

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 17 of 45
Apr. 8.24

 The operation of the smartphone in the operation example is shown below by the item number of the
operation example.

Figure 2-13 Smartphone Display (1)

(1)

(2)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 18 of 45
Apr. 8.24

Figure 2-14 Smartphone Display (2)

(3) (4) (5)

on off

(6)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 19 of 45
Apr. 8.24

The position of the RL78/G22 FPB LEDs and switch (SW) in the operation example is shown.

Figure 2-15 LED and switch of RL78/G22 FPB

LED1

LED2

Notify TCP Client

Lights on/off under the control of the TCP client

Lights up when TCP connected.

Switch (SW)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 20 of 45
Apr. 8.24

3. AT Command Management Framework
3.1 Framework Overview
The DA16200 / DA16600 is operated from the RL78/G22 through the transmission of AT commands and
reception of responses using serial communication through the UART. The AT Command Management
Framework is a framework for efficiently implementing the transmission and reception of AT commands and
responses. This sample program implements a framework-based program for TCP communication using the
AT Command Management Framework.

The API implemented in the framework-based program of this sample program is classified into two types:
management API and AT command API. The management API is an API for initializing framework-based
programs and sending a series of AT commands in response to a response message. The AT Command
API is an API for sending AT commands. The execution result of the AT command sent by the AT Command
API is notified to the application as a callback function.

AT Command Management Framework is created using TAU, UARTA, PORT and interrupt controller
generated by Smart Configurator.

 The UARTA is used to send AT commands to the DA16200 / DA16600 and receive responses from the
DA16200 / DA16600.

 The TAU is used to measure timeout condition after AT command is executed.

 The interrupt controller is not used for DA16200 / DA16600 interrupt. However, it is used in an interrupt
to signal that a switch (SW) has been pressed.

Figure 3-1 Overview of sample framework

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 21 of 45
Apr. 8.24

The AT command framework implements an AT command API that sends AT commands to use the Wi-FI
communication function of the DA16200 / DA16600. The series of AT commands required to perform the
desired action by calling the AT Command API in the application are added to the transmit waiting list. AT
commands added to the transmit waiting list are sent to DA16200 / DA16600 in order.

Figure 3-2 AT command API call

The result of executing the AT command on DA16200 / DA16600 is sent as a response. This response data
is received by the UART module's callback function and analyzed by the R_WIFI_Execute function. If the
execution result is correct, the R_WIFI_Execute function sends the next AT command that is added to the
transmit waiting list. This procedure is repeated until all AT commands added to the transmit waiting list have
been sent.

Figure 3-3 Receive response and AT command send

If all AT commands added to the send waiting list have been sent, the response from DA16200 / DA16600 is
an error, or other data unrelated to the AT command is received, the R_WIFI_Execute function notifies the
application as a callback function.

Figure 3-4 Notification in callback function

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 22 of 45
Apr. 8.24

Executable API function provided from the framework-based program of this sample program is described in
[3.2 API function].

The result of the API execution is notified to application through callback function. Details about callback
function are described in [3.3 Callback function].

If user want to use the sample framework with other RL78 MCUs, the user only needs to change the
“r_wifi_user_config.h” file. Configurable values are described in [3.4 User Specific Configuration].

3.2 API functions
The API functions implemented in the framework-based program of this sample program are classified into
two types: Management API and AT command API. The management API is an API for initializing the
framework-based program and sending a series of AT commands in response to the response message.
The AT command API is an API to send AT commands. The management API is described in [3.2.1
Management API] and AT command API is described in [3.2.2 AT command API].

3.2.1 Management API
The management API is an API for initializing the framework-based program and sending a series of AT
commands in response to the response message. It must be implemented in the main routine of the
application. Even when adding functions based on the AT Command Management Framework, basically
there is no need to change the management API program (r_wifi_da.c, r_wifi_da.h, r_wifi_user_config.c).

Figure 3-5 Management API

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 23 of 45
Apr. 8.24

3.2.1.1 R_WIFI_Init
Function
name

R_WIFI_Init

Functional
overview

Initialize framework-based program

Argument wifi_cb_t * p_callback_fun (IN) Callback function to register

For information about type “wifi_cb_t”,
refer [3.3 Callback function]

Return
value

WIFI_SUCCESS (0x0000) API call success

WIFI_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

Advanced
description

Initialize DA16200 / DA16600 sample framework.

As part of initialization, following operation are performed:

• Initialization of Smart Configurator modules used in the framework.
• Execute hardware reset of DA16200 / DA16600.
• Registration of callback function to notify result of API to application.
After this function is executed, AT command to reset DA16200 / DA16600 will be sent.

 Since the initialization time is different between DA16200 and DA16600, different
weight times are set.

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

WIFI_API_INIT (0xFF)

Please call this function before the main loop of your application.

3.2.1.2 R_WIFI_Execute
Function
name

R_WIFI_Execute

Functional
overview

Perform processing of the framework-based program.

Argument void None

Return
value

void None

Advanced
description

Execute various operations to be performed by the framework.

The following operation are performed:

• Send AT command specified by other API
• Parse string data received from DA16200 / DA16600
• Notifies the application of completion of API operation or receipt of errors or others

by calling callback function

Please call this function repeatedly in the main loop of your application.

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 24 of 45
Apr. 8.24

3.2.2 AT command API
The AT command API is an API for sending AT commands. The AT commands are added to the transmit
waiting list by calling the AT command API from the application. AT commands added to the transmit waiting
lists are sent sequentially to DA16200 / DA16600 in response. When all AT commands specified in the AT
command API have been sent, the AT command transmission result is notified to the application by callback
function.

After calling the AT command API, the next AT command API cannot be called before the result is notified by
the callback function. Also, the AT command API cannot be called from an interrupt handler. Call the AT
command API only from main routine (including callback function of AT Command Management
Framework).

The framework-based program of this sample program implements the API necessary for TCP
communication with the DA16200 / DA16600. If the user wants to implement a function that uses AT
commands that are not used in TCP communication applications, it is assumed that users will add a new AT
Command API using this framework and develop an application.

Figure 3-6 AT command API

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 25 of 45
Apr. 8.24

3.2.2.1 R_WIFI_OM_Config
Function
Name

R_WIFI_OM_Config

Functional
Overview

Configure operator mode

Argument uint8_t * p_ap_ssid (IN) SSID of AP mode
Eample: “test1234”

uint8_t * p_ap_password (IN) Password of AP mode
Eample: “12345678”

uint8_t * p_ap_country (IN) Country name of AP mode
Eample: “JP”

uint8_t * p_ap_ch (IN) Operating channel
Eample: “0”

uint8_t * p_ap_sec (IN) Security protocol
Eample: “3” (WPA2)

uint8_t * p_ap_enc (IN) Encryption mode
Eample: “1” (AES)

Return
value

WIFI_SUCCESS (0x0000) API call success

WIFI_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

WIFI_ERR_IN_PROCESS (0x0002) Other API is in process

Advanced
description

Sends the following AT commands in order:
AT+TMRFNOINIT=0
AT+WFMODE=1
AT+WFSAP=[p_ap_ssid], [p_ap_sec], [p_ap_enc], [p_ap_password], [p_ap_ch],
[p_ap_country]

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

WIFI_API_OM_CONFIG (0x01)

3.2.2.2 R_WIFI_Restart

Function
Name

R_WIFI_Restart

Functional
Overview

Restart the module

Argument void none

Return
value

WIFI_SUCCESS (0x0000) API call success

Advanced
description

Sends the following AT commands in order:
AT+RESTART

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

WIFI_API_RESTART (0x02)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 26 of 45
Apr. 8.24

3.2.2.3 R_WIFI_RestartWait
Function
Name

R_WIFI_RestartWait

Functional
Overview

Wait for the module to resume after restarting

Argument void none

Return
value

WIFI_SUCCESS (0x0000) API call success

Advanced
description

Weighting the recovery from the AT+RESTART command
Since the initialization time is different between DA16200 and DA16600, different weight
times are set.

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

WIFI_API_RESTART_WAIT (0x03)

3.2.2.4 R_WIFI_NW_Config
Function
Name

R_WIFI_NW_Config

Functional
Overview

Configuring Network Settings

Argument uint8_t * p_ip_addr (IN) IP Address
Example: “10.0.0.1”

uint8_t * p_ip_netmask (IN) IP sab net mask
Example: “255.255.255.0”

uint8_t * p_dhcp_staip (IN) DHCP start IP
Example: “10.0.0.2”

uint8_t * p_dhcp_endip (IN) DHCP end IP
Example: ”10.0.0.11”

uint8_t * p_local_port (IN) Local port
Example: ”10194”

Return
value

WIFI_SUCCESS (0x0000) WIFI_SUCCESS (0x0000)

WIFI_ERR_IN_PROCESS (0x0002) WIFI_FAIL_IN_PROCESS (0x0002)

Advanced
description

Sends the following AT commands in order:
AT+NWIP=1, [p_ip_addr], [p_ip_netmask], [p_ip_addr]
AT+NWDHS=1, [p_dhcp_staip], [p_dhcp_endip],1800
AT+TRTS=[p_local_port]
AT+TRTRM=0
AT+TRTS=[p_local_port]

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

WIFI_API_NW_CONFIG (0x04)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 27 of 45
Apr. 8.24

3.2.2.5 R_WIFI_PUSH_Message
Function
Name

R_WIFI_PUSH_Message

Functional
Overview

Sending data to a TCP client

Argument uint8_t* p_tcp_socket TCP socket to send data

uint16_t length Length of data

uint8_t* p_message Data

Return
value

WIFI_SUCCESS (0x0000) API call success

WIFI_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

WIFI_ERR_IN_PROCESS (0x0002) Other API is in process

WIFI_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following data in order:
<ESC>S0[ASCII(length)],[p_tcp_socket],[p_message]

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

WIFI_API_PUSH_MESSAGE (0x05)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 28 of 45
Apr. 8.24

3.3 Callback function
When an AT command is sent to the DA16200 / DA16600, string data is received as a response. Also,
DA16200 / DA16600 sends an Unsolicited Response Code (URC) that is not a result of an AT command.
The framework-based program of this sample program receives string data from DA16200 / DA16600, and
then parses the string data within the function R_WIFI_Execute. If information is needed to be notified to the
user application, the function R_WIFI_Execute calls a callback function to notify the user application. This
allows the application to check the execution result of the AT Command API and to check the URC of the
DA16200 / DA16600. This section describes the structure of the callback function and the events and data
that are signaled by the callback function.

The callback function has the following structure.

Type name void * wifi_cb_t

Argument uint16_t event_type (In) Notified event ID

Refer IDs in Table 3-1.

uint16_t api_id (In) ID identifying API which framework-based program is
processing.

Refer IDs in Table 3-2.

uint16_t data_len (in) Data size of “p_data”

void * p_data (out) Notified event data.

Value changes depending on notified event type

The event_type and api_id values use values defined in macro formats within framework-based programs.
The values for each are shown below.

Table 3-1 Event Type IDs (event_type) and value

Macro Value Description

WIFI_EVENT_API_COMPLETE 0x0000 An event that notifies application that the operation
specified in the API function has completed
successfully.

”p_data” is set according to the called API.

WIFI_EVENT_ERROR 0x0001 An event that notifies application that an error has
occurred in the behavior specified in the API function.

Numeric data of error is set to “p_data”.

WIFI_EVENT_RCVURC 0x0002 An event that notifies application that a URC has
been received.

String data of URC is set to “p_data”.

WIFI_EVENT_TIMEOUT_ERROR 0x0003 An event that notifies application that timeout error
has occurred for sending AT command and receiving
a response.

Timeout occurs when 60s has passed after sending
an AT command.

WIFI_EVENT_FATAL_ERROR 0x0004 An event that is notified when a fatal error occurs.

(Unused)

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 29 of 45
Apr. 8.24

Table 3-2 API IDs (api_id) and value

Macro Value Corresponding API

WIFI_API_NO_CURRENT_API 0x0000 None

WIFI_API_OM_CONFIG 0x0001 R_WIFI_OM_Config

WIFI_API_RESTART 0x0002 R_WIFI_Restart

WIFI_API_RESTART_WAIT 0x0003 R_WIFI_RestartWait

WIFI_API_NW_CONFIG 0x0004 R_WIFI_NW_Config

WIFI_API_PUSH_MESSAGE 0x0005 R_WIFI_PUSH_Message

WIFI_API_INIT 0x00FF R_WIFI_Init

The callback function is called from R_WIFI_Execute function in certain situations. The following is a list of
when the callback function is called and the data to be set.

The source code containing the callback function is shown below.

Program: wifi_entry.c

• When all AT commands specified by the AT Command API are sent and responses are received
without error:

 Value “WIFI_EVENT_API_COMPLETE” is set to “event_type”.

 In “p_data”, the data is set according to the AT command to be executed.

 When URC is received as a response to AT command, string data of received URC is
registered. The size of the string data to be notified is set to "data_len"

 When calling the AT command API that starts data receive operation such, the received
string data is registered. If the received data size exceeds "WIFI_DATA_STR_SIZE", the
excess data is discarded and the data of the first half is registered. The size of the string
data to be notified is set to "data_len".

 Otherwise, no data is set in “p_data”. "data_len" is set to 0.

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 30 of 45
Apr. 8.24

Figure 3-7 WIFI_EVENT_API_COMPLETE event notification

• When the response to the AT command sent to the DA16200 / DA16600 has an error in the expected

response:

 Value “WIFI_EVENT_ERROR” is set to “event_type”.

Figure 3-8 WIFI_EVENT_ERROR event notification

void wifi_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
 if(WIFI_EVENT_API_COMPLETE == event_type)
 {
 switch (api_id)
 {
 case WIFI_API_INIT:
 {
 /* Configure operation mode after initiation complete */
 if (0 != data_len)
 {
 /* URC after ATF */
 sprintf((char *)s_sbuf, (char *)p_data);
 }
 else
 {
/* Omission */
 }
 debug_printf(s_sbuf);
 R_WIFI_OM_Config(s_str_ap_ssid, s_str_ap_password,
 s_str_ap_country, s_str_ap_ch, s_str_ap_sec, s_str_ap_enc);
 break;
 }

 case WIFI_API_OM_CONFIG:
 {
 /* Restart after configuration of operation mode complete */
 sprintf((char *)s_sbuf, "OM COMFIG COMP\n");
 debug_printf(s_sbuf);
 R_WIFI_Restart();
 break;
 }
/* Omission */
 }

void wifi_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{

/* Omission */
 if(WIFI_EVENT_ERROR == event_type)
 {

sprintf(sbuf,"ERROR RESPONSE\n");
debug_printf(sbuf);
r_wifi_delay_devspe(5);

 }
/* Omission */

WIFI_EVENT_API_COMPLETE event notification

Define which AT command API
result with api_id

Received data is registered in p_data

WIFI_EVENT_ERROR event notification

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 31 of 45
Apr. 8.24

• When the AT command sent to the DA16200 / DA16600 times out:

 Value “WIFI_EVENT_TIMEOUT_ERROR” is set to “event_type”.

 No data is set to “p_data”.

 When a timeout occurs, it is often assumed that the behavior of the DA16200 / DA16600 is
abnormal. Therefore, it is recommended to perform initialization.

Figure 3-9 WIFI_EVENT_TIMEOUT_ERROR event notification

void wifi_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 if (WIFI_EVENT_TIMEOUT_ERROR == event_type)
 {
 /* Set flag to initialize in main loop */
 s_reinitialize_flag = 1;
 }
}
/* Omission */

void wifi_entry(void)
{
/* Omission */
 if (1 == s_reinitialize_flag)
 {
 /* Initialize when timeout occur */
 R_WIFI_Init(wifi_user_cb);
 s_reinitialize_flag = 0;
 }

WIFI_EVENT_TIMEOUT_ERROR event notification

Initialization of framework base program

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 32 of 45
Apr. 8.24

• When URC is sent from DA16200 / DA16600:

 Value “WIFI_EVENT_RCVURC” is set to “event_type”.

 Received URC string data is registered to “p_data”. Execute user process according to the
URC. Please execute the process according to the URC. If the data size of the received URC
exceeds "WIFI_DATA_STR_SIZE", the excess data is discarded and the data of the first half
is registered. The size of the string data to be notified is set to "data_len"

Figure 3-10 WIFI_EVENT_RCVURC event notification

void wifi_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{

/* Omission *
 if (WIFI_EVENT_RCVURC == event_type)
 {
 const uint8_t p_str_onconnect[] = "+TRCTS";
 const uint8_t p_str_onmessage[] = "+TRDTS";
 const uint8_t p_str_ondisconn[] = "+TRXTS";
 uint8_t i;

 /* Check TCP data */
 if (0 == memcmp(p_data, p_str_onmessage, ((sizeof(p_str_onmessage)) - 1)))
 {
 if(0 == memcmp(p_data + 26, "on", 2))
 {
 sprintf((char *)s_sbuf, "LED on\n");
 debug_printf(s_sbuf);
 PIN_WRITE(LED2) = LED_ON;
 }

 if(0 == memcmp(p_data + 26, "off", 3))
 {
 sprintf((char *)s_sbuf, "LED off\n");
 debug_printf(s_sbuf);
 PIN_WRITE(LED2) = LED_OFF;
 }
 }
 }
/* Omission */

WIFI_EVENT_RCVURC event notification

Check received URC
Execute process if received
data is “+TRDTS”

Analyze parameter of URC

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 33 of 45
Apr. 8.24

3.4 User Specific Configuration
When users are developing applications based on this sample program, they need to change some settings
depending on the RL78 MCU used. In the AT Command Management Framework, a program for setting
these user-specific setting values is defined in "r_wifi_da.c". Users can modify this file to use the AT
Command Management Framework in the configuration that suits their environment. This section describes
the values that can be set.

[Table 3-3 Pin function setting for DA16200 / DA16600] shows the setting items for the RL78/G22 pins
connected to each pin of the DA16200 / DA16600. The sample program does not use RTS/CTS or INT pins.
Therefore, the functions associated with the RTS/CTS and INT pins are Unused.
Please confirm when changing the board to be used as the host MCU.

Table 3-3 Pin function setting for DA16200 / DA16600

Function name Description Used pin

void r_wifi_reset_low_devspe(void) The RESET pin of DA16200 / DA16600
to low

P17

void r_wifi_reset_high_devspe(void) The RESET pin of DA16200 / DA16600
to high

P17

void r_wifi_rts_low_devspe(void)
(Unused)

The RTS pin of DA16200 / DA16600 to
low

P70

void r_wifi_rts_high_devspe(void)
(Unused)

The RTS pin of DA16200 / DA16600 to
high

P70

uint8_t r_wifi_cts_read_devspe(void)
(Unused)

The CTS pin of DA16200 / DA16600 to
read

P50

uint8_t r_wifi_int_read_devspe(void)
(Unused)

The INT pin of DA16200 / DA16600 to
read

P51

[Table 3-4 Smart Configurator of RL78/G22] shows the setting items for using the Smart Configurator within
the AT command management framework. Please check if you want to edit the Smart Configurator, change
the RL78 MCU to use, etc.

Table 3-4 Smart Configurator of RL78/G22

Tag name Component Description

Clock - Operation mode: High-speed main mode 1.8 (V) to 5.5 (V)
High-speed on-chip oscillator: 32MHz
fOCO start setting: Normal
fIHP: 32MHz
fMAIN: 32MHz
fCLK: 32000kHz

System - On-chip debug operation setting: Use emulator
Emulator setting：E2 Lite
Pseudo-RRM/DMM function setting: Used
Start/Stop function setting: Unused
Security ID setting: Use security ID
Security ID: 0x00000000000000000000
Security ID authentication failure setting: Erase flash memory data

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 34 of 45
Apr. 8.24

Tag name Component Description

Component r_bsp Start up select: Enable (use BSP startup)
Control of invalid memory access detection: Disable
RAM guard space (GRAM0-1): Disabled
Guard of control registers of port function (GPORT): Disabled
Guard of registers of interrupt function (GINT): Disabled
Guard of control registers of clock control function, voltage detector,
and RAM parity error detection function (GCSC): Disabled
Data flash access control (DFLEN): Disables
Initialization of peripheral functions by Code Generator/Smart
Configurator: Enable
API functions disable: Enable
Parameter check enable: Enable
Setting for starting the high-speed on-chip oscillator at the times of
release from STOP mode and of transitions to SNOOZE mode:
High-speed
Enable user warm start callback (PRE): Unused
Enable user warm start callback (POST): Unused
Watchdog Timer refresh enable: Unused

Config_TAU0_1 Component: Interval timer
Operation mode: 16 bit count mode
Resource: TAU0_1
Operation clock: CK00
Clock source: fCLK/2
Interval value: 1ms
Interval setting: Used
Priority: Level 3 (low)

Config_UART0 Component: UART Communication
Operation: Transmission/reception
Resource：UART0
Operation clock:CK00
Clock source: fCLK/2
Transfer mode setting: Single transfer mode
Data length setting: 8 bits
Transfer direction setting: LSB
Parity setting: None
Stop bit length setting: 1bit
Transfer data level setting: Non-reverse
Transfer rate setting:115200bps
Transmit end interrupt priority (INTST0): Level 3(low)
Callback function setting: Transmission end

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 35 of 45
Apr. 8.24

Tag name Component Description

Component Config_UARTA0 Component: UART Communication
Operation: Transmission/reception
Resource: UARTA0
Operation clock: fSEL
Clock source: fSEL clock select fIHP
Data length setting: 8 bits
Transfer direction setting: LSB
Parity setting: None
Stop bit length setting: 1bit
Transfer data level setting: Non-reverse
Transmit mode setting: Continuous transmit by polling
Receive error occurs setting: INTUR interrupt occurs
Transfer rate setting:115200bps
Reception end interrupt priority (INTUR0): Level3(low)
Callback function: Reception end, Reception error

Config_INTC INTP0 Valid edge: Falling edge, Priority: Level3(low)
INTP2 Valid edge: Falling edge, Priority: Level3(low)

Config_PORT Port selection: PORT1, PORT5, PORT7
Port mode setting: Read Pmn register values
P17: Out
P50: In
P70: Out

[Table 3-5 Size setting of AT command transmission waiting list] shows the size setting items for various
data used within the AT command management framework. AT command management framework defines
these setting values in "r_wifi_user_config.h". Please change it according to the data size of the AT
command and string used in the application and the stack size of the MCU to be used.

Table 3-5 Size setting of AT command transmission waiting list

Name Default value Description

WIFI_ATC_STR_SIZE 60 Maximum length of the AT command string.

WIFI_DATA_STR_SIZE 60 The maximum length of data to receive
from the DA16200 / DA16600.

If the data to be received exceeds this size,
the excess data is discarded.

WIFI_ATC_LIST_SIZE 6 The number of AT commands that can be
added to the send waiting list.

Define "maximum number of AT commands
to be registered + 1".

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 36 of 45
Apr. 8.24

3.5 Smart Configurator module used in the framework
The AT Command Management Framework uses Smart Configurator modules to implement its functionality.
The Smart Configurator module is configured not only in code but also in the Smart Configurator. This
section describes how to use and configure the Smart Configurator module used in the AT Command
Management Framework.

3.5.1 UARTA module
The AT Command Management Framework uses the UARTA module to implement UART communication
between the RL78/G22 and the DA16200 / DA16600.

When sending AT commands from the RL78/G22 to the DA16200 / DA16600, the write function
(R_Config_UARTA0_Send) of the UARTA module is used. After calling the AT Command API from your
application, a series of AT commands are registered in the Transmit waiting list in the framework.
Transmission of AT commands from the waiting list are sequentially processed from the beginning of the list
using the write function.

When sending a response from the DA16200 / DA16600 to the RL78/G22, the data is received using the
callback function of the UARTA module. This callback function receives a character data one by one and
stores it in a ring buffer in the framework. Character data stored in the ring buffer is processed one character
at a time R_WIFI_Execute each function call.

Figure 3-11 Using UARTA module

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 37 of 45
Apr. 8.24

3.5.2 TAU module
The AT Command Management Framework uses the TAU module to implement the timeout function. After
sending an AT command, a timeout occurs when 60 seconds elapse before receiving a response. [Table 3-6
AT command timeout setting (r_wifi_da.c)] shows the definition that sets the timeout period.

Table 3-6 AT command timeout setting (r_wifi_da.c)

Name Default value Description

AT_COMMAND_TIMETOUT 30 Timeout count of AT command.
unit: 2sec
e.g.) 2sec * 30 = 60sec

Framework starts the timer at the timing of sending the AT command. This timer stops when the response
specified in the comp_msg is received or when an error response is received. If a response is not received
for a certain period after sending an AT command, the timer callback function is called in the framework to
signal a timeout has occured. After the callback function is called, framework calls the user's callback
function in the R_WIFI_Execute function to notify the application that a timeout has occurred.

 The timer count time is set in the Smart Configurator. To change the timeout period, use the Smart
Configurator to change the timer count time and [Table 3-6 AT command timeout setting (r_wifi_da.c)].

Figure 3-12 TAU module setting

3.5.3 Interrupt function
Using the interrupt function, the interrupt of the INT signal from the DA16200 / DA16600 is connected to
INTP2. This INT interrupt is not used in the sample program.

Also, INTP0 is used to detect that SW is pressed.

3.5.4 UART0 module
The UART0 module is used to output the execution results of the sample program. The execution results of
the sample program are output via the RL78/G22 FPB's USB (COM port).

Timer count setting

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 38 of 45
Apr. 8.24

4. Application development using AT Command Management Framework
The AT Command Management Framework is intended to be used as a base for user application
development. By using the AT Command Management Framework, communication between the RL78/G22
and the DA16200 / DA16600 can be efficiently implemented. In this section, we will describe how to develop
user applications using this sample program as an example.

4.1 Overview of application development
The AT Command Management Framework is a specification that allows you to efficiently implement
additional APIs within the framework. The API implemented in the framework is called in the application
program to realize the operation desired by the user. In this sample program, operation is realized with the
following file.

• Framework base program:

 r_wifi_da.c

 r_wifi_da.h

 r_wifi_user_config.h

• Bare metal Application program:

 wifi_entry.c

The APIs implemented in framework-based programs are classified into two types: management API and AT
command API.

Management API
The Management API is the API for managing interactions with the DA16200 / DA16600. It must be
implemented in the proper place in the application program. In addition, users do not need to change it
during application development.

The following two APIs are implemented in the management API:

• R_WIFI_Init
This is a function for initializing framework-based programs. This function performs hardware reset of
the DA16200 / DA16600. DA16200 / DA16600 will be able to accept AT commands after initialization is
completed. After that, it sends an ATF and performs a factory reset. Wait for +INIT:DONE,0 to return,
and the callback function specified in the argument will be notified of the event with API_ID =
"WIFI_API_INIT". This function should be executed first in all API implemented in the framework.

• R_WIFI_Execute
This is a function that holds and parses the data received from DA16200 / DA16600, calls the callback
function according to the data, and sends AT commands. Since this function processes each character
stored in the ring buffer each time it is called, it is necessary to call it repeatedly in the main loop.

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 39 of 45
Apr. 8.24

Figure 4-1 Implement management API (wifi_entry.c)

void wifi_entry(void)
{
 sprintf(sbuf,"PROGRAM START\n");
 debug_printf(sbuf);
 wifi_user_sw_enable_devspe();
 PIN_WRITE(LED1) = LED_OFF;
 PIN_WRITE(LED2) = LED_OFF;

 /* SW INT interrupt start */
 R_Config_INTC_INTP0_Start();
 /* Initialize framework-based program and register callback function */
 R_WIFI_Init(wifi_user_cb);

 while(1)
 {
 /* Execute variable process in framework-based program */
 R_WIFI_Execute();

/* Omission */
 }
}

Call R_WIFI_Init before calling any
other APIs in framework

Call R_WIFI_Execute repeatedly in
the main loop.

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 40 of 45
Apr. 8.24

AT command API
A set of AT commands necessary for the operation you want to perform is added to the transmit waiting list
by calling the AT command API. The registered AT commands are sent sequentially in response to the
response from the DA16200 / DA16600. The execution result of a series of AT commands is notified to the
application by a callback function. Users develop applications by calling the AT command API in the order
they want and implementing processing corresponding to callback functions. In addition, users can add a
new AT command API by themselves and use AT commands not used in this sample program.

Figure 4-2 Implement AT command API (wifi_entry.c)

v void wifi_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len,
uint8_t * p_data)
{
 if(WIFI_EVENT_API_COMPLETE == event_type)
 {
 switch (api_id)
 {
 case WIFI_API_INIT:
 {
 /* Configure operation mode after initiation complete */
 if (0 != data_len)
 {
 /* URC after ATF */
 sprintf((char *)s_sbuf, (char *)p_data);
 }
 else
 {
 /* If URC is not received, this message */
 sprintf((char *)s_sbuf, "INIT COMP\n");
 }
 debug_printf(s_sbuf);
 R_WIFI_OM_Config(s_str_ap_ssid, s_str_ap_password,
 s_str_ap_country, s_str_ap_ch, s_str_ap_sec, s_str_ap_enc);
 break;
 }

 case WIFI_API_OM_CONFIG:
 {
 /* Restart after configuration of operation mode complete */
 sprintf((char *)s_sbuf, "OM COMFIG COMP\n");
 debug_printf(s_sbuf);
 R_WIFI_Restart();
 break;
 }

/* Omission */

1. Call AT command API

2. Receive result with callback
function

3. Call next AT command API

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 41 of 45
Apr. 8.24

4.2 Adding an AT command API
This framework assumes that the AT command API is added according to the user's application. This section
explains how the AT command API implemented in this sample program and explains how to implement the
new AT command API.

To add the AT command API, follow these steps:

1. Adding API IDs and Function Prototype Declarations

Add the API ID so that the added AT command API can be identified in the callback function. User also
adds prototype declarations to the header file (r_wifi_da.h) so that the AT Command API can be
executed from the application program.

Figure 4-3 API IDs of this sample program (r_wifi_da.h)

2. Implementing the AT command API

Implement the actual state of the AT command API in the source file (r_wifi_da.c). The AT command API
of this sample program is implemented with the following configuration.

Checking arguments and checking the running AT command API
If the argument has a pointer, make sure you do not specify NULL. Also check "s_process_api" to make
sure that no other AT command API is running. If it is running, the AT command API cannot operate
properly if you change the AT command transmit waiting list, so the error "WIFI_ERR_IN_PROCESS" will
be returned without executing any process. After that, to indicate that this AT command API is executing,
register the API_ID in "s_process_api".

typedef enum
{
 WIFI_API_NO_CURRENT_API = 0,
 WIFI_API_OM_CONFIG,
 WIFI_API_RESTART,
 WIFI_API_RESTART_WAIT,
 WIFI_API_NW_CONFIG,
 WIFI_API_PUSH_MESSAGE,
 WIFI_API_INIT = 0xFF,
} e_wifi_api_id_t;

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 42 of 45
Apr. 8.24

Figure 4-4 Checking the arguments and running AT Command API of R_WIFI_OM_Config
(r_wifi_da.c)

Registering AT commands in the Transmission Waiting List

Register the AT command as string data in the transmit waiting list "s_atc_list". The following must be
registered in the transmission waiting list "s_atc_list" for one AT command.

 atcommand:
This is the string data of the AT command you want to execute. The length of the string should be
registered in "atcommand_size". The maximum length of a string data that can be registered is
256 characters. If you want to use a larger AT command string data, change the
"WIFI_ATC_STR_SIZE" in the user configuration file (r_wifi_user_config.h).

 comp_msg:
This is a response message that can be considered as the completion of the AT command you
want to execute. Specify "OK" or URC. The length of the string should be registered in
"comp_msg_size". The following AT command is sent immediately after receiving the string
specified in the comp_msg. If "OK" and URC are sent consecutively, register the response to be
sent last. In addition, the last comp_msg of a series of AT commands to be added to the send
waiting list changes the data notified in the callback function. For details, see [3.3 Callback
function].

 data_exist_flag:
This flag indicates that the AT command to be sent is set. R_WIFI_Execute function checks this
value to confirm that the AT command is registered. If you want to register the AT command, set
it to "1".

The transmit waiting list "s_atc_list" holds string data by fixed-length arrays. Therefore, if the string data to be
registered exceeds the maximum length that can be registered in the transmit waiting list, an error due to a
buffer overflow may occur. If the user expects the data size of string data that is being registered can exceed
the maximum length, add processing to check the data size.

e_wifi_err_t R_WIFI_OM_Config(uint8_t* p_pdp_type, uint8_t* p_pdp_apn, uint8_t*
p_bandlist)
{
 /* Check Argument and current state */
 if((NULL == p_pdp_type) || (NULL == p_pdp_apn) || (NULL == p_bandlist))
 {
 return WIFI_ERR_POINTER_NULL;
 }

 if(WIFI_API_NO_CURRENT_API != gs_process_api)
 {
 return WIFI_ERR_IN_PROCESS;
 }

 /* Clear ATC list and set processing API ID */
 r_wifi_clear_atc_list();
 s_process_api = WIFI_API_OM_CONFIG;

/* Omission */

Check argument

Check running AT command API

Register running AT command API

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 43 of 45
Apr. 8.24

Figure 4-5 Register AT command of R_WIFI_PUSH_Message (r_wifi_da.c)

Sending the first AT command
Send the AT command from the beginning of the registered transmit waiting list. Subsequent transmission
of AT commands is done in R_WIFI_Execute function corresponding to the response.

Figure 4-6 Sending the first AT command of R_WIFI_OM_Config (r_wifi_da.c)

e_wifi_err_t R_WIFI_PUSH_Message(uint8_t* p_tcp_socket, uint16_t length, uint8_t*
p_message)
{
/* Omission */

 /* Set AT command to ATC list */
 s_atc_list[0].atcommand_size = (uint16_t)snprintf((char *)s_atc_list[0].atcommand,
 WIFI_ATC_STR_SIZE, "%s%s%s,%s,%s\r",
 "\x1b","S0", s_length, p_tcp_socket, p_message);

 s_atc_list[0].comp_msg_size = (uint16_t)snprintf(
 (char *)s_atc_list[0].comp_msg,
 WIFI_ATC_STR_SIZE, "%s", "OK"); //
 s_atc_list[0].data_exist_flag = 1;
 if(s_atc_list[0].atcommand_size > WIFI_ATC_STR_SIZE)
 {
 r_wifi_clear_atc_list();
 return WIFI_ERR_DATASIZE_OVERFLOW;
 }

/* Omission */

e_wifi_err_t R_WIFI_OM_Config(uint8_t* p_pdp_type, uint8_t* p_pdp_apn, uint8_t*
p_bandlist)
{

/* Omission */

 /* Send first AT command from ATC list */
 r_wifi_transmit_atc_list(WIFI_TRANSMIT_ATCOMMAND);

 return WIFI_SUCCESS;

Add following to first of Transmit waiting list:
atcommand = <ESC>S0[ASCII(length)],[p_tcp_socket],[p_message]
comp_msg = “OK”
data_exist_flag = 1

Send first AT command registered in transmit waiting list

Check the Data Size to register the
argument in the transmit waiting list

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 44 of 45
Apr. 8.24

4.3 Guideline of error handling
In a communication control system, it is necessary to develop an application assuming that various errors
occur in the control of the communication controller and network operation. The following is a guideline for
application development using this AT command Management Framework for detection and processing. In
practice, the processing will vary depending on the requirements for the application product, so please
handle it as reference information.

See also the UM-WI-003 DA16200 DA16600 Host Interface and AT Command User Manual (renesas.com).

UART communication and DA16200 / DA16600 behavior error

Defect status Framework behavior Application response

UART communication from the
DA16200 / DA16600 to the host
MCU results in bit errors or
character reception errors

If the character string does not
match the string specified in the
comp_msg, or if the string does
not end with "\n", a timeout
occurs and calls callback function
to notify application.

The callback function is called in
event
"WIFI_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_WIFI_Init function for
this event.

If the received string matches the
URC specified in the comp_msg
in front, the application is notified
by the callback function.

The callback function is called in
event "WIFI_EVENT_RCVURC ".
check the data registered in
p_data because received string
data is registered.

UART communication from the
host MCU to the DA16200 /
DA16600 results in bit errors or
character reception errors

If there is no response to the sent
string, a timeout occurs and calls
callback function to notify
application.

The callback function is called in
event
"WIFI_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_WIFI_Init function for
this event.

The MCU transmission and the
transmission timing of the
DA16200 / DA16600 overlap, and
the DA16200 / DA16600 does not
perform the expected operation

A timeout occurs when the
operation stops. Framework calls
callback function to notify
application.

The callback function is called in
event
"WIFI_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_WIFI_Init function for
this event.

https://www.renesas.com/us/en/document/mas/um-wi-003-da16200-da16600-host-interface-and-command-user-manual?r=1600061

RL78/G22 Wi-Fi Communication (Soft AP mode) with DA16200/DA16600

R01AN7287EJ0100 Rev.1.00 Page 45 of 45
Apr. 8.24

Revision History

Rev. Date
Description
Page Summary

1.00 Apr. 8.24 - 1st edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Operation overview
	1.2 Description of the Software
	1.2.1 Sample program Configuration
	1.2.2 Hierarchy of sample programs
	1.2.3 Used peripheral function
	1.2.4 List of Option Byte Settings
	1.2.5 Folder/File structure
	1.2.6 Code size

	2. TCP Communication Application
	2.1 Application environment
	2.2 Application operation

	3. AT Command Management Framework
	3.1 Framework Overview
	3.2 API functions
	3.2.1 Management API
	3.2.1.1 R_WIFI_Init
	3.2.1.2 R_WIFI_Execute

	3.2.2 AT command API
	3.2.2.1 R_WIFI_OM_Config
	3.2.2.2 R_WIFI_Restart
	3.2.2.3 R_WIFI_RestartWait
	3.2.2.4 R_WIFI_NW_Config
	3.2.2.5 R_WIFI_PUSH_Message

	3.3 Callback function
	3.4 User Specific Configuration
	3.5 Smart Configurator module used in the framework
	3.5.1 UARTA module
	3.5.2 TAU module
	3.5.3 Interrupt function
	3.5.4 UART0 module

	4. Application development using AT Command Management Framework
	4.1 Overview of application development
	4.2 Adding an AT command API
	4.3 Guideline of error handling

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

