
 APPLICATION NOTE

R01AN0654EG0100 Rev.1.0 Page 1 of 49
May 25, 2011

RX62T Group
IEC60730 Self Test Code for RX62T Group MCU

Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers / Stoves will tend to fall
under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance
with IEC60730 class B safety standards. These routines have been certified by VDE Test and Certification Institute
GmbH and a copy of the Test Certificate is available in the download package for this Application Note (See Note 1
below).

Although these routines were developed using IEC60730 compliance as a basis, they can be implemented in any system
for self testing of Renesas MCUs.

The software routines provided are to be used after reset and also during the program execution. The end user has the
flexibility of how to integrate these routines into their overall system design but this document and the accompanying
sample code provide an example of how to do this.

In addition to the software modules available, the RX62T also provides additional hardware options which are ideal for
safety designs. One key feature is the Port Output Enable (POE) Module. This can be used to force PWM output pins of
the MTU (Multi-Function Timer Pulse unit) and large current output pins of the GPT (General PWM Timer) into a high
impedance state, regardless of the state of the rest of the CPU. This is a great feature that can be utilised to ensure safety
of external loads.

Although VDE cannot certify their operation stand-alone, as they are not part of the IEC60730 software specification,
they have assessed the hardware functionality of the RX62T Internal Watch Dogs (Watch Dog Timer WDT and
Independent Watch Dog Timer IWDT), the Clock Generation Circuit and the I/O Ports (See VDE Certificate for
details).

Note 1. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the Norm IEC
60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm contains just a single sheet
that jumps to the IEC 60730-1 for definitions, information and applicable paragraphs.

Target Device
RX62T Group

R01AN0654EG0100
Rev.1.0

May 25, 2011

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 2 of 49
May 25, 2011

Contents

1. Tests.. 3

2. Example Usage... 30

3. Benchmarking ... 35

4. Utilities... 45

5. Additional Information.. 47

6. Website and Support... 49

Revision Record .. 50

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 3 of 49
May 25, 2011

1. Tests

1.1 CPU
This section describes CPU tests routines. Reference IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.1 CPU.

The following CPU registers are tested: R0->R15, ISP, USP, INTB, PC, PSW, BPC, BPSW, FINTV, FPSW and ACC.

The source file ‘CPU_Test.c’ provides implementation of the CPU test using “C” language with inline assembly to
actually access the registers. File CPU_Test_Coupling.c is also required if using the coupling test version of the
General Purpose Registers. The source file ‘CPU_Test.h’ provides the interface to the CPU tests. The file
‘MisraTypes.h’ includes definitions of MISRA compliant standard data types.

These tests are testing such fundamental aspects of the CPU operation; the API functions do not have return values to
indicate the result of a test. Instead the user of these tests must provide an error handling function with the following
declaration:-

extern void CPU_Test_ErrorHandler(void);

This will be jumped to by the CPU test if an error is detected. This function must not return.

The CPU test is split into a number of functions or, if time is permitting, a single function call can be used to run all the
tests one after another. See Section 1.1.1 Software API for details.

The test functions all follow the rules of register preservation following a C function call as specified in the Renesas
tool chain manual. Therefore the user can call these functions like any normal C function without any additional
responsibilities for saving register values beforehand.

IMPORTANT NOTE: Please keep the “Optimisation” option “OFF” for the ‘CPU_Test.c’ file, to prevent modification of the test
code.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 4 of 49
May 25, 2011

1.1.1 Software API

Table 1: Source files:

File name

CPU_Test.h

CPU_Test.c, CPU_Test_Coupling.c

Syntax

void CPU_TestAll(void)

Description

Runs through all the tests detailed below in the following order:-

1. If using Coupling GPR Tests (*1, see below):-
CPU_Test_GPRsCouplingPartA

CPU_Test_GPRsCouplingPartB

If not using Coupling GPR test:-

CPU_Test_GeneralA

CPU_Test_GeneralB

2. CPU_Test_Control(*2, see below)
3. CPU_Test_Accumulator
4. CPU_Test_PC

It is the calling functions responsibility to ensure that the processor is in Supervisor Mode. If this function is called in
User Mode the test will fail as some of the register bits are not accessible in User Mode.

It is also the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

See the individual tests for a full description.

*1. A #define ‘USE_TestGPRsCoupling’ in the code is used to select which functions will be used to test the General
Purpose Registers.

*2 The RX610 has a slightly different PSW register from other Rx devices. For this reason, if using an RX610, then
“RX610” must be defined in the project.

Input Parameters

NONE N/A

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 5 of 49
May 25, 2011

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_GPRsCouplingPartA(void)

Description

Tests general purpose registers R0 to R15.Coupling faults between the registers are detected.

This is PartA of a complete GPR test, use function CPU_Test_GPRsCouplingPartB to complete the test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_GPRsCouplingPartB(void)

Description

Tests general purpose registers R0 to R15.Coupling faults between the registers are detected.

This is PartB of a complete GPR test, use function CPU_Test_GPRsCouplingPartA to complete the test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 6 of 49
May 25, 2011

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_GeneralA(void)

Description

Test registers R1,R2,R3,R4,R5,R14 and R15. These are the general purpose registers that don’t need to be preserved by
a function. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 7 of 49
May 25, 2011

 Syntax

void CPU_Test_GeneralB(void)

Description

Test registers R0,R6,R7,R8,R9,R10,R11,R12 and R13. These are the general purpose registers that need to be preserved
by a function. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 8 of 49
May 25, 2011

Syntax

void CPU_Test_Control(void)

Description

Tests control registers ISP,USP,INTB,PSW,BPC,BPSW,FINTV and FPSW

This test assumes registers R1 to R5 are working.

 Generally the test procedure for each register is as follows:

 For each register:-

 1. Write h'55555555 to.

 2. Read back and check value equals h'55555555.

 3. Write h'AAAAAAAA to.

 4. Read back and check value equals h'AAAAAAAA.

 Note however that there are some cases where restrictions on

 certain bits within a register mean this can not be can followed exactly

 so other test values have been chosen.

It is the calling functions responsibility to ensure that the processor is in Supervisor Mode. If this function is called in
User Mode the test will fail as some of the register bits are not accessible in User Mode.

It is also the calling function’s responsibility to ensure no interrupts occur during this test.

The RX610 has a slightly different PSW register from other Rx devices. For this reason, if using an RX610, then
“RX610” must be defined in the project.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 9 of 49
May 25, 2011

Syntax

void CPU_Test_Accumulator(void)

Description

Tests the ACC register.

 NOTE: Bits 0-15 can not be read and are therefore not tested.

 The register value is preserved by this test.

 The test procedure is as follows:

 1. Write h'55555555 to high order 32 bits.

 2. Write h'55555555 to low order 32 bits.

 3. Read back high order and check value equals h'55555555.

 4. Read back middle order(bits 47 to 16) and check value equals h'55555555.

 5. Write h'AAAAAAAA to high order 32 bits.

 6. Write h'AAAAAAAA to low order 32 bits.

 7. Read back high order and check value equals h'AAAAAAAA.

 8. Read back middle order(bits 47 to 16) and check value equals h'AAAAAAAA.

 This test assumes registers R1 to R5 are working.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_PC(void)

Description

This function provides the Program Counter (PC) register test.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 10 of 49
May 25, 2011

This provides a confidence check that the PC is working.

It tests that the PC is working by calling a function that is located in its own section so that it can be located away from
this function, so that when it is called more of the PC Register bits are required for it to work.

So that this function can be sure that the function has actually been executed it returns the inverse of the supplied
parameter. This return value is checked for correctness.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

1.2 ROM
This section describes the ROM / Flash memory test using CRC routines. Reference IEC 60730: 1999+A1:2003 Annex
H – H2.19.4.1 CRC – Single Word.

CRC is a fault / error control technique which generates a single word or checksum to represent the contents of memory.
A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction), of the
message bit stream, by a predefined (short) bit stream of length n + 1, which represents the coefficients of a polynomial
with degree n. Before the division, n zeros are appended to the message stream. CRCs are popular because they are
simple to implement in binary hardware and are easy to analyse mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self test the same CRC algorithm is used to generate another CRC value, which is compared with
the saved CRC value. The technique recognises all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. This complication has arisen because big and little endian systems were developed to work
together that employed serial data transfers where bit order became important. This implementation will produce the
same result as the Renesas RX Standard toolchain does using the –CRC option. Therefore if you are using the Renesas
Toolchain to automatically insert a reference CRC into the ROM the value can be compared directly with the one
calculated.

1.2.1 CRC16-CCITT Algorithm
The RX62T includes a CRC module that includes support for the CRC16-CCITT. Using this software to drive the
CRCmodule produces this 16-bit CRC16-CCITT:

• Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Width = 16 bits
• Initial value = 0xFFFF
• XOR with h’FFFF is performed on the output CRC

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 11 of 49
May 25, 2011

1.2.2 CRC Software API

All software is written in ANSI C.

‘MisraTypes.h’ includes definitions of MISRA-compliant standard data types.

The functions in the remainder of this section are used to calculate a CRC value and verify its correctness against a
value stored in ROM.

Table 2: Source files:

File name

CRC_Verify.h, CRC_Verify.c

CRC.h, CRC.c

Syntax

bool_t CRC_Verify(const uint16_t ui16_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description

This function compares a new CRC value with a reference CRC by supplying address where reference CRC is
stored.

Input Parameters

uint16_t ui16_NewCRCValue Value of calculated new CRC value.

uint32_t ui32_AddrRefCRC Address where 16 bit reference CRC value is stored.

Output Parameters

NONE N/A

Return Values

bool_t Test result: TRUE = Passed, FALSE = Failed

This following functions are implemented in files CRC.h and CRC.c:

Syntax

uint16_t CRC_Init(void)

Description

Initialises the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters

uint8_t* pui8_DataBuf Pointer to start of memory to be tested.

uint32_t ui32_DataBufSize Length of the data in bytes.

Output Parameters

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 12 of 49
May 25, 2011

NONE N/A

Return Values

uint16_t The 16-bit calculated CRC-CCITT value.

Syntax

uint16_t CRC_Calculate(uint8_t* pui8_Data, uint32_t ui32_Length)

Description

This function calculates the CRC of a single specified memory area.

Input Parameters

uint8_t* pui8_DataBuf Pointer to start of memory to be tested.

uint32_t ui32_DataBufSize Length of the data in bytes.

Output Parameters

NONE N/A

Return Values

uint16_t The 16-bit calculated CRC-CCITT value.

The following functions are used when the memory area can not simply be specified by a start address and length. They
provide a way of adding memory areas in ranges/sections. This can also be used if function CRC_Calculate takes too
long in a single function call.

void CRC_Start(void)

Description

Prepares the module for starting to receive data. Call this once prior to using function CRC_AddRange.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

void CRC_AddRange(uint8_t* pui8_Data, uint32_t ui32_Length)

Description

Use this function rather than CRC_Calculate if wanting to calculate the CRC on data made up of more than one
address range. Call CRC_Start first then CRC_AddRange for each address range required and then call CRC_Result

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 13 of 49
May 25, 2011

to get the CRC value.

Input Parameters

uint8_t* pui8_DataBuf Pointer to start of memory range to be tested.

uint32_t ui32_DataBufSize Length of the data in bytes.

Output Parameters

NONE N/A

Return Values

None N/A

int16_t CRC_Result(void)

Description

Calcualtes the CRC value for all the memory ranges added using function CRC_AddRange since CRC_Start was
called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

uint16_t The calculated CRC-CCITT value.

1.3 RAM

March Tests are a family of tests that are well recognized as an effective way of testing RAM.

A March test consists of a finite sequence of March elements, while a March element is a finite sequence of operations
applied to every cell in the memory array before proceeding to the next cell.

In general the more March elements the algorithm consists of the better will be its fault coverage but at the expense of a
slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values) but the supplied test functions
provide a non-destructive option so that memory contents can be preserved. This is achieved by copying the memory to
a supplied buffer before running the actual algorithm and then restoring the memory from the buffer at the end of the
test. The API includes an option for automatically testing the buffer as well as the RAM test area.

The area of RAM being tested can not be used for anything else while it is being tested. This makes the testing of RAM
used for the stack particularly difficult. To help with this problem the API includes functions which can be used for
testing the stack.

The following section introduces the specific March Tests. Following that is the specification of the software APIs.

1.3.1 Algorithms

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 14 of 49
May 25, 2011

(1) March C

The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It detects the
following faults:

1. Stuck At Faults (SAF)
• The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)
• A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)
• Any fault that affects address decoder:

• With a certain address, no cell will be accessed.

• A certain cell is never accessed.

• With a certain address, multiple cells are accessed simultaneously.

• A certain cell can be accessed by multiple addresses.

These are the 6 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

III. Starting at lowest address, read ones, write zeros, increment up array bit by bit.
IV. Starting at highest address, read zeros, write ones, decrement down array bit by bit.
V. Starting at highest address, read ones, write zeros, decrement down array bit by bit.

VI. Read all zeros from array.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 15 of 49
May 25, 2011

(2) March X

Note: This algorithm has not been implemented for the RX62T and is only presented here for information as it relates to
the March X WOM version below.

The March X algorithm consists of 4 March elements with a total of 6 operations. It detects the following faults:

1. Stuck At Faults (SAF)
2. Transition Faults (TF)
3. Inversion Coupling Faults (Cfin)
4. Address Decoder Faults (AF)

These are the 4 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

III. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
IV. Read all zeros from array.

(3) March X (Word-Oriented Memory version)

The March X Word-Oriented Memory (WOM) algorithm has been created from a standard March X algorithm in two
stages. First the standard March X is converted from using a single bit data pattern to using a data pattern equal to the
memory access width. At this stage the test is primarily detecting inter word faults including Address Decoder faults.
The second stage is to add an additional two March elements. The first using a data pattern of alternating high/low bits
then the second using the inverse. The addition of these elements is to detect intra-word coupling faults.

These are the 6 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array word by word.

III. Starting at highest address, read ones, write zeros, decrement down word by word.
IV. Starting at lowest address, read zeros, write h’AAs, increment up array word by word.
V. Starting at highest address, read h’AAs, write h’55s, decrement down word by word.

VI. Read all h’55s from array.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 16 of 49
May 25, 2011

1.3.2 Software API

(1) March C API

This test can be configured to use 8, 16 or 32 bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_C_ACCESS_SIZE in the header file to be one of the following:

• RAMTEST_MARCH_C_ACCESS_SIZE_8BIT
• RAMTEST_MARCH_C_ACCESS_SIZE_16BIT
• RAMTEST_MARCH_C_ACCESS_SIZE_32BIT

Sometimes limiting the maximum size of RAM that can be tested with a single function call can speed the test up as
well as reducing stack and code size. This is done by limiting the size of the variable used to hold the number of
‘words’ that the test area contains. The ‘word’ size is the selected access width.

This is achieved by #defining RAMTEST_MARCH_C_MAX_WORDS in the header file to be one of the following:

• RAMTEST_MARCH_C_MAX_WORDS_8BIT (Max words in test area is 0xFF)
• RAMTEST_MARCH_C_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
• RAMTEST_MARCH_C_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 3: Source files:

File name

ramtest_march_c.h

ramtest_march_c.c

The source is written in ANSI C and uses MISRA-compliant data types as declared in file MisraTypes.h.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested
between words it is important to use the functions to test a data range bigger than one word.

Declaration

bool_t RamTest_March_C(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test using March C (Goor 1991) algorithm.

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe

For a destructive memory test set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough to copy the
contents of the test area into it and that is aligned with the selected memory access width.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 17 of 49
May 25, 2011

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

Declaration

bool_t RamTest_March_C_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

Non Destructive RAM memory test using March C (Goor 1991) algorithm.

This function differs from the RamTest_March_C function by testing the ‘RAMSafe’ buffer before using it. If the
test of the ‘RAMSafe’ buffer fails then the test will be aborted and the function will return FALSE.

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe
Set to the start of a buffer that is large enough to copy the contents of the test area into it and
that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 18 of 49
May 25, 2011

(2) March X WOM API

This test can be configured to use 8, 16 or 32 bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_X_WOM_ACCESS_SIZE in the header file to be one of the
following:

• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_8BIT
• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_16BIT
• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_32BIT

In order to speed up the run time of the test you can choose to limit the maximum size of RAM that can be tested with a
single function call. This is done by limiting the size of the variable used to hold the number of ‘words’ that the test area
contains. The ‘word’ size is the same as the selected access width.

This is achieved by #defining RAMTEST_MARCH_ X_WOM_MAX_WORDS in the header file to be one of the
following:

• RAMTEST_MARCH_ X_WOM_MAX_WORDS_8BIT (Max words in test area is 0xFF)
• RAMTEST_MARCH_ X_WOM_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
• RAMTEST_MARCH_ X_WOM_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 4: Source files:

File name

ramtest_march_x_wom.h

ramtest_march_x_wom.c

The source is written in ANSI C and uses MISRA-compliant data types as declared in file MisraTypes.h.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested
between words it is important to use the functions to test a data range bigger than one word.

Declaration

bool_t RamTest_March_X_WOM(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test based on March X algorithm converted for WOM.

Input Parameters

ui32_StartAddr
Address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
Address of the last word of RAM to be tested. This must be aligned with the selected memory
access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe

For a destructive memory test set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough to copy the
contents of the test area into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 19 of 49
May 25, 2011

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

Declaration

bool_t RamTest_March_X_WOM_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

Non Destructive RAM memory test based on March X algorithm converted for WOM. This function differs from the
RamTest_March_X_WOM_XXBit function by testing the ‘RAMSafe’ buffer before using it. If the test of the
‘RAMSafe’ buffer fails then the test will be aborted and the function will return FALSE.

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe
Set to the start of a buffer that is large enough to copy the contents of the test area into it and
that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 20 of 49
May 25, 2011

(3) RAM Test Stack API

This API enables a RAM test to be performed on an area of RAM that includes the stack. As the function that performs
the RAM test requires a stack these functions will, re-locate the stack to a supplied new RAM area allowing the original
stack area to be tested. Three functions are provided that can be called depending upon which stack (User or Interrupt)
is in the test area or if both are.

Table 5: Source files:

File name

ramtest_stack.h

ramtest_stack.c

Declaration

bool_t RamTest_Stack_User(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewUSP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the User Stack. (but not the Interrupt stack)

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

P_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

Ui32_NewUSP New Stack pointer value for the User stack to be re-located to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 21 of 49
May 25, 2011

Declaration

bool_t RamTest_Stack_Int(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewISP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the Interrupt Stack. (but not the User stack)

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

P_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

Ui32_NewISP New Stack pointer value for the Interrupt stack to be re-located to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 22 of 49
May 25, 2011

Declaration

bool_t RamTest_Stacks(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewISP,
 uint32_t ui32_NewUSP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the Interrupt Stack. (but not the User stack)

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

P_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

Ui32_NewISP New Stack pointer value for the Interrupt stack to be re-located to.

Ui32_NewUSP New Stack pointer value for the User stack to be re-located to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(const uint32_t, const uint32_t, void* const);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

1.4 Clock
The RX62T GPT module has a LOCO function that uses the Low-speed OCO clock to detect deviation in the main
clock (ICLK) frequency during run time.

Note: The IWDT module must be enabled before using this as the IWDT enables the low-speed OCO.

IMPORTANT NOTE: The E1 debugger can not be used with this LOCO function as the E1 disables the IWDT
when code is not running. This in turn affects the LOCO clock which results in the LOCO function wrongly
reporting an ICLK deviation.

If the frequency of the main clock deviates during runtime from a configured range an error call-back function shall be
called. The allowable frequency range can be adjusted using:
/*Percentage tolerance of ICLK allowed before an
error is reported. (integer value)*/
#define CLOCK_TOLERANCE_PERCENT 5

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 23 of 49
May 25, 2011

In addition to the LOCO function the RX62T has an Oscillation Stop Detection Circuit. This is enabled by default from
a power on reset. If the main clock stops, the Low Speed On-Chip oscillator will automatically be used instead and an
NMI interrupt will be generated. The User of this module must handle the NMI interrupt and check the NMISR.OSTST
bit.

NOTE: The Oscillation Stop Detection Circuit does not detect if the Low Speed On-Chip oscillator stops, only if the
main clock stops.

Table 6: Source files:

File name

clock_monitor.h

clock_monitor.c

Syntax

void ClockMonitor_Init (CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description

Monitor main clock (ICLK) using LOCO(Low Speed OCO). Also enables NMI interrupt for Oscillation Stop
Detection.

Input Parameters

CallBack Function to be called if the main clock deviates from the allowable range.

Output Parameters

NONE N/A

Return Values

None N/A

1.4.1 Design Note
The absolute value of the main clock can not be measured by the LOCO as the accuracy of the LOCO can not be
guaranteed. What can be detected is a deviation in the main clock from its value when the software is first run.

The LOCO function of the General Purpose Timer calculates a running average count that is proportional to the ICLK.
Before deviation in the ICLK can be detected against this average vale the clocks must run until an average value can be
calculated. This module does this using the following flow:

1. User calls the ClockMonitor_Init function:

The LOCO function is enabled to calculate an average but not to detect a deviation. An interrupt is configured
to happen after 255 frequency LOCO divided clocks.

2. LOCO Interrupt occurs:

Configure allowable ICLK count range based on the calculated average count value. Enable detection of
deviation.

3. If another LOCO Interrupt occurs:

This means the most recent ICLK count value has deviated beyond the configured allowable range.

Call the callback function registered by the user.

1.5 Watchdog
A watchdog is used to detect abnormal program execution. If a program is not running as expected the watchdog will
not be refreshed by software as it is required to be and will therefore detect an error.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 24 of 49
May 25, 2011

The Independent Watchdog Timer (IWDT) module of the RX62T is used for this. It will generate an internal reset if the
watchdog times out. A function is provided to be used after a reset to decide if the IWDT has caused the reset.

Table 7: Source files:

File name

IWDT.h

IWDT.c

Syntax

void IWDT_Init (IWDT_TOP TimeOutperiod, IWDT_CKS_DIV ClockSelection)

Description

Initialise and start the watchdog timer. The parameters specify the time period before the watchdog will time out.
After calling this the IWDT_kick function must then be called regularly enough to prevent the watchdog timing out.

Input Parameters

IWDT_TOP TimeOutperiod See declaration of enumerated type IWDT_TOP in IWDT.h for details.

IWDT_CKS_DIV ClockSelection
See declaration of enumerated type IWDT_CKS_DIV in IWDT.h for
details.

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

void IWDT_Kick(void)

Description

Refresh the watchdog count. This must be called before the watchdog count times out.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

bool_t IWDT_DidReset(void)

Description

Returns if the IWDT has timed out. This can be called after a reset to decide if the watchdog caused the reset.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 25 of 49
May 25, 2011

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t TRUE if watchdog has timed out, otherwise FALSE.

1.6 Voltage
The RX62T has a Voltage Detection Circuit. This can be used to detect the power supply voltage (Vcc) falling below
reference voltages Vdet1 and Vdet2. For each reference voltage it can be configured to produce either an in interrupt or
an internal reset. A function is provided to be used after a reset to decide if the Voltage Monitor has caused the reset.

NOTE: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be handled
by user code which must check the NMISR.LVDST flag.

Table 8: Source files:

File name

Voltage.h

Voltage.c

Syntax

void VoltageMonitor_Init(bool_t bEnable_LVD1, bool_t bResetLVD1,
 bool_t bEnable_LVD2, bool_t bResetLVD2,
 VOLTAGE_MONITOR_ERROR_CALL_BACK Callback)
Description

Initialise and start voltage monitoring.

NOTE: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be
handled by user code.

Input Parameters

bool_t bEnable_LVD1 Enable LVD1 monitoring

bool_t bResetLVD1
Set TRUE if want a reset following LVD1 low voltage detection. Set
FALSE to generate an interrupt.

bool_t bEnable_LVD2 Enable LVD2 monitoring

bool_t bResetLVD2
Set TRUE if want a reset following LVD2 low voltage detection. Set
FALSE to generate an interrupt.

Output Parameters

NONE N/A

Return Values

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 26 of 49
May 25, 2011

None N/A

Syntax

bool_t VoltageMonitor_DidReset(void)

Description

Returns if the Voltage Monitor has detected a low voltage. This can be called after a reset to decide if the reset was
caused by the voltage monitor.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t TRUE if low voltage level detected, otherwise FALSE.

1.7 ADC10

The ADC10 module has a diagnostic mode that can be used to test the ADC10 module.

While testing the ADC10 the ADC10 can not be used for normal operation.

The software can be configured to either supply the ADC10 completion interrupt handler (and vector entry) or to supply
a function that must be called from a users ADC10 completion interrupt handler.

See #define ADC10_PROVIDE_INTERRUPT_HANDLER for details.

Table 9: Source files:

File name

ADC10.h

ADC 10.c

Syntax

void Test_ADC10_Init(void)

Description

Initialise the ADC10 module.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 27 of 49
May 25, 2011

Return Values

NONE N/A

Syntax

bool_t Test_ADC10_Wait(void);

Description

Test ADC10 module and returns result.

Uses reference voltages 0 and VREF. Function waits for two conversions. This is suitable as a power up test.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t TRUE = test passed. FALSE = test failed.

Syntax

void Test_ADC10_Start(ADC10_ERROR_CALL_BACK Callback)

Description

Starts an ADC conversion for a diagnostic test. On completion of the conversion the result must be checked. If
ADC10_PROVIDE_INTERRUPT_HANDLER is defined then this module will automatically do this. If not defined,
the user must call function ADC10_Interrupt when the conversion completes.

Each time this function is called it toggles between the reference voltages of 0V and VREF.

Input Parameters

ADC10_ERROR_CALL_BACK
Callback

Function to be called if an error is detected.

Output Parameters

NONE N/A

Return Values

NONE N/A

1.8 ADC12
The ADC12 has a diagnostic mode that can be used to test the ADC. The diagnostic mode can be configured so that a
test is performed every time the ADC is used normally for a conversion. The RX62T has two AD12 modules. These
functions can be used to independently test each module.

Table 10: Source files:

File name

ADC12.h

ADC 12.c

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 28 of 49
May 25, 2011

Syntax

void Test_ADC12_Init(ADC12_MODULE module)

Description

Initialise the specified ADC12 module.

Input Parameters

ADC12_MODULE module The ADC module (ADC12_MODULE_0 or ADC12_MODULE_1)

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

bool_t Test_ADC12_Wait(ADC12_MODULE module)

Description

Test the specified ADC12 module. This function waits while two ADC conversions are made. This test does not
preserve ADC configuration and is therefore suitable as a power on test rather than as a run-time periodic test.

Input Parameters

ADC12_MODULE module The ADC module (ADC12_MODULE_0 or ADC12_MODULE_1)

Output Parameters

NONE N/A

Return Values

bool_t TRUE = test passed. FALSE = test failed.

Syntax

void Test_ADC12_Start(ADC12_MODULE module, ADC12_ERROR_CALL_BACK Callback)

Description

Setup ADC module so diagnostic test will be performed each time ADC is used. Reference voltage is automatically
rotated. (Zero, half VREF and VREH)

User code must now call the Test_ADC12_CheckResult function either periodically or following every ADC
completion to check the diagnostic result.

Input Parameters

ADC12_MODULE module The ADC module (ADC12_MODULE_0 or ADC12_MODULE_1)

ADC12_ERROR_CALL_BACK
Callback

Function to call if an error is detected.

NOTE: This function will only get called if Test_ADC12_CheckResult is called
with parameter bCallErrorHandler set TRUE.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 29 of 49
May 25, 2011

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

bool_t Test_ADC12_CheckResult(ADC12_MODULE module, bool_t bCallErrorHandler)

Description

Check the ADC diagnostic result is as expected.

This must be called after Test_ADC12_Start and then be called periodically or whenever an ADC conversion
completes.

Input Parameters

ADC12_MODULE module The ADC module (ADC12_MODULE_0 or ADC12_MODULE_1)

bool_t
bCallErrorHandler

Set TRUE if want the error call-back function supplied to function
Test_ADC12_Start to be called, otherwise FALSE.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = test passed. FALSE = test failed.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 30 of 49
May 25, 2011

2. Example Usage
In addition to the actual test software source files, a HEW workspace is provided which includes an example application
demonstrating how the tests can be run. This code should be examined in conjunction with this document to see how the
various test functions are used.

The testing can be split into three parts:

1. Power-Up Tests. These are tests run once following a reset. They should be run as soon as possible but
especially if start-up time is important it may be permissible to run some initialisation code before running all
the tests so that for example a faster main clock can be selected.

2. Periodic Tests. These are tests that are run regularly through out normal program operation. This document
does not provide a judgment of how often a particular test should be ran. How the scheduling of the periodic
tests is performed is up to the user depending upon how their application is structured. The sample application
sets up a Timer module of the RX62T to periodically call a function (PeriodicTestCallBack). Each
time this function is called a particular test, or part of a test, is performed. The requirements of the user’s
application will determine how much time can be spent each time the function is called.

3. Monitoring tests. This is where the RX62T is used in a diagnostic mode to continuously monitor something.
Hence the test can not be classed as either Power-Up or Periodic.

The following sections provide an example of how each test type should be used.

2.1 CPU
If a fault is detected by any of the CPU tests then a user supplied function called CPU_Test_ErrorHandler will be called.
As any error in the CPU is very serious the aim of this function should be to get to a safe position, where software
execution is not relied upon, as soon as possible.

2.1.1 Power-Up
All the CPU tests should be run as soon as possible following a reset.

NOTE: The function must be called before the device is put in User mode by function
Change_PSW_PM_to_UserMode in resetprg.c.

The function CPU_Test_All can be used to automatically run all the CPU tests.

2.1.2 Periodic
If testing the CPU periodically the function CPU_Test_All can be used, as it is for the power-up tests, to
automatically run all CPU tests. Alternatively, to reduce the amount of testing done in a single function call, the user
can choose to call each of the individual CPU test functions in turn each time the CPU periodic test is scheduled.

2.2 ROM
The ROM is tested by calculating a CRC value (CRC-CCITT) of its contents and comparing with a reference CRC
value that must be added to a specific location in the ROM not included in the CRC calculation.

The Renesas RX Standard Toolchain can be used to calculate and add a CRC value to the built mot file at a location
specified by the user. This can be done via a dialog in HEW – see Figure 1: Adding Reference CRC.

The CRC module must be initialized before use with a call to the CRC_Init function.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 31 of 49
May 25, 2011

Figure 1: Adding Reference CRC

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 32 of 49
May 25, 2011

2.2.1 Power-Up
All the ROM memory used must be tested at power up.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a calculated CRC
value.

If the Rom used is not in one contiguous block then the following procedure must be used.

1. Call CRC_Start.

2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.

3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using function
CRC_Verify.

The Renesas Rx Compiler provides section address operators, __sectop, __secend and __secsize, that can be used to
obtain the addresses of ROM used. The sample application uses these to initialize a structure used during CRC testing:

const CRC_RANGE CRC_Ranges[CRC_RANGE_NUM] =
{
 __sectop("PResetPRG"), __secend("PResetPRG"),
 __sectop("C1"), __secend("PPCTEST_TESTFUNCTION"),
 __sectop("FIXEDVECT"), __secend("FIXEDVECT")
};

It is a user’s responsibility to ensure that all ROM areas used by their project are included in the CRC calculations.

2.2.2 Periodic
It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM is
contiguous, as this allows the CRC value to be calculated in sections so that no single function call takes too long.
Follow the procedure as specified for the power up tests and ensure that each address range is small enough that a call
to CRC_AddRange does not take too long.

2.3 RAM
The sample application includes the files Test_Usage_RAM.h and .c as an example of testing the RAM.

It is very important to realize, if using this example for your own project, that the area of RAM that needs to be tested
may change dramatically depending upon your projects memory map.

The example code makes several assumptions when setting up the #defines which define the RAM areas. See
Test_Usage_RAM.c and read the comments carefully when setting them up for your build.

When testing RAM it is important to remember the following points:

1. RAM being tested can not be used for anything else including the current stack.

2. Any non-destructive test requires a RAM buffer where memory contents can be safely copied to and restored
from.

3. Any test of the stack requires a RAM buffer where the stack can be re-located to.

4. There are two stacks, Interrupt and User. It is the current stack that must be re-located before being used.

5. If re-locating the stack the device must be in supervisor mode. The device automatically enters default mode
when handling an interrupt.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 33 of 49
May 25, 2011

2.3.1 Power-Up
Providing the RAM power on test is done before global variable initialisation is performed (as done by _INITSCT) a
full destructive test can be performed on all the RAM other than the Stack. The Stack must be tested with a non-
destructive test. However, if startup time is very important it might be possible to fine tune this so that only the area of
Stack used before the power up RAM test is performed is tested using the slower non-destructive test and the rest of the
Stack tested with a destructive test.

The sample application provides function Tests_PowerOn_RAM as an example of testing the RAM at power up. The
function should be called before the device is put in user mode by function Change_PSW_PM_to_UserMode in
resetprg.c.

It uses the March C test algorithm to perform the following steps.

1. A destructive test is performed on the RAM area defined between RAM_START_ADDRESS and
RAM_END_ADDRESS. (This area defines all used RAM except for stacks and the RAM_Test_Buffer.)

2. A destructive test is performed on the RAM_Test_Buffer used in the periodic RAM tests.

3. A non-destructive test is performed on the stack area defined between STACK_START_ADDRESS and
STACK_END_ADDRESS. The stacks are re-located during this process.

2.3.2 Periodic
The sample code uses the March X WOM test algorithm for all periodic tests. All periodic tests must be non-destructive.

It is assumed that the periodic tests are called from an interrupt handler and therefore the device is in supervisor mode.

The periodic tests are split into three; testing of the stack, testing of the RAM Buffer and testing of the remaining RAM
area. The functions PeriodicTest_RAM_Buffer, PeriodicTest_Stack and PeriodicTest_RAM are used for this. The
PeriodicTest_Stack and PeriodicTest_RAM functions are both designed to be called repeatedly, by the Periodic test
scheduler, until they return that they have finished. This enables these functions to split the testing up into small enough
chunks that a single function call never takes too long.

2.4 Clock
The monitoring of the main clock is set-up with a single function call to ClockMonitor_Init. For example:

ClockMonitor_Init(Clock_Test_Failure);

This can be called as soon as the main clock has been configured and the IWDT has been enabled. See section ‘ 1.5
Watchdog’ for enabling the IWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during
the periodic tests.

If oscillation stop is detected an NMI interrupt is generated. User code must handle this NMI interrupt and check the
NMISR.OSTST flag as shown in this example:

if(1 == ICU.NMISR.BIT.OSTST)
{
 Clock_Stop_Detection();

 /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
 ICU.NMICLR.BIT.OSTCLR = 1;
}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

2.5 Watchdog
The Independent Watchdog should be initialized as soon as possible following a reset with a call to IWDT_Init:

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 34 of 49
May 25, 2011

/*Setup the Independent WDT.
IWDT_Init(IWDT_TOP_16384, IWDT_CKS_DIV_256);

After this the watchdog must be refreshed regularly enough so as to stop the watchdog timing out and performing a
reset. This is performed by calling;

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

Following a reset the code should check if the IWDT caused the watchdog by calling IWDT_DidReset:

if(TRUE == IWDT_DidReset())
{
 //todo: Handle a watchdog reset.
 while(1){;}
}

2.6 Voltage
The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the VoltageMonitor_Init
function. This should be setup as soon as possible following a power on reset. The following example sets up the
voltage monitor to perform a reset if the voltage level drops below either VDET1 or VDET2.

VoltageMonitor_Init(TRUE, TRUE, TRUE, TRUE);

Following a reset the code should check if the Voltage Monitor caused the reset by calling VoltageMonitor_DidReset:

if(TRUE == VoltageMonitor_DidReset())
{
 Volatge_Test_Failure();
}

The VoltageMonitor_Init function can also be used to configure the Voltage Detection peripheral to generate an NMI
interrupt rather than a reset. In this case the NMI handler must check if low voltage was detected as in this example:

if(1 == ICU.NMISR.BIT.LVDST)
{
 Volatge_Test_Failure();
}

2.7 ADC10
The ADC10 module has a built in diagnostic mode which allows various reference voltages to be tested against.

To cater for allowed inaccuracies the expected result is allowed to fall within a tolerance defined using

 #define ADC10_TOLERANCE

This value is set as the maximum absolute accuracy that the ADC is rated to. In a calibrated system this tolerance could
be tightened.

2.7.1 Power-Up
At power up the ADC10 module can be tested using the Test_ADC10_Wait function. This blocks while two AD
conversions are performed, one using reference voltage of VREF and the other 0V.

2.7.2 Periodic
To avoid waiting for an AD conversion the periodic test should use the Test_ADC10_Start function. This is a non-
blocking function. Each time the function is called the reference voltage for the test is toggled between VREF and 0V.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 35 of 49
May 25, 2011

The result of a conversion must be checked for correctness when the conversion has finished. For this the ADC10
completed interrupt must be handled.

The test module will provide this interrupt handler and automatically test the result if
‘ADC10_PROVIDE_INTERRUPT_HANDLER’ is #defined. NOTE: If an interrupt occurs when not in diagnostic
mode a user supplied function called ‘ADC10_Interrupt’ will be called.

If ‘ADC10_PROVIDE_INTERRUPT_HANDLER’ is not #defined then the user must call function ‘ADC10_Interrupt’
from their own interrupt handler.

2.8 ADC12
The ADC12 module has a built in diagnostic mode which allows various reference voltages to be tested against.

To cater for allowed inaccuracies the expected result is allowed to fall within a tolerance defined using

 #define ADC12_TOLERANCE

This value is set as the maximum absolute accuracy that the ADC is rated to. In a calibrated system this tolerance could
be tightened.

2.8.1 Power-Up
At power up the ADC12 module can be tested using the Test_ADC12_Wait function. This blocks while two AD
conversions are performed, one using reference voltage of VREF and the other 0V.

2.8.2 Periodic
The periodic testing should start with a single call to Test_ADC12_Start. Following that the ADC12 module will
perform a reference conversion each time it is used. The reference voltage is rotated between 0V,VREF/2 and VREF.
The result of these reference conversions must be checked periodically using a call to Test_ADC12_CheckResult.

3. Benchmarking

3.1 Environment
Development board: RSKRX62T,

Clock: EXTAL = 12.5MHz,. ICLK = 100MHz, PCLK = 50MHZ

MCU: R5F562TA

Tool chain: RX Standard Toolchain 1.0.0.0

In-circuit debugger: Renesas E1

Complier Settings

Max Level

Optimize for
Size.

-cpu=rx600 -lang=c -
include="$(PROJDIR)\Tests\Common","$(PROJDIR)\Tests\CPU","$(PROJDIR)\Tests\RAM","$(PROJDIR)\Tests\ROM",
"$(PROJDIR)","$(PROJDIR)\Tests\Clock","$(PROJDIR)\Tests\voltage","$(PROJDIR)\Tests\adc10","$(PROJDIR)\Tests\a
dc12","$(PROJDIR)\Tests\iwdt" -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -optimize=max -
map="$(CONFIGDIR)\$(PROJECTNAME).bls" -nologo

Max Level

Optimize for
Speed.

-cpu=rx600 -lang=c -
include="$(PROJDIR)\Tests\Common","$(PROJDIR)\Tests\CPU","$(PROJDIR)\Tests\RAM","$(PROJDIR)\Tests\ROM",
"$(PROJDIR)","$(PROJDIR)\Tests\Clock","$(PROJDIR)\Tests\voltage","$(PROJDIR)\Tests\adc10","$(PROJDIR)\Tests\a
dc12","$(PROJDIR)\Tests\iwdt" -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -optimize=max -speed -
map="$(CONFIGDIR)\$(PROJECTNAME).bls" -nologo

NOTE: CPU Test files are built with no optimization.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 36 of 49
May 25, 2011

Linker Settings

Optimize = Speed -map="$(CONFIGDIR)\$(PROJECTNAME).bls" -noprelink -nodebug -rom=D=R,D_1=R_1,D_2=R_2 -nomessage -
list="$(CONFIGDIR)\$(PROJECTNAME).map" -optimize=speed -
start=B_1,R_1,B_2,R_2,B,R,SU,SI,BADC10_TEST_1,BRAM_TEST_STACK/01000,PResetPRG/0FFFF8000,C_1,C_2,C,
C$*,D*,P,PIntPRG,W*,PADC10_TEST,PADC12_TEST,PCPU_TEST,PCRC,PPCTEST_TESTFUNCTION,PCLOCK_M
ONITOR_TEST,PVOLTAGE_TEST,PIWDT_TEST,PRAM_TEST_MarchC,PRAM_TEST_MarchXWOM,PRAM_TEST
_STACK/0FFFF8100,FIXEDVECT/0FFFFFFD0 -nologo -stack -output="$(CONFIGDIR)\$(PROJECTNAME).abs" -end
-input="$(CONFIGDIR)\$(PROJECTNAME).abs" -form=stype -output="$(CONFIGDIR)\$(PROJECTNAME).mot" -exit

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 37 of 49
May 25, 2011

3.2 Results

3.2.1 CPU
Note: Optimization cannot be used for these tests.

Table 11: CPU test results

Measurement Result

Non-CouplingTest

Result

Coupling Test

Code size. 768 bytes 3764 bytes

Stack usage for CPU_TestAll 24 bytes 24 bytes

290 Clocks 1281 clocks
Execution time to of function CPU_TestAll

3.02 uS 13.35 uS

3.2.2 ROM

Table 12: Test results for CRC16-CCITT

 Optimisation

Measurement Size Speed

Code size / bytes 90 518

Stack usage / bytes 16 4

1k bytes 7968 7872

4k bytes 31584 31488Clock cycle count (/ 1000)

16k bytes 125760 125760

1k bytes 0.08 0.08

16k bytes 0.33 0.33Time Measured (ms)

64k bytes 1.31 1.31

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 38 of 49
May 25, 2011

3.2.3 RAM

The tests were executed in 8, 16 and 32 bit access width configurations. The 32 bit word limit was always used as it was
found that using a smaller limit did not improve performance.

The name ‘Extra’ refers to the function that includes the automatic safe buffer test.

3.2.4 March C
Table 13: March C test results (8-bit access, 32-bit word limit)

 Optimization

Measurement Size Speed

Code size (bytes) 365 1272

Stack usage (bytes) 48 44

Stack usage Extra (bytes) 64 120

1024 bytes 677760 289920

500 bytes 331200 141120 Destructive

100 bytes 66432 28032

1024 bytes 693120 295680

500 bytes 337920 144960 Non-destructive

100 bytes 67968 29184

1024 bytes 1370880 584640

500 bytes 670080 286080

Clock cycle count

Extra

100 bytes 134400 57216

1024 bytes 7.06 3.02

500 bytes 3.45 1.47 Destructive

100 bytes 692 292

1024 bytes 7.22 3.08

500 bytes 3.52 1.51 Non-destructive

100 bytes 708 304

1024 bytes 14.28 6.09

500 bytes 6.98 2.98

Time Measured (ms)

Extra

100 bytes 1.4 596

Table 14: March C test results (16-bit access, 32-bit word limit)

 Optimization

Measurement Size Speed

Code size (bytes) 409 3921

Stack usage (bytes) 48 72

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 39 of 49
May 25, 2011

Stack usage Extra (bytes) 64 144

1024 bytes 641280 278400

500 bytes 312960 136320 Destructive

100 bytes 62976 27648

1024 bytes 650880 281280

500 bytes 317760 138240 Non-destructive

100 bytes 63360 28032

1024 bytes 1291200 560640

500 bytes 630720 274560

Clock cycle count

Extra

100 bytes 126720 55296

1024 bytes 6.68 2.90

500 bytes 3.26 1.42 Destructive

100 bytes 0.66 0.29

1024 bytes 6.78 2.93

500 bytes 3.32 1.44 Non-destructive

100 bytes 0.66 0.29

1024 bytes 13.45 5.84

500 bytes 6.57 2.86

Time Measured (ms)

Extra

100 bytes 1.32 0.58

Table 15: March C test results (32-bit access, 32-bit word limit)

 Optimization

Measurement Size Speed

Code size (bytes) 408 4843

Stack usage (bytes) 44 36

Stack usage Extra (bytes) 60 76

1024 bytes 611520 233280

500 bytes 299520 114240 Destructive

100 bytes 59904 23040

1024 bytes 616320 235200

500 bytes 301440 115200 Non-destructive

100 bytes 60672 23424

1024 bytes 1227840 468480

500 bytes 600000 229440

Clock cycle count

Extra

100 bytes 120960 46464

1024 bytes 6.37 2.43 Time Measured (ms) Destructive

500 bytes 3.12 1.19

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 40 of 49
May 25, 2011

100 bytes 0.624 0.240

1024 bytes 6.42 2.45

500 bytes 3.14 1.2 Non-destructive

100 bytes 0.632 0.244

1024 bytes 12.79 4.88

500 bytes 6.25 2.39

Extra

100 bytes 1.26 0.484

3.2.5 March X WOM

Table 16: March X WOM test results (8-bit access, 32-bit word limit)

 Optimization

Measurement Size Speed

Code size (bytes) 295 2085

Stack usage (bytes) 32 20

Stack usage Extra (bytes) 48 44

1024 bytes 74880 59520

500 bytes 36864 28800 Destructive

100 bytes 7680 5760

1024 bytes 92544 65664

500 bytes 45312 32640 Non-destructive

100 bytes 9216 6528

1024 bytes 167040 126720

500 bytes 81792 62208

Clock cycle count

Extra

100 bytes 16512 12672

1024 bytes 0.78 0.62

500 bytes 0.38 0.30 Destructive

100 bytes 0.08 0.06

1024 bytes 0.96 0.68

500 bytes 0.47 0.34 Non-destructive

100 bytes 0.10 0.07

1024 bytes 1.74 1.32

500 bytes 0.85 0.65

Time Measured (ms)

Extra

100 bytes 0.17 0.13

Table 17: March X WOM test results (16-bit access, 32-bit word limit)

 Optimization

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 41 of 49
May 25, 2011

Measurement Size Speed

Code size (bytes) 347 2411

Stack usage (bytes) 32 20

Stack usage Extra (bytes) 48 52

1024 bytes 38784 33024

500 bytes 18816 16512 Destructive

100 bytes 3840 3456

1024 bytes 48768 36480

500 bytes 23808 18432 Non-destructive

100 bytes 4608 3840

1024 bytes 87936 69120

500 bytes 43008 34560

Clock cycle count

Extra

100 bytes 8832 7680

1024 bytes 0.40 0.34

500 bytes 0.20 0.17 Destructive

100 bytes 0.04 0.04

1024 bytes 0.51 0.38

500 bytes 0.25 0.19 Non-destructive

100 bytes 0.05 0.04

1024 bytes 0.92 0.72

500 bytes 0.45 0.36

Time Measured (ms)

Extra

100 bytes 0.09 0.08

3.2.6
Table 18: March X WOM test results (32-bit access, 32-bit word limit)

 Optimization

Measurement Size Speed

Code size (bytes) 353 3627

Stack usage (bytes) 32 20

Stack usage Extra (bytes) 48 36

1024 bytes 20064 16416

500 bytes 9888 8160 Destructive

100 bytes 2112 1824

1024 bytes 25056 18048

500 bytes 12288 9312 Non-destructive

100 bytes 2592 2304

Clock cycle count

Extra 1024 bytes 45120 34560

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 42 of 49
May 25, 2011

500 bytes 22176 17760

100 bytes 4704 4320

1024 bytes 0.22 0.17

500 bytes 0.10 0.09 Destructive

100 bytes 0.02 0.02

1024 bytes 0.26 0.19

500 bytes 0.13 0.10 Non-destructive

100 bytes 0.03 0.02

1024 bytes 0.47 0.36

500 bytes 0.23 0.19

Time Measured (ms)

Extra

100 bytes 0.05 0.05

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 43 of 49
May 25, 2011

3.2.7 Stack Test

Note: This does not contain timing information as that depends upon the specific algorithm used. The time to move the
stack is negligible compared with the actual memory test, so see the normal RAM test results.

Note: The results are the same regardless of the optimisation because inline assembly is used.

 Optimisation

Measurement Size Speed

Code size (bytes) Program 281 281

Code size (bytes) RAM 36 36

Stack usage (bytes) 12 12

3.2.8 ADC10

Stack usage and execution time is for function Test_ADC10_Wait.

 Optimisation

Measurement Size Speed

ROM Size Program + Data 363 Bytes 393 Bytes

RAM Size (excluding stack) 4 Bytes 4 Bytes

Stack usage 16 Bytes 4 Bytes

Execution Time: uS 16 uS 16 uS

Execution Time: Clocks Cycles 1536 1536

3.2.9 ADC12

Stack usage and execution time is for function Test_ADC12_Wait.

 Optimisation

Measurement Size Speed

ROM Size Program + Data 318 Bytes 422 Bytes

RAM Size (excluding stack) 0 Bytes 0 Bytes

Stack usage 12 Bytes 4 Bytes

Execution Time: uS 45 uS 45 uS

Execution Time: Clocks Cycles 4320 4320

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 44 of 49
May 25, 2011

3.2.10 Voltage Monitor

This software configures a peripheral that continually monitors and is therefore not applicable for benchmarking for
execution time.

 Optimisation

Measurement (Bytes) Size Speed

ROM Size: Program + Data 229 96

RAM Size (excluding stack) 0 0

Stack usage 4 4

3.2.11 Clock Monitor
This software configures a peripheral that continually monitors and is therefore not applicable for benchmarking for
execution time.

 Optimisation

Measurement (Bytes) Size Speed

ROM Size: Program + Data 275 133

RAM Size (excluding stack) 0 0

Stack usage 4 4

3.2.12 Watchdog
This software configures a peripheral that continually monitors and is therefore not applicable for benchmarking for
execution time.

 Optimisation

Measurement (Bytes) Size Speed

ROM Size: Program + Data 147 78

RAM Size (excluding stack) 0 0

Stack usage 12 4

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 45 of 49
May 25, 2011

4. Utilities

4.1 Low Power Control
The RX62T supports the following Low Power Modes as presented in this extract from the Hardware manual:

Figure 2: Low Power Modes

The Power software module supports a switching between all of these modes however if using the IWDT the Software
Standby and the Deep Software Standby Modes are not accessible. The

Table 19: Source files:

File name

Power.h

Power.c

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 46 of 49
May 25, 2011

Syntax

void Power_Init(void)

Description

Initialise the power module. Call this function before using any of the other functions in this module.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

void Power_Set(etPOWER_MODE eMode)

Description

Set device to specified low power mode.

NOTE: Modes Software Standby and Deep Software Standby can not be entered if using the WDT or IWDT.

NOTE: If using the IWDT it must still be kicked regularly after going to Sleep or All Module Clock Stop mode.

If "IWDT_KICK_IN_SLEEP_MODE" is defined then this module will do this automatically by using the WDT module
to regularly wake us up so we can kick IWDT and then go back to sleep.

This function generates a BRK interrupt. The handler of which must then call the Power_BRK_InterruptHandler
function which will then actually perform the switch to the low power mode.

Input Parameters

eMode Required low power mode.

Output Parameters

NONE N/A

Return Values

NONE N/A

bool_t Power_Did_DeepStandbyReset (void)

Description

Following a reset this function can be used to see if the reset was caused by an exit from Deep Software Standby
Mode.

NOTE: This function is only applicable if using Deep Software Standby Mode.

Input Parameters

NONE N/A

Output Parameters

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 47 of 49
May 25, 2011

NONE N/A

Return Values

bool_t Returns TRUE if Deep Software Standby Mode has been exited, otherwise FALSE.

void Power_DeepStandby_IOResume (void)

Description

Following a reset to exit Deep Software Standby Mode the IO pin states shall be retained regardless of the LSI
Internal state until this function is called.

NOTE: This function is only applicable if using Deep Software Standby Mode.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

void Power_BRK_InterruptHandler (void)

Description

The BRK interrupt handler must call this function.

This function will therefore be called in Supervisor Mode and can actually execute the privileged WAIT instruction
to enter the low power mode requested in function Power_Set.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

5. Additional Information

5.1 Reading an IO Pin State
The actual value of an IO pin can always be read by reading the corresponding pin’s PORT register as

this extract from the Hardware manual specifies:

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 48 of 49
May 25, 2011

Figure 3: PORT Register

5.2 Port Output Enable Module
The RX62T has a POE module. This can be used to force PWM output pins of the MTU (Multi-Function Timer Pulse
unit) and large current output pins of the GPT (General PWM Timer) into the high impedance state regardless of the
state of the rest of the CPU. The condition when this occurs can be configured for when:

• POE Input pins see a falling edge or low-level.

• Oscillation-stop detection circuit in the clock pulse generator detects stopped oscillation.

See the RX62T Hardware Manual for details.

RX62T Group IEC60730 Self Test Code for RX62T Group MCU

R01AN0654EG0100 Rev.1.0 Page 49 of 49
May 25, 2011

6. Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 May 25, 2011 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

