
 APPLICATION NOTE

RX v2 Core
VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to design
automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls.

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers / Stoves will tend to fall
under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance with
IEC60730 class B safety standards. These routines have been certified by VDE Test and Certification Institute GmbH
and a copy of the Test Certificate is available in the download package for this Application Note (See Note 1 below).

Although these routines were developed using IEC60730 compliance as a basis, they can be implemented in any system
for self-testing of Renesas MCUs.

The software routines provided are to be used after reset and also during the program execution. The end user has the
flexibility of how to integrate these routines into their overall system design but this document and the accompanying
sample code provide an example of how to do this.

Note 1. This document is based on the standards: DIN EN 60335-1 (VDE 0700-1):2012-10; EN 60335-1:2012, DIN
EN 60335-1 Ber.1 (VDE 0700-1 Ber.1):2014-04; EN 60335-1:2012/AC:2014, EN 60335-1:2012/A11:2014, DIN EN
60730-1 (VDE 0631-1):2012-10; EN 60730-1:2011, IEC 60335-1(ed.5);am1;am2, IEC 60730-1(ed.5);am1. The Annex
R of the mentioned Norm contains just a single sheet that jumps to the IEC 60730-1 for definitions, information and
applicable paragraphs.

Target Device
RX V2 Core Microcontrollers

R01AN3364EG0100
Rev.1.00

Jun 28, 2016

R01AN3364EG0100 Rev.1.00 Page 1 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Contents

1. Tests .. 4
1.1 CPU ... 4

1.1.1 Software API .. 4
1.2 ROM .. 12

1.2.1 CRC16-CCITT Algorithm ... 12

1.2.2 CRC Software API ... 12
1.3 RAM .. 15

1.3.1 Algorithms ... 15

1.3.2 Software API .. 16
1.4 Clock ... 24
1.5 Independent Watchdog .. 27
1.6 Voltage ... 29
1.7 Port Output Enable (POE) .. 30

2. Example Usage ... 31
2.1 CPU ... 31

2.1.1 Power-Up ... 31

2.1.2 Periodic .. 31
2.2 ROM .. 32

2.2.1 Power-Up ... 33

2.2.2 Periodic .. 34
2.3 RAM .. 34

2.3.1 Power-Up ... 34
2.4 Clock ... 35
2.5 Independent Watchdog .. 35
2.6 Voltage ... 36
2.7 POE ... 36

3. Benchmarking .. 37
3.1 Environment .. 37
3.2 Results ... 39

3.2.1 CPU .. 39

3.2.2 ROM – Flash Memory .. 39

R01AN3364EG0100 Rev.1.00 Page 2 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

3.2.3 RAM .. 39

4. Additional Information ... 41
4.1 Reading an IO Pin State .. 41

R01AN3364EG0100 Rev.1.00 Page 3 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

1. Tests
1.1 CPU
This section describes CPU tests routines. Reference IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.7 CPU.

The following CPU registers are tested: R0->R15 ISP,USP,INTB,PSW,BPC,BPSW,FINTV and FPSW.

The source file ‘CPU_Test.c’ provides implementation of the CPU test using “C” language with inline assembly to
actually access the registers. File CPU_Test_Coupling.c is also required if using the coupling test version of the
General Purpose Registers. The source file ‘CPU_Test.h’ provides the interface to the CPU tests. The file
‘MisraTypes.h’ includes definitions of MISRA compliant standard data types.

Note: The following statement in file CPU_Test.c must be present to ensure that the new registers are tested,

#define RX23T

These tests are testing such fundamental aspects of the CPU operation; the API functions do not have return values to
indicate the result of a test. Instead the user of these tests must provide an error handling function with the following
declaration:-

extern void CPU_Test_ErrorHandler(void);

This will be jumped to by the CPU test if an error is detected. This function must not return.

The CPU test is split into a number of functions or, if time is permitting, a single function call can be used to run all the
tests one after another. See Section 1.1.1 Software API for details.

The test functions all follow the rules of register preservation following a C function call as specified in the Renesas tool
chain manual. Therefore the user can call these functions like any normal C function without any additional
responsibilities for saving register values beforehand.

IMPORTANT NOTE: Please keep the “Optimization” option “OFF” for the ‘CPU_Test.c’ file, to prevent modification of the test
code.

1.1.1 Software API

File name

CPU_Test.h

CPU_Test.c, CPU_Test_Coupling.c

Table 1-1 Source Files

Syntax

void CPU_TestAll(void)

Description

Runs through all the tests detailed below in the following order:-

1. If using Coupling GPR Tests (*1, see below):-
CPU_Test_GPRsCouplingPartA

CPU_Test_GPRsCouplingPartB

If not using Coupling GPR test:-

CPU_Test_GeneralA

R01AN3364EG0100 Rev.1.00 Page 4 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

CPU_Test_GeneralB

2. CPU_Test_Control
3. CPU_Test_Accumulator
4. CPU_Test_PC

It is the calling functions responsibility to ensure that the processor is in Supervisor Mode. If this function is called in
User Mode the test will fail as some of the register bits are not accessible in User Mode.

It is also the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

See the individual tests for a full description.

*1. A #define ‘USE_TestGPRsCoupling’ in the code is used to select which functions will be used to test the General
Purpose Registers.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_GPRsCouplingPartA(void)

Description

Tests general purpose registers R0 to R15.Coupling faults between the registers are detected.

This is PartA of a complete GPR test, use function CPU_Test_GPRsCouplingPartB to complete the test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 5 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

void CPU_Test_GPRsCouplingPartB(void)

Description

Tests general purpose registers R0 to R15.Coupling faults between the registers are detected.

This is PartB of a complete GPR test, use function CPU_Test_GPRsCouplingPartA to complete the test.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 6 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

void CPU_Test_GeneralA(void)

Description

Test registers R1,R2,R3,R4,R5,R14 and R15. These are the general purpose registers that don’t need to be preserved by
a function. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 7 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

 Syntax

void CPU_Test_GeneralB(void)

Description

Test registers R0,R6,R7,R8,R9,R10,R11,R12 and R13. These are the general purpose registers that need to be preserved
by a function. Registers are tested in pairs.

 For each pair of registers:

 1. Write h'55555555 to both.

 2. Read both and check they are equal.

 3. Write h'AAAAAAAA to both.

 4. Read both and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 8 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

void CPU_Test_Control(void)

Description

Tests control registers ISP,USP,INTB,PSW,BPC,BPSW,FINTV and FPSW.

NOTE: FPSW is not tested if ‘RX210’ is #defined.

This test assumes registers R1 to R5 are working.

 Generally the test procedure for each register is as follows:

 For each register:-

 1. Write h'55555555 to.

 2. Read back and check value equals h'55555555.

 3. Write h'AAAAAAAA to.

 4. Read back and check value equals h'AAAAAAAA.

 Note however that there are some cases where restrictions on

 certain bits within a register mean this cannot be can followed exactly.

 Therefore, other test values have been chosen.

It is the calling functions responsibility to ensure that the processor is in Supervisor Mode. If this function is called in
User Mode the test will fail as some of the register bits are not accessible in User Mode.

It is also the calling function’s responsibility to ensure no interrupts occur during this test.

The RX610 has a slightly different PSW register from other Rx devices. For this reason, if using an RX610, then
“RX610” must be defined in the project.

If an error is detected then external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 9 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

void CPU_Test_Accumulator(void)

Description

Tests the ACC register.

 NOTE: Bits 0-15 cannot be read and are therefore not tested.

 The register value is preserved by this test.

 The test procedure is as follows:

 1. Write h'55555555 to high order 32 bits.

 2. Write h'55555555 to low order 32 bits.

 3. Read back high order and check value equals h'55555555.

 4. Read back middle order (bits 47 to 16) and check value equals h'55555555.

 5. Write h'AAAAAAAA to high order 32 bits.

 6. Write h'AAAAAAAA to low order 32 bits.

 7. Read back high order and check value equals h'AAAAAAAA.

 8. Read back middle order (bits 47 to 16) and check value equals h'AAAAAAAA.

 This test assumes registers R1 to R5 are working.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 10 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

void CPU_Test_PC(void)

Description

This function provides the Program Counter (PC) register test.

This provides a confidence check that the PC is working.

It tests that the PC is working by calling a function that is located in its own section so that it can be located away from
this function, so that when it is called more of the PC Register bits are required for it to work.

So that this function can be sure that the function has actually been executed it returns the inverse of the supplied
parameter. This return value is checked for correctness.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_PC(void)

Description

This function provides the Program Counter (PC) register test.

This provides a confidence check that the PC is working.

It tests that the PC is working by calling a function that is located in its own section so that it can be located away from
this function, so that when it is called more of the PC Register bits are required for it to work.

So that this function can be sure that the function has actually been executed it returns the inverse of the supplied
parameter. This return value is checked for correctness.

If an error is detected then external function ‘CPU_Test_ErrorHandler’ will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 11 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Return Values

NONE N/A

1.2 ROM
This section describes the ROM / Flash memory test using CRC routines. Reference IEC 60730: 1999+A1:2003 Annex
H - Table H.11.12.7 Invariable Memory.

CRC is a fault / error control technique which generates a single word or checksum to represent the contents of memory.
A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction), of the message
bit stream, by a predefined (short) bit stream of length n + 1, which represents the coefficients of a polynomial with degree
n. Before the division, n zeros are appended to the message stream. CRCs are popular because they are simple to
implement in binary hardware and are easy to analyse mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test the same CRC algorithm is used to generate another CRC value, which is compared with the
saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. This complication has arisen because big and little endian systems were developed to work
together that employed serial data transfers where bit order became important. This implementation will produce the
same result as the Renesas RX Standard toolchain does using the –CRC option. Therefore if you are using the Renesas
Toolchain to automatically insert a reference CRC into the ROM the value can be compared directly with the one
calculated.

1.2.1 CRC16-CCITT Algorithm

The RX100 family includes a CRC module that includes support for the CRC16-CCITT. Using this software to drive
the CRC module produces this 16-bit CRC16-CCITT:

• Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Width = 16 bits
• Initial value = 0xFFFF
• XOR with h’FFFF is performed on the output CRC

1.2.2 CRC Software API
All software is written in ANSI C. ‘MisraTypes.h’ includes definitions of MISRA-compliant standard data types.

The functions in the remainder of this section are used to calculate a CRC value and verify its correctness against a
value stored in ROM.

File name

CRC_Verify.h, CRC_Verify.c

CRC.h, CRC.c

Table 1-2 Source Files

R01AN3364EG0100 Rev.1.00 Page 12 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

bool_t CRC_Verify(const uint16_t ui16_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description

This function compares a new CRC value with a reference CRC by supplying address where reference CRC is
stored.

Input Parameters

uint16_t ui16_NewCRCValue Value of calculated new CRC value.

uint32_t ui32_AddrRefCRC Address where 16 bit reference CRC value is stored.

Output Parameters

NONE N/A

Return Values

bool_t Test result: TRUE = Passed, FALSE = Failed

This following functions are implemented in files CRC.h and CRC.c:

Syntax

uint16_t CRC_Init(void)

Description

Initialises the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters

uint8_t* pui8_DataBuf Pointer to start of memory to be tested.

uint32_t ui32_DataBufSize Length of the data in bytes.

Output Parameters

NONE N/A

Return Values

uint16_t The 16-bit calculated CRC-CCITT value.

Syntax

uint16_t CRC_Calculate(uint8_t* pui8_Data, uint32_t ui32_Length)

Description

This function calculates the CRC of a single specified memory area.

Input Parameters

uint8_t* pui8_DataBuf Pointer to start of memory to be tested.

uint32_t ui32_DataBufSize Length of the data in bytes.

R01AN3364EG0100 Rev.1.00 Page 13 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Output Parameters

NONE N/A

Return Values

uint16_t The 16-bit calculated CRC-CCITT value.

The following functions are used when the memory area cannot simply be specified by a start address and length. They
provide a way of adding memory areas in ranges/sections. This can also be used if function CRC_Calculate takes too
long in a single function call.

void CRC_Start(void)

Description

Prepares the module for starting to receive data. Call this once prior to using function CRC_AddRange.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

void CRC_AddRange(uint8_t* pui8_Data, uint32_t ui32_Length)

Description

Use this function rather than CRC_Calculate if wanting to calculate the CRC on data made up of more than one
address range. Call CRC_Start first then CRC_AddRange for each address range required and then call CRC_Result
to get the CRC value.

Input Parameters

uint8_t* pui8_DataBuf Pointer to start of memory range to be tested.

uint32_t ui32_DataBufSize Length of the data in bytes.

Output Parameters

NONE N/A

Return Values

None N/A

int16_t CRC_Result(void)

Description

R01AN3364EG0100 Rev.1.00 Page 14 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Calculates the CRC value for all the memory ranges added using function CRC_AddRange since CRC_Start was
called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

uint16_t The calculated CRC-CCITT value.

1.3 RAM

March Tests are a family of tests that are well recognized as an effective way of testing RAM.

A March test consists of a finite sequence of March elements, while a March element is a finite sequence of operations
applied to every cell in the memory array before proceeding to the next cell.

In general the more March elements the algorithm consists of the better will be its fault coverage but at the expense of a
slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values) but the supplied test functions
provide a non-destructive option so that memory contents can be preserved. This is achieved by copying the memory to
a supplied buffer before running the actual algorithm and then restoring the memory from the buffer at the end of the
test. The API includes an option for automatically testing the buffer as well as the RAM test area.

The area of RAM being tested cannot be used for anything else while it is being tested. This makes the testing of RAM
used for the stack particularly difficult. To help with this problem the API includes functions which can be used for
testing the stack.

The following section introduces the specific March Tests. Following that is the specification of the software APIs.

1.3.1 Algorithms

(1) March C

The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It detects the
following faults:

1. Stuck At Faults (SAF)
• The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)
• A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)
• Any fault that affects address decoder:

• With a certain address, no cell will be accessed.

• A certain cell is never accessed.

R01AN3364EG0100 Rev.1.00 Page 15 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

• With a certain address, multiple cells are accessed simultaneously.

• A certain cell can be accessed by multiple addresses.

These are the 6 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

III. Starting at lowest address, read ones, write zeros, increment up array bit by bit.
IV. Starting at highest address, read zeros, write ones, decrement down array bit by bit.
V. Starting at highest address, read ones, write zeros, decrement down array bit by bit.

VI. Read all zeros from array.

(2) March X

Note: This algorithm has not been implemented for the RX100 family and is only presented here for information as it
relates to the March X WOM version below.

The March X algorithm consists of 4 March elements with a total of 6 operations. It detects the following faults:

1. Stuck At Faults (SAF)
2. Transition Faults (TF)
3. Inversion Coupling Faults (Cfin)
4. Address Decoder Faults (AF)

These are the 4 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

III. Starting at highest address, read ones, write zeros, decrement down array bit by bit.
IV. Read all zeros from array.
V.

(3) March X (Word-Oriented Memory version)

The March X Word-Oriented Memory (WOM) algorithm has been created from a standard March X algorithm in two
stages. First the standard March X is converted from using a single bit data pattern to using a data pattern equal to the
memory access width. At this stage the test is primarily detecting inter word faults including Address Decoder faults.
The second stage is to add an additional two March elements. The first using a data pattern of alternating high/low bits
then the second using the inverse. The addition of these elements is to detect intra-word coupling faults.

These are the 6 March elements:-

I. Write all zeros to array
II. Starting at lowest address, read zeros, write ones, increment up array word by word.

III. Starting at highest address, read ones, write zeros, decrement down word by word.
IV. Starting at lowest address, read zeros, write h’AAs, increment up array word by word.
V. Starting at highest address, read h’AAs, write h’55s, decrement down word by word.

VI. Read all h’55s from array.

1.3.2 Software API

Two implementations of the RAM tests are available;

1) Standard implementation.

2) Hardware (HW) implementation. This version uses the Data Operation Circuit (DOC) and Data Transfer
Controller (DTC) to help perform the tests. DOC and DTC perform their operation without CPU intervention
enabling the CPU to perform other tasks.

R01AN3364EG0100 Rev.1.00 Page 16 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Both implementations share the same core API but the ‘HW’ implementation has some additional functions. Please
see details in Section (3) March C and March X WOM HW Implementation specific API.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested
between words it is important to use the functions to test a data range bigger than one word. It is recommended that
more than h’0F bytes are tested each time.

(1) March C API
This test can be configured to use 8, 16 or 32 bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_C_ACCESS_SIZE in the header file to be one of the following:

• RAMTEST_MARCH_C_ACCESS_SIZE_8BIT
• RAMTEST_MARCH_C_ACCESS_SIZE_16BIT
• RAMTEST_MARCH_C_ACCESS_SIZE_32BIT

Sometimes limiting the maximum size of RAM that can be tested with a single function call can speed the test up as
well as reducing stack and code size. This is done by limiting the size of the variable used to hold the number of
‘words’ that the test area contains. The ‘word’ size is the selected access width.

This is achieved by #defining RAMTEST_MARCH_C_MAX_WORDS in the header file to be one of the following:

• RAMTEST_MARCH_C_MAX_WORDS_8BIT (Max words in test area is 0xFF)
• RAMTEST_MARCH_C_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
• RAMTEST_MARCH_C_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Standard HW

ramtest_march_c.h ramtest_march_c.h

ramtest_march_c.c ramtest_march_c_HW.c

 ramtest_march_HW.h

 ramtest_march_HW.c

Table 1-3 Source Files

The source is written in ANSI C and uses MISRA-compliant data types as declared in file MisraTypes.h.

Declaration

bool_t RamTest_March_C(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test using March C (Goor 1991) algorithm.

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe

For a destructive memory test set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough to copy the
contents of the test area into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 17 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

Declaration

bool_t RamTest_March_C_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

Non Destructive RAM memory test using March C (Goor 1991) algorithm.

This function differs from the RamTest_March_C function by testing the ‘RAMSafe’ buffer before using it. If the
test of the ‘RAMSafe’ buffer fails then the test will be aborted and the function will return FALSE.

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe
Set to the start of a buffer that is large enough to copy the contents of the test area into it and
that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

(2) March X WOM API

This test can be configured to use 8, 16 or 32 bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_X_WOM_ACCESS_SIZE in the header file to be one of the
following:

• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_8BIT
• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_16BIT
• RAMTEST_MARCH_ X_WOM_ACCESS_SIZE_32BIT

In order to speed up the run time of the test you can choose to limit the maximum size of RAM that can be tested with a
single function call. This is done by limiting the size of the variable used to hold the number of ‘words’ that the test area
contains. The ‘word’ size is the same as the selected access width.

This is achieved by #defining RAMTEST_MARCH_ X_WOM_MAX_WORDS in the header file to be one of the
following:

• RAMTEST_MARCH_ X_WOM_MAX_WORDS_8BIT (Max words in test area is 0xFF)
• RAMTEST_MARCH_ X_WOM_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)
• RAMTEST_MARCH_ X_WOM_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

R01AN3364EG0100 Rev.1.00 Page 18 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Standard HW

ramtest_march_x_wom.h ramtest_march_x_wom.h

ramtest_march_x_wom.c ramtest_march_x_wom_HW.c

 ramtest_march_HW.h

 ramtest_march_HW.c

Table 1-4 Source Files

The source is written in ANSI C and uses MISRA-compliant data types as declared in file MisraTypes.h.

NOTE: The API allows just a single word to be tested with a function call. However, for coupling faults to be tested
between words it is important to use the functions to test a data range bigger than one word.

Declaration

bool_t RamTest_March_X_WOM(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

RAM memory test based on March X algorithm converted for WOM.

Input Parameters

ui32_StartAddr
Address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
Address of the last word of RAM to be tested. This must be aligned with the selected memory
access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe

For a destructive memory test set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough to copy the
contents of the test area into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

R01AN3364EG0100 Rev.1.00 Page 19 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Declaration

bool_t RamTest_March_X_WOM_Extra(uint32_t ui32_StartAddr, uint32_t ui32_EndAddr,
 void* p_RAMSafe);

Description

Non Destructive RAM memory test based on March X algorithm converted for WOM. This function differs from the
RamTest_March_X_WOM_XXBit function by testing the ‘RAMSafe’ buffer before using it. If the test of the
‘RAMSafe’ buffer fails then the test will be aborted and the function will return FALSE.

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be aligned with the selected
memory access width.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be aligned with the selected
memory access width and be a value greater or equal to ui32_StartAddr.

P_RAMSafe
Set to the start of a buffer that is large enough to copy the contents of the test area into it and
that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

(3) March C and March X WOM HW Implementation specific API

The ‘HW’ implementations of the March C and the March X WOM tests use the Data Operation Circuit (DOC) to
help perform the tests. The DOC is used to compare values read back from RAM with expected values.

It is the user’s responsibility to ensure that nothing else accesses the DOC during the RAM tests.

Declaration

void RamTest_March_HW_Init(void);

Description

Initialize the hardware (DOC) used by the ‘HW’ implementations of the RAM tests.

Call this function before using any other RAM Test function that uses a HW implementation.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

void N/A

R01AN3364EG0100 Rev.1.00 Page 20 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Declaration

bool_t RamTest_March_HW_PreTest(void);

Description

This may be used to check if the hardware (DOC) are functioning correctly before using.

A quick functional test of the DOC is performed.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test failed.

Declaration

bool_t RamTest_March_HW_Is_Init(void);

Description

Checks if RamTest_March_HW_Init has been called.

This is used by specific RAM tests to check that the HW has been initialized before trying to use it.

A user does not have to use this function.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

(4) RAM Test Stack API

This API enables a RAM test to be performed on an area of RAM that includes the stack. As the function that performs
the RAM test requires a stack these functions will, re-locate the stack to a supplied new RAM area allowing the original
stack area to be tested. Three functions are provided that can be called depending upon which stack (User or Interrupt)
is in the test area or if both are.

NOTE: The stack testing functions make use of one of the March Ram tests presented previously by passing it in as a
function pointer. If using a test that requires initialisation before use it is the user’s responsibility to ensure this has been
done before trying to use the test by calling one of these functions.

R01AN3364EG0100 Rev.1.00 Page 21 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

File name

ramtest_stack.h

ramtest_stack.c

Table 1-5 Source Files

Declaration
bool_t RamTest_Stack_User(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewUSP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the User Stack. (but not the Interrupt stack)

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

P_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

Ui32_NewUSP New Stack pointer value for the User stack to be re-located to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

R01AN3364EG0100 Rev.1.00 Page 22 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Declaration
bool_t RamTest_Stack_Int(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewISP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the Interrupt Stack. (but not the User stack)

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

P_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

Ui32_NewISP New Stack pointer value for the Interrupt stack to be re-located to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

R01AN3364EG0100 Rev.1.00 Page 23 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Declaration
bool_t RamTest_Stacks(uint32_t ui32_StartAddr,
 uint32_t ui32_EndAddr,
 void* p_RAMSafe,
 uint32_t ui32_NewISP,
 uint32_t ui32_NewUSP,
 TEST_FUNC fpTest_Func);
Description

RAM test of an area that includes the Interrupt Stack. (but not the User stack)

Input Parameters

ui32_StartAddr
The address of the first word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

Ui32_EndAddr
The address of the last word of RAM to be tested. This must be compatible with the
requirements of the fpTest_Func.

P_RAMSafe
Set to the start of a buffer that is the same size as the test RAM area. This must be compatible
with the requirements of the fpTest_Func.

Ui32_NewISP New Stack pointer value for the Interrupt stack to be re-located to.

Ui32_NewUSP New Stack pointer value for the User stack to be re-located to.

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(const uint32_t, const uint32_t, void* const);

For example ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t TRUE = Test passed. FALSE = Test or parameter check failed.

1.4 Clock

The RX100 family has a Clock Frequency Accuracy Measurement Circuit (CAC) which can be used to detect monitor
the Main clock frequency during run time.

Either the IWDTCLK or an External clock on the CACREF pin can be used as a reference voltage.

If using an external reference clock:

1. #define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK in file clock_monitor.c.

If using the IWDCLK:

1. Ensure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

2. Ensure the definition of CLOCK_COUNT_EXPECTED is correct for the expected Main clock value.

R01AN3364EG0100 Rev.1.00 Page 24 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

If the frequency of the main clock deviates during runtime from a configured range an error call-back function shall be
called. The allowable frequency range can be adjusted using:
/*Percentage tolerance of main clock allowed before an error is reported.*/
#define CLOCK_TOLERANCE_PERCENT 10

In addition to the CAC function the RX v2 MCU family has an Oscillation Stop Detection Circuit. If the main clock
stops, the Low Speed On-Chip oscillator will automatically be used instead and an NMI interrupt will be generated. The
User of this module must handle the NMI interrupt and check the NMISR.OSTST bit.

File name

clock_monitor.h

clock_monitor.c

Table 1-6 Source Files

There are two versions of the ClockMonitor_Init function:

1. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

Syntax

void ClockMonitor_Init (CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description

1. Start monitoring the Main clock using the CAC module and the IWDCLK as a reference clock.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters

CallBack Function to be called if the main clock deviates from the allowable range.

Output Parameters

NONE N/A

Return Values

None N/A

2. ClockMonitor_Init function if CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

Syntax
void ClockMonitor_Init (uint32_t MainClockFrequency,
 uint32_t ExternalRefClockFrequency,
 CLOCK_MONITOR_CACREF_PIN ePin,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack)
Description

1. Start monitoring the Main clock using the CAC module and the CACREF pin as a reference clock.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters

MainClockFrequency Main clock expected frequency in Hz.

ExternalRefClockFrequency External reference clock frequency in Hz.

ePin
The pin to use for CACREF. See CLOCK_MONITOR_CACREF_PIN for
details.

R01AN3364EG0100 Rev.1.00 Page 25 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

CallBack
Function to be called if the main clock deviates from the allowable range or
if this function fails.

Output Parameters

NONE N/A

Return Values

None N/A

R01AN3364EG0100 Rev.1.00 Page 26 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

1.5 Independent Watchdog
A watchdog is used to detect abnormal program execution. If a program is not running as expected the watchdog will
not be refreshed by software as it is required to be and will therefore detect an error.

The Independent Watchdog Timer (IWDT) module of the RX100 family is used for this. It includes a windowing
feature so that the refresh must happen within a specified ‘window’ rather than just before a specified time. It can be
configured to generate an internal reset or a NMI interrupt if an error is detected. A function is provided to be used after
a reset to decide if the IWDT has caused the reset.

File name

IWDT.h

IWDT.c

Table 1-7 Source Files

Syntax
void IWDT_Init (IWDT_TOP TimeOutperiod,
 IWDT_CKS_DIV ClockSelection,
 IWDT_WINDOW_START WindowStart,
 IWDT_WINDOW_END WindowEnd,
 IWDT_ACTION Action)
Description

Initialize and start the independent watchdog timer. After calling this the IWDT_kick function must then be called at
the correct time to prevent a watchdog error.

NOTE: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be
handled by user code which must check the NMISR.IWDTST flag.

Input Parameters

TimeOutperiod
Time out count. See declaration of enumerated type IWDT_TOP in IWDT.h
for details.

ClockSelection
IWDT clock selection. See declaration of enumerated type
IWDT_CKS_DIV in IWDT.h for details.

WindowStart
Window start position. See declaration of enumerated type
IWDT_WINDOW_START in IWDT.h for details.

WindowEnd
Window start position. See declaration of enumerated type
IWDT_WINDOW_END in IWDT.h for details.

Action Select between generating a reset or NMI when detecting an error.

Output Parameters

NONE N/A

Return Values

None N/A

R01AN3364EG0100 Rev.1.00 Page 27 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Syntax

void IWDT_Kick(void)

Description

Refresh the watchdog count.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

Syntax

bool_t IWDT_DidReset(void)

Description

Returns TRUE if the IWDT has timed out or not been refreshed correctly. This can be called after a reset to decide if
the watchdog caused the reset.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t TRUE if watchdog has timed out, otherwise FALSE.

Syntax

void IWDT_SleepMode_CountStop_Disable (void)

Description

By default the IWDT counter is stopped in sleep mode. Call this to change the default so the counter continues
counting in sleep mode.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

None N/A

R01AN3364EG0100 Rev.1.00 Page 28 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

1.6 Voltage
The RX v2 Core MCU family has a Voltage Detection Circuit. This can be used to detect the power supply voltage
(Vcc) falling below a specified voltage. The supplied sample code demonstrates using Voltage Detection Circuit 1 to
generate a NMI interrupt when Vcc drops below a specified level. The hardware is also capable of generating a reset
and monitoring an external pin voltage but this behaviour is not supported in the sample code.

File name

Voltage.h

Voltage.c

Table 1-8 Source Files

Syntax

void VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL eVoltage)

Description

Initialize and start voltage monitoring. An NMI will be generated if Vcc falls below the specified voltage.

NOTE: The Non Maskable Interrupt (NMI) must be handled by user code which must check the NMISR.LVDST
flag.

Input Parameters

VOLTAGE_MONITOR_LEVEL eVoltage
The specified low voltage level. . See declaration of enumerated type
VOLTAGE_MONITOR_LEVEL in voltage.h for details.

Output Parameters

NONE N/A

Return Values

None N/A

R01AN3364EG0100 Rev.1.00 Page 29 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

1.7 Port Output Enable (POE)

The port output enable 3 (POE3b) module can be used to place the states of the pins for complementary PWM output by
the MTU3C (MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C and MTIOC4D), and the states of pins for
MTU0 (MTIOC0A, MTIOC0B, MTIOC0C, and MTIOC0D) in the high-impedance in response to changes in the input
levels on the POE0# to POE8# and POE10# pins, in the output levels on pins for complementary PWM output by the
MTU3C, oscillation stop detection by the clock generation circuit, and changes to register settings (SPOER) and
comparator detection in the comparator (CMPC).

This software demonstrates the setting of certain pins into the high impedance state when falling edge on POE0 input
pin is detected.

File name

POE.h

POE.c

Table 1-9 Source Files

Syntax

void POE_Init(void);

Description

This software configures the POE:
1. To put the following pins in the high impedance state if a falling edge on the POE0 (PA_3 pin) input pin is
detected.
Pins: MTIOC3B, MTIOC3D.

Input Parameters

None N/A

Output Parameters

NONE N/A

R01AN3364EG0100 Rev.1.00 Page 30 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

2. Example Usage
In addition to the actual test software source files, an e2studio workspace is provided which includes an example
application demonstrating how the tests can be run. This code should be examined in conjunction with this document to
see how the various test functions are used.

This example configures the tests so that they can be run on an RSK RX23T that is set for 3.3V operation. If powering
the RSK via the E1 then select the 3.3V option when connecting. When building the workspace the following compiler
warning may be displayed:

“C5170 (W) Pointer points outside of underlying object”

This warning is issued by the compiler sometimes when using the section address operators (_sectop and _secend).
Despite the warnings the code operation has been verified and so it is safe to ignore the warnings.

The testing can be split into three parts:

1. Power-Up Tests. These are tests run once following a reset. They should be run as soon as possible, but
especially if start-up time is important, it may be permissible to run some initialisation code before running all
the tests, so that for example a faster main clock can be selected. Note: If building an application where it is
not expected that a power down will be performed very often, it may be necessary to schedule these tests more
than just at power up.

2. Periodic Tests. These are tests that are run regularly throughout normal program operation. This document
does not provide a judgment of how often a particular test should be ran. How the scheduling of the periodic
tests is performed is up to the user depending upon how their application is structured. The sample application
sets up a Timer module of the RX23T to periodically call a function (PeriodicTestCallBack). Each
time this function is called a particular test, or part of a test, is performed. The requirements of the user’s
application will determine how much time can be spent each time the function is called.

3. Monitoring tests. This is where the RX23T is used in a diagnostic mode to continuously monitor something.
Hence the test cannot be classed as either Power-Up or Periodic.

The following sections provide an example of how each test type should be used.

2.1 CPU
If a fault is detected by any of the CPU tests then a user supplied function called CPU_Test_ErrorHandler will be
called. As any error in the CPU is very serious the aim of this function should be to get to a safe position, where
software execution is not relied upon, as soon as possible.

2.1.1 Power-Up
All the CPU tests should be run as soon as possible following a reset.

NOTE: The function must be called before the device is put in User mode by function
Change_PSW_PM_to_UserMode in resetprg.c.

The function CPU_Test_All can be used to automatically run all the CPU tests.

2.1.2 Periodic
If testing the CPU periodically the function CPU_Test_All can be used, as it is for the power-up tests, to
automatically run all CPU tests. Alternatively, to reduce the amount of testing done in a single function call, the user
can choose to call each of the individual CPU test functions in turn each time the CPU periodic test is scheduled.

R01AN3364EG0100 Rev.1.00 Page 31 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

2.2 ROM
The ROM is tested by calculating a CRC value (CRC-CCITT) of its contents and comparing with a reference CRC
value that must be added to a specific location in the ROM not included in the CRC calculation.

The Renesas RX Standard Toolchain can be used to calculate and add a CRC value to the built mot file at a location
specified by the user. This can be done via a dialog in e2studio – see Figure 1: Adding Reference CRC.

Note: The e2studio .x file will not contain the CRC reference but is not able to download *.mot file. So the reference
CRC value calculated by linker isn't stored on specified address. To fix this problem in Debug configuration on Start-up
card should be added initialization command. – see Figure 2: Adding initialization command
restore HardwareDebug\"projectname".mot

The CRC module must be initialized before use with a call to the CRC_Init function.

Ensure that all ROM sections used are included in the CRC calculation that both e2studio and the CRC Test code use so
that the results will match.

Figure 2-1 Adding Reference CRC

R01AN3364EG0100 Rev.1.00 Page 32 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Figure 2-2 Debug Configuration

2.2.1 Power-Up

All the ROM memory used must be tested at power up.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a calculated CRC
value.

If the Rom used is not in one contiguous block then the following procedure must be used.

1. Call CRC_Start.

2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.

3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using function
CRC_Verify.

The Renesas Rx Compiler provides section address operators, __sectop, __secend and __secsize, that can be used to
obtain the addresses of ROM used. The sample application uses these to initialize a structure used during CRC testing:

const CRC_RANGE CRC_Ranges[CRC_RANGE_NUM] =
{
 __sectop("PResetPRG"), __secend("PResetPRG"),
 __sectop("C1"), __secend("PPCTEST_TESTFUNCTION"),
 __sectop("FIXEDVECT"), __secend("FIXEDVECT")
};

It is a user’s responsibility to ensure that all ROM areas used by their project are included in the CRC calculations.

R01AN3364EG0100 Rev.1.00 Page 33 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

2.2.2 Periodic
It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM is
contiguous, as this allows the CRC value to be calculated in sections so that no single function call takes too long.
Follow the procedure as specified for the power up tests and ensure that each address range is small enough that a call
to CRC_AddRange does not take too long.

2.3 RAM
The sample application includes the files Test_Usage_RAM.h and .c as an example of testing the RAM.

It is very important to realize, if using this example for your own project, that the area of RAM that needs to be tested
may change dramatically depending upon your projects memory map.

The example code makes several assumptions when setting up the #defines which define the RAM areas. See
Test_Usage_RAM.c and read the comments carefully when setting them up for your build.

If using the ‘HW’ versions of the RAM Tests (where the DOC is used) then function RamTest_March_HW_Init must
be called prior to running the test. The following #define in file Test_Usage_RAM.c makes this selection:

#define USE_HW_VERSION_OF_RAM_TESTS

When testing RAM it is important to remember the following points:

1. RAM being tested cannot be used for anything else including the current stack.

2. Any non-destructive test requires a RAM buffer where memory contents can be safely copied to and restored
from.

3. Any test of the stack requires a RAM buffer where the stack can be re-located to.

4. There are two stacks, Interrupt and User. It is the current stack that must be re-located before being used.

5. If re-locating the stack the device must be in supervisor mode. The device automatically enters default mode
when handling an interrupt.

6.

2.3.1 Power-Up

Providing the RAM power on test is done before global variable initialisation is performed (as done by _INITSCT) a
full destructive test can be performed on all the RAM other than the Stack. The Stack must be tested with a non-
destructive test. However, if start-up time is very important it might be possible to fine tune this so that only the area of
Stack used before the power up RAM test is performed is tested using the slower non-destructive test and the rest of the
Stack tested with a destructive test.

The sample application provides function Tests_PowerOn_RAM as an example of testing the RAM at power up. The
function should be called before the device is put in user mode by function Change_PSW_PM_to_UserMode in
resetprg.c.

It uses the March C test algorithm to perform the following steps.

1. A destructive test is performed on the RAM area defined between RAM_START_ADDRESS and
RAM_END_ADDRESS. (This area defines all used RAM except for stacks and the RAM_Test_Buffer.)

2. A destructive test is performed on the RAM_Test_Buffer used in the periodic RAM tests.

3. A non-destructive test is performed on the stack area defined between STACK_START_ADDRESS and
STACK_END_ADDRESS. The stacks are re-located during this process.

R01AN3364EG0100 Rev.1.00 Page 34 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

2.4 Clock
The monitoring of the main clock is set-up with a single function call to ClockMonitor_Init. There are two versions of
this file depending on the choice between using an external or internal reference clock as decided by the following
#define:

#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

For example:

#ifdef CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

ClockMonitor_Init(CLOCK_FREQ_MAIN,
 1000000,
 eCLOCK_MONITOR_CACREF_PIN_P01, //PMOD1-8 on RSKRX23T
 ClockErrorFunction);
#else
 ClockMonitor_Init(ClockErrorFunction); #endif

This can be called as soon as the main clock has been configured and the IWDT has been enabled. See section ‘1.5
Independent Watchdog’ for enabling the IWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during
the periodic tests.

If oscillation stop is detected an NMI interrupt is generated. User code must handle this NMI interrupt and check the
NMISR.OSTST flag as shown in this example:

if(1 == ICU.NMISR.BIT.OSTST)
{
 Clock_Stop_Detection();

 /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
 ICU.NMICLR.BIT.OSTCLR = 1;
}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

2.5 Independent Watchdog
The Independent Watchdog should be initialized as soon as possible following a reset with a call to IWDT_Init:

/*Setup the Independent WDT.
 IWDT_Init(IWDT_TOP_2048, IWDT_CKS_DIV_128,
 IWDT_WINDOW_START_NO_START, IWDT_WINDOW_END_NO_END,
 IWDT_ACTION_NMI);

After this the watchdog must be refreshed regularly enough so as to stop the watchdog timing out and performing a
reset. Note, if using windowing the refresh must not just be regular enough but also times to match the specified
window. A watchdog refresh is called by calling this:

/*regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

If the watchdog has been configured to generate an NMI on error detection then the user must handle the resulting
interrupt.

If the watchdog has been configured to perform a reset on error detection then following a reset the code should check if
the IWDT caused the watchdog by calling IWDT_DidReset:

R01AN3364EG0100 Rev.1.00 Page 35 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

if(TRUE == IWDT_DidReset())
{
 //todo: Handle a watchdog reset.
 while(1){;}
}

2.6 Voltage
The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the VoltageMonitor_Init
function. This should be setup as soon as possible following a power on reset. The following example sets up the
voltage monitor to generate an NMI if the voltage drops below 2.90V.

VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL_2_90);

If a low voltage condition is detected an NMI interrupt will be generated that the user must handle:

 /*Low Voltage LVD1*/
 if(1 == ICU.NMISR.BIT.LVD1ST)
 {
 Voltage_Test_Failure();

 /*Clear LVD1ST bit by writing 1 to NMICLR.LVD1CLR bit*/
 ICU.NMICLR.BIT.LVD1CLR = 1;

 }

2.7 POE

The POE initialisation and start up is made using the following call:

POE_Init();

The user must carefully study the description of POE_Init and consult the RX23T Hardware manual to determine if the
sample configuration of the POE meets the requirements of the user’s system. Depending upon the pins used in the
user’s system the POE.C file may well need to be adapted for the desired behavior.

The sample configuration of the POE means the POE will be triggered by a falling edge on the POE0# (P7_0) pin. To
allow the example test usage to run on a default RSK RX23T, without triggering due to a floating pin, this pin is
internally pulled high by setting PORTA.PMR.BIT.B3 = 1 before the call to POE_Init.

R01AN3364EG0100 Rev.1.00 Page 36 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

3. Benchmarking
3.1 Environment

Development board: RSKRX23T

Clock: EXTAL = 20MHz, ICLK = 40MHz, PCLKB = 40MHz, PCLKD = 40MHz

MCU: R5F523T5ADFM

Tool chain: Renesas RXC Toolchain v2.04.01

External debugger: Renesas E1

Optimisation level: 1

Figure 3-1 Compiler Settings

Note: CPU Test files are built with no optimisation. To turn optimisation off for certain files, right click on the file in
the project explorer and then properties.

R01AN3364EG0100 Rev.1.00 Page 37 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Figure 3-2 Linker Settings

Note: Select “Output a stack using information file” in “Linker->Output->Advanced” section. The .sni output file can
then be analysed using “Call Walker” application.

R01AN3364EG0100 Rev.1.00 Page 38 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

3.2 Results
3.2.1 CPU

Note: Optimisation cannot be used for these tests.

Measurement Result

Coupling Test

Code size [bytes] 424

Stack usage for CPU_Test_All [bytes] 36

Time Measured [ms] 56

Table 3-1 CPU Test Results

3.2.2 ROM – Flash Memory
 Speed

Optimization

Code size [bytes] 77

Stack usage [bytes] 32

Time Measured

[ms]

1k bytes 0.908

10k bytes 9.04

Table 3-2 CRC16-CCITT ROM Test Results

3.2.3 RAM
The tests were executed in 8 and 32 bit access width configurations. The 32 bit word limit was always used as it was
found that using a smaller limit did not improve performance.

The name ‘Extra’ refers to the function that includes the automatic safe buffer test.

(1) March C

Measurement Speed

Code size [bytes] 160

Stack usage [bytes] 132

Stack usage Extra [bytes] 100

Time
Measured

[ms]

Destructive 69.6

Non-destructive 69.6

Extra 139

Figure 3-3 March C Test Results (32-bit access, 32-bit word limit)

R01AN3364EG0100 Rev.1.00 Page 39 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

(2) March X WOM

Measurement Speed

Code size [bytes] 119

Stack usage [bytes] 96

Stack usage Extra [bytes] 128

Time
Measured

[ms]

Destructive 6.46

Non-destructive 6.46

Extra 12.6

Table 3-3 March X WOM test results (32-bit access, 32-bit word limit)

Note: measurement done on 1KB of data

R01AN3364EG0100 Rev.1.00 Page 40 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

4. Additional Information
4.1 Reading an IO Pin State
The actual value of an IO pin can always be read by reading the corresponding pin’s Port Input Register as this extract
from the RX23T Hardware manual specifies:

Figure 4-1 PIDR Register

R01AN3364EG0100 Rev.1.00 Page 41 of 42
Jun 28, 2016

RX v2 Core VDE Certified IEC60730 Self-Test Code for RX v2 MCU

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

R01AN3364EG0100 Rev.1.00 Page 42 of 42
Jun 28, 2016

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

Rev.1.00

Jun 28, 2016

All Created.

A-1

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Tests
	1.1 CPU
	1.1.1 Software API

	1.2 ROM
	1.2.1 CRC16-CCITT Algorithm
	1.2.2 CRC Software API

	1.3 RAM
	1.3.1 Algorithms
	(1) March C
	(2) March X
	(3) March X (Word-Oriented Memory version)

	1.3.2 Software API
	(1) March C API
	(2) March X WOM API
	(3) March C and March X WOM HW Implementation specific API
	(4) RAM Test Stack API

	1.4 Clock
	1.5 Independent Watchdog
	1.6 Voltage
	1.7 Port Output Enable (POE)

	2. Example Usage
	2.1 CPU
	2.1.1 Power-Up
	2.1.2 Periodic

	2.2 ROM
	2.2.1 Power-Up
	2.2.2 Periodic

	2.3 RAM
	2.3.1 Power-Up

	2.4 Clock
	2.5 Independent Watchdog
	2.6 Voltage
	2.7 POE

	3. Benchmarking
	3.1 Environment
	3.2 Results
	3.2.1 CPU
	3.2.2 ROM – Flash Memory
	3.2.3 RAM
	(1) March C
	(2) March X WOM

	4. Additional Information
	4.1 Reading an IO Pin State

	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

