

E2エミュレータ, E2エミュレータLite ューザーズマニュアル別冊 (RA接続時の注意事項)

対象デバイス RAファミリ

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

ルネサス エレクトロニクス www.renesas.com

Rev.3.40 2024.4

ご注意書き

- 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではあり ません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要とな る場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、 複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等 高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある 機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、 海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に 使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負い ません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ 対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシス テムに対する不正アクセス・不正使用を含みますが、これに限りません。)から生じる責任を負うものではありません。当社は、当社製品または当社 製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱 性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切 責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目 的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体 デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲 内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責 任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を 規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことによ り生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に 支配する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口 に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属し ます。

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテク ニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアース を施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱い をしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リ セット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセッ ト機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後 に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した 後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先 のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS製品の入力がノイズなどに起因して、V_{IL}(Max.)から V_{IH}(Min.)までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、V_{IL}(Max.)から V_{IH}(Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

リザーブアドレス(予約領域)のアクセス禁止
 リザーブアドレス(予約領域)のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス(予約領域)
 があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュ メモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合がありま す。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

目 次

		ページ
1.	概 要	6
	1.1. E2エミュレータ, E2エミュレータLiteの概要	6
	1.2 マニュアル構成	
	13 准備	7
	1.0. 十幅	7
2	1.4. 刃豕 / ハイ ヘ	1
Ζ.		
	2.1. エミュレータとユーサンステムの接続	8
	2.2. ユーザシステム上に実装するエミュレータ接続コネクタ	8
	2.2.1. 20ピンコネクタによる接続例	9
	2.3. エミュレータ接続コネクタのピン配置	10
	2.3.1. 20/10ピンコネクタ仕様	10
	2.4. エミュレータ接続コネクタとマイコン間の推奨接続例	12
	2.4.1. SWD接続	13
	2.4.2. SWDとSCI接続	14
	2.4.3. JTAG接続	15
	2.4.4. SCI接続	16
	2.5. 接続時の留意事項	17
	2.5.1. RES端子について	
	2.5.2. MD端子について	
	2.5.3. GNDについて	
	2.5.4. VCCについて	
	2.5.5. RxD9、TxD9端子(SCI経由でのフラッシュ書き込み)について	
	2.6. エミュレータ内部回路	20
	2.6.1. E2内部回路	
	2.6.2. E2 Lite内部回路	
3	使用上の注意事項	23
•.	(1) 二 (1) 二 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	3.1. 电小のオン/オン	20 23
	3.1.1. が电線が54 - ダンペナムに电源を広船する場合	23 24
	3.1.2. エミュレーアが51 - デンパイムに電标を戻相する場合	27 21
	J.Z. EZ/EZ LILEの単線供和彼能	
	3.3. エミュレーダナハッカ使用工の注意争項	
	3.3.1. エミュレーダナハツカ接続時の注息事項	
	3.3.2. ノフツンユメモリ書ご授えを任うナハツク保作时の注息争項	
	3.3.3. 内蔵SRAMへのソフトリエアフレーク使用時の注息事項	
	3.3.4. ソフトリエアフレーク使用時の注息争項(内蔵SRAM/フラッシュメモリ共通)	
	3.3.5. ナハツカか占有する周辺I/Uレンスダに関する注息争項	
	3.3.0. MIBトレース () 用時の 注息 争項	
	3.3.7. EIBトレース機能に関する注息事項	
	3.3.8. SWUトレース(版能に) (5) 9 の注息争項	
	3.3.9. 低泪貨電力モートに俟りる注息争項	
	3.3.10. ナハック 時の 消貨 電流	
	3.3.11. メモリノロナクンヨノユーツト(MPU)に関する注息手項	
	3.3.12. Trust Zone® (
	3.3.13. ITUSL ZONE® (
	3.3.14. コートノフツンユナユナル七一ト懱貼に関9 る注思争頃 2215 6キャッシュ おとびのキャッシュ 捲出に明ナス注音車店	
	3.3.13. 3イヤツンユぬよい() イヤツンユ陂肥に() 男 る注思争垻	
	3.3.10. ノフツンユ・リート・ノロナソンヨノ俄能に関する注息争項(KAUノアミリの場合)	
	3.3.1/. FUIVRE3姉丁の選択俄形に関9 る注思争垻(KAUノアミリの场管) 2.2.40. Ctart/Ctan機能に開まて注辛車酒	
	3.3.10. 5ld1l/5l0P(筬尼に)(タ 3) 注息争項	
	3.3.13. 小ツトノフソイノ(())に戻り る注思争項	
	3.4. ナハックに () () () () () () () () () () () () ()	
	3.5. ユーサノロクフムの最終評価	44
改	訂記録	45

用語説明

本書で使用する用語は、以下に示すように定義して使用します。

ホストマシン

エミュレータを制御するためのパーソナルコンピュータを指します。

ユーザシステム

デバッグ対象のMCUを使用した、お客様のアプリケーションシステムを指します。

ユーザプログラム

デバッグ対象のアプリケーションプログラムを指します。

書き込みソフトウェア

本書では、E2/E2 Liteで使用可能なRenesas Flash Programmerを指します。

エミュレータ

本書では、E2/E2 Liteを指します。

DLM

Device Lifecycle Management

1. 概 要

1.1. E2エミュレータ, E2エミュレータLiteの概要

E2エミュレータ(以降 E2), E2エミュレータLite (以降 E2 Lite)は、ルネサス主要マイコンに対応したオ ンチップデバッギングエミュレータです。

E2 Liteは、基本的なデバッグ機能を持つ、低価格の購入しやすい開発ツールです。E2は、E2 Liteより ダウンロード速度が最大2倍に高速化しています。また、エミュレータからの電源供給機能は、1.8~ 5.0Vまでの電圧を0.1V間隔で変更し供給することが可能です。E2 Liteより、ワンランクアップしたデ バッグを可能とする開発ツールです。

E2、E2 Liteは、フラッシュプログラマとしても使用可能です。

1.2. マニュアル構成

E2/E2 Liteのマニュアルは、以下のマニュアルで構成されています。

- ・E2エミュレータ ユーザーズマニュアル
- ・E2エミュレータLite ユーザーズマニュアル
- ・E2エミュレータ, E2エミュレータLite ユーザーズマニュアル別冊

E2/E2 Liteのご使用にあたり、それぞれのユーザーズマニュアルを必ずお読みください。

(1) E2エミュレータ ユーザーズマニュアル

E2エミュレータ ユーザーズマニュアルには、ハードウェア仕様が記載されています。

- ・E2の構成品
- ・E2のハードウェア仕様
- ・E2とホストマシンおよびユーザシステムとの接続

(2) E2エミュレータLite ユーザーズマニュアル

E2エミュレータLite ユーザーズマニュアルには、ハードウェア仕様が記載されています。

- ・E2 Liteの構成品
- ・E2 Liteのハードウェア仕様
- ・E2 Liteとホストマシンおよびユーザシステムとの接続
- (3) E2エミュレータ, E2エミュレータLite ユーザーズマニュアル別冊 (RA接続時の注意事項)(本書) E2エミュレータ, E2エミュレータLite ユーザーズマニュアル別冊 (RA接続時の注意事項)には、ハー ドウェア設計時に必要なE2/E2 Liteとの接続例やインタフェース回路が記載されています。
- (4) Renesas Flash Programmer フラッシュ書き込みソフトウェア ユーザーズマニュアル Renesas Flash Programmer フラッシュ書き込みソフトウェア ユーザーズマニュアルは、ソフトウェ ア仕様、操作手順が記載されています。
- E2/E2 Lite エミュレータのデバッグ構成については、「e2 studio ヘルプ」で参照することができます。

1.3. 準備

ホストマシンに次のURLから統合開発環境(IDE)の他、必要なソフトウェアをインストールしてください。

https://www.renesas.com/development-tools

Linux版e²studioをご使用の場合は、各エミュレータページの"E2 emulator, E2 emulator Lite Linux driver"に同梱している別ガイド「e2studio_setup.md」を参照してください。尚, 「e2studio_setup.md」はマークダウン形式のファイルで, 英文のみの資料となっています。

1.4. 対象デバイス

表1.1 対象デバイス一覧

対象デバノフ	E2			E2 Lite			
対象ノハイス	SWD I/F	JTAG I/F	SCI I/F	SWD I/F	JTAG I/F	SCI I/F	
RA0シリーズ※2	DBG/PRG	-	-	DBG/PRG	-	-	
RA2シリーズ※2	DBG/PRG	-	PRG	DBG/PRG	-	PRG	
RA4シリーズ	DBG/PRG%3	DBG%1	PRG	DBG/PRG%3	-	PRG	
RA6シリーズ	DBG/PRG%3	DBG%1	PRG	DBG/PRG%3	-	PRG	
RA8シリーズ	DBG/PRG	DBG%1	PRG%3	DBG/PRG	-	PRG	

※ DBG:デバッグに使用可能

PRG:フラッシュ書き込みに使用可能、DLM状態遷移に使用可能

- ※1 JTAG I/Fがないマイコンもあります。各マイコンの「ユーザーズマニュアル ハードウェア編」を参照ください。
- ※2 RA0, RA2シリーズにはDLM状態遷移の機能はありません。
- ※3 RA6M4, RA6M5, RA6E1, RA4M2, RA4M3, RA4E1, RA6T2でDLM状態遷移を使用する場合は、SCI I/F接続も必要です。

2. ユーザシステムの設計

2.1. エミュレータとユーザシステムの接続

エミュレータとユーザシステムを接続するためには、ユーザシステム上に、ユーザインタフェース ケーブルを接続するためのエミュレータ接続コネクタを実装する必要があります。

ユーザシステム設計の際には、本章および使用するマイコンのユーザーズマニュアル ハードウェア編 を必ずお読みください。

2.2. ユーザシステム上に実装するエミュレータ接続コネクタ

推奨するエミュレータ接続コネクタを表2.1に、エミュレータ用ユーザインタフェースケーブルを表 2.2に示します。

表2.1 推奨するエミュレータ接続コネクタ

種類	型 名	メーカ	仕様
20pin 1.27mm ピッチ コネクタ	FTSH-110-01-L-DV-K	Samtec	20pin 表面実装ストレートタイプ
10pin 1.27mm ピッチ コネクタ	FTSH-105-01-L-DV-K	Samtec	10pin 表面実装ストレートタイプ
10pin 1.27mm ピッチ コネクタ	FTSH-105-01-L-DV ※1 (ガイドなしタイプ)	Samtec	10pin 表面実装ストレートタイプ

※1:ガイドなしタイプを使用する際には、ケーブルの挿す方向に注意してください。

表2.2 エミュレータ用ユーザインタフェースケーブル

種類	型名	E2	E2 Lite
20-20pinケーブル ※1	RTE0T00020KCAC0000J	製品付属	別売
(20pin 1.27mmピッチ コネクタ用)			
20-10pinケーブル	RTE0T00020KCAC1000J	別売	別売
(20pin 1.27mmピッチ コネクタ用)			

※1:20-20pinケーブルをガイドなしタイプの10pin 1.27mmピッチ コネクタへ接続できますが、 ピン配置をご確認のうえ、ケーブルを挿す方向に注意してください。

エミュレータ接続コネクタの逆差しや誤挿入など、エミュレータをユーザシステムに誤って接続した場 合、ホストマシン、エミュレータおよびユーザシステムが発煙発火する可能性があります。

2.2.1. 20ピンコネクタによる接続例

20ピンコネクタへの接続方法を図2-1に示します。

図2-1 20ピンコネクタへの接続方法

2.3. エミュレータ接続コネクタのピン配置

2.3.1. 20/10ピンコネクタ仕様

20/10ピンコネクタ(1.27mmピッチ)の仕様を図2-2に示します。SWD接続時のピン配置を表2.3に示します。また、JTAG接続時ピン配置を表2.4に示します。

図2-2 20/10ピンコネクタの仕様

ピン	信号名	方向 ※1	備考
田方			
1	VCC	—	
2	SWDIO	入出力	SWD通信用データ
3	GND	_	
4	SWCLK	入力	SWD通信用クロック
	MD		動作モード設定用
5	GND	—	
6	TxD9	出力	SCI通信用
7	NC	—	
8	RxD9	入力	SCI通信用
9	UCON	_	ユーザシステム上でGNDに接続することエミュレータ
			とユーザシステムとの接続確認用
10	RES	入出力	ユーザシステムのリセット
11※2	NC	—	
12※2	NC	—	
13※2	NC	—	
14※2	NC	—	
15※2	GND	—	
16※2	NC	—	
17※2	GND	_	
18※2	NC	_	
19×2	GND	_	
20※2	NC	—	

表2.3 SWD接続時のピン配置

※1 ユーザシステムからエミュレータを見たときの入出力方向です。

入力:ユーザシステム <- エミュレータ, 出力:ユーザシステム -> エミュレータ

※2 ユーザシステムへ10pinコネクタを実装した場合は、11~20番ピンは使用されません。

表2.4 JTAG接続時のピン配置

ピン	信旦夕	士向 ※1	備考
番号	信专名	万间 ※1	
1	VCC		電源
2	TMS	入力	JTAG通信用
3	GND		
4	ТСК	入力	JTAG通信用クロック
	MD		動作モード設定用
5	GND		
6	TDO/TxD9	出力	JTAG通信用/ SCI通信用
7	NC		
8	TDI/RxD9	入力	JTAG通信用/ SCI通信用
9	UCON	_	ユーザシステム上でGNDに接続すること
			エミュレータとユーザシステムとの接続確認用
10	RES	入出力	ユーザシステムのリセット
11※2	NC	_	
12※2	NC	_	
13※2	NC	_	
14※2	NC	_	
15※2	GND	_	
16※2	NC	_	
17※2	GND	_	
18※2	NC	—	
19※2	GND	_	
20※2	NC	_	

※1 ユーザシステムからエミュレータを見たときの入出力方向です。

入力:ユーザシステム <- エミュレータ, 出力:ユーザシステム -> エミュレータ

※2 ユーザシステムへ10pinコネクタを実装した場合は、11~20番ピンは使用されません。

2.4. エミュレータ接続コネクタとマイコン間の推奨接続例

エミュレータ接続コネクタとマイコン間の推奨接続例を以下に示します。各信号線の処理詳細に関し ては「**2.5** 接続時の留意事項」を参照してください。

2.4.1. SWD接続

SWDのみを使用する接続例を図2-3に示します。

図2-3 SWD接続例

- 【注1】 SWD接続のみの場合は、MD端子は接続不要です。MD端子の処理詳細については「2.5.接続時の留意 事項」を参照してください。
- 【注2】 ユーザシステムへ10pinコネクタを実装した場合は、11~20番ピンは使用しません
- 【注3】 E2 エミュレータ Liteはトレース出力を未サポートです。 E2エミュレータは、SWO端子のトレース出力のみをサポートします。

RENESAS

2.4.2. SWDとSCI接続

SWDとSCIの両方を使用する接続例を図2-4に示します。

図2-4 SWDとSCI接続例

- 【注1】 デバイスによって異なります。RAファミリの各マイコンの「ユーザーズマニュアル ハードウェア 編」を参照し、接続が推奨されているマイコンでは、MD端子をエミュレータのSWCLK/MDに接続し てください。 エミュレータのSWCLK/MDに結線しない場合、ユーザシステム上で回路を構成してください。MD端 子の処理詳細については「2.5.接続時の留意事項」を参照してください。
- 【注2】 ユーザシステムへ10pinコネクタを実装した場合は、11~20番ピンは使用しません
- 【注3】 E2 エミュレータ Liteはトレース出力を未サポートです。 E2エミュレータは、SWO端子のトレース出力のみをサポートします。

2.4.3. JTAG接続

JTAG接続例を図2-5に示します。E2 LiteはJTAG接続未サポートです。

- 図2-5 JTAG接続例
 - 【注1】 デバイスによって異なります。RAファミリの各マイコンの「ユーザーズマニュアル ハードウェア 編」を参照し、接続が推奨されているマイコンでは、MD端子をエミュレータのTCK/MDに接続してく ださい。 エミュレータのTCK/MDに結線しない場合、ユーザシステム上で回路を構成してください。MD端子の
 - 処理詳細については「2.5.接続時の留意事項」を参照してください。
 - 【注2】 ユーザシステムへ10pinコネクタを実装した場合は、11~20番ピンは使用しません
 - 【注3】 E2エミュレータはトレース出力を未サポートです。

2.4.4. SCI接続

Renesas Flash Programmerを使用し、プログラムの書き込みのみを行い、デバッグ不要な場合の接続 例を図2-6に示します。

図2-6 SCI接続例

【注1】 デバイスによって異なります。RAファミリの各マイコンの「ユーザーズマニュアル ハードウェア 編」を参照し、接続が推奨されているマイコンでは、MD端子をエミュレータのMDに接続してくださ い。

エミュレータのMDに結線しない場合、ユーザシステム上で回路を構成してください。MD端子の処理 詳細については「2.5.接続時の留意事項」を参照してください。

2.5. 接続時の留意事項

エミュレータ接続コネクタとマイコン間のパターン長は、できるだけ短くしてください(50mm以内 を推奨)。また、基板上でエミュレータ接続コネクタとマイコン間以外への信号線の引き回しは行わな いでください。

エミュレータを使用しない場合の端子処理については、関連するマイコンのユーザーズマニュアル ハードウェア編を参照してください。

2.5.1. RES端子について

エミュレータからRES端子を操作します。

ユーザシステムにユーザ論理のリセット回路がある場合は、エミュレータ接続コネクタのRES信号と ユーザ論理の出力信号をオープンコレクタバッファで接続してください。ユーザ論理がない場合は、 エミュレータ接続コネクタのRES信号を直接マイコンのRES端子に接続してください。

図2-7 RES端子の接続例

デバイスの電気特性を満たし、かつ、9ms以内に立ち上がるようにすること

2.5.2. MD端子について

RAファミリの各マイコンの「ユーザーズマニュアル ハードウェア編」を参照し、マイコンのMD端子 と、エミュレータのSWCLK/TCK/MDとの接続が推奨されているマイコンかをご確認ください。 RAOシリーズにはMD端子はありません。

- 対象マイコンがRA6M4, RA6M5, RA6E1, RA4M2, RA4M3, RA4E1, RA6T2の場合: SWCLKとMDをワイヤード接続してください。エミュレータからMD端子を操作します。 (図2-8を参照)
- 対象マイコンがRA6M4, RA6M5, RA6E1, RA4M2, RA4M3, RA4E1, RA6T2 以外の場合: ユーザシステム上で必要に応じて、MD端子のレベルを切り替えるスイッチを設けてください。(図 2-9を参照) SCI/USBブートで使用する場合は、MD端子が"Low"になるよう端子処理してご使用 ください。
- 全てのデバイスにおいてエミュレータを使用しない場合、かつ、SCI/USBブートで使用する場合: 図2-9の構成でご使用ください。

また、ほとんどのマイコンのMD端子には、プルアップ抵抗が搭載されています。RAファミリの各マ イコンの「ユーザーズマニュアル ハードウェア編」を参照し、マイコンのMD端子にプルアップが搭載 されているかご確認ください。

図2-8 RA6M4, RA6M5, RA6E1, RA4M2, RA4M3, RA4E1, RA6T2での接続例

2.5.3. GNDについて

エミュレータ接続コネクタのGNDは、マイコンのVSS端子と同一GNDとしてください。

2.5.4. VCCについて

エミュレータ接続コネクタのVCCには、ユーザシステムのVCC(電源)を接続してください。 1.8V~5.5Vの範囲内で、かつマイコン動作範囲内の電源電圧にてご使用ください。 別電源からユーザシステムに電源を供給する場合、エミュレータの出力最終段バッファおよび入力初段 バッファ電源として、E2/E2 Liteが消費します。

E2 : 3.3V時 約20mA , 5.0V時 約40mA

E2 Lite : 3.3V時 約20mA , 5.0V時 約40mA

E2/E2 Liteは、簡易評価システム用に電源を供給することが可能です。

E2 :供給可能電圧1.8V~5.0V、供給可能電流 最大200mA

E2 Lite :供給可能電圧3.3V、供給可能電流 最大200mA

E2/E2 Liteの電源供給機能を使用する場合は、使用環境に依存するためユーザシステムに供給された電 圧を確認してください。

E2/E2 Liteからの電源供給はホストマシンのUSB電源性能に依存するため、精度の保証ができません。信頼性を 要求する書き込みを行う場合は、E2/E2 Liteからの電源供給機能は使用せず、安定した別電源をユーザシステム に供給してください。量産工程などで書き込みを行う場合のソフトウェアは、Renesas Flash Programmerをご 使用ください。

書き込みソフトウェアの詳細は下記を参照してください。

Renesas Flash Programmer : <u>https://www.renesas.com/RFP</u>

マイコンを低消費電力状態へ遷移させた場合、内部のデバッグ回路が動作しているため、マイコンのDC特性よりも消費電流値が増加します。

⚠警告

電源のオン/オフに関して:

電源を投入する前に、ユーザシステムの電源回路がショートしていないことを確認してください。 エミュレータ接続コネクタの逆差しや誤挿入など、E2/E2 Liteをユーザシステムに誤って接続した 場合、ホストマシン、E2/E2 Liteおよびユーザシステムが発煙発火する可能性があります。

2.5.5. RxD9、TxD9端子(SCI経由でのフラッシュ書き込み)について

RxD9および**TxD9**端子は、**SCI**経由でフラッシュ書き込みを行う場合にエミュレータとの接続が必要で す。**RxD9**および**TxD9**端子が複数個所に割り当て可能なマイコンについては、マイコンのユーザーズマ ニュアル ハードウェア編にて、ブートモード時に使用する**RxD9**および**TxD9**端子をご確認ください。

2.6. エミュレータ内部回路

2.6.1. E2内部回路

E2の製品RevCの内部回路を図2-10に、製品RevDの内部回路を図2-11に示します。 E2本体に記載のシリアル番号末尾のアルファベットが製品Revを示します。

図2-10 E2内部回路(Rev.C)

RENESAS

2.6.2. E2 Lite内部回路

E2 Lite内部回路を図2-12に示します。

図2-12 E2 Lite内部回路

3. 使用上の注意事項

3.1. 電源のオン/オフ

下記の手順でエミュレータとユーザシステムの電源をオン/オフしてください。

3.1.1. 別電源からユーザシステムに電源を供給する場合

【使用開始時】

- (1) 電源オフの確認 ユーザシステムの電源がオフになっていることを確認してください。
- (2) ユーザシステムの接続エミュレータとユーザシステムをユーザインタフェースケーブルで接続してください。
- (3) ホストマシンとの接続とエミュレータ電源の投入
 エミュレータとホストマシンをUSBインタフェースケーブルで接続してください。
 E2/E2 Liteの場合、USBインタフェースケーブルを接続することで電源がオンになります。
- (4) エミュレータデバッガまたは書き込みソフトウェアの起動 エミュレータデバッガまたは書き込みソフトウェアを起動してください。
- (5) ユーザシステム電源の投入 ユーザシステムの電源をオンにしてください。
- (6) エミュレータデバッガまたは書き込みソフトウェアからエミュレータへ接続 接続方法はソフトウェアにより異なります。

【使用終了時】

- (1) エミュレータデバッガまたは書き込みソフトウェアからエミュレータを切断 切断方法はソフトウェアにより異なります。
- ユーザシステムの電源オフ
 ユーザシステムの電源をオフにしてください。
- (3) エミュレータデバッガまたは書き込みソフトウェアの終了 エミュレータデバッガまたは書き込みソフトウェアを終了してください。
- (4) エミュレータの電源オフとエミュレータの取り外し
 エミュレータからUSBインタフェースケーブルを取り外してください。
 E2/E2 Liteの場合、USBインタフェースケーブルを取り外すことで電源がオフになります。
- (5) ユーザシステムの取り外し ユーザシステムからユーザインタフェースケーブルを取り外してください。

<u>∧</u>注意

ユーザシステムの電源をオンしたままの状態で、ホストマシンの電源をオフにしたり、USBインタフェースケーブルを抜いたりしないでください。

リーク電流などが原因でユーザシステムが故障する可能性があります。

3.1.2. エミュレータからユーザシステムに電源を供給する場合

【使用開始時】

- ユーザシステムの接続
 エミュレータとユーザシステムをユーザインタフェースケーブルで接続してください。
- (2) ホストマシンとの接続とエミュレータ電源の投入
 エミュレータとホストマシンをUSBインタフェースケーブルで接続し、エミュレータの電源をオン
 にしてください。
- (3) エミュレータデバッガの起動

エミュレータデバッガを起動して、ユーザシステムへの電源供給を選択してください。

[Connection Settings]タブの[電源]において、[エミュレータから電源を供給する(Max 200mA)]の選択は、[はい]を選択してください。

[デバッグ構成]ウィンドウの開き方は、「**3.3**.エミュレータデバッガ使用上の注意事項」を参照くだ さい。

] メイン (参 Del	bugger 🕞 Startup	🔲 共通(C) 🍹	ソース		
Debug hardwar	e: E2 (ARM) ~	Target Device:	R7FA6M3AH		
GDB Settings	Connection Settings	デバッグ・ツール設	定		
~ 電源					^
ISAD	-ターから電源を供給する	(MAX 200mA)	はい	<	
電源供	給先		ユーザインタフェース	~	
供給雷	王 (V)		3.3	~	~

図3-1 電源供給設定

(4) エミュレータデバッガまたは書き込みソフトウェアからエミュレータへ接続 接続方法はソフトウェアにより異なります。

【使用終了時】

- エミュレータデバッガまたは書き込みソフトウェアからエミュレータを切断 切断方法はソフトウェアにより異なります。
- (2) エミュレータデバッガまたは書き込みソフトウェアの終了 エミュレータデバッガまたは書き込みソフトウェアを終了してください。
- (3) エミュレータの電源オフとエミュレータの取り外しエミュレータからUSBインタフェースケーブルを取り外し、エミュレータの電源をオフにしてください。
- (4) ユーザシステムの取り外しユーザシステムからユーザインタフェースケーブルを取り外してください。

3.2. E2/E2 Liteの電源供給機能

E2/E2 Liteは、簡易評価システム用に電源を供給することが可能です。

- E2 :供給可能電圧1.8V~5.0V、供給可能電流 最大200mA
- E2 Lite :供給可能電圧3.3V、供給可能電流 最大200mA

E2/E2 Liteの電源供給機能を使用する場合は、使用環境に依存するためユーザシステムに供給された電 圧を確認してください。

3.3. エミュレータデバッガ使用上の注意事項

本項では、e2 studioの[デバッグ構成]ウィンドウの設定について説明します。[デバッグ構成]ウィンドウの開き方は、[実行] → [デバッグの構成(B)…]あるいは^{な、}アイコン(下向き矢印) → [デバッグの構成]の 順にクリックます。

C - Tutorial/src/cg_src/r_cg_main.c - e2 stu	idio			_	
ファイル(F) 編集(E) ソース(S) リファクタリ	ング(T) ナビゲート(N) 検索(A)	プロジェクト(P) Renesas Views	実行	(R) ウィンドウ(W) ヘルプ(H)	
📑 🕶 🔡 🐚 📥 🛞 🕶 🗞 🕶 🔜 🔍 🌮	Run C-STAT Code Analysis 🛛 💽 🤅	💾 🖉 📼 🔂 🕶 🚳 🕶 💕 🔹	Q,	実行(R)	Ctrl+F11
1 = 2 + 1 = (= + → +			₩ъ	デバッグ(D)	F11
🎦 プロジェクト・エクスプロ 🕺 🖳 🗖	Image: Image			実行履歴(T) 実行(S)	+ +
	2	IER.		実行構成(N)	
▲ Lutonal → 繰 バイナリー	21 ⊕ * File Nam 28	e : r_cg_main.d.		デバック履歴(H)	•
> ∰ Includes > 29 src	30 ⊕ Pragma din 32 ⊕ /* Start u 33 /* End use	ser code for pragma. Do not		<u>デバッグ(G)</u> デバッグの構成(B)	•
 > Debug > HardwareDebug 	34 36 • Includes] 38 #include "	r_cg_macrodriver.h"	0	ブレークポイントの切り替え(K) 行ブレークポイントの切り替え(L)	Ctrl+シフト+B
m custom.bat	39 #include " 40 #include " 41 ⊖ /* Start u	r_cg_cgc.h" r_cg_cmt.h" iser code for include. Do not	0 69	メソッド・ブレークポイントの切り替え(M) 監視ポイントの切り替え(W)	

図3-2 [デバッグ構成]ウィンドウを開く

ebug hardwa	re: E2 (ARM) ~	Target Device: R7FA6N	13AH		
GDB Settings	Connection Settings	デバッグ・ツール設定			
GDB 接続設	定:				
● □-カル (SDB サーバーを自動起動	ホスト名または IP アドレス:	localhost		
OUE-PO	iDB サーバーへ接続	GDB ポート番号:	61234		
GDB コマンド:					
arm-none-e	abi-gdb			参照	変数
Additional GE	08 Server Arguments				
					A

図3-3 [デバッグ構成]ウィンドウ

3.3.1. エミュレータデバッガ接続時の注意事項

(1) リセット状態

[Connection Settings]タブの[接続]において、[接続時にリセット状態を維持する]の選択は、必ず [はい]を選択してください。

[はい]を選択することで、エミュレータデバッガへの接続時、エミュレータはマイコンのRES端子 に対してLowレベル出力を維持しながらマイコンをOCDモードへ遷移させます。ただし、マイコン 搭載のデバッグ回路を動作開始するため、接続中にエミュレータが約50msec、リセットを解除し ます。その間、ユーザプログラムが自走します。

📄 Main 隊 Debugger 🛛 🕨 Startu	🦆 Source 🔲 Common		
Debug hardware: E2 (ARM)	Target Device: R7FA6M3AH		
GDB Settings Connection Setting	デバッグ・ツール設定		
✓ 接続			^
接続時にリセット状態を維持す	はい	\checkmark	
IDコード (バイト単位)	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	F	
低消費電力モードを使用する	はい	~	~

図3-4 [接続時にリセット状態を維持する]の設定

(2) 起動モード

エミュレータデバッガへの接続時は、マイコンの起動モードがシングルチップモードになるように ユーザシステム上で端子処理してください。

シングルチップモードは、MD端子がHighです。SCI/USB ブートモードに設定された場合は、正し くエミュレータデバッガへの接続ができません。

(3) IDコード書き換え後のデバッグ

IDコード(OSISレジスタ)を書き換えている場合、書き換え後のIDコードを入力してください。 ここでのIDコードの入力とは、[Connection Settings]タブの[接続]において、[IDコード(バイト単位)] で入力する値を指します。

ID コード (バイト単位)	×
IDコード設定	1
● 32ビットの16進数(4分割)で設定	
Key 1 Key 2 Key 3 Key 4 33221100 - 77665544 - bbaa9988 - ffeeddcc	
○ 128ビットの16進数で設定	
ffeeddccbbaa99887766554433221100	
□ビッグエンディアン形式で値を入力する	
ブレビュー	
00112233445566778899aabbccddeeff	
OK Cancel	
例えば下記のように確保した場合、00112233445566778899aabbccddeeffと入え const unsigned long OSISreg[4] = {	りしてください。
0x33221100, 0x37666544	
0x77000044, 0xbbaa9988,	
Oxffeeddcc	
j,	

RA6M4などDLM機能搭載デバイスでは、IDコード認証機能はありません。

(4) IDコードへのALeRASEコマンド入力(RA8ファミリ以外の場合)

[Connection Settings]タブの[接続]において、[IDコード(バイト単位)]で入力する値にALeRASEコマンド(FFFFFFFFFFFFFFFFFFF534152654C41)を入力した場合、エミュレータデバッガ接続時に以下のフラッシュメモリをイレーズします。

- ・コードフラッシュメモリ
- ・オプション設定メモリ

ALeRASEコマンド入力について、e2studioのヘルプのE2/ E2Lite(RA) Connection Settingsを参照 ください。

ALeRASEコマンドが使用可能な条件は、マイコンのユーザーズマニュアル ハードウェア編を参照 ください。マイコンが使用不可状態にもかかわらず、ALeRASEコマンドを入力してエミュレータ デバッガへの接続を開始した場合、[Flash 全消去ID によるFlash全消去処理に失敗しました。]と いう内容のエラーを表示し、接続を中断します。

DLM機能搭載デバイスでは、IDコード認証機能がないため、ALeRASEコマンド機能はありません。

(5) 認証キーへのALeRASEコマンド入力(RA8ファミリの場合)

[Connection Settings]タブの[TrustZone]において、[デバイス認証時の認証レベル(AL)を指定する]で、 [AL2]を選択し、かつ[認証キー]にALeRASEコマンド(FFFFFFFFFFFFFFFFFFF534152654C41)を 入力した場合、エミュレータデバッガ接続時に以下のフラッシュメモリをイレーズします。

- ・コードフラッシュメモリ
- ・データフラッシュメモリ
- ・オプション設定メモリ

本機能を使用した場合、Protection Level(PL)は2に初期化され、デバイスに設定したセキュリティ 機能も初期化された状態でデバッガ接続が完了します。

本機能は、デバイスのDLM stateがOEMであり、かつデバイス初期化が禁止に設定されていない場合にのみ使用可能です。

(6) 接続速度について

ターゲット・ボードとの接続速度は下記を上限に設定できます。

JTAG (E2のみ) :		25000(kHz)
SWD (E2の場合) :		25000(kHz)
SWD(E2 Liteの場合)	:	6000(kHz)

Main 🕸 Debugger 🌔 Startup 🧤 Source	Common		
Debug hardware: E2 (ARM) V Target Dev	ice: R7FA6M3AH		
GDB Settings Connection Settings デパッグ・ツー	ル設定		
> クロック			^
~ ターゲット・ボードとの接続			
エミュレーター	(Auto)		
タイプ	SWD	~	
接続速度 (kHz)	Auto	~	5

図3-6 接続速度の設定

なお、Auto選択時は自動で接続可能な最高接続速度が設定されます。

3.3.2. フラッシュメモリ書き換えを伴うデバッグ操作時の注意事項

フラッシュメモリ書き換えを伴うデバッグ操作は、エミュレータデバッガ上での以下の操作を指し ます。

- ・フラッシュメモリへのダウンロード
- ・フラッシュメモリを対象にしたソフトウェアブレーク機能
 - ① ブレークポイントの設定と解除
 - ② ブレークポイントからのプログラム実行 / ステップ実行
 - ③ ブレーク設定状態からの指定行まで実行
- (1) フラッシュ書き換えプログラム
 - エミュレータデバッガは、フラッシュメモリ書き換えを伴うデバッグ操作を実現するため、マイコンの内蔵SRAMへフラッシュ書き換えプログラムを書き込み、実行させることでフラッシュメモリを書き換えます。フラッシュ書き換え後、エミュレータデバッガは、内蔵SRAMを元の状態に復帰します。
- (2) フラッシュ書き換えプログラムの配置先

フラッシュ書き換えプログラムは、デフォルトでSRAM0領域の先頭番地(SRAM0領域のない対象 デバイスではSRAMHS領域の先頭番地)から5Kバイトのサイズで配置されます。セキュリティ、 DMAC/DTC転送(*1)等でデフォルトの配置先が使用できない場合には、エミュレータデバッガ上 の[デバッグ・ツール設定]タブの[フラッシュ]において、[ワークRAM開始アドレス]で、使用可能な 内蔵RAMの開始アドレスを1000hバイト単位で入力ください。

*1: DMAC/DTCは、ブレーク中も動作を継続しています。DMAC/DTC転送先、転送元がフラッシュ書き換えプログラム配置先のワークRAMと重ならないようにしてください。

)メイン 🏇 Debugger 🌘 Startup 🛽	🔳 共通(C) 🧤 ソー	<u>م</u>	
Debug hardware: E2 (ARM) 🛛 🗸	Target Device: R7	FA6M3AH	
GDB Settings Connection Settings 7	Fバッグ・ツール設定		
> フラッシュ			~
ワーク RAM 開始アドレス	11.11.11.11.11.11		
ダウンロード前に内蔵ブログラムROM	Aを消去する	いいえ	~
ガウンロードかけったまご、クリコニッシン	-POMを消まする	1117	

図3-7 [ワークRAM開始アドレス]の設定

RA6M4などTrustZone®機能搭載デバイスで、かつ、デバッグアクセスレベル DBG1で接続時には、 フラッシュ書き換えプログラムを配置しません。

(3) フラッシュ書き換えプログラム実行中の割り込み、およびリセット フラッシュ書き換えプログラムを実行する際、ノンマスカブル割り込み以外はマスクします。また、 実行時はフラッシュ書き換えプログラムを正しく実行させるため、実行前に発生した割り込み要因 は、すべてクリアします。 ノンマスカブル割り込みが発生した場合は、何もせずにフラッシュ書き換えプログラムの処理を継 続します。フラッシュ書き換えプログラムを実行する際にリセットが発生した場合は、エラーを表 示して、処理を中断します。フラッシュメモリの内容を破壊する可能性があるため、リセットはか けないでください。

(4) ダウンロード使用可能条件

フラッシュメモリへのダウンロードは、マイコンが以下をすべて満たした状態に限り、使用可能で す。

- ① マイコンのコードフラッシュメモリが、リードモードである。
- ② マイコンのシステムクロック(ICLK)が、1MHz以上である。※1
 - ※1:エミュレータデバッガ上の[Connection Settings]タブの[クロック]において、

[内蔵フラッシュ・メモリー書き換え時にクロック・ソースの変更]を、[はい]と選択した場合、条件②は除外できます。

ebug hardwa	re: E2 (ARM) ~	Target Device:	R7FA6M3AH	
GDB Settings	Connection Settings	デバッグ・ツール設定		
v 70v7				-
メイン・	クロック・ソース		内部クロック	~
外部ク	ロック人 刀膚 波朝 (MHz			

図3-8 [内蔵フラッシュ・メモリー書き換え時にクロック・ソースの変更]の設定

いずれかの条件を満たさずフラッシュメモリへダウンロードすると、エラーを表示し、処理を中断 します。その際は、CPUリセット後に再度ダウンロードするか、エミュレータデバッガ上の設定を 見直して再接続ください。

(5) セキュア領域へのダウンロード

セキュリティMPUに設定したセキュア領域に対するダウンロードを行う際は、 エミュレータデバッガ上の[デバッグ・ツール設定]タブの[フラッシュ]において、[ダウンロード前 に内蔵プログラムROMを消去する]を、[はい]に選択してください。

)メイン 🕸 Debugger 🌘 Startup 🔲 共通(C) 🤤 ソ	-ス]	
Debug hardware: E2 (ARM) V Target Device:	7ҒА6МЗАН	
GDB Settings Connection Settings デバッグ・ツール設定		
マ フラッシュ		^
ワーク RAM 開始アドレス		
ダウンロード前に内蔵ブログラムROMを消去する	はい く	
ダウンロード前に内蔵データ・フラッシュROMを消去する	いいえ	

図3-9 [ダウンロード前に内蔵プログラムROMを消去する]の設定

(6) RA8シリーズにおける注意点

Authentication levelがAL1のデバッグにおいて、Flash領域にダウンロードを行う際、 On-chip SRAM領域(secure region)の先頭から4000hバイトを書き換えます。

- (7) アクセスウィンドウ機能 マイコンのアクセスウィンドウ機能を使用する場合、指定した領域以外のフラッシュメモリは書き 換えできません。
- (8) フラッシュメモリを対象にしたソフトウェアブレークの使用条件 フラッシュメモリを対象にしたソフトウェアブレーク機能は、以下をすべて満たした状態に限り、 使用可能です。
 - ① マイコンのコードフラッシュメモリが、リードモードである。
 - ② マイコンのシステムクロック(ICLK)が、1MHz以上である。※1
 - ③ [デバッグ・ツール設定]タブの[中断]において、[フラッシュ・ブレークポイントを使用 する]を、[はい]を選択している。

ebug hardware: E2 (ARM) V Target Device: R7FA6M3AH	
GDB Settings Connection Settings デバッグ・ツール設定	
~ 中断	
- 1 MP1	
フラッシュ・ブレークポイントを使用する はい	*
フラッシュ・ブレークボイントを使用する はい マ フラッシュ・ブレークボイントを使用する はい	•

図3-10 [フラッシュ・ブレークポイントを使用する]の設定

※1:エミュレータデバッガ上の[Connection Settings]タブの[クロック]において、 [内蔵フラッシュ・メモリー書き換え時にクロック・ソースの変更]を、[はい]と選

メイン 参 De	bugger 🕞 Startup	o) 🔲 共通(C) 🧤 ソ-	-ス)		
Debug hardwa	re: E2 (ARM) V	Target Device: R	7FA6M3AH		
GDB Settings	Connection Settings	デバッグ・ツール設定			
GDB Settings ~ クロック	Connection Settings	デバッグ・ツール設定			^
GDB Settings ックロック メイン・	Connection Settings クロック・ソース	デバッグ・ツール設定	内部クロック	~	^
GDB Settings v クロック メイン・ 外部ク	Connection Settings クロック・ソース ロック入力周波数 (MH:	デバッグ・ツール設定 z)	内部クロック	~	^

図3-11 [内蔵フラッシュ・メモリー書き換え時にクロック・ソースの変更]の設定

いずれかの条件を満たさずソフトウェアブレーク機能を使用すると、エラーを表示します。その際 は、ハードウェアブレークを使用するか、上記①~③の条件を確認してください。

(9) フラッシュメモリI/Oレジスタ

フラッシュメモリ書き換えを伴うデバッグ操作を行った際、フラッシュメモリI/Oレジスタ値はエ ミュレータデバッガにより書き換えられた値になります。

3.3.3. 内蔵SRAMへのソフトウェアブレーク使用時の注意事項

(1) ユーザプログラム動作によるソフトウェアブレークポイントの書き換え ユーザプログラム動作により、ソフトウェアブレークポイントが書き換わるとプログラムがそのア ドレスを通過しても停止しなくなります。プログラムによる対象の内蔵SRAMを書き換えた後に、 ソフトウェアブレークポイントを設定するなどで対応ください。

3.3.4. ソフトウェアブレーク使用時の注意事項(内蔵SRAM/フラッシュメモリ共通)

- (1) セキュア領域へのソフトウェアブレークポイント設定 セキュリティMPUで設定されたセキュア領域にはソフトウェアブレークポイントを設定しないでく ださい。設定した場合、解除時に不正なデータで命令コードを復帰してしまいます。
- (2) ソフトウェアブレークポイント設定したアドレスを読み出す ソフトウェアブレークポイントのアドレスをユーザプログラムで読み出して使用しないでください。 本来のプログラム動作とは異なる動作となります。
- (3) メモリービューでのメモリ参照
 ユーザプログラム実行中にエミュレータデバッガのメモリービューでソフトウェアブレークポイン
 ト設定したメモリを参照すると、実際のプログラムデータと異なる値(BKPT命令コード)が表示されます。
- (4) 切断時のソフトウェアブレークポイント設定

エミュレータデバッガ切断時には、設定されているソフトウェアブレークポイントをすべて削除し ます。その際、エミュレータデバッガは確実にフラッシュを書き換えるため、切断時にはCPUリ セットをかけます。

3.3.5. デバッガが占有する周辺I/Oレジスタに関する注意事項

(1) デバッガが占有する周辺I/Oレジスタ

デバッグ中、エミュレータデバッガは以下の周辺I/Oレジスタを占有します。デバッグが継続でき なくなる恐れがありますので、以下レジスタの値を変更しないでください。

- ・デバッグストップコントロールレジスタ(DBGSTOPCR)
- ・MTB (SFR領域)
- ・システムコントロールOCDコントロールレジスタ(SYOCDCR)

3.3.6. MTBトレース使用時の注意事項

MTBトレース機能を使用する場合、内蔵SRAMの先頭アドレスからエミュレータデバッガで選択 した記録サイズ分をトレース記録領域として使用します。ユーザプログラムで内蔵SRAMを使用す る場合にはトレース記録領域は使用しないでください。内蔵SRAMの先頭アドレスは、マイコンの ユーザーズマニュアル ハードウェア編を参照ください。

また、エミュレータデバッガ上のトレース記録領域のサイズを変更した場合、リンカスクリプト も変更が必要です。

3.3.7. ETBトレース機能に関する注意事項

Coretex-M33をコアとするMCUのETBトレース機能に関する注意事項を以下に示します。

- (1) 分岐命令をステップ実行した際のトレース結果が不正になります。
 - ステップ実行後のアドレス表示が、分岐先アドレスではなく、分岐元アドレスが表示されます。
- (2) トレースイベントとして、データ比較イベントが正常に動作しません。 トレースイベントとして、データ比較イベントにてデータ比較条件を設定しても、設定したデータの比較は行われず、アクセスが発生した時点でイベントが成立します。
- (3) プログラム実行中にリセットが発生すると、トレース情報が取得できません。
- (4) 以下の例外が発生した場合の、トレース結果は不正になる場合があります。
 - HardFault
 - MemManage
 - BusFault
 - Debug Monitor
 - · PendSV
 - SysTick
- 3.3.8. SWOトレース機能に関する注意事項

E2エミュレータは、SWO端子からシリアル出力されるトレースデータの取得/表示をサポートします (以下、SWOトレース機能)。SWOトレース機能に関する注意事項を以下に示します。

- (1) SWO端子から出力されるインタフェースクロックについて
 - ・E2エミュレータは、SWOトレース機能で出力されるデータのインタフェースクロックとして、 最大15MHzをサポートしています。
 - ・インタフェースクロックは、マイコンのシステムクロックソースの周波数に対する エミュレータデバッガ上の分周設定**※:1**により、決定します。
 - ・15MHzを超えると、エミュレータがトレースデータを正常に受信できず、トレース情報を 正しく表示できません。
 15MHz以下となるように正しくエミュレータデバッガ上で分周設定※1してください。
 - (例)RA6M4デバイスで、ICLK=100MHz、ICLK 2分周(SCKDIVCR.ICK=001b)の場合

システムクロックソースの周波数は200MHzになるため、エミュレータデバッガ上の分周設定 ※1は"16"以上(12.5MHz以下)を選択します。

※1:エミュレータデバッガ上の[Connection Settings]タブの[SWV]における、[SWO周波数の分周]

🖹 メイン 🍄 Debugger 🕨 Startup 🦻 ソース 💷 共通(<u>C</u>)					
Debug hardware: E2 (ARM) \checkmark Target Device: R7FA6M4AF					
GDB Settings Connection Settings デバッグ・ツール設定					
✓ SWV					
SWO周波数の分周 16 イ					

- (2) マイコン上のバッファオーバーフローについて
 - マイコンからエミュレータへのトレースデータ出力が追い付かず、マイコン内でトレースデータバッファのオーバーフローが発生する場合があります。

オーバーフローが発生した際のトレースデータはエミュレータデバッガ上で表示できません。

マイコン内でバッファオーバーフローが発生する詳細な条件については、対応するCPUの 「Architecture Reference Manual」を参照ください。

RENESAS

- (3) エミュレータ内のバッファオーバーフローについて
 SWOトレース機能を使用中、エミュレータデバッガの読み出しがトレースデータの出力に
 追い付かず、エミュレータ上の受信バッファがオーバーフローする場合があります。
 - ・オーバーフローが発生した際、エミュレータデバッガはワーニングを表示し、トレースデータの 取得/表示を継続します。オーバーフローが発生している間のトレースデータは表示できません。
 - ・オーバーフローはホスト PC の性能、マイコンの動作周波数、出力されるトレースデータ数や 同時に使用するデバッグ機能など、様々な要因で発生する可能性があります。
 - オーバーフローを解消するには、送信されるトレースデータを減少させる以下の対策が有効です。
 - エミュレータデバッガ上の[SWO 周波数の分周]を、大きい値に変更する※1
 - PC Sampling を Enable に設定している場合、Resolution を大きい値に変更する※2
 - Timestamp を Enable に設定している場合、Prescaler を大きい値に変更する※2
 - 同時に使用している SWO トレース機能(PC Sampling や Timestamps)を無効にする※2
 - ユーザプログラムでトレースデータを出力する場合は、ユーザプログラムを改定し、
 その出力間隔が大きくなるように調整する

※1:エミュレータデバッガ上の[Connection Settings]タブの[SWV]における、[SWO周波数の分周]

🗎 メイン <mark>🏷 Debugger</mark> 🕨 Startup 🦻 ソース 💷 共通(<u>C</u>)				
Debug hardware: E2 (ARM) \checkmark Target Device: R7FA6M4AF				
GDB Settings Connection Settings デバッグ・ツール設定				
✓ SWV				
SWO周波数の分周	16 🗸			

※2:エミュレータデバッガ上の[Live Trace Console]ビュー上にある[CoreSight ITM Settings]

ARM CoreSig	ht ITM Trace Settings				\times
PC Sampling PC Enable Resolution (C Timestamps Enable Prescaler: 64	ycle/sample): 4096	~ ~	Trace Events CPI: Cycles per instruction SLEEP: Sleep cycles FOLD: Folded instruction	EXC: Exception overhead LSU: Load store unit cycles EXETRC: Trace Exceptions	
Enable ports:	31	23		8 7	
Privilege:	Port 3124	Port 2316	Port 158	Port 70	
			[OK キャンセル	

- 3.3.9. 低消費電力モードに関する注意事項
- (1) SSTBY/SNOOZEモードのデバッグ SSTBY/SNOOZEモード中、エミュレータデバッガはマイコンのシステムバスへアクセスができません。このため、ユーザプログラム実行中、マイコンが当該のモードへ遷移している間、メモリや 周辺I/Oレジスタの設定/参照、各種ブレークポイントの設定/変更の機能は使用できません。
- (2) SSTBY/SNOOZEモード中のプログラムを強制停止

SSTBY/SNOOZEモード中にプログラムを強制停止する場合は、以下の操作を実施ください。 いずれの操作もSSTBY/SNOOZEモードを解除します。

- ・エミュレータデバッガ上の[リセット Note: 100]
 位置で停止できます
- ・エミュレータデバッガ上の[中断 III]にて、当該のモードへ遷移したWFE命令の次の命令で停止 できます。[中断]する場合、エミュレータデバッガ上の[Connection Settings]タブの[接続]におい
- て、

[低消費電力モードを使用する]の選択は、[はい]を選択してください。

📄 Main 🕸 De	ebugger 🛛 🕨 Startup	🛯 🎼 Sou	irce 🔲 🗖 Co	mmon			
Debug hardware: E2 (ARM) \checkmark Target Device: R7FA6M3AH							
GDB Settings	Connection Settings	デバッグ	・ツール設定				
✓ 接続							^
接続時にリセット状態を維持する		はい			\sim		
IDコード (バイト単位)		FFFFFFFF	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFFFFFFF			
低消費	電力モードを使用する		はい			\checkmark	~

図3-12 [低消費電力モードを使用する]の設定

RA6M4などTrustZone®機能搭載デバイスでは、[低消費電力モードを使用する]の選択を[はい]に 設定しても、 SSTBY/SNOOZEモード中にプログラムを強制停止することはできません。

(3) DSTBYモードのデバッグ

DSTBYに入るプログラムのデバッグには対応していません。

3.3.10. デバッグ時の消費電流

エミュータデバッガ接続中は、マイコン搭載のデバッグ回路が常に動作するため、マイコンの消費 電流値がユーザシステム実機単体の場合よりも増加します。ユーザシステムの消費電流を測定する 際は、ご注意ください。

3.3.11. メモリプロテクションユニット(MPU)に関する注意事項

(1) 保護領域に対するアクセス

各MPU機能の保護領域に対して、エミュレータデバッガからアクセスした場合の動作を表3.1に示します。

表3.1 各MPU機能へのアクセス

保護領域	エミュレータデバッガの動作
Arm® MPU	アクセス可能
バスマスタMPU	保護領域に対してアクセス不可
スレーブMPU	アクセス可能
セキュリティMPU	内蔵SRAM/周辺IOレジスタ
	Read : ダミー値(0x00)が読み出せます
	Write : 書き込みは無視される
	フラッシュメモリ
	Read:ダミー値(0x00)が読み出せます
	Write:ダウンロードなどでWriteした際、書き込みは可能

3.3.12. Trust Zone®機能に関する注意事項(RA4ファミリ、RA6ファミリの場合)

- (1) デバイスのDLMの状態がNSECSDの状態でデバッガ接続すると、デバッグアクセスレベル DBG1 で接続されます。
- (2) デバッグアクセスレベル DBG1で接続する際は、CPUリセット解除後、Non-Secure領域に正しく 遷移するプログラムがあらかじめ書き込まれている必要があります。
 (デバッガ接続後、Non-Secure領域に遷移した最初の命令で停止します。)
- (3) デバッグアクセスレベル DBG1で接続中は、Secure領域に対するブレークポイントは設定できません。
- (4) Secure設定された領域に対するアクセス

TrustZone®機能でSecure設定された領域に対して、エミュレータデバッガからデバッグアクセス レベル DBG1で接続中にアクセスした場合の動作を表3.2に示します。

表3.2 Secure設定領域のアクセス

Secure設定領域	エミュレータデバッガの動作
周辺IOレジスタ	Read:ダミー値(0x00)が読み出せます*1 Write:書き込みは無視されます
内蔵SRAM	Read/Write:セキュリティエラーが表示されます。

*1 周辺IOレジスタのリード値については、各レジスタの仕様を参照ください。

- (5) デバッグアクセスレベルDBG2で使用するソフトウェアブレーク機能について(フラッシュメモリ) Secure領域だけでなく、Non-Secure領域に配置したプログラムも同時にデバッグする場合、以下 のソフトウェアブレーク機能に関連するデバッグ操作は行わないでください。
 - ・NSC領域、Non-Secure領域に対するソフトウェアブレークの設定/解除
 - ・Non-Secure領域でプログラムが停止した状態でのソフトウェアブレークの設定/解除
 - ・Secure領域でソフトウェアブレークによって停止した後、ステップ実行のみでNon-Secure領域

遷移すること

上記の操作を行うとTrust Zone®機能により、その後のデバッグ操作でFaultやフラッシュメモリの 書き換え失敗が発生し、デバッグが継続できなくなります。 上記のケースでブレークポイントを設定する場合は、ハードウェアブレークで代用してください。

RENESAS

3.3.13. Trust Zone®機能に関する注意事項(RA8ファミリの場合)

- デバッグは、デバイスのDLM stateがOEMであり、かつAuthentication Level (AL)が 1もしくは 2の 場合のみ可能です。
- (2) デバイスへ設定されたProtection level(PL)に対応するデフォルトのALよりも高いALでデバッグする 場合は、Challenge and Response認証用のKey情報が必要になります。
 [Connection Settings]タブの[TrustZone]において、[デバイス認証時の認証レベル(AL)を指定する]で ALを選択し、かつ[認証キー]にそのAL Keyを入力したうえで、デバッガ接続を開始してください。
- (3) [デバイス認証時の認証レベル(AL)を指定する]で[指定しない]を選択してデバッガ接続した場合、デバイスに設定されたPLに対応するデフォルトのALでデバッグを開始します。
- (4) AL1でデバッガ接続する際は、CPUリセット解除後、Non-Secure領域に正しく遷移するプログラム があらかじめ書き込まれている必要があります。
 (デバッガ接続後、Non-Secure領域に遷移した最初の命令で停止します。)
- (5) AL1でデバッガ接続中は、Secure領域に対するブレークポイントは設定できません。
- (6) Secure設定された領域に対するアクセス TrustZone®機能でSecure設定された領域に対して、エミュレータデバッガからデバッグアクセス レベル AL1で接続中にアクセスした場合の動作を表3.3に示します。
 - 表3.3 Secure設定領域のアクセス

Secure設定領域	エミュレータデバッガの動作
周辺IOレジスタ	Read/Write:デバイスのセキュリティ機能によりデバッグ通信エラーが発生します。
内蔵SRAM	Read/Write:セキュリティエラーが表示されます。

3.3.14. コードフラッシュデュアルモード機能に関する注意事項

コードフラッシュデュアルモード (バンクスワップ機能を含む)および、コードフラッシュブロッ クスワップ機能を使用する場合は、エミュレータデバッガ上の[デバッグ・ツール設定]タブの[フ ラッシュ]において、[ダウンロード前に内蔵プログラムROMを消去する]を、[いいえ]に選択してく ださい。また、「システム」において、[内蔵プログラムROMを書き換えるプログラムをデバッグ する]を、[はい]に選択してください。

🛾 Main 🕸 Debugger 🛛 🕨 Startup 🦆 Source 🔲 Common			
Debug hardware: E2 (ARM) V Target Device: R7FA6M3	AH		
GDB Settings Connection Settings デバッグ・ツール設定			
✓ フラッシュ			^
_ワーク RAM 開始アドレス			
ダウンロード前に内蔵プログラムROMを消去する	いいえ	~	
ダウンロード前に内蔵データ・フラッシュROMを消去する	いいえ	~	
›			
v 9272			
内蔵プログラムROMを書き換えるプログラムをデバッグする	はい	~	
内蔵データ・フラッシュ POMを書き換えるプログラムをデバッグする	10107	. U	

3.3.15. SキャッシュおよびCキャッシュ機能に関する注意事項

Sキャッシュおよび、Cキャッシュ機能を使用する場合に、以下の条件が全て揃う際にはブレーク ポイントとしてソフトウェアブレークを使用せず、ハードウェアブレークを使用して下さい。

・CPUがNon-Secure

・SキャッシュおよびCキャッシュ機能の制御レジスタ(CCACTL、CCAFCT、SCACTL、SCAFCT) がセキュア状態

また、上記条件が揃った状況でダウンロードした場合、書き込み内容とキャッシュに差異が生じる 可能性があるため、ダウンロード後はキャッシュのインバリデートを実施するようにして下さい。

3.3.16. フラッシュ・リード・プロテクション機能に関する注意事項(RA0ファミリの場合)

フラッシュ・リード・プロテクション領域に設定された領域は、フェッチはできますがリードはできません。リードした場合は0xFFが読めます。

なお、エミュレータデバッガの逆アセンブル表示では、以下のように表示されます。

e2 studio(逆アセンブルビュー): "<UNDEFINED> instruction"

フラッシュ・リード・プロテクションは、フラッシュ・リード・プロテクション設定予定領域のデ バッグ完了後に設定してください。

- フラッシュ・リード・プロテクション設定状態におけるデバッグ時の注意点:
 - ・フラッシュ・リード・プロテクションに設定した領域はデバッグできません。
 - ・フラッシュ・リード・プロテクション領域設定に対してメモリ・パネル上から書き込みや 初期化を行わないでください。もし行った場合、その領域を含むブロック全体が消去されます。

3.3.17. Port/RES端子の選択機能に関する注意事項(RA0ファミリの場合)

デバッグ中、オプション設定メモリ(OFS1.PORTSELB)の設定値はマスクされ、RESET入力に固定されます。

3.3.18. Start/Stop機能に関する注意事項

Start/Stop機能は、ユーザプログラムを実行開始する直前および停止した直後にユーザプログラムの指定ルーチンを実行する機能です。Arm®コアが有する割り込み機能の一つであるデバッグモニタ割り込みを用いて実現します。Start/Stop機能の使用にあたっては、以下の点にご注意ください。

(1) Start/Stop機能用モニタプログラム

エミュレータデバッガは、マイコンの内蔵SRAMへStart/Stop機能用モニタプログラムを書き込み、 実行させることで機能を実現しています。そのため、Start/Stop機能有効中は内蔵SRAMの一部(1K バイト分)を占有します。

(2) Start/Stop機能用モニタプログラムの配置先

Start/Stop機能用モニタプログラムの配置先は、DMAC/DTC転送等で使用する領域と重ならない様に、かつMPU等でセキュリティ設定している場合はその領域内に収まるようにエミュレータデバッガ上の[デバッグ・ツール設定]タブの[Start/Stop機能設定]において、[ワークRAM開始アドレス]で、使用可能な内蔵RAMの開始アドレスを1000hバイト単位で入力ください。

GDB Settings Connection Settings デバッグ・ツール設定		
✓ Start / Stop 機能設定		
ユーザー・プログラム実行前に関数を実行する	はい	~
start 関数の開始アドレス		
ユーザー・プログラム停止時に関数を実行する	はい	~
stop 関数の開始アドレス		
ワーク RAM 開始アドレス		
ワーク RAM サイズ (バイト)	0x400	

図3-14 [ワークRAM開始アドレス]の設定

(3) Start関数およびStop関数の指定

ユーザプログラムを実行開始する直前に実行するルーチンのStart関数および停止した直後に実行するルーチンのStop関数を[start関数の開始アドレス][stop関数の開始アドレス]で指定ください。

GDB Settings Connection Settings デパッグ・ツール設定		
✓ Start / Stop 機能設定		^
ユーザー・プログラム実行前に関数を実行する	はい	~
start 関数の開始アドレス		
ユーザー・プログラム停止時に関数を実行する	はい	~
stop 関数の開始アドレス		
ワーク RAM 開始アドレス		
ワーク RAM サイズ (パイト)	0x400	

図3-15 [start関数の開始アドレス] [stop関数の開始アドレス]の設定

それぞれの項目の右側にある[...]ボタンを押すと[シンボルの選択]画面が表示され、関数一覧から直 接選択可能です。

		~
フィルター:		
シンボル	アドレス	^
 BusFault_Handler 	0x000	
 DebugMon_Handler 	0x000	
 Default_Handler 	0x000	
• HardFault_Handler	0x000	
 MemManage_Handler 	0x000	
 NMI_Handler 	0x000	
PendSV Handler	0x000	~
OK	Cancel	

図3-16 [シンボルの選択] ウィンドウ

(4) Start関数およびStop関数の記述について

Start関数およびStop関数はC言語でもアセンブラでも記述することができますが、C言語の場合は 最後にリターン命令を実行するようにしてください。アセンブラの場合は関数の最初にLRレジス タを退避し、最後でPCレジスタへ復帰するようにしてください。なお、関数名は任意のもので構 いません。

(5) ベクタテーブルの記述について

Start/Stop機能を使用する場合は、ベクタテーブルでデバッグモニタ割り込みの飛び先アドレスを Start/Stop機能用モニタプログラムの配置先アドレスに**0x1**を足した値を設定ください。

(例)Start/Stop機能用モニタプログラムの配置先アドレスに0x20002000を指定した場合
 図3-17のようにFSPで自動生成されたソース内(startup.c)にあるベクタテーブルを例にしますと、
 Start/Stop機能用モニタプログラムの配置先アドレスに0x20002000を指定した場合は、ベクタテーブル内のデバッグモニタ割り込み飛び先アドレスを0x20002001と設定ください。

Vector table. */			
P_DONT_REMOVE const exc_ptr_tVectors[BSP_CORTEX_VECTOR_TAB	BLE_ENTR	RIES] BSP_PLACE_IN_SECTION	(
<pre>BSP_SECTION_FIXED_VECTORS) =</pre>			
<pre>(exc_ptr_t) (&g_main_stack[0] + BSP_CFG_STACK_MAIN_BYTES),</pre>	/*	Initial Stack Pointer	*/
Reset_Handler,	/*	Reset Handler	*/
NMI_Handler,	/*	NMI Handler	*/
HardFault_Handler,	/*	Hard Fault Handler	*/
MemManage_Handler,	/*	MPU Fault Handler	*/
BusFault_Handler,	/*	Bus Fault Handler	*/
UsageFault_Handler,	/*	Usage Fault Handler	*/
SecureFault_Handler,	/*	Secure Fault Handler	*/
0,	/*	Reserved	*/
0,	/*	Reserved	*/
0,	/*	Reserved	*/
SVC_Handler,	/*	SVCall Handler	*/
0x20002001,	/*	Debug Monitor Handler	*/
0,	/*	Reserved	*/
PendSV_Handler,	/*	PendSV Handler	*/
SysTick_Handler,	/*	SysTick Handler	*/

図3-17 ベクタテーブルの設定例

- (6) Start/Stop機能を使用する場合に、以下の点に注意して使用して下さい。予期せぬ動作をする場合 があります。
 - ・多重割り込みは使用しないでください。
 - ・Start関数およびStop関数がコンパイラで最適化されて削除されないようにしてください。
 - ・Start関数およびStop関数内にブレークポイントを設定しないでください。
 - また、Start/Stop機能使用中におけるRun-Breakタイムの精度は保証出来ません。
- (7) Start/Stop機能は以下のいずれかに該当する場合、使用できません。
 - ・Coretex-M33およびCoretex-M4以外をコアに持つデバイス
 - ・RA6M4などTrustZone®機能搭載デバイスで、デバッグアクセスレベルがDBG2以外
- 3.3.19. ホットプラグイン機能に関する注意事項

ホットプラグイン機能とは、エミュレータを接続していないユーザシステムの電源を入れたまま エミュレータをシステムに接続しデバッグできるエミュレータの機能です。ユーザシステム単体 での動作確認中に問題が発生した際、すぐにエミュレータを接続してデバッグできるため、不具 合の再現に時間をとられることなく原因特定までの工数を削減できます。

本機能を使用するにあたっては以下の点にご注意ください。

(1) ユーザシステムとエミュレータの接続

ユーザシステムの電源投入前に、ユーザシステムとエミュレータのGNDを接続し、電位差が 発生しないようにしてください。 以下の手順で接続をしてください。

- E2の場合
 E2のユーザーズマニュアル(R20UT3538JJ0300 / R20UT3538EJ0300)の「2.4 ホットプラグ インによるE2エミュレータとユーザシステムの接続方法」を参照いただき、ユーザシステム とエミュレータのGNDを接続してください。
- E2Lの場合
 E2 Liteのユーザーズマニュアル(R20UT3240JJ0310 / R20UT3240EJ0310)の「2.6 ホットプラ グイン接続」を参照いただき、ユーザシステムとエミュレータのGNDを接続してください。

- (2) e2sudioでの設定
 - (1) ツールバーの実行(R)>デバッグの構成(B)をクリックしデバッグの構成を開いてください。

実	行(R)	ウィンドウ(W)	ヘルプ(H)		
	Rer	Renesas Debug Tools			
, Q	実行	Ţ(R)	Ctrl	+F11	
*	デバ	ッグ(D)		F11	
	実行	亍履歴(T)		>	
0	実行	Ţ(S)		>	
	実行	亍構成(N)			
	デバ	ッグ履歴(H)		>	
*	デバ	ッグ(G)		>	
	デバ	ッグの構成(B)			
Q	外部	形ツール(E)		>	

(2) デバッグの構成を開いたら、「Renesas GDB Hardware Debugging」をクリックし、対象 のプロジェクトを選択してください。

🗈 🖻 🗞 🗈 🗶 –
<u>フィルタ入力 ×</u>
> C C/C++ アプリケーション > C C/C++ リモート・アプリケーション
■ EASE Script ■ GDB Simulator Debugging (RH85) ■ GDB ハードウェア・デバッギング
Renesas GDB Hardware Debuggii Renesas Simulator Debugging (R
■ 起動グループ

図3-19 Renesas GDB Hardware Debuggingへのアクセス方法

(3) Debugger>Connection Settingsのタブに移動し、「接続」の中にある 「ホット・プラグ」を「はい」にしてください。

) メイン 🕸 Debugger 🕨 Startup	℡ 共通(⊆	
Debug hardware: E2 (ARM)	✓ Target Device:	
GDB Settings Connection Setting マ クロック 図3-20 Connection Settings	35 デバッグ・ツール設定 へのアクセス方法	
ホット・ブラグ	はい はい いいえ	~
図3-21 ホット・プラグの設定	定	

- (3) 電源の投入

図3-18 デバッグ構成へのアクセス方法

電源の投入に関しては以下の手順を実施してください。

- E2の場合
 E2のユーザーズマニュアル(R20UT3538JJ0300 / R20UT3538EJ0300)の「2.5 電源のオン / オフ」の「2.5.1.別電源からユーザシステムに電源を供給する場合」参照ください。
- ・ E2Lの場合
 E2Lのユーザーズマニュアル(R20UT3240JJ0310 / R20UT3240EJ0310)の「2.4 電源のオン / オフ」の「2.4.1.別電源からユーザシステムに電源を供給する場合」を参照ください。

なお、E2/E2Lのユーザーズマニュアルの手順では「(2)ユーザシステムの接続」がありますが、 ホットプラグイン接続実施時にはユーザシステムとエミュレータは接続せず、電源を投入して ください。

- (4) ホットプラグイン接続に失敗した場合 エミュレータのUSBの再接続を行い、もう一度やり直してください。 なお、ホットプラグイン接続に失敗した場合はリセットがかかります。
- (5) RA8シリーズマイコンにおける注意点

RA8シリーズのマイコンに関しては、ホットプラグイン接続での認証は不可能です。 そのため、RA8シリーズでホットプラグイン接続を行う場合は、デバッグ構成内にある、 Renesas GDB Hardware Debuggingを選択し、Debuggerタブ内にあるConnection Settingsタ ブを選択し、メニュー内のTrustZoneの「デバイス認証時の認証レベル(AL)を指定する」の設 定項目を「指定しない」に設定してください。

デバッグ構成へのアクセス方法は「(2) e2studioの設定」を参照してください。

Hot Plug	VVVX	~
✓ TrustZone		
セキュア領域 /非セキュア領域の境界を設定する	いいえ	¥
デバイス認証時の認証レベル(AL)を指定する	指定しない	¥
認証キー	指定しない	
	AL2	
	AL1	

図3-22 デバイス認証時の認証レベル(AL)を指定する の設定

本項目をAL2, AL1に設定している場合は、リセット後に認証を行いますので、従来と同じ動作になります。

3.4. デバッグに使用したマイコン

エミュレータでのデバッグ終了後に,エミュレータを取り外してマイコン単体で動作させることは保 証しておりません。マイコン単体で動作させる場合には、書き込みソフトウェアを使用して、改めてプ ログラムを書き込んでください。

エミュレータを接続してデバッグに使用したマイコンは、フラッシュメモリの書き込みを繰り返して おり、ストレスがかかっています。デバッグに使用したマイコンは、お客様の量産製品には使用しない でください。

3.5. ユーザプログラムの最終評価

量産前には、書き込みソフトウェアにてプログラムをフラッシュROMに書き込み、エミュレータが接続されていない状態での最終評価を必ず実施してください。

RENESAS

Rev.	発行日	改訂記録		
		ページ	ポイント	
1.00	2020.3.16		初版発行	
2.00	2020.10.1		TrustZone®対応。DLM対応。ETBトレースに関する注意事項を追加。	
3.00	2021.8.16		2.4.3. SCI接続、3.3.8. SWOトレース機能に関する注意事項、3.3.12. (5) デバッグア	
		I	クセスレベルDBG2で使用するソフトウェアブレーク機能について、3.3.14. S	
		I	キャッシュおよびCキャッシュ機能に関する注意事項を追加。	
			3.3.1.(5) 接続速度について を更新。	
3.10	2022.06.16	13-15	注1の説明を変更	
3.20	2023.03.01	17	2.5.2 MD端子について を更新	
		38	3.3.15 Start/Stop機能に関する注意事項を追加	
3.30	2023.10.16	7	表1.1 対象デバイスに RA8シリーズ追加 SWD I/F にPRGを追加	
		18	2.5.2 MD端子について を更新	
		28	3.3.1.(5) 認証キーへのALeRASEコマンド入力(RA8ファミリの場合)を追加	
		31	3.3.2.(6) RA8シリーズにおける注意点を追加	
		37	3.3.12. Trust Zone®機能に関する注意事項の表題に(RA4ファミリ、RA6ファミリの	
			場合)の表記を追加	
		38	3.3.13. Trust Zone®機能に関する注意事項(RA8ファミリの場合)を追加	
		42-44	3.3.17 ホットプラグイン機能に関する注意事項を追加	
3.40	2024.4.1	7	表1.1 対象デバイスに RAOシリーズ追加	
		39	3.3.16. フラッシュ・リード・プロテクション機能に関する注意事項(RA0ファミリ	
		l	の場合)を追加	
			3.3.17. Port/RES端子の選択機能に関する注意事項(RA0ファミリの場合)を追加	

E2エミュレータ, E2エミュレータLite ユーザーズマニュアル別冊 (RA接続時の注意事項)			
発行年月日	2024年4月1日 Rev.3.40		
発行	ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24(豊洲フォレシア)		

E2エミュレータ, E2エミュレータLite ユーザーズマニュアル別冊 (RA接続時の注意事項)

