
 Application Note 

R01AN3289EJ0100  Rev. 1.00  Page 1 of 83 
2016.11.15  

RL78/ I1D 
I2C Slave Control using Software (for Multiple Addresses) 
CC-RL 

Introduction 

This application note describes how to implement the multiple slave addresses by using the I2C bus slave 
function using software.  

 

Operation Checked Device 

RL78/I1D 

 

When applied to other microcontrollers, this application note should be modified according to the specifications of 
the microcontroller used and a thorough evaluation should be made. 

 

  

 

 

 

 

 

 

 

 

  

R01AN3289EJ0100
Rev. 1.00

2016.11.15



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 2 of 83 
2016.11.15  

Contents 

1. Basic Specifications of I2C Bus as Slave ......................................................................................... 4 
1.1 I2C Bus Specifications ...................................................................................................................... 4 
1.2 Slave Function Specifications ........................................................................................................... 4 

2. Conditions for Confirming Operations ............................................................................................... 4 

3. Related Application Notes ................................................................................................................. 5 

4. Hardware Descriptions ...................................................................................................................... 6 
4.1 Hardware Configuration Example ..................................................................................................... 6 
4.2 List of Pins Used ............................................................................................................................... 7 

5. Software Descriptions ....................................................................................................................... 7 
5.1 Operation Summary .......................................................................................................................... 7 
5.2 List of Settings Reflected to Option Bytes ......................................................................................... 8 
5.3 List of Constants ................................................................................................................................ 9 
5.4 List of Variables ............................................................................................................................... 10 
5.5 List of Functions .............................................................................................................................. 12 
5.6 Function Specifications ................................................................................................................... 13 
5.7 Flowcharts ....................................................................................................................................... 18 

5.7.1 Initial Setting Function ..................................................................................................................... 18 
5.7.2 System Function .............................................................................................................................. 19 
5.7.3 Setting CPU Clocks ......................................................................................................................... 20 
5.7.4 Setting I/O Ports .............................................................................................................................. 21 
5.7.5 Setting Timer Array Unit .................................................................................................................. 22 
5.7.6 Setting A/D Converter ..................................................................................................................... 28 
5.7.7 Setting External Interrupts ............................................................................................................... 34 
5.7.8 Main Process ................................................................................................................................... 37 
5.7.9 R_MAIN_UserInit Process .............................................................................................................. 38 
5.7.10 Initial Setting of A/D Conversion ..................................................................................................... 39 
5.7.11 Starting A/D Conversion .................................................................................................................. 39 
5.7.12 A/D Conversion End interrupt Process ........................................................................................... 41 
5.7.13 Initializing LED Lighting ................................................................................................................... 42 
5.7.14 Starting TM03 .................................................................................................................................. 42 
5.7.15 Setting LED Light-Emitting Data ..................................................................................................... 43 
5.7.16 5-ms Interval Timer Interrupt Process ............................................................................................. 44 
5.7.17 Initializing I2C Communication ........................................................................................................ 45 
5.7.18 Checking I2C Communication State ............................................................................................... 46 
5.7.19 Reading I2C Reception Data .......................................................................................................... 46 
5.7.20 Setting Data in I2C Transmission Buffer ......................................................................................... 47 
5.7.21 Checking I2C Communication End interrupt Request .................................................................... 47 
5.7.22 I2C Communication End interrupt Process ..................................................................................... 48 
5.7.23 Initializing I2C (Assembler Section) ................................................................................................ 52 
5.7.24 Reading I2C Communication Status ............................................................................................... 54 
5.7.25 Setting ACK Response ................................................................................................................... 54 
5.7.26 Reading ACK Responses ............................................................................................................... 55 
5.7.27 SCL Edge Detection Interrupt Entry Process .................................................................................. 55 
5.7.28 SDA Edge Detection Interrupt Process ........................................................................................... 56 
5.7.29 SCL Edge Detection Interrupt Process ........................................................................................... 59 
5.7.30 Starting Next Data Transmission .................................................................................................... 70 
5.7.31 Starting Next Data Reception .......................................................................................................... 70 
5.7.32 Aborting Data Transmission ............................................................................................................ 70 

6. I2C Bus Basics ................................................................................................................................ 71 
6.1 Communication Implementation through Software ......................................................................... 71 
6.2 Functions as Slaves ........................................................................................................................ 72 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 3 of 83 
2016.11.15  

6.2.1 LED Display Function ...................................................................................................................... 72 
6.2.2 A/D Conversion Function ................................................................................................................ 72 
6.2.3 RAM Function .................................................................................................................................. 72 

6.3 Library Interface Specifications ....................................................................................................... 73 
6.3.1 I2C Communication Flags ............................................................................................................... 73 
6.3.2 Next Communication Starting Functions ......................................................................................... 73 
6.3.3 Stop Condition Detection Flag ........................................................................................................ 73 

6.4 Slave Address Specification ............................................................................................................ 74 
6.4.1 Slave Address Table ....................................................................................................................... 74 
6.4.2 ACK Response Flag ........................................................................................................................ 74 

6.5 Protocol for Accessing Slaves ......................................................................................................... 75 
6.5.1 Display on LED ................................................................................................................................ 75 
6.5.2 Reading A/D Conversion Results .................................................................................................... 75 
6.5.3 Reading Data from RAM ................................................................................................................. 76 
6.5.4 Writing Data to RAM ........................................................................................................................ 76 

7. Basic Control of I2C Bus through Software .................................................................................... 77 
7.1 Edge Detection Interrupts ............................................................................................................... 77 

7.1.1 SCL Edge Detection ........................................................................................................................ 77 
7.1.2 SDA Edge Detection ....................................................................................................................... 77 

7.2 Control Processes ........................................................................................................................... 78 
7.2.1 Sequences based on SCL Edge Detection Interrupt (1) ................................................................. 78 
7.2.2 Sequences based on SCL Edge Detection Interrupt (2) ................................................................. 78 
7.2.3 Sequences based on SCL Edge Detection Interrupt (3) ................................................................. 79 

7.3 I2C Slave File Configuration ........................................................................................................... 79 

8. Settings through Code Creation ...................................................................................................... 80 

9. Sample Code ................................................................................................................................... 82 

10. Reference Documents .................................................................................................................... 82 

  



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 4 of 83 
2016.11.15  

1. Basic Specifications of I2C Bus as Slave 

1.1 I2C Bus Specifications 
The following shows the basic specifications of the I2C bus. 

・ I2C bus connected: Fast mode (200 kbps max.) or standard modeNote 

・ Slave address 1: 0x60 (A/D conversion and LED display functions) 

・ Slave address 2: 0x70 (RAM function) 

・ Slave address 3: 0x80 (not used) 

・ Slave address 4: 0x90 (not used) 

・ Extension code: Not supported (ignores code and withdraws from communication) 

・ Addressing: 8 bits following the slave address used to specify the RAM address  

 

Note: The communication speed when 24 MHz is selected for the CPU/peripheral hardware clock. 

 

1.2 Slave Function Specifications 
The following three slave functions are provided. One of the three functions is selected depending on the 

slave address and the state of transmission/reception. 

- LED display function: 8-bit data is displayed on LED. Two display data units are switched over using SW. 

- A/D conversion function: 4-channel analog input is converted to digital data. The moving average of the 
16 samples is sent to the master. 

- RAM function: 128-byte RAM function is provided. The master can read from and write to the arbitrary 
address by specifying it. 

 

2. Conditions for Confirming Operations 

The sample code operations described in this application note are confirmed under the following 
conditions. 

 

Table 2.1  Conditions for Confirming Operations 

Item Description 
Microcontroller used RL78/I1D(R5F117GC) 
Operating frequency  High-speed on-chip oscillator (HOCO) clock: 24 MHz 

 CPU/peripheral hardware clock: 24 MHz 
Operating voltage 3.3V (operation possible within 2.9 V to 3.6 V) 

LVD operating mode: reset mode; voltage: 2.75 V 
Integrated development 
environment  

Renesas Electronics 
CS+ V3.03.00 

Assembler Renesas Electronics 
CC-RL V1.02.00Note 

Board used RL78/I1D target board 
(equipped with R5F117GC, LED (8 out of 10 of a module used), SW, 
and the like.) 

 

[Note] Used in CA78K0R-compatible mode. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 5 of 83 
2016.11.15  

3.  Related Application Notes 

Refer to the following application notes, which are related to this application note. 

 
RL78/G13 Initial Setting Application Note (R01AN2575J) 
RL78/I1D I2C Master Communication Control using Serial Array Unit (Simple I2C) Application Note 
(R01AN3288J) 

 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 6 of 83 
2016.11.15  

4.  Hardware Descriptions 

4.1 Hardware Configuration Example 
Figure 4.1 shows an example of the hardware configuration described in this application note. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Hardware Configuration 

 

Notes: 1. The above figure is a simplified circuit image for showing the outline of the connections. 
The actual circuit should be designed so that the pins are connected appropriately and 
that electrical characteristics are satisfied (input-only ports should be each connected to 
VDD or VSS via a resistor).  

2. Set VDD to the reset-release voltage (VLVD) specified by LVD or greater.  

 

 

P03

P02

P00

TOOL0 

RL78/I1D 
(R5F117G) 

P61

P60

P01

LED1 LED5 

LED6 LED2

LED7 LED3

LED8 LED4

ANI0 
ANI1
ANI2

ANI3

Analog inputs 

I2C bus 
INTP6 
/P32 

INTP5 
/P33 

RESET For on-chip 
debugging 

VDD 

VSS 

P137 

LED
(OSX10201-R) 

2 7 

3 8 

4 9 

5 10 

16,17,18,19,20

11,12,13,14,15 

SCL signal 

SDA signal 

REGC 

AVSS 

AVDD 

VDD 

VDD 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 7 of 83 
2016.11.15  

4.2  List of Pins Used 
Table 4.1 lists the pins used and their functions. 

Table 4.1  Pins Used and Their Functions 

Pin Name I/O Function 
INTP6/P32 I/O I2C communication data signal 
INTP5/P33 I/O I2C communication clock signal 
P03 to P00 Output Data output to LED 
P61, P60 Output LED turning-on timing output 
ANI3 to ANI0 Input Analog signal input 
P137 Input SW input 
 

 

5. Software Descriptions 

5.1 Operation Summary 
a) Initial Settings 

In this application note, the CS+ code creation function is used only for the initial settings of the on-chip 
peripheral functions. After making the initial settings of the on-chip peripheral functions, data is initialized 
and the timers for A/D conversion and turning on LED are started.   
- A/D conversion and turning-on of LED are processed on the background using the timer interrupts.  
- I2C bus communication is processed on the background using the INTP5 and INTP6 interrupts. 

b) Main Process 
The main process waits for completion of 4-channel A/D conversion. When conversion is completed, the 
moving average is transferred to the I2C bus transmission buffer. The data transferred to the 
transmission buffer is transmitted to the I2C bus in response to the instruction from the master. During 4-
channel A/D conversion, if the stop condition is detected on the I2C bus, data is transferred from the 
data reception buffer for turning on LED to the buffer for controlling turning on of LED. 

c) A/D conversion end interrupt process 
In the A/D conversion end interrupt process, the conversion result of each channel is added. When the 
count of data to be added reaches 16, the oldest data is replaced with the latest data. When A/D 
conversion of channels 0 to 3 is competed in scan mode, the main process is informed of completion of 
A/D conversion. 

d) 5-ms timer interrupt process 
The 5-ms timer interrupt is used to turn on LED and check SW. The upper 4-bit and lower 4-bit data for 
turning on LED are used in this order to turn on LED in the time division manner. The state of SW is 
checked every 50 ms to determine which data to be used. 

e) I2C communication interrupt process 
The changes of the SDA and SCL signals cause INTP5 and INTP6 interrupts. These interrupts are used 
as I2C communication interrupts. When an I2C communication interrupt is generated, the 
communication contents are analyzed and sent to the upper software. After completion of 1-byte 
communication, if the communication is intended for the slave itself, the communication status and 
received data are set in the variables, and the transmission/reception end flag (variable _g_IIC_IF) is set. 
For details, refer to 6.3 Specifications of Library Interface. If the stop condition is detected on the I2C 
bus, the variable for interfacing (_g_stop_det) is used to inform the main process that the stop condition 
has been detected, which indicates completion of the I2C bus communication. 

As described above, almost all processes are performed based on the interrupts and flags. The main 
process sets data in the appropriate buffer so that the data prepared by an interrupt process can be used by 
another interrupt process. 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 8 of 83 
2016.11.15  

5.2  List of Settings Reflected to Option Bytes 
Table 5.1 shows the sample settings reflected to the option bytes. 

 

Table 5.1  Settings Reflected to Option Bytes 

 

Address Setting Content 
0x000C0 0b11101110 Watchdog timer is stopped.  

(Counting stopped after a reset release) 
0x000C1 0b01111111 LVD reset mode; 2.75V (2.70 V to 2.87 V) 

0x000C2 0b11100000 HS mode; HOCO: 24 MHz 
0x000C3 0b10000100 On-chip debugging is enabled. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 9 of 83 
2016.11.15  

5.3  List of Constants 
Table 5.2 lists the constants used in sample codes. 

Table 5.2  Constants Used in Sample Codes 

Constant Setting Content 
TRUTH 1 True 
FALSE 0 False 
POWER 4 Specification of A/D conversion sampling count 

(specify a factorial of 2) 

SAMPLE 2 << (POWER-1) A/D conversion sampling count 

DATA_NUMBER 2 Number of data to be displayed on LED 

INT_MASK 1 Interrupt disabled (masked) 

INT_ENABLE 0 Interrupt enabled (mask canceled) 

DETECT_START 0b11110010 Mask bit for detecting to be selected as slave 

DETECT_TRC 0b00001000 TRC (transmission enable) bit 

DETECT_ACK 0b00000100 ACK detection bit 

DETECT_STD 0b00000010 Start condition detection bit 

DETECT_STOP 0b00000001 Stop condition detection bit 

DISP_OFF_DATA 0b00000011 P6 data for turning LED off 

TIMING1 0b00000010 P6 data for lighting upper 4 bits 

TIMING2 0b00000001 P6 data for lighting lower 4 bits 

KEY_TIMING 10 Value for SW state check timing 

DATA_MAX 4 Number of I2C transmission data 

LED_MAX 2 Number of reception data for lighting LED 

TX_LIMIT DATA_MAX -1 Mask data for transmission pointer 

RX_LIMIT LED_MAX - 1 Mask data for LED lighting data reception pointer 

SADR_TBL  Table of slave addresses used 

ACK_TBL  ACK response table for each slave address ID 

P_IIC P3 Port used by the I2C bus 

P_SCL P3.3 Port used by the SCL signal 

P_DATA 0b00001100 Data for extracting SCL and SDA 

P_DATA_SCL 0b00001000 SCL is high; SDA is low. 

P_SDA P3.2 Port used by SDA signal 

PM_SCL PM3.3 Register for controlling SCL signal 

PM_SDA PM3.2 Register for controlling SDA signal 

ENG_SCL EGN0.5 SCL falling edge detection enabled 

EPG_SCL EPG0.5 SCL rising edge detection enabled 

DIS_INTSCL PMK5 SCL edge detection interrupt mask 

DIS_INTSDA PMK6 DA edge detection interrupt mask 

RQ_INTSCL PIF5 SCL edge detection interrupt request 

RQ_INTSDA PIF6 SDA edge detection interrupt request 

D_SDA 0xFFEDE.2 SDA bit in P3 image 

D_SCL 0xFFEDE.3 SCL bit in P3 image 

F_TRC 0xFFEDF.3 Transmission mode bit in status (g_IICS)  

F_ACKD 0xFFEDF.2 ACK detection bit in status (g_IICS) 

F_STD 0xFFEDF.1 Start condition detection bit in status (g_IICS) 

F_SPD 0xFFEDF.0 Stop condition detection bit in status (g_IICS) 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 10 of 83 
2016.11.15  

5.4  List of Variables 
Table 5.3 and table 5.4 list the variables used in sample codes 

Table 5.3  List of Global Variables (for C Language Definitions) 

Type Variable Name Contents Function Used 

uint16_t g_conv_data A/D conversion data buffer R_ADC_Init() 
r_adc_interrupt() 

uint16_t g_sum_data A/D conversion sum buffer  R_ADC_Init() 
r_adc_interrupt() 

uint8_t g_adc_end A/D conversion end flag R_ADC_Init() 
r_adc_interrupt() 
main() 

uint16_t * gp_set_pt A/D conversion result storage 
pointer 

R_ADC_Init () 
r_adc_interrupt() 

uint16_t * gp_sum_pt A/D conversion result sum 
pointer 

R_ADC_Init() 
r_adc_interrupt() 
main() 

uint8_t g_disp_data_bf LED lighting data R_LED_Init() 
R_LED_DispData() 
r_tau0_channel3_interrupt() 

uint8_t g_sel_data Lighting data specification R_LED_Init() 
r_tau0_channel3_interrupt() 

uint8_t g_disp_timing Lighting timing R_LED_Init() 
r_tau0_channel3_interrupt() 

uint8_t g_ram_area Buffer for RAM function R_IICA0_Init() 
_R_IIC_Rx_data() 
_R_IIC_Tx_data() 

uint8_t g_rx_data Reception data buffer R_IICA0_Init() 
R_IICA0_Get() 
_R_IIC_Rx_data() 

uint16_t g_tx_data Transmission data buffer R_IICA0_Init() 
R_IICA0_Put() 
_R_IIC_Tx_data() 

uint8_t g_low_data_temp For storing lower byte of 
transmission data 

_R_IIC_Tx_data() 

uint8_t g_low_data_index Lower byte transmission flag R_IICA0_Init() 
_R_IIC_Rx_data() 
_R_IIC_Tx_data() 

uint8_t g_regadr Flag for address register _R_IIC_Rx_data() 
uint8_t g_ptrx_data2 I2C transmission/reception 

pointer 
R_IICA0_Init() 
_R_IIC_Rx_data() 
_R_IIC_Tx_data() 

unit_t g_ptrx_data I2C transmission/reception 
pointer 

R_IICA0_Init() 
_R_IIC_Rx_data() 
_R_IIC_Tx_data() 

uint8_t g_status I2C communication state flag R_IICA0_Init() 
R_IICA0_Status() 
_R_IIC_Rx_data() 
_R_IIC_Tx_data() 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 11 of 83 
2016.11.15  

Table 5.4  List of Global Variables (for Assembly Language Definitions) 

Type Variable Name Contents Function Used 

uint8_t __g_stop_det 
(_g_stop_det) 

Stop condition detection flag R_IICA0_Init() 
main() 
r_iic_SDA_interrupt 

uint8_t __g_IIC_IF 
(_g_IIC_IF) 

Transmission/reception end 
flag 

R_IICA0_Init() 
r_iic_int_chk () 

uint8_t __g_IICS 
(_g_IICS) 

Communication status r_iic_request() 

uint8_t __g_IICA 
(_g_IICA) 

Reception data r_iic_request () 

uint8_t g_ACKE_tbl Internal buffer for storing 
initial values to control ACK 
response to the address 

__R_IICSS_Init 
__set_ACKE_table 
__get_ACKE_table 
r_iic_SCL_interrupt 

uint8_t g_ACKE For controlling ACK response r_iic_SCL_interrupt 
uint16_t next_proc Next INTP5 processing 

function address 
_R_IICSS_Init() 
r_iic_SCL_interrupt 
r_iic_SDA_interrupt 

uint8_t 注 bit_count Transmission/reception bit 
count 

r_iic_SCL_interrupt 

uint8_t 注 g_IICA Data being shifted during 
transmission/reception 

r_iic_SCL_interrupt 

uint8_t g_P_image For storing P3 data r_iic_SCL_interrupt 
uint8_t g_IICS 注 2 I2C status r_iic_SCL_interrupt 

Notes: 1.  bit_count and g_IICA may be accessed simultaneously by a 16-bit access. 

2.  The variable g_IICS for indicating I2C communication state has a structure conforming to that 
of the IICA0. 

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 
ID3 ID2 ID1 ID0 F_TRC F_ACKD F_STD F_SPD 

 

 

[Remarks] The variables __g_stop_det (_g_stop_det), __g_IIC_IF (_g_IIC_IF), __g_IICS (_g_IICS), and 
__g_IICA (_g_IICA) can be accessed from C language description. The other variables can only be 
used in library functions described in the assembly language. 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 12 of 83 
2016.11.15  

5.5  List of Functions 
Table 5.5 lists the functions used. 

Table 5.5 List of Functions 

Function Name Summary 
R_IICA0_Init() Initializes variables relating to I2C communication. 
R_IICA0_Status() Reads out I2C communication state. 
R_IICA0_Get() Reads out I2C reception data. 
R_IICA0_Put() Sets data in I2C transmission buffer. 
r_iic_int_chk() Checks I2C communication completion. 
r_iic_request() I2C communication end interrupt processing 

R_ADC_Init() Initializes variables relating to A/D conversion. 
R_ADC_Start() Starts A/D conversion. 
r_adc_interrupt() Processes A/D conversion end interrupt. 

R_LED_Init() Initializes variables relating to LED display. 
R_TM03_Start() Starts 5-ms interval timer. 
R_LED_DispData () Sets LED light-emitting data. 
r_tau0_channel3_interrupt() Processes 5-ms interval timer interrupt.  

__R_IICSS_Init Initializes I2C.  
__R_IICSS_Status Returns I2C state (g_IICS value). 
__set_ACKE_table Sets ACK response for the slave address ID 
__get_ACKE_table Reads out ACK response setting for the slave address ID 
r_iic_SCL_interrupt Processes SCL signal edge detection interrupt. 
r_iic_SDA_interrupt Processes SDA signal edge detection interrupt.  
__Tx_data_sub Cancels I2C bus wait and starts next data transmission. 
__Tx_end_sub Exits communication and cancels I2C bus wait. 
__Rx_data_sub Cancels I2C bus wait and starts next data reception. 

A triple line indicates a border between different modules. 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 13 of 83 
2016.11.15  

5.6 Function Specifications 
The following gives the specifications of the functions used in the sample code. 

[Function name] R_IICA0_Init 

Summary Initializes I2C communication. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration void R_IICA0_Init(void); 
Description Initializes variables used for the I2C communication. 
Arguments None  

Return values None 
Remarks None 

 

[Function name] R_IICA0_Status 

Summary Checks I2C communication state. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration uint8_t R_IICA0_Status(void); 
Description Reads the variable g_IICS indicating the I2C communication state. If the I2C 

communication has been completed, performs the corresponding processing.  
Arguments None  

Return values Value of variable g_IICS (g_status) 
Remarks None 

 

 

[Function name] R_IICA0_Get 

Summary Reads reception data from I2C reception data buffer. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration uint8_t R_IICA0_Get(uint8_t ptr); 
Description Reads data specified with the argument (lighting data) from the I2C reception buffer. 

If the I2C communication has been completed, the corresponding processing is 
performed.  

Arguments Specifies reception data buffer.  
Return values Received data 

Remarks None 
 

[Function name] R_IICA0_Put 

Summary Sets data in I2C transmission buffer. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration void R_IICA0_Put(uint8_t ptr,uint16_t data); 
Description Stores data indicated by the second argument (A/D conversion result) into the 

address specified by the first argument in the I2C transmission buffer. If the I2C 
communication has been completed, the corresponding processing is performed. 

Arguments First argument 
Second argument 

Data storage address 
Data to be transmitted 

Return values None 
Remarks None 

 

 

 

 

 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 14 of 83 
2016.11.15  

[Function name] r_iic_int_chk 

Summary Checks I2C communication completion. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration uint8_t r_iic_int_chk (void); 
Description Checks the I2C communication end interrupt flag and calls r_iic_request if the 

communication has been completed. 
Arguments None  

Return values I2C status 
Remarks None 

 

[Function name] r_iic_requestr_IIC_interrupt 

Summary Performs I2C communication completion processing. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration void r_iic_request (void); 
Description This processing corresponds to INTIICA0 of IICA0. Performs processing according to 

the I2C status (_g_IICS) value. 
Arguments None  

Return values None 
Remarks _g_IICS has I2C communication status. _g_IICA has receive data. 

 

[Function name] R_ADC_Init 

Summary Makes A/D conversion initial settings. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration void R_ADC_Init(void); 
Description Initializes variables relating to A/D conversion. 
Arguments None  

Return values None 
Remarks None 

 

 [Function name] R_ADC_Start 

Summary Starts A/D conversion. 
Header r_cg_userdefine.h 

Declaration void R_ADC_Start(void); 
Description Starts the A/D converter. 
Arguments None  

Return values None 
Remarks None 

 

 [Function name] r_adc_interrupt 

Summary Processes an A/D conversion end interrupt. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration #pragma interrupt r_adc_interrupt(vect=INTAD,bank=RB2,enable=true) 
__interrupt static void r_adc_interrupt(void); 

Description Started by an A/D conversion end interrupt; stores the obtained conversion results in 
the buffer, and simultaneously adds the results 16 times for each channel. 

Arguments None  
Return values None 

Remarks None 
 

 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 15 of 83 
2016.11.15  

[Function name] R_LED_Init 

Summary Performs initialization for LED lighting. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration void R_LED_Init (void); 
Description Initializes variables for controlling LED lighting.  
Arguments None  

Return values None 
Remarks None 

 

[Function name] R_TM03_Start 

Summary Starts TM03 (interval timer). 
Header r_cg_userdefine.h 

Declaration void R_TM03_Start(void); 
Description Starts TM03 (5-ms interval timer). 
Arguments None  

Return values None 
Remarks None 

 

[Function name] R_LED_DispData 

Summary Sets LED light-emitting data.  
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration void R_LED_DispData(uint8_t CH_No,uint8_t in_data); 
Description Stores data specified by the second argument in the buffer specified by the first 

argument. 
Arguments First argument 

Second argument 
Data storage channel 
Data to be set 

Return values None 
Remarks None 

 

 

 [Function name] r_tau0_channel3_interrupt 

Summary Processes a 5-ms interval timer interrupt. 
Header r_cg_macrodriver.h, r_cg_userdefine.h 

Declaration #pragma interrupt r_tau0_channel3_interrupt(vect=INTTM03, enable=true) 
__interrupt static void r_tau0_channel3_interrupt(void); 

Description Started by a 5-ms interrupt; controls dynamic LED lighting in 4-bit units. Checks the 
state of SW connected to P137 every 50 ms and changes data to be lighted. 

Arguments None  
Return values None 

Remarks None 
 

[Function name] __R_IICSS_Init 

Summary Initializes I2C. 
Declaration void _R_IICSS_Init (void); 
Description Initializes I2C control variables and hardware. 
Arguments None  

Return values None 
Remarks None 

 

 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 16 of 83 
2016.11.15  

[Function name] __R_IICSS_Status 

Summary Checks I2C status. 
Declaration uint8_t _R_IICSS_Status (void); 
Description Passes the value of variable g_IICS indicating I2C bus state. 
Arguments None  

Return values I2C bus status 
Remarks None 

 

[Function name] __set_ACKE_table 

Summary Sets ACK response for the slave address ID. 
Declaration void _set_ACKE_table(uint8_t ACKE); 
Description Sets the ACK response for the slave address ID indicated by the argument bits 4 to 

1, to the state indicated by bit 0.  
Arguments ACK response  

Return values None 
Remarks None 

 

[Function name] __get_ACKE_table 

Summary Reads out ACK response setting for the slave address ID. 
Declaration uint8_t _get_ACKE_table(uint8_t ID); 
Description Returns ACK response setting for the slave address passed by the argument. 
Arguments Slave address ID  

Return values ACK response setting value 
Remarks None 

 

[Function name] r_iic_SCL_interrupt 

Summary Processes an SCL edge detection interrupt. 
Declaration r_iic_SCL_interrupt .VECTOR 0x00012 
Description Detects the SCL signal edge, reads SCL and SDA, and performs the corresponding 

processing. The processed contents are indicated by the address stored in the 
variable next_proc. 

Arguments None  
Return values None 

Remarks None 
 

[Function name] r_iic_SDA_interrupt 

Summary Processes an SDA edge detection interrupt. 
Declaration r_iic_SDA_interrupt .VECTOR 0x00014 
Description Started on detection of the SDA signal edge; detects the start and stop conditions 

based on the SDA and SCL signal state. 
Arguments None  

Return values None 
Remarks None 

 

  



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 17 of 83 
2016.11.15  

[Function name] __Tx_data_sub 

Summary Starts next data transmission. 
Declaration void _Tx_data_sub(uint8_t data); 
Description Outputs MSB of the data passed by the argument to the SDA signal, cancels the I2C 

bus wait, and starts data transmission. 
Arguments Next transmission data  

Return values None 
Remarks None 

 

[Function name] __Rx_data_sub 

Summary Starts next data reception. 
Declaration void _Rx_data_sub(void); 
Description Cancels the I2C bus wait, and starts data reception. 
Arguments None  

Return values None 
Remarks None 

 

[Function name] __Tx_end_sub 

Summary Performs transmission completion processing. 
Declaration void _Tx_end_sub(void); 
Description Exits the communication and cancels the I2C bus wait. 
Arguments None  

Return values None 
Remarks None 

 

 

 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 18 of 83 
2016.11.15  

5.7 Flowcharts 
Figure 5.1 shows the overall flow of the process described in this application note. 

 

 

Figure 5.1  Overall Flow 

Note: This is processed by the start-up routine (r_cg_cstart.asm etc.). The memory-related settings are made 
between calling the initial setting function and main process function. 

 

5.7.1 Initial Setting Function 
Figure 5.2 shows the flowchart of the initial setting function. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  Initial Setting Function 

 

Before initial function execution,  
option bytes are referred to. 

Start 

End 

Initial setting function 
hdwinit()  

This is processed by the start-up routine 
(r_cg_cstart.asm etc.) 

 hdinit() 

System function 
R_Systeminit() 

IE ← 0 Disable interrupts. 

Initial setting of internal peripheral functions 

Main process 
main() 

return 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 19 of 83 
2016.11.15  

5.7.2 System Function 
Figure 5.3 shows the flowchart of the system function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  System Function 

 

 R_Systeminit() 

Set I/O ports. 
R_PORT_Create() 

Set CPU clocks. 
R_CGC_Create() 

PIOR0 register ← 0x00 Set peripheral I/O redirection. 

Set TAU. 
R_TAU0_Create() 

Set A/D converter. 
R_ADC_Create () 

Disable detection of illegal memory 
access. 

Set external interrupts. 
R_INTC_Create () 

return 

IAWCTL register ← 0x00 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 20 of 83 
2016.11.15  

5.7.3  Setting CPU Clocks 
Figure 5.4 shows the flowchart for setting the CPU clocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4  Setting CPU Clocks 

 

 R_CGC_Create() 

Set clock oscillators. 

return 

CMC register ← 0b00000000  
 
MSTOP bit ← 1 
MIOEN bit ← 0  
 

: High-speed system clock not used; 
subsystem clock not used 
 
: Disable middle-speed OCO. 

Select subsystem clock. 
SELLOSC bit ← 1 : Select LOCO for subsystem clock. 
XTSTOP bit ← 1 : Stop XT1 clock oscillation. 
WUTMMCK0 bit ← 1 : Supply fIL to interval timer. 

Select CPU/peripheral hardware 
clock (fCLK). 

CSS bit ← 0 : Select high-speed OCO for CPU/peripheral hardware 
clock (fCLK). 

MCM0 bit ← 0 : Select high-speed OCO (fIH). 
MCM1 bit ← 0 :

Enable high-speed OCO oscillation. 
HIOSTOP bit ← 0 : Enable high-speed OCO oscillation. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 21 of 83 
2016.11.15  

5.7.4 Setting I/O Ports 
Figure 5.5 shows the flowchart for setting the I/O ports. 

 

 

Figure 5.5  Setting I/O Ports 

Note: Design unused ports so that the electrical characteristics are satisfied by appropriately treating 
the pertinent pins. Separately connect unused input-only pins to VDD or VSS via a resistor.  

 

R_PORT_Create() 

Set P0 and P6 output latch. 

return 

P0 register ← 0x00 : Set P03 to P00 to 0. 
P6 register ← 0x03 : Set P61 and P60 to 1. 

Set P0 operating mode. PMC0 register ← 0xF3 : Set P03 and P02 as digital I/O. 

Set P0, P4, and P6 modes. 
PM0 register ←  0xF0 : Set P03 to P00 as output port. 
PM4 register ←  0xFF : Set P40 as input port. 
PM6 register ←  0xFC : Set P61 and P60 as output. 

Set P40 pull-up resistor. PU4 register ← 0x01 : Set P40 pull-up resistor. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 22 of 83 
2016.11.15  

5.7.5 Setting Timer Array Unit 
Figure 5.6 shows the flowchart for setting the timer array unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6  Setting Timer Array Unit 

 

 

 

 

 

 

 

 

 

 

 

  

 R_TAU0_Create() 

Supply clocks to timer array unit. 

Set TAU interrupts. 

TAU0EN bit ← 1 

TMMK03 to TMMK00 bits ← 1111 : Mask interrupt requests. 
TMIF03 to TMIF00 bits ← 0000 : Clear interrupt requests. 
TMPR103 and TMPR003 bits ← 10 : Interrupt priority level 2 

Set TAU operating clock. TPS0 register ← 0x0001 : Operating clock 0 (CK00): 12 MHz 

Set TM03 operating mode. 
TMR03 register ← 0x0000 : Interval timer 
TDR03 register ← 0xEA5F : 5-ms intervals 

Disable TAU operation. TT0 register ← 0x0A0F : Stop operation of all channels. 

Disable TM03 output. 

TOM03 bit ← 0 : Master channel mode output  
TOL03 bit ← 0 : Positive logic output 
TO03 bit ← 0 : Clear TM03 output. 
TOE03 bit ← 0 : Disable TM03 output. 

return 

TAU0RES bit ← 1 : Reset TAU0.  

Release TAU0 from reset. 

Reset TAU0. 

TAU0RES bit ← 0 : Release TAU0 from reset. 

- Peripheral reset control register 0 (PRR0) 

Reset TAU0. 

Resetting TAU0 

Symbol: PRR0 

7 6 5 4 3 2 1 0 

0 0 ADCRES 0 0 SAU0RES 0 TAU0RES

0 0 x 0 0 x  0 1/0 

 

Bit 0 

SAU0RES Reset control of timer array unit 

0 Releases the timer array unit from the reset state.  

1 Resets the timer array unit. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 23 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

- Peripheral enable register 0 (PER0) 

Start clock supply to timer array unit 0. 

Starting clock supply to timer array unit 0 

Symbol: PER0 

7 6 5 4 3 2 1 0 

RTCWEN 0 ADCEN 0 0 SAU0EN 0 TAU0EN

x 0 x 0 0 x 0 1 

 

Bit 0 

TAU0EN Control of input clock to timer array unit 0 

0 入力クロック供給停止 

1 Supplies input clock. 

 

- Timer clock select register 0 (TPS0) 

Select the operating clock for timer array unit 0. 

Symbol: TPS0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 
PRS 

031 

PRS 

030 
0 0 

PRS 

021 

PRS

020

PRS

013

PRS

012

PRS

011

PRS

010

PRS

003

PRS

002

PRS 

001 

PRS 

000 

0 0 x x 0 0 x x x x x x 0 0 0 1 

 

Bits 3 to 0 

PRS

003 

PRS

002 

PRS

001 

PRS

000 

Operating clock (CK00) selection 

 fCLK= 

1MHz 

fCLK= 

2MHz 

fCLK= 

4MHz 

fCLK= 

16MHz 

fCLK= 

24MHz 

0 0 0 0 fCLK 1 MHz 2 MHz 4 MHz 16MHz 24 MHz 

0 0 0 1 fCLK/2 500 kHz 1 MHz 2 MHz 8 MHz 12 MHz 

0 0 1 0 fCLK/22 250 kHz 500 kHz 1 MHz 4MHz 6 MHz 

0 0 1 1 fCLK/23 125 kHz 250 kHz 500 kHz 2 MHz 3 MHz 

0 1 0 0 fCLK/24 62.5 kHz 125 kHz 250 kHz 1 MHz 1.5 MHz 

0 1 0 1 fCLK/25 31.3 kHz 62.5 kHz 125 kHz 500 kHz 750 kHz 

0 1 1 0 fCLK/26 15.6 kHz 31.3 kHz 62.5 kHz 250 kHz 375 kHz 

0 1 1 1 fCLK/27 7.81 kHz 15.6 kHz 31.3 kHz 125 kHz 187.5 kHz 

1 0 0 0 fCLK/28 3.91 kHz 7.81 kHz 15.6 kHz 62.5 kHz 93.8 kHz 

1 0 0 1 fCLK/29 1.95 kHz 3.91 kHz 7.81 kHz 31.3 kHz 46.9 kHz 

1 0 1 0 fCLK/210 977 Hz 1.95 kHz 3.91 kHz 15.6 kHz 23.4 kHz 

1 0 1 1 fCLK/211 488 Hz 977 Hz 1.95 kHz 7.81 kHz 11.7 kHz 

1 1 0 0 fCLK/212 244 Hz 488 Hz 977 Hz 3.91 kHz 5.86 kHz 

1 1 0 1 fCLK/213 122 Hz 244 Hz 488 Hz 1.95 kHz 2.93 kHz 

1 1 1 0 fCLK/214 61 Hz 122 Hz 244 Hz 977 Hz 1.46 kHz 

1 1 1 1 fCLK/215 30.5 Hz 61 Hz 122 Hz 488 Hz 732 Hz 

 

Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 

Setting timer clock frequency 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 24 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

- TMMK03 bit in interrupt mask flag register (MK1L) 

Set interrupt masks. 

- TMIF03 bit in interrupt request flag register (IF1L) 

Clear interrupt request flags.  

- MPR003 and TMPR103 bits in priority setting flag registers (PR01L, PR11L) 

Set TM03 interrupts to priority level 2. 

Setting timer count end interrupt 

Symbol: MK1L 

Bit 5 

TMMK03  Control of interrupt processing 

0  割り込み処理許可 

1  Disables interrupt processing. 

 

Symbol: IF1L 

Bit 5 

TMIF03 Interrupt request flag 

0 No interrupt request signals have been generated. 

1 割り込み要求信号が発生し、割り込み要求状態 

 

Symbol: PR01L、PR11L 

Bit 5 

TMPR103 TMPR003 INTTM03 priority level selection 

0 0 レベル 0 を指定(高優先順位) 

0 1 レベル 1 を指定 

1 0 Level 2 

1 1 レベル 3 を指定(低優先順位) 

 

Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 

 

- Timer channel stop register 0 (TT0) 

Select to stop timer channel operation. 

Stopping timer operation 

Symbol: TT0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 TT03H 0 TT01H 0 0 0 0 0 TT03 TT02 TT01 TT00

0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 

 

Bit n 

TT0n Trigger for stopping channel n operation 

0 トリガ動作しない 

1 Clears TE0n bit to 0 to stop counting operation (stop-trigger generated). 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 25 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Timer mode register 03 (TMR03) 

Select operating clock (fMCK). 

Select the counting clock.  

Set start and capture triggers.  

Select valid edge of timer input.  

Set the operating mode.  

Symbol: TMR03 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CKS 
031 

CKS 
030 0 

CCS 
03 

SPLIT 

03 
STS 
032 

STS
031

STS
030

CIS
031

CIS
030 0 0 

MD 
033 

MD 
032 

MD 
031 

MD
030

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Bits 15 and 14 

CKS031 CKS030 Channel 3 operating clock (fMCK) selection 

0 0 Operating clock CK00 specified with timer clock selection register 0 (TPS0) 

0 1 タイマ・クロック選択レジスタ 0（TPS0）で設定した動作クロック CK02 

1 0 タイマ・クロック選択レジスタ 0（TPS0）で設定した動作クロック CK01 

1 1 タイマ・クロック選択レジスタ 0（TPS0）で設定した動作クロック CK03 

 

Bit 12 

CCS03 Channel 3 counting clock (fTCL) selection 

0 Operating clock (fMCK) specified with CKS031 and CKS030 bits 

1 TI03 端子からの入力信号の有効エッジ 

 

Bit 11 

SPLIT03 8-bit timer/16-bit timer operation selection of channel 3 

0 16-bit timer operation 

1 8 ビット・タイマとして動作 

 

Bits 10 to 8 

STS032 STS031 STS030 Setting for channel 3 start and capture triggers 

0 0 0 Only software trigger start is valid (deselect the other trigger 

sources.) 

0 0 1 
TI00 端子入力の有効エッジを、スタート・トリガ、キャプチャ・トリガ

の両方に使用 

0 1 0 
TI00 端子入力の両エッジを、スタート・トリガとキャプチャ・トリガに

分けて使用 

1 0 0 
マスタ・チャネルの割り込み信号を使用（複数チャネル連動動作機能の

スレーブ・チャネル時） 

上記以外 設定禁止 

 

Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 

 

Setting channel 3 operating mode 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 26 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Bits 7 and 6 

CIS031 CIS030 Valid edge selection of TI03 pin 

0 0 Falling edge 

0 1 立ち上がりエッジ 

1 0 
両エッジ（ロウ・レベル幅測定時） 

スタート・トリガ：立ち下がりエッジ、キャプチャ・トリガ：立ち上がりエッジ 

1 1 
両エッジ（ハイ・レベル幅測定時） 

スタート・トリガ：立ち上がりエッジ、キャプチャ・トリガ：立ち下がりエッジ 

 

Bits 3 to 0 

MD 

033 

MD 

032 

MD 

031 

MD

030

Channel 3 

operating mode
Corresponding functions TCR counting operation 

0 0 0 1/0 Interval timer 

mode 

Interval timer/square wave 

output/divider function/PWM output 

(master) 

Decrementing 

0 1 0 1/0
キャプチャ・モー

ド 
入力パルス間隔測定 アップ・カウント 

0 1 1 0 
イベント・カウン

タ・モード 
外部イベント・カウンタ ダウン・カウント 

1 0 0 1/0
ワンカウント・

モード 

ディレイ・カウンタ／ワンショット・

パルス出力／PWM 出力（スレーブ）
ダウン・カウント 

1 1 0 0 
キャプチャ＆ワン

カウント・モード
入力信号のハイ／ロウ・レベル幅測定 アップ・カウント 

上記以外 設定禁止 

 

- Timer output mode register 0 (TOM0L) 

Set master mode output.  

- Timer output level register 0 (TOL0L) 

Set positive logic output. 

- Timer output register 0 (TO0L) 

Set output to 0. 

- Timer output enable register 0 (TOE0L) 

Enable/disable timer output of each channel.  

 

Disabling timer output 

 

- Timer data register 03 (TDR03) 

Set the delay time. 

Setting delay time 

Symbol: TDR03  

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 

 
Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 27 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Symbol: TOM0L 

7 6 5 4 3 2 1 0 

0 0 0 0 TOM03 TOM02 TOM01 0 

0 0 0 0 0 x x 0 

 

Bit 3 

TOM03 Control of channel 3 timer output mode 

0 Master channel output mode 

1 スレーブ・チャネル出力モード 

 

Symbol: TOL0L 

7 6 5 4 3 2 1 0 

0 0 0 0 TOL03 TOL02 TOL01 0 

0 0 0 0 0 x x 0 

 

Bit 3 

TOL03 Control of channel 3 timer output level  

0 Positive logic output (active high) 

1 反転出力(アクティブ・ロウ) 

 

Symbol: TO0L 

7 6 5 4 3 2 1 0 

0 0 0 0 TO03 TO02 TO01 TO00

0 0 0 0 0 x x x 

 

Bit 3 

TO03 Control of channel 3 timer output level 

0 Low 

1 ハイ・レベル 

 

 

Symbol: TOE0L 

7 6 5 4 3 2 1 0 

0 0 0 0 TOE03 TOE02 TOE01 TOE00

0 0 0 0 0 x x x 

 

Bit 3 

TOE03 Control of channel 3 timer output enable/disable 

0 Disables TO03 (timer channel output bit) operation triggered by counting operation. 

1 カウント動作による TO03（タイマ・チャネル出力ビット）の動作許可。 

 

Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 28 of 83 
2016.11.15  

5.7.6 Setting A/D Converter 
Figure 5.7 shows the flowchart for setting the A/D converter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  Setting A/D Converter 

 

 

 

 

 

 

 

 

 

 

 

  

 R_ADC_Create() 

Supply clock to A/D converter. 

Set A/D converter interrupts. 

ADCEN bit ← 1 

ADMK bit ← 1 : Mask interrupt requests. 
ADIF bit ← 0 : Clear interrupt requests. 
ADPR1 and ADPR0 bits ← 01 : Interrupt priority level 1 

Stop A/D converter operation. ADM0 register ← 0x00 : Stop the operation. 

Set A/D converter operating mode. 
ADM0 register ← 0x40 : Scan mode, 9 s as standard 
ADM1 register ← 0x00 : Software trigger, continuous conversion 
ADM2 register ← 0x00 : AVREF = VDD and VSS 

Set multiplexed ports. 
PMC13 to PMC10 bits ← 1111 : Set analog input. 
PM13 to PM10 bits ← 1111 : Set input mode. 

Set conversion result comparison value. 
ADUL register ← 0xFF : Set the upper limit. 
ADLL register ← 0x00  : Set the lower limit. 

return 

Set scan range. 
ADS register ← 0x00 : Scan ANI0 to ANI3. 

Enable voltage comparator operation. 
ADCE bit ← 1 : Enable operation of the A/D voltage comparator.

 

- Peripheral reset control register 0 (PRR0) 

Resets the ADC. 

Resetting ADC 

Symbol: PRR0 

7 6  5 4 3 2 1 0 

0 0  ADCRES 0 0 SAU0RES 0 TAU0RES 

0 0  1/0 0 0 x  0 x 

 

Bit 5 

ADCRES Control of A/D converter reset 

0 Cancels the reset of A/D converter. 

1 Resets the A/D converter.  

Wait for a specified time period. 
Wait for a time period as necessary. 

ADCRES bit ← 1 : Reset the ADC. 

Cancel ADC reset. 

Reset ADC. 

ADCRES bit ← 0 : Cancel the ADC reset. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 29 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Peripheral enable register 0 (PER0) 

Starts supplying clock to the A/D converter. 

Starting clock supply to A/D converter 

Symbol: PER0 

7 6 5 4 3 2 1 0 

RTCEN 0 ADCEN I2CA0EN SAU1EN SAU0EN 0 TAU0EN

x 0 1 x x x 0 x 

 

Bit 5 

ADCEN Control of A/D converter input clock  

0 入力クロック供給停止 

1 Supplies input clock. 

- A/D converter mode register 0 (ADM0) 

Stops A/D converter operation. 

Symbol: ADM0 

7 6 5 4 3 2 1 0 

ADCS ADMD FR2 FR1 FR0 LV1 LV0 ADCE

0 x x x x x x 0 

Bit 7 

ADCS Control of A/D conversion operation 

0 Stops conversion operation. 

1 変換動作許可 

Bit 0 

ADCE Control of A/D voltage comparator operation 

0 Stops A/D voltage comparator operation. 

1 A/D 電圧コンパレータの動作許可 

 

Stopping A/D converter operation 

- ADMK bit in the interrupt mask flag register (MK1H)  

Set interrupt masks. 

- ADIF bit in the interrupt request flag register (IF1H) 

Clear interrupt request flags. 

- ADPR0 and ADPR1 bits in the priority order specification flag register (PR01H, PR11H) 

Set the A/D conversion end interrupt priority to level 1. 

 
Bit 0 

ADMK Control of interrupt processing 

0 割り込み処理許可 

1 Disables interrupt processing. 

Bit 0 

ADIF Interrupt request flag 

0 Interrupt request signal has not been generated. 

1 割り込み要求信号が発生し，割り込み要求状態 

 

Setting A/D conversion end interrupt 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 30 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

- Port mode control register 1 (PMC1) 

Set the pins to analog input. 

- Port mode register 1 (PM1) 

Turn off the output buffer of the port. 

Symbol: PMC1 

7 6 5 4 3 2 1 0 

PMC17 PMC16 PMC15 PMC14 PMC13 PMC12 PMC11 PMC10

x x x x 1 1 1 1 

Bits 3 to 0 

PMC1n Digital IO/analog input selection for P1n pin (n = 0-7) 

0 デジタル入出力(アナログ入力以外の兼用機能) 

1 Analog input 

 

Symbol: PM1 

7 6 5 4 3 2 1 0 

PM17 PM16 PM15 PM14 PM13 PM12 PM11 PM10 

x x x x 1 1 1 1 

Bits 3 to 0 

PM1n P1n pin I/O mode selection 

0 出力モード（出力バッファ・オン） 

1 Input mode (output buffer turned off) 

 
Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 

 

Setting multiplexed ports 

- A/D converter mode register 0 (ADM0) 
Set the conversion operation to scan mode. 
Set the conversion time to 9 s.  

- A/D converter mode register 1 (ADM1) 
Set software trigger mode. 
Set continuous conversion mode. 

- A/D converter mode register 2 (ADM2) 
Set the reference voltage. 
Set 12-bit resolution. 

Setting A/D converter operating mode 

Bit 0 

ADPR1 ADPR0 Selection of priority level. 

0 0 レベル 0 を指定（高優先順位） 

0 1 Specifies level 1. 

1 0 レベル 2 を指定 

1 1 レベル 3 を指定（低優先順位）  



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 31 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol: ADM0 

7 6 5 4 3 2 1 0 

ADCS ADMD FR2 FR1 FR0 LV1 LV0 ADCE

0 1 1 0 1 0 0 1 

Bit 6 

ADMD A/D conversion channel selection mode setting 

0 セレクト・モード 

1 Scan mode 

Bits 5 to 1 

FR2 FR1 FR0 LV1 LV0 
Conversion time for 12-bit resolution 

fCLK= 
1MHz 

fCLK= 
4MHz 

fCLK= 
8MHz 

fCLK= 
16MHz 

fCLK= 
24MHz 

0 0 0 

0 0 
設定禁止

設定禁止

設定禁止 設定禁止 72μs 

0 0 1 54μs 38μs 

0 1 0 54μs 27μs 18μs 

0 1 1 40.5μs 20.25μs 13.5μs 

1 0 0 33.75μs 16.875μs 11.25μs 

1 0 1 54μs 27μs 13.5μs 9 s 

1 1 0 27μs 13.5μs 6.75μs 4.5μs 

1 1 1 54μs 13.5μs 6.75μs 3.375μs 設定禁止 

0 0 0 

0 1 
設定禁止

設定禁止

設定禁止 設定禁止 88μs 

0 0 1 66μs 44μs 

0 1 0 66μs 33μs 22μs 

0 1 1 49.5μs 24.75μs 16.5μs 

1 0 0 41.25μs 20.625μs 13.75μs 

1 0 1 66μs 33μs 16.5μs 11μs 

1 1 0 33μs 16.5μs 8.25μs 5.5μs 

1 1 1 66μs 16.5μs 8.25μs 4.125μs 設定禁止 

 

Symbol: ADM1 

7 6 5 4 3 2 1 0 

ADTMD1 ADTMD0 ADSCM 0 0 0 ADTRS1 ADTRS0

0 0 0 0 0 0 0 0 

Bits 7 and 6 

ADTMD1 ADTMD0 Selection of A/D conversion trigger mode 

0 x Software trigger mode 

1 0 ハードウエア・トリガ・ノーウエイト・モード 

1 1 ハードウエア・トリガ・ウエイト・モード 

Bit 5 

ADSCM Selection of A/D conversion operating mode 

0 Continuous conversion mode 

1 ワンショット変換モード 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 32 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Symbol: ADM1 

7 6 5 4 3 2 1 0 

ADTMD1 ADTMD0 ADSCM 0 0 0 ADTRS1 ADTRS0

0 0 0 0 0 0 0 0 

Bits 1 and 0 
ADTRS1 ADTRS0 Selection of hardware trigger signal 

0 0 Timer channel 1 count end or capture end interrupt signal (INTTM01) 

0 1 ELC で選択されたイベント信号 

1 0 リアルタイム・クロック 2 割り込み信号(INTRTC) 

1 1 2 ビット・インターバル・タイマ割り込み信号(INTIT) 

 

Symbol: ADM2 

7 6 5 4 3 2 1 0 

ADREFP1 ADREFP0 ADREFM 0 ADRCK AWC 0 ADTYP

0 0 0 0 0 0 0 0 

Bits 7 and 6 

ADREFP1 ADREFP0 Selection of A/D converter plus-side reference voltage 

0 0 Supplied from AVDD 

0 1 AVREFP/ANI0 から供給 

1 0 内部基準電圧（1.45 V）から供給 

1 1 設定禁止 

Bit 5 

ADREFM Selection of A/D converter minus-side reference voltage 

0 Supplied from AVSS. 

1 AVREFM/ANI1 から供給 

Bit 3 

ADRCK Check of conversion result upper-limit/lower-limit value  

0 Interrupt signal (INTAD) is generated when ADLL register  ADCR register  ADUL register (AREA1)  

1 
ADCR レジスタ＜ADLL レジスタ（AREA2)，ADUL レジスタ＜ADCR レジスタ（AREA3）のとき割り込み信

号（INTAD）が発生 

Bit 2 

AWC SNOOZE mode setting 

0 SNOOZE mode not used 

1 SNOOZE モード機能を使用する 

Bit 0 
ADTYP Selection of A/D conversion resolution 

0 12-bit resolution 

1 8 ビット分解能 

 
Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 
 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 33 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Conversion result comparison upper limit setting register (ADUL) 

Set the upper limit value. 

- Conversion result comparison lower limit setting register (ADLL) 

Sets the lower limit value. 

Symbol: ADUL 

7 6 5 4 3 2 1 0 

ADUL7 ADUL6 ADUL5 ADUL4 ADUL3 ADUL2 ADUL1 ADUL0

1 1 1 1 1 1 1 1 

 

Symbol: ADLL 

7 6 5 4 3 2 1 0 

ADLL7 ADLL6 ADLL5 ADLL4 ADLL3 ADLL2 ADLL1 ADLL0

0 0 0 0 0 0 0 1 

Setting conversion result upper limit and lower limit 

- Analog input channel specification register (ADS) 

Set ANI0 to ANI3. 

Setting A/D conversion channels 

Symbol: ADS 

7 6 5 4 3 2 1 0 

ADISS 0 0 ADS4 ADS3 ADS2 ADS1 ADS0 

0 0 0 0 0 0 0 0 

 

Bits 4 to 0 

ADS4 ADS3 ADS2 ADS1 ADS0 Analog input channel 

0 0 0 0 0 ANI0－ANI3 

0 0 0 0 1 ANI1－ANI4 

0 0 0 1 0 ANI2－ANI5 

0 0 0 1 1 ANI3－ANI6 

The rest of the combinations are omitted. 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 34 of 83 
2016.11.15  

5.7.7 Setting External Interrupts 
Figure 5.8 shows the flowchart for setting the external interrupts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  Setting External Interrupts 

  

 R_INTC_Create() 

Set detected edge. 

PMK6 to PMK0 bits ← 1 : Mask all the interrupt requests. 
PIF6 to PIF0 bits ← 0 : Clear the interrupt requests. 

EGN0 register ← 0x40 : Detect INTP6 falling edge. 
EGP0 register ← 0x60 : Detect INTP5 and INTP6 rising edges. 

Disable all the external interrupts. 

Set multiplexed ports. 
PM3.3 and PM3.2 bits ← 1, 1 : Turns the output buffer off. 

- Interrupt mask flag register (MK0L, MK0H) 

Mask interrupt requests. 

- Interrupt request flag register (IF0L, IF0H) 

Clear interrupt requests. 

Disabling all the external interrupts 

Symbol: PMK0L 

7 6 5 4 3 2 1 0 

PMK5 PMK4 PMK3 PMK2 PMK1 PMK0 LVIMK WDTIMK

1 1 1 1 1 1 x x 

Symbol: PMK0H 

7 6 5 4 3 2 1 0 

RTITMK TMMK00 SREMK0 1 1 SRMK0 STMK0 PMK6

x x x 1 1 x x 1 

 

Bit n 

PMKn Control of interrupt processing 

0 割り込み処理許可 

1 Disables interrupt processing. 

 
 

Set interrupt priority order. 
PPR15, PPR05 bits ← 0, 0 : Set INTP5 to the highest priority. 
PPR16, PPR06 bits ← 0, 0 : Set INTP6 to the highest priority. 

return 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 35 of 83 
2016.11.15  

 

 

 

 

  

 

- PPR15, PPR15, PPR16, and PPR06 bits in the priority order specification flag register

Set the highest priority level. 

Bit 7 

PPR15 PPR05 Selection of INTP5 priority level 

0 0 Sets level 0 (highest priority) 

0 1 レベル 1 を指定 

 0 レベル 2 を指定 

1 1 レベル 3 を指定（低優先順位）  

Bit 0 

PPR16 PPR06 Selection of INTP6 priority level 

0 0 Sets level 0 (highest priority) 

0 1 レベル 1 を指定 

 0 レベル 2 を指定 

1 1 レベル 3 を指定（低優先順位）  

 

 

Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 

Setting interrupt priority level 

Symbol: PIF0L 

7 6 5 4 3 2 1 0 

PIF5 PIF4 PIF3 PIF2 PIF1 PIF0 LVIIF WDTIIF

0 0 0 0 0 0 x x 

Symbol: PIF0H 

7 6 5 4 3 2 1 0 

RTITIF TMIF00 SREIF0 0 0 SRIF0 STIF0 PIF6 

x x x 0 0 x x 0 

 

Bit n 

PIFn Interrupt request flag 

0 Interrupt request signal has not been generated. 

1 割り込み要求信号が発生し，割り込み要求状態 

 
 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 36 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- External interrupt rising edge enable register (EGP0)  

Enable INTP5 and INTP6 edge detection. 

- External interrupt falling edge enable register (EGN0) 

Enable INTP6 edge detection. 

Setting edge detection 

Symbol: EGP0 

7 6 5 4 3 2 1 0 

0 EGP6 EGP5 EGP4 EGP3 EGP2 EGP1 EGP0 

0 1 1 0 0 0 0 0 

Symbol: EGN0 

7 6 5 4 3 2 1 0 

0 EGN6 EGN5 EGN4 EGN3 EGN2 EGN1 EGN0 

0 1 0 0 0 0 0 0 

 

Bits 6 and 5 

EGPn EGNn Selection of valid edge of INTPn pin  

0 0 エッジ検出禁止 

0 1 立ち下がりエッジ 

1 0 Rising edge 

1 1 Both of rising and falling edges 

 

 

- PM3.3 and PM3.2 bits in port mode register3 (PM3) 

Turn the output buffer off. 

Setting multiplexed ports 

Symbol: PM3 

7 6 5 4 3 2 1 0 

1 1 1 1 PM33 PM32 PM31 PM30 

1 1 1 1 1 1 x x 

 

Bits 3 and 2 

PM3n P3n pin I/O mode selection 

0 出力モード(出力ポートとして機能(出力バッファ・オン)) 

1 Input mode (functions as an input port (output buffer turned off).) 

 
 

Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 37 of 83 
2016.11.15  

5.7.8 Main Process 
Figure 5.9 shows the flowchart of the main process. 

 

Figure 5.9  Main Process 

 

main 

Check the stop condition with the variable _g_stop_det. 

Variable ad_data ← sum_data[i] >> 4 : Average the 16 
conversion data. 

Make initial settings necessary for the main 
processing.

Initial setting of system 
R_MAIN_UserInit() 

Wait for A/D  
conversion completion 

, g_adc_end = 1,  

 
Prepare LED lighting data. 

Transfer transmission data. 
R_IICA0_Put () 

Create lighting data. 
R_LED_DispData () 

Perform LED lighting processing for the read data. 

Update the LED lighting data on detection of the stop 
condition. 

Read reception data from the master. Polls the I2C 
communication completion interrupt request, and if 
communication is complete, perform necessary processing.

Stop condition? 
No 

Yes 

Transfer A/D 
conversion data. 

j=0, 4, +1 

Clear detection flag. 

 

Transfer averaged data to the I2C transmission buffer. Polls 
the I2C communication completion interrupt request, and if 
communication is complete, perform necessary processing.

Variable _g_stop_det ← 0x00 : Clear the detection flag. 

Prepare LED lighting data. 

i = 0 , i = 2, +1 

Read reception data. 
R_IICA0_Get () 

 Wait for A/D conversion  
completion 

Convert the sum to the average. 

Transfer A/D conversion  
data. 

Set the A/D conversion result in the I2C transmission 
buffer. 

Polls the I2C communication end interrupt request, 
and if communication is complete, perform necessary 
processing. 

Check I2C interrupt requests. 
r_iic_int_chkR_IIC_INT_chk () 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 38 of 83 
2016.11.15  

5.7.9 R_MAIN_UserInit Process 
Figure 5.10 shows the flowchart of the R_MAIN_UserInit process. 

 

 
 

Figure 5.10  R_MAIN_UserInit Process 

 

 

 

 

 

 

 

 

Initialize parameters for controlling A/D conversion. 

R_MAIN_UserInit()

return 

Enable A/D converter operation. 

EI() 

Start A/D conversion. 
R_ADC_Start () 

Start timer 03 for controlling LED lighting. Start TM03. 
R_TM03_Start () 

Enable vector interrupts. 

Initial setting for A/D conversion 
R_ADC_Init () 

Initialization for LED lighting control 
R_LED_Init() 

Initialize parameters for controlling LED lighting. 

Initialization for I2C control 
R_IICA0_Init () 

Initialize parameters for controlling I2C communication.



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 39 of 83 
2016.11.15  

5.7.10 Initial Setting of A/D Conversion 
Figure 5.11 shows the flowchart for making A/D conversion initial settings. 

 

Figure 5.11  A/D Conversion Initial Settings 

 

5.7.11 Starting A/D Conversion 
Figure 5.12 shows the flowchart for starting A/D conversion. 

 

Figure 5.12  Starting A/D Conversion 

  

 
Clear sum. 

Clear sum. 

i=0, 4, +1 

Clear the A/D conversion sum buffer. 

Clear the channel sum buffer. 

Initialize conversion data storage pointer. Pointer gp_set_pt ← &g_conv_data[0][0] 

Initialize sum storage pointer. 

Clear A/D conversion end flag. 

Pointer gp_sum_pt ← &g_sum_data[0] 

return 

Clear sum of channel values. 

 
Clear conversion value. 

Clear conversion value. 

pt=&[0][0], 64, +1 

Clear the A/D conversion value buffer (16 x 4). 

Clear the A/D conversion value storage buffer. Clear sum of channel values. 

Variable g_adc_end ← FALSE (0) 

ADMK bit ← INT_ENABLE (0) : Clear the interrupt request 
mask. 

Clear A/D conversion interrupt request flag. 

return 

ADCS bit ← TRUTH (1) : Enable A/D conversion 
operation. 

ADIF bit  ←  FALSE (0) : Clear the interrupt request. 

Cancel A/D conversion interrupt mask. 

Start A/D conversion. 

R_ADC_Start () 

R_ADC_Init () 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 40 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- ADIF bit in the interrupt request flag register 1H (IF1H) 

Clear the interrupt request. 

- ADMK bit in the interrupt request mask flag register 1H (MK1H) 

Cancel the interrupt request mask. 

Setting A/D conversion interrupts 

Bit 0 

ADIF Interrupt request flag 

0 Interrupt request signal has not been generated. 

1 割り込み要求信号が発生し，割り込み要求状態 

Bit 0 

ADMK Interrupt request flag 

0 Enables interrupt processing. 

1 割り込み処理禁止 

 

 

- A/D converter mode register 0 (ADM0) 

Enable A/D converter operation. 

Starting A/D conversion 

Symbol: ADM0 

7 6 5 4 3 2 1 0 

ADCS ADMD FR2 FR1 FR0 LV1 LV0 ADCE

1 1 1 0 1 0 0 1 

Bit 7 

ADCS Control of A/D conversion operation 

0 変換動作停止 

1 Enables conversion operation. 

 
Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 41 of 83 
2016.11.15  

5.7.12 A/D Conversion End interrupt Process 
Figure 5.13 shows the flowchart of the A/D conversion end interrupt process. 

 

 

Figure 5.13  A/D Conversion End interrupt Processing 

 

 

 

 

 

 

 

Variable data_work ← ADCR: Read conversion results.

Variable *gp_sum_pt ← Variable *gp_sum_pt － 
*gp_set_pt: 
Subtract the oldest data from the sum. 

r_adc_interrupt () 

return 

Variable *gp_sum_pt ← Variable *gp_sum_pt  ＋
data_work: 
Add the new conversion result. 

Pointer gp_sum_pt ← Pointer gp_sum_pt ＋ 1 
Pointer gp_set_pt ← Pointer gp_set_pt ＋ 1 

Variable *gp_set_pt ← data_work: Store the conversion 
result. 

Acquire A/D conversion result. 

Correct A/D conversion result sum. 

Store A/D conversion result sum. 

Add A/D conversion result to sum. 

Update pointer. 

Initialize the sum pointer. Pointer gp_sum_pt ← &g_sum_data[0] 

Yes 

No 
Storage buffer end? 

Initialize the storage pointer. Pointer gp_set_pt ← &g_conv_data[0][0] 

Set A/D conversion end flag. Variable g_adc_end ← TRUTH (1) 

If the storage pointer points to the buffer end, move the 
pointer to the top. 

 

- 12-bit A/D conversion result register (ADCR) 

Read the A/D conversion results. 

Acquiring A/D conversion results 

Symbol: ADCR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 

 

Yes 

No
4 channels of processing completed?

On completion of processing for 4 channels, rewind the 
pointer to the top. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 42 of 83 
2016.11.15  

5.7.13 Initializing LED Lighting 
Figure 5.14 shows the flowchart for initializing the LED lighting.  

 

Figure 5.14  Initialization for LED Lighting 

 

5.7.14 Starting TM03  
Figure 5.15 shows the flowchart for starting the TM03. 

 

 

 

 

 

 

 

 

 

Figure 5.15  Starting TM03  

 

 

 

 

 

  

R_LED_Init() 

return

Variable g_sel_data ← 0x00 : Set data 0 to be displayed.

Variable g_disp_timing ← 0x00 : Set the upper nibble to be 
displayed. 

 
Clear lighting data. 

Clear lighting data. 

i=0, DATA_NUMBER, +1 
Clear LED lighting data. 

Clear LED lighting data.  

Select data 0. 

Initialize lighting timing. 

R_TM03_Start () 

TMMK03 bit ← INT_ENABLE (0) 
 : Clear the interrupt request mask. 

Clear TM03 interrupt request flag. 

TS0 register ← Set bit 3 to 1 : Enable TM03 operation. 

TMIF03 bit  ←  FALSE (0) : Clear the interrupt request. 

Cancel TM03 interrupt mask. 

Start TM03. 

return 

 

- TMIF03 bit in interrupt request flag register 1L (IF1L) 

Clear the interrupt request. 

- TMMK03 bit in interrupt request mask flag register 1L (MK1L) 

Cancel the interrupt request mask. 

Setting TM03 interrupt 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 43 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.7.15 Setting LED Light-Emitting Data 
Figure 5.16 shows the flowchart for setting the LED light-emitting data. 

 

 

Figure 5.16  Setting LED Light-Emitting Data 

 

Variable g_disp_data_bf ← Lighting data 

R_LED_DispData () 

return 

Set lighting data. 

Bit 5 

TMIF03 Interrupt request flag 

0 Interrupt request signal has not been generated. 

1 割り込み要求信号が発生し，割り込み要求状態 

Bit 5 

TMMK03 Interrupt request flag  

0 Enables interrupt processing. 

1 割り込み処理禁止 

 

 

- Timer channel start register 0 (TS0) 

Enable TM03 operation. 

Starting TM03 

Symbol: TS0L 

7 6 5 4 3 2 1 0 

TS07 TS06 TS05 TS04 TS03 TS02 TS01 TS00 

0 0 0 0 1 0 0 0 

 

Bit 3 

TS03 Channel 3 operation enable (start) trigger 

0 トリガ動作しない 

1 Sets TE03 bit to 1 to enable count operation. 

 
Note: For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 44 of 83 
2016.11.15  

5.7.16 5-ms Interval Timer Interrupt Process 
Figure 5.17 shows the flowchart of the 5-ms interval timer interrupt process. 

 

 

Figure 5.17  5-ms Interval Timer Interrupt Process 

IE bit ← 1 : Enable vector interrupts. 

r_tau0_channel3_interrupt ()

Enable multiple interrupts. 

RETI

P6 register ← Set bits 1 and 0. Turn LED off. 

Check the lower/upper lighting timing. No

Yes 

Timing 1? 

Set lighting data. 

Light upper nibble. 

P0 register ← disp_work >> 4 : Set the upper nibble. 

Variable disp_work ← Lighting data 
Acquire lighting data. 

Set lighting data. 

Light lower nibble. 

P6.1 bit ← 0 : Light the upper nibble. 

P0 register ← disp_work & 0x0F : Set the lower nibble. 

P6.0 bit ← 0 : Light the lower nibble. 

Update the timing. Variable g_disp_timing ← g_disp_timing ＋ 1 

No

Yes 

SW timing? 

Initialize the timing. 

Check the SW state with P13.7 and select the lighting 
data. 

No

Yes 

SW On? 

Select data 2. 

Select data 1. 

Set data pointer to data 2. 

Set data pointer to data 1. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 45 of 83 
2016.11.15  

5.7.17 Initializing I2C Communication  
Figure 5.18 shows the flowchart for initializing the I2C communication. 

 

Figure 5.18  Initializing I2C Communication  

 

 

Clear the A/D conversion result transmission data buffer 
and LED lighting reception data buffer for I2C 
communication. 

Variable gp_trx_data ←0x00 : Clear the pointer. 

Variable g_low_data_index  ←  0 : Process upper byte next.

return 

Initialize upper/lower byte flag. 

Initialize transmission/reception data 
pointer. 

 
Clear buffer. 

Clear buffer. 

i=0, DATA_MAX, +1 

Clear data in buffer. 

 
Clear RAM. 

Clear RAM. 

i=0, RAM_BASE, +1 

Initialize data in RAM area. 

Variable g_ram_area[i]  ← i  
: Write 0x00 to 0x7F patterns in RAM area as the I2C 
slave. 

Initialize I2C relating flags. 
Variable _g_stop_det  ←  0 : Not detected 
Variable _g_IIC_IF ← 0     : No interrupt request 

Initialize I2C control section. 
_R_IICSS_Init () 

R_IICA0_Init () 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 46 of 83 
2016.11.15  

5.7.18  Checking I2C Communication State 
Figure 5.19 shows the flowchart for checking the I2C communication state. 

 

 

Figure 5.19  Checking I2C Communication State 

 

5.7.19 Reading I2C Reception Data 
Figure 5.20 shows the flowchart for reading I2C reception data.  

 

 

Figure 5.20  Reading I2C Receive Data 

R_IICA0_Status () 

return

Variable “status” ← Variable g_status : Copy the status. Copy the status. 

Return value ←Variable “status” 

Check I2C interrupt requests. 
r_iic_int_chk () 

Check the I2C interrupt requests and perform transfer 
processing if necessary. 

Variable rx_data ← g_rx_data[(ptr & RX_LIMIT)] 

R_IICA0_Get () 

return 

Read reception data. 

Return value ← Variable rx_data 

Check I2C interrupt requests. 
r_iic_int_chk () 

Check the I2C interrupt requests and perform transfer 
processing if necessary. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 47 of 83 
2016.11.15  

5.7.20 Setting Data in I2C Transmission Buffer 
Figure 5.21 shows the flowchart for setting data in the I2C transmission buffer.  

 

Figure 5.21  Setting Data in I2C Transmit Buffer 

 

 

5.7.21 Checking I2C Communication End interrupt Request 
Figure 5.22 shows the flowchart for checking the I2C communication end interrupt request. 

 

 

Figure 5.22  I2CA0 Communication End interrupt Reception Process 

 

R_IICA0_Put () 

return

Pointer wpt ← Address indicated by the argument (ptr) & 
TX_LIMIT Set write pointer. 

Set transmission data. Variable g_tx_data[wpt] ← Data indicated by the argument 
(data) 

Check I2C interrupt requests. 
r_iic_int_chk () 

Check the I2C interrupt requests and perform transfer 
processing if necessary. 

Variable “status” ← I2C communication status (g_IICS)

Interrupt requested? 
No

Yes 

Clear transmission/reception end flag.

If _g_IIC_IF is 0x01, perform I2C interrupt processing. 

Variable _g_IIC_IF ← 0 : Clear the transmission/reception 
end flag. 

return 

Read I2C status. 
_R_IICSS_Status () 

I2C interrupt processing  
r_iic_request () 

Set the variable “status” as the return value. 

r_iic_int_chk () 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 48 of 83 
2016.11.15  

5.7.22 I2C Communication End interrupt Process 
Figures 5.23 to 5.26 show the flowcharts of the I2C communication end interrupt process. 

 

Figure 5.23  I2C Communication End interrupt Transmission Process (1/4) 

Variable g_status ← Variable _g_IICS : Read I2C status. 

ACK response? 
No

Yes 

Set I2C communication status. 

Read A/D conversion result. 

Set upper data in transmission buffer.

Branch according to the communication mode. 

Variable datawork ← Variable g_tx_data[0] : Channel 0 

ID 
= 1 

Branch according to the selected slave address. 

H

D 

Set data pointer to 1. 

Variable _g_IICA ← datawork >> 8 

If ACK is detected, perform the processing. 

E F

= 2 = 3

G 

= 4 Others 

Processing for slave address ID=1 
(A/D conversion result and LED 
lighting information) 

Set I2C communication status. Variable “slave” ← Slave address ID 
Variable “mode” ← TRC and STD bits 

mode 

Start 
transmission A B

C

C

Continue 
transmission 

Start 
reception

Continue 
reception

Start data transmission. 
_Tx_data_sub () 

Start transmitting data of variable _g_IICA. 

Set lower byte in buffer. Variable g_low_data_temp ← datawork & 0xFF 

Set lower byte flag to 1. 

Variable g_ptrx_data ← 0x01 : Process channel 1 next.

Variable g_low_data_index ← TRUTH : Lower data exist. 

return 

Processing to start A/D conversion 
result transmission 

r_iic_request () 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 49 of 83 
2016.11.15  

 

Figure 5.24  I2C Communication End interrupt Process (2/4) 

 

 

Clear flag. 

Lower data? 

Yes 

No 

A Processing to continue A/D conversion 
result transmission 

Set lower data in transmission buffer. Variable _g_IICA ← Variable g_low_data_temp 

Transmit data according to the variable g_low_data_index 
value. 

Variable g_low_data_index ← FALSE 

Read A/D conversion result. 

Set upper data in transmission buffer. 

Variable datawork ← Variable g_tx_data[g_ptrx_data] 

Update data pointer. 

Variable _g_IICA ← datawork >> 8 

Start data transmission. 
_Tx_data_sub () 

Start transmitting data of variable _g_IICA. 

Set lower byte in buffer. Variable g_low_data_temp ← datawork & 0xFF 

Set lower byte flag to 1. 

Variable g_ptrx_data ← (g_ptrx_data + 1) & TX_LIMIT 

Variable g_low_data_index ← TRUTH : Lower data exist. 

B Processing to start LED lighting 
data reception 

Move data pointer to the top. 

Start data reception. 
_Rx_data_sub () 

Start data reception. 

Variable g_ptrx_data ← 0x00 

C Processing to continue LED lighting 
data reception 

Store received data in buffer. g_rx_data[g_ptrx_data] ← Variable _g_IICA 

Start data reception. 
_Rx_data_sub () 

Start next data reception. 

Update data pointer. 

return 

Variable g_ptrx_data ← (g_ptrx_data + 1) & RX_LIMIT 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 50 of 83 
2016.11.15  

 

Figure 5.25  I2C Communication End interrupt Process (3/4)   

Set data in transmission buffer. 

Update address register. 

Variable _g_IICA ← g_ram_area[g_ptrx_data2] 

g_ptrx_data2 ← (g_ptrx_data2 +1) & RAM_MASK 

Set reception data in RAM data area. 

Update address register. 

g_ram_area [g_ptrx_data2] ← Variable _g_IICA 

g_ptrx_data2 ← (g_ptrx_data2 +1)｜ 0x7F 

return 

Is address register to be set? 
No 

Yes 

Set address register. 

Set address register flag. 

g_ptrx_data2 ← Variable _g_IICA & 0x7F 
: Set reception data in the address register. 

Variable g_regadr ← TRUTH 

B 

Branch processing according to the 
communication modemode 

Start 
transmission. 

Continue 
transmission.

Start 
reception.

Continue 
reception.

RAM data transmission processing

Start data transmission. 
_Tx_data_sub () 

Start transmitting data of variable _g_IICA. 

A

return 

A 

Start data reception. 
_Rx_data_sub () 

Start data reception (address register). 

Processing to start 
RAM reception 

return 

B

Processing to continue RAM 
reception 

Clear address register flag. Variable g_regadr ← FALSE 

Start data reception. 
_Rx_data_sub () 

Start next data reception. 

Determine address register or data according to the 
variable g_regadr value. 

D Processing for slave address ID=2
(RAM access) 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 51 of 83 
2016.11.15  

 

Figure 5.26  I2C Communication End interrupt Process (4/4) 

Branch processing according to 
the communication mode. 

mode 

Start transmission. 
Continue 

transmission
Start 

reception.

Continue 
reception.

Describe processing according to the communication mode. 

Branch processing according to the 
communication mode. 

mode 

Start transmission.
Continue 

transmission 
Start 

reception.
Continue 
reception.

Describe processing according to the communication mode. 

Clear communication status. Variable g_status ← 0x00 

Cancel the wait. 
_Tx_end_sub () 

return 

Clear communication status. Variable g_status ← 0x00 

Cancel the wait. 
_Tx_end_sub () 

return 

Cancel the I2C bus wait and exit the communication. 

Cancel the I2C bus wait and exit the communication. 

Processing on NACK response

Processing for other IDs 

[Remarks] Only frames are provided for slave addresses ID=3 and ID=4 processes in this sample code. 
Whether _SADDR3_ and _SADDR4_ are previously defined or not determines whether to include the 
corresponding processes as targets of build between #ifdef and #endif. To use these parts, remove the 
comment-out for SADDR3 and SADDR4 definitions.

E Processing for slave address ID=3
(Prepare the frame only.) 

F Processing for slave address ID=4
(Prepare the frame only.) 

G 

H 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 52 of 83 
2016.11.15  

5.7.23 Initializing I2C (Assembler Section) 
Figure 5.27 shows the flowchart for initializing the I2C for the assembler section. 

 

Figure 5.27  Initializing I2C (Assembler Section) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set 0 to the output latch of P3.2 and P3.3 used by the SDA 
and SCL signals. 

Clear output latch. 

PMK5 bit (DIS_INTSCL) ← 1 : Mask the interrupt. 

RET 

Enable SDA edge detection interrupt 
request. 

Variable g_I2CS ← 0 Clear communication status. 

Disable SCL edge detection interrupt.

Enable SCL rising edge detection. 

Enable SDA edge detection. 

EGP0.5 bit (EPG_SCL) ← 1 : Enable rising edge detection. 
EGN0.5 bit (ENG_SCL) ← 0 : Disable falling edge detection. 

EGN0.6 bit ← 1 : Enable falling edge detection. 
EGP0.6 bit ← 1 : Enable rising edge detection. 

Clear SCL edge detection interrupt 
requests. 

PIF6 bit (RQ_INTSDA) ← 0 : Clear the interrupt request. 
PMK6 bit (DIS_INTSDA) ← 0 : Enable the interrupt. 

PIF5 bit (RQ_INTSCL) ← 0 : Clear the interrupt request. 

Transfer ACK response data. 

j=0, 16, +1 

Copy ROM data to RAM. 

Transfer ACK response data. 

Copy the initial value of ACK response data for each slave 
address ID to the working RAM. 

__R_IICSS_Init 

 

- Port register 3 (P3) 

Clear P3.3 and P3.2. 

Clearing output latch 

Symbol: P3 

7 6 5 4 3 2 1 0 

0 0 0 0 P33 P32 P31 P30 

0 0 0 0 0 0 x x 

 

Bits 3 and 2 

P3n Data written to output latch 

0 Sets 0. 

1 1 を設定 

 
For details of register settings, refer to the RL78/I1D User’s Manual: Hardware. 
 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 53 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- PMK5 bit in the interrupt mask flag register 0L (MK0L) 

Mask the INTP5 interrupt request. 

Bit 7 

PMK5 Control of interrupt processing 

0 割り込み処理許可 

1 Disables interrupt processing. 

Disabling SCL edge detection interrupt 

 

- External interrupt rising edge enable register (EGP0) 

Set the EGP6 and EGP5 bits. 

- External interrupt falling edge enable register (EGN0) 

Set the EGN6 bit and clear the EGN5 bit. 

Symbol: EGP0 

7 6 5 4 3 2 1 0 

0 EGP6 EGP5 EGP4 EGP3 EGP2 EGP1 EGP0 

0 1 1 x x x x x 

Symbol: EGN0 

7 6 5 4 3 2 1 0 

0 EGN6 EGN5 EGN4 EGN3 EGN2 EGN1 EGN0 

0 1 0 x x x x x 

 

Bits 6 and 5 

EGPn EGNn Selection of valid edge of INTPn pin  

0 0 エッジ検出禁止 

0 1 立ち下がりエッジ 

1 0 Rising edge (INTP5: SCL edge) 

1 1 Rising and falling edges (INTP6: SDA edge) 

Setting SCL and SDA edge detection 

 

- Interrupt request flag register (IF0L, IF0H) 

Clear the INTP5 and INTP6 interrupt requests. 

Symbol: IF0L 

7 6 5 4 3 2 1 0 

PIF5 PIF4 PIF3 PIF2 PIF1 PIF0 LVIIF WDTIIF

0 x x x x x x x 

Symbol: IF0H 

7 6 5 4 3 2 1 0 

RTITIF TMIF00 SREIF0 0 0 SRIF0 STIF0 PIF6 

x x x 0 0 x x 0 

 

Bit n 

PIFn Interrupt request flag 

0 Interrupt request signal has not been generated. 

1 割り込み要求信号が発生し，割り込み要求状態 

 

Clearing interrupt requests 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 54 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

5.7.24 Reading I2C Communication Status 
Figure 5.28 shows the flowchart for reading the I2C communication status. 

 

Figure 5.28  Reading I2C Communication Status 

5.7.25 Setting ACK Response 
Figure 5.29 shows the flowchart for setting ACK responses. 

 

Figure 5.29  Setting ACK Response 

Register A ←Variable g_IICS : Set the communication 
status. 

Set I2C communication status. 

RET 

Register A ← A & 0x1F Mask unused bits. 

return 

Shift data in register A to right by 1 bit. Extract ID and disable/enable. 

Register B ← Register A Set ID. 

Create ACK response data. Register A ← 0x00 : For disabling 
Register A ← 0x0F : For enabling 

Set ACK response data. Variable g_ACKE_tbl[B] ← Register A 

__R_IICSS_Status 

__set_ACKE_table 

 

- PMK6 bit in the interrupt mask flag register 0H (MK0H) 

Cancel the INTP6 interrupt request mask. 

Symbol: MK0H 

7 6 5 4 3 2 1 0 

RTITMK TMMK00 SREMK0 0 0 SRMK0 STMK0 PMK6

x x x 0 0 x x 0 

Bit 0 

PMK6 Control of interrupt processing 

0 Enables interrupt processing. 

1 割り込み処理禁止 

 

Enabling SDA edge detection interrupts 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 55 of 83 
2016.11.15  

5.7.26 Reading ACK Responses 
Figure 5.30 shows the flowchart for reading the ACK responses. 

 

Figure 5.30  Reading ACK Responses 

 

5.7.27 SCL Edge Detection Interrupt Entry Process 
Figure 5.31 shows the flowchart of the SCL edge detection interrupt entry process. 

 

 

Figure 5.31  SCL Edge Detection Interrupt Entry Process 

This section only shows the entry processing of the SCL edge detection interrupt. For the description of 
actual processing of the interrupt, see 5.8.29, SCL Edge Detection Interrupt Processing. 

 

 

 

 

 

 

 

 

Register A ← A & 0x0F Extract slave address ID. 

RET 

Register B ← Register A Set ID. 

Register A ← Variable g_ACKE_tbl[B] Read out ACK response. 

Set RB3 as the register bank to be used. Change register banks. 

BR  AX 

Variable g_P_image ← P_IIC Read out SCL and SDA signal state. 

Register AX ← Variable next_proc Read out processing address. 

Branch processing to the set processed address. 

r_iic_SCL_interrupt 

 

- Port register 3 (P3) 

Read out SCL and SDA signals. 

Reading Out SCL and SDA Signals 

Symbol: P3 

7 6 5 4 3 2 1 0 

0 0 0 0 SCL SDA P31 P30 

__ get_ACKE_table 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 56 of 83 
2016.11.15  

5.7.28 SDA Edge Detection Interrupt Process 
Figures 5.32 to 5.33 show the flowcharts of the SDA edge detection interrupt process. 

 

Figure 5.32  SDA Edge Detection Interrupt Process (1/2) 

 

 

 

 

 

Set RB3 as the register bank to be used. 

Start condition?  
No 

Yes 

Change register banks. 

Clear SCL edge detection interrupt request.

If bit 3 is 1 and bit 2 is 0 (SDA falling), start condition is 
detected. 

PIF5 bit (RQ_INTSCL) ← 0 : Clear the interrupt request. 

Disable SCL edge detection interrupt. PMK5 bit (DIS_INTSCL) ← 1 : Set the mask. 

RETI 

Set to detect start condition. F_STD bit of variable g_IICS ← 1 : Set to perform detection. 

Register A ← P_IIC Read SCL and SDA signal state. 

Clear unused bits. Register A ← Register A & 0x0C 

Enable SCL edge detection. 

EGP0.5 bit (EPG_SCL) ← 1 : Enable rising edge detection. 
EGN0.5 bit (ENG_SCL) ← 1 : Enable falling edge detection. 
 

Set SCL interrupt processing address. Variable next_proc ← #LOWW wait_SA 

Enable SCL interrupt request. PMK5 bit (DIS_INTSCL) ← 0 : Cancel the mask. 

RETI

Stop condition?  
No 

Yes 

Set stop condition detection. 

Variable g_IICS ← 0x01 : Clear bits other than F_SPD. 
Variable __ g_IICS ← 0x01 : Clear bits other than F_SPD. 
Variable __g_stop_det ← 0x01 : Set to perform detection. 

Initialize SCL edge detection setting. EGP0.5 bit (EPG_SCL) ← 1 : Enable rising edge detection. 
EGN0.5 bit (ENG_SCL) ← 0 : Disable falling edge detection. 
 

A 

r_iic_SDA_interrupt 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 57 of 83 
2016.11.15  

 

Figure 5.33  SDA Edge Detection Interrupt Process (2/2) 

The following control registers are used for both the SCL edge detection interrupt processing and SDA 
edge detection interrupt processing. This section describes these control registers collectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PMK6 (DIS_INTSDA) bit ← 1 : Set interrupt mask. Disable SDA edge detection interrupt.

RETI 

A 

Clear SCL edge detection interrupt 
request. 

Set SCL edge detection. EGN5 (ENG_SCL) bit ← 0 : Disable falling edge detection. 
EGP5 (EPG_SCL) bit ← 1 : Enable rising edge detection.  

PIF5 (RQ_INTSCL) bit ← 0 : Clear the interrupt request. 

Set SCL interrupt processing address. Variable next_proc ←#LOWW SCL_High : SCL rising edge

Enable SCL edge detection interrupt. PMK5 (DIS_INTSCL) bit ← 0 : Cancel the interrupt mask. 

 

- External interrupt rising edge enable register (EGP0)  

Enable/disable INTP5 edge detection. 

- External interrupt falling edge enable register (EGN0) 

Enable/disable INTP5 edge detection. 

Setting edge detection 

Symbol: EGP0 

7 6 5 4 3 2 1 0 

0 EGP6 EGP5 EGP4 EGP3 EGP2 EGP1 EGP0 

0x 1 1 x x x x x 

Symbol: EGN0 

7 6 5 4 3 2 1 0 

0 EGN6 EGN5 EGN4 EGN3 EGN2 EGN1 EGN0

0 1 1/0 x x x x x 

 

Bit 5 

EGP5 EGN5 Selection of valid edge of INTP5 pin  

0 0 エッジ検出禁止 

0 1 立ち下がりエッジ 

1 0 Rising edge 

1 1 Both rising and falling edges 

- Port register 3 (P3) 

Read SCL and SDA signals. 

Reading SCL and SDA signals 

Symbol: P3 

7 6 5 4 3 2 1 0 

0 0 0 0 SCL SDA P31 P30 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 58 of 83 
2016.11.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Interrupt mask flag register (MK0L, MK0H) 

Control interrupt requests. 

- Interrupt request flag register (IF0L, IF0H) 

Control interrupt requests. 

Controlling SCL and SDA edge detection interrupts 

Symbol: MK0L 

7 6 5 4 3 2 1 0 

PMK5 PMK4 PMK3 PMK2 PMK1 PMK0 LVIMK WDTIMK

0/1 x x x x x x x 

Symbol: MK0H 

7 6 5 4 3 2 1 0 

RTITMK TMMK00 SREMK0 1 1 SRMK0 STMK0 PMK6

x x x 1 1 x x 0/1 

 

Bit n 

PMKn Control of interrupt processing 

0 Enables interrupt processing. 

1 Disables interrupt processing. 

 

Symbol: IF0L 

7 6 5 4 3 2 1 0 

PIF5 PIF4 PIF3 PIF2 PIF1 PIF0 LVIIF WDTIIF

0 0 0 0 0 0 x x 

Symbol: IF0H 

7 6 5 4 3 2 1 0 

RTITIF TMIF00 SREIF0 0 0 SRIF0 STIF0 PIF6 

x x x 0 0 x x 0 

 

Bit n 

PIFn Interrupt request flag 

0 Interrupt request signal has not been generated. 

1 割り込み要求信号が発生し，割り込み要求状態 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 59 of 83 
2016.11.15  

5.7.29 SCL Edge Detection Interrupt Process 
Figures 5.34 to 5.52 show the flowcharts of SCL edge detection interrupt process.  

(0) Waiting for stop/start condition 

 

Figure 5.34  Waiting for Stop/Start Condition 

 

(1) Waiting for slave address reception start (sequence (4)) 

 

Figure 5.35  Waiting for Slave Address Reception Start  

 

Clear SDA edge detection interrupt 
request. 

RETI 

PIF6 (RQ_INTSDA) bit ← 0 : Clear the interrupt request. 

Enable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 0 : Cancel the interrupt mask. 

Disable SCL edge detection interrupt. PMK5 (DIS_INTSCL) bit ← 1 : Set the interrupt mask. 

RETI 

Disable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ←1 : Set interrupt mask. 

Set initial value for reception data. Variable g_IICA ← 0x01 : Initial value for reception 

Disable SCL falling edge detection. EGN5 (ENG_SCL) bit ←0 : Disable falling edge detection. 

Set SCL interrupt processing address. Variable next_proc ←#LOWW capt_data : Address reception 
processing 

SCL_High 

wait_SA 

sequence(4) 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 60 of 83 
2016.11.15  

(2)  Receiving slave address (sequence (5)) 

 

Figure 5.36  Receiving Slave Address  

 

RETI 

Clear stop condition detection. F_SPD bit ← 0 : Clear the detection flag. 

Store data being received. 

Acquire received data bits. 
CY flag ← D_SD bit : Acquire SDA data bits. 
Register A ←Variable g_IICA : Read data being shifted. 
Register A ← CY flag : Shift in received data rightmost bit first.

Variable g_IICA ←Register A : Store data being shifted. 

Yes 

No
Slave address continued? 

B

If the slave address reception continues, end the interrupt 
processing. 

Check address. Shift the register A to right by 1 bit and compare the register 
value and the upper 7 bits of its own slave address, referring 
to the slave address table. If they do not match (if the table-
reference result is 0), the processing proceeds to the non-
selection (not_selected) processing. 

Yes 

No
Addresses match? 

Set address match flag. Set slave address ID in the upper 4 bits of g_IICS. 

Set communication direction flag. F_TRC bit ← CY flag : Set the communication direction flag.

A 

Disable SCL rising edge detection. EGP5 (EPG_SCL) bit ←0 : Disable rising edge detection. 

Wait for SCL falling. Poll P_SCL bit and wait for SCL falling. 

sequence(7) 

sequence(6) 

sequence(5) 

Start ACK response. PM_SDA bit ← CY : ACK/NACK response 

Set SCL interrupt processing address. Variable next_proc ←#LOWW ack_end : ACK response 
completion 

Enable SCL falling edge detection. EGN5 (ENG_SCL) bit ← 1 : Enable falling edge detection. 

RETI 

send_ack 
ACK response start processing 

Set ACK response flag. Read out the ACK response of the slave address ID from the 
table and set the value to variable g_ACKE. 

Check ACK response flag. F_ACKD bit ← ACK response flag  
CY flag ← Invert the ACK response flag. 

capt_data 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 61 of 83 
2016.11.15  

(3) Non-Selection Processing (sequence(6)’) 

 

Figure 5.37  Non-Selection Processing 

 

(4) ACK Response End Processing (sequence(8)) 

 

Figure 5.38  ACK Response End Processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RETI 

Clear communication status. Variable g_IICS ←0x00 : Clear the I2C status. 

Set SCL interrupt processing address. Variable next_proc ←#LOWW addr_end : Address end 
processing 
(sequence(21)) 

Request the master to wait. PM_SCL bit ← 0 : Set SCL signal to 0. 

End ACK response. PM_SDA bit ← 1 : Re-set SDA signal to input. 

Enable SCL rising edge detection. EGP5 (EPG_SCL) bit ← 1 : Enable rising edge detection. 

Yes 

No
Transmission? 

C

D 

Perform transmission or reception according to F_TRC bit 
value. 

sequence(6)’ 

ack_end 

sequence(8) 

B 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 62 of 83 
2016.11.15  

(5) Reception Completion (Operation Start Request) Processing (sequence(8)’) 

After completion of one-byte data reception, set the communication end flag to the upper software and end 
processing. 

 

Figure 5.39  Reception Completion Processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RETI 

Set reception data. Variable __g_IICA ← Variable g_IICA : Set reception data. 

Set transmission/reception end flag. 
Variable __g_IIC_IF ← 0x01 
Transfer reception data and communication status to C-
description reception processing part (interface processing 
to C-description part). 

sequence(8)’ 

rx_start 
Notify the upper process that the slave address reception 
has been completed and that slave has been selected in 
reception mode, and then continue reception processing. 

Set communication status. Variable __g_IICS ← Variable g_IICS : Set communication 
status.  

TRG_INTIIC 

C 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 63 of 83 
2016.11.15  

(6) Receiving Data (sequence(9)) 

 

Figure 5.40  Receiving Data  

 

(7) Starting Reception Operation (sequence(10)) 

 

Figure 5.41  Starting Reception Operation  

 

RETI 

Update received status. F_STD bit ← 0  : Clear the STD flag. 
F_ACKD bit ← 0 : Clear the ACKD flag. 

Set SCL interrupt processing address. Variable next_proc ←#LOWW rx_data2 : Data reception 
processing (sequence(10))

Clear SDA edge detection interrupt 
request. 

PIF6 (RQ_INTSDA) bit ← 0 : Clear the interrupt request. 

Enable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 0 : Cancel the interrupt mask. 

sequence(11) 

rx_data3 

Store data being reception. Variable g_IICA ← Register A : Store data being shifted 

Yes 

No
Reception continued? 

A

If the 8-bit reception is completed, the processing proceeds to 
ACK response processing (send_ack). If reception continues, 
the processing exits the interrupt processing and enters the next 
bit reception wait state. 

RETI 

Set SCL interrupt processing address. Variable next_proc ←#LOWW rx_data3 : Data reception 
processing 
(sequence(11)) 

Disable SDA edge detection interrupt. 

Disable SCL falling edge detection. 

PMK6 (DIS_INTSDA) bit ←1 : Set the interrupt mask. 

EGN5 (ENG_SCL) bit ←0 : Disable falling edge detection. 

sequence(9) 

rx_data 

EGN5 (ENG_SCL) bit ← 1 : Enable falling edge detection. Enable SCL falling edge detection. 

Acquire reception data bit. 
CY flag ← D_SDA bit : Acquire SDA data bits. 
Register A ← Variable g_IICA : Read data being shifted 
Register A ← CY flag : Shift in received data rightmost bit first.

sequence(10) 

rx_data2 After SCL signal falling at the first bit, start data 
communication operation (restart or stop condition is not 
detected). 

After SCL signal rising at the first bit of the next data, detect 
SDA state change (restart or stop condition) and prepare for the 
communication.)



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 64 of 83 
2016.11.15  

(8) Requesting Transmission Operation Start (sequence(14)) 

 

Figure 5.42  Requesting Transmission Operation Start  

 

(9) Starting Transmission Operation (sequence(15)) 

 

Figure 5.43  Starting Transmission Operation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TRG_INTIIC 

Set SCL interrupt processing address. Variable next_proc ←#LOWW tx_start : Data transmission 
processing 
(sequence (15)) 

Initialize transmission bit counter. Variable bit_count ← 0x07: Set bit count – 1. 

Set the communication status, set the transmission/reception 
end flag, and end the processing. 

RETI 

Set SCL interrupt processing address. Variable next_proc ← #LOWW tx_data : Data transmission 
processing 
(sequence(16)) 

Disable SCL rising edge detection. EGP5(EPG_SCL) bit ← 0 : Disable rising edge detection. 

sequence(14) 

Data transmission processing 
D 

sequence(15) 

tx_start 

Set I2C communication status. Variable g_IICS: Clear variable g_IICS bits other than COI and 
TRC bits. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 65 of 83 
2016.11.15  

(10) Transmission Processing (sequence(16)) 

 

Figure 5.44  Transmission Processing 

 

(11) Transmission End Processing (sequence(17)) 

 

Figure 5.45  Transmission End Processing 

 

 

 

  

RETI 

Store the remaining data. Variable g_IICA ← Register A : Store the remaining bits. 

Prepare transmission data. 
Register A ← Variable g_IICA : Read transmission data. 
CY flag ← A.7 bit : Shift data from A.7 to CY. 

PM_SDA bit ← CY flag : Transmit the bits. 

Variable next_proc ← #LOWW tx_data _end : Data 
transmission 
processing 
(sequence(17)) 

Count the remaining bits. Variable bit_count ← bit_count － 1 : Count the number of 
remaining bits. 

Yes 

No
Transmission completed? 

Set SCL interrupt processing address.

RETI 

Set SCL interrupt processing address. Variable next_proc ←#LOWW ack_chk : Data transmission 
processing 
(sequence(18)) 

Disable SDA output. PM_SDA bit ← 1 : Re-set the port to input. 

sequence(16) 

tx_data 

Transmit data. 

sequence(17) 

tx_data_end 

Enable SCL rising edge detection. EGP5 (EPG_SCL) bit ← 1 : Enable rising edge detection. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 66 of 83 
2016.11.15  

(12) Checking ACK (sequence(18)) 

 

Figure 5.46  Checking ACK  

 

(13) NACK Completion Processing (sequence(20)) 

 

 

Figure 5.47  NACK Completion Processing 

 

 

 

Variable next_proc ←#LOWW ack_end : Next data 
transmission 
processing 
(sequence (14)) 

Yes 

No
NACK response? 

RETI 

Set SCL interrupt processing address.

NACK response from the master indicate the communication 
completion. 

Set SCL interrupt processing address. 

PIF6 (RQ_INTSDA) bit ← 0 : Clear the interrupt request. 

Enable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 0 : Cancel the interrupt mask. 

RETI 
The processing proceeds to the start condition/stop condition 
detection wait state. 

ack_det 
ACK response from the master instructs to continue 
communication. 

Clear SDA edge detection interrupt 
request. 

Variable next_proc ←#LOWW nack_end : To the 
communication exit processing 
(sequence(20)) 

TRG_INTIIC 

Disable SCL interrupt. PMK5 (DIS_INTSCL) ← 1 : Disable INTP5. 

Request the master to wait. PM_SCL bit ← 0 : Set SCL signal to 0. 

Set the communication status, set transmission/reception 
end flag, and end the processing. 

sequence(18) 

ack_chk 

sequence(19) 

sequence(20) 

nack_end 

Disable SCL falling edge detection. EGN5 (ENG_SCL) bit ← 0 : Disable falling edge detection. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 67 of 83 
2016.11.15  

(14) Non-Selection Processing (1/2) (sequence(21)) 

Even when the slave itself is not selected and it does not perform data processing, the slave needs to 
monitor the communication state by counting the number of SCLs. 

In the non-selection processing below, only the SCL counting is performed to reduce the CPU processing 
during the not-selected state (this operation is referred to as skip-read). 

  

Figure 5.48  Non-Selection Processing (1/2) 

 

 

 

Variable next_proc ← #LOWW next_data : Next data 
transmission 
processing 
(sequence (28)) 

Yes 

No
ACK response? 

RETI 

Set SCL interrupt processing address.

ACK response from another slave. 

Set skip-read SCL count. Variable g_work_count ← 0x08 : Set the skip-read count. 

RETI 

no_ACK 

sequence(22) 

Set skip-read SCL count. Variable g_work_count ← 0x02 : Set the skip-read count. 

sequence(24) 
Variable next_proc ← #LOWW no_ACK2 : Skip-read 

processing (sequences 
(23)(25)) 

Set SCL interrupt processing address. 

no_ACK1 

Clear SDA edge detection interrupt 
request. 

PIF6 (RQ_INTSDA) bit ← 0 : Clear the interrupt request. 

Enable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 0 : Cancel the interrupt mask. 

EGN5 (ENG_SCL) bit ← 1 : Enable falling edge detection. Enable SCL falling edge detection. 

addr_end 

sequence(21) 

E 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 68 of 83 
2016.11.15  

(15) Non-Selection Processing (2/2) (sequences (23), (25)) 

 

Figure 5.49  Non-Selection Processing (2/2) 

 

(16) Skip-Read Processing 2 (sequence(26)) 

 

Figure 5.50  Skip-Read Processing 2 

 

Variable next_proc ← #LOWW no_ACK1 : Skip-read 
processing (sequence(24))

Set SCL interrupt processing address.

RETI 

Count skip-read SCLs. Variable g_work_count ← g_work_count － 1 

Variable next_proc ← #LOWW next_data3 : Skip-read 
processing  
(sequence (23)) 

The first clock of the next data 

Disable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 1 : Set the interrupt mask. 

EGN5 (ENG_SCL) bit ← 0 : Disable falling edge detection. Disable SCL falling edge detection. 

> 0 

= 0
Remaining SCL count? 

Variable g_work_count ← 0x08 : Set the skip-read count. Set skip-read SCL count. 

Set SCL interrupt processing address.

RETI 

RETI 

Count skip-read SCLs. Variable g_work_count ← g_work_count － 1 

> 0 

= 0
SCL remaining? 

E

After completion of skip read, the processing proceeds to the 
next data check (addr_end) 
(sequence(21)) 
 

sequence(23) (25) 

no_ACK2 

sequence(26) 

next_data3 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 69 of 83 
2016.11.15  

(17) Skip-Read Processing 3 (sequence(28)) 

 

Figure 5.51  Skip-Read Processing 3 

 

(18) Skip-Read Processing 4 (sequence(29)) 

 

Figure 5.52  Skip-Read Processing 4 

 

 

Enable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 0 : Cancel the interrupt mask. 

Clear SDA edge detection interrupt 
request. 

PIF6 (RQ_INTSDA) bit ← 0 : Clear the interrupt request. 

EGN5 (ENG_SCL) bit ←1 : Enable falling edge detection. Enable SCL falling edge detection. 

Variable next_proc ← #LOWW next_data2 : Skip-read 
processing 
(sequence(29)) 

Set SCL interrupt processing address.

RETI 

Disable SDA edge detection interrupt. PMK6 (DIS_INTSDA) bit ← 1 : Set the interrupt mask. 

EGN5 (ENG_SCL) bit ← 0 : Disable falling edge detection. Disable SCL falling edge detection. 

Variable next_proc ← #LOWW next_data3 : Skip-read 
processing 
(sequence(26)) 

Set SCL interrupt processing address. 

RETI 

sequence(28) 

next_data 

sequence(29) 

next_data2 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 70 of 83 
2016.11.15  

5.7.30  Starting Next Data Transmission  
Figure 5.53 shows the flowchart for starting the next data transmission. 

 

Figure 5.53  Next Data Transmission Start Processing 

5.7.31 Starting Next Data Reception  
Figure 5.54 shows the flowchart for starting the next data reception. 

 

Figure 5.54  Next Data Reception Start Processing 

5.7.32 Aborting Data Transmission  
Figure 5.55 shows the flowchart for aborting data transmission. 

 

Figure 5.55  Data Transmission Abort Processing 

 

Output MSB data. Shift the transmission data in register A to left by 1 bit and 
output that to SDA signal MSB first. 

Variable g_IICA ← Register A Store transmission data. 

PM_SCL bit ← 1 : Cancel the wait. Cancel I2C bus wait. 

RET 

Secure setup time. 
RET_INST 

Secure 10 clock cycles by using the CALL and RET 
instructions. 

Initialize reception data. Variable g_IICA ← 0x01 : Initial value for reception data. 

Variable next_proc ← #LOWW rx_data : Reception processing 
(sequence(9)) 

 

Set SCL interrupt processing address. 

PM_SCL bit ← 1 : Cancel the wait. Cancel I2C bus wait. 

RET 

Initialize communication status. Variable g_IICS ← 0x00 : Clear the communication status. 
Variable __g_IICS ← 0x00 

PM_SCL bit ← 1 : Cancel the wait. Cancel I2C bus wait. 

RET 

__Tx_data_sub 

__Rx_data_sub 

__Tx_end_sub 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 71 of 83 
2016.11.15  

6. I2C Bus Basics 

With the I2C bus, the I2C bus master controls communication. Slaves transmit or receive data according to 
the instructions from the master. Slaves can only send the ACK or NACK response to the data transmitted 
from the master, and pull the SCL signal low to keep the master waiting for synchronization with the master. 
However, some masters do not support the wait function and special approach is necessary in this case.  

Slaves do not necessarily always follow the master. Slaves follow the master’s instructions with respect to 
the communication protocol details; however, in the upper layer, the master is required to meet the slave’s 
specifications. This is because the functions that slaves provide to the master via the I2C bus are specified 
by slaves.  

Therefore, it is first defined what functions to provide as the slave. The master performs communication 
according to the definition.  

As described above, with slaves, the functions provided determine the processes for access from the I2C 
bus, and thus hierarchical I2C bus control with slaves is difficult, unlike with the master. The slave performs 
the appropriate process according to the instructions from the master. 

 

6.1 Communication Implementation through Software 
The RL78/I1D does not have the I2C communication functions corresponding to the slaves. Therefore, to 

connect it as the slave to the I2C bus, it is necessary to prepare the program processes using ports and 
external interrupts. In this case, there are some limitations on the communication speed, conditions, and 
signals.  

Figure 6.1 shows the SCL signal standard in this application note. The values shown here must also be 
applied to the setup time and hold time of the start condition and stop condition. 

 

 

 

 

 

 
 
 
The ports and interrupts shown in figure 6.2 are used. Note that P32 and P33 are not provided with the 

function to set N-ch O.D. output. The same function is implemented by setting 0 to the output latch and 
controlling it through PM. 

 

 

 

 

 

Figure 6.2  Pins Used 

 
Implementation through software requires considerable CPU power. Particularly, special consideration is 

required since the I2C bus state needs to be constantly monitored even when the CPU itself is not selected. 
To perform communication while monitoring the I2C bus state, the appropriate response time to the signal 

change is important. Since the delay caused by other interrupts has a significant influence, it is necessary to 
give top priority to the INTP5 and INTP6 interrupts and to enable the other interrupt processes at the 
beginning of the process. Therefore, for the other interrupts, enable=true is additionally declared on #pragma 
interrupt declaration.  

In addition, the I2C hardware control processing part is independent as a library, and is written in the 
assembly language. For convenient use, the interface part written in the C language is provided, which 
enables easy use of the library also from the program written in the C language. 

 
 

Figure 6.1  Example of Corresponding SCL Waveform 

SCL 

1.8 μs 2.5 μs (MIN)

5.0 μs (MIN)

P33/INTP5

P32/INTP6

SCL

SDA



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 72 of 83 
2016.11.15  

6.2 Functions as Slaves 

6.2.1 LED Display Function 
As the LED display device, eight LEDs are used to display 8-bit data. Two-byte data can be displayed, and 

either of the 2 bytes of data can be specified according to the SW input. While SW is not being pressed, data 
at register address 0x00 is displayed and while SW is being pressed, data at register address 0x01 is 
displayed. 

Data is divided into the upper 4 bits and lower 4 bits and displayed in a time-division manner. The display 
frequency is 10 ms. Display data from the master is fixed as display data when the master issues the stop 
condition. The fixed data can be displayed after 50 ms at the latest. 

 

6.2.2 A/D Conversion Function 
It is possible to convert 4-channel analog input and obtain the moving average of the 16 latest 

conversions. The specifications of A/D conversion are given below. 

- Analog input:    4 channels (channels 0 to 3) 

- Conversion method:   Continuous conversion in scan mode 

- Conversion resolution: 12 bits 

- Conversion time:    18 s/channel 

- Buffer:     16 data/channel (128 bytes in total) 

Conversion result of channel 0 is first read out, and then that of 1, 2, and 3 are read out. The upper 4 bits 
and lower 8 bits of the 12-bit conversion result of each channel are read out in this order. After the lower 8 
bits of channel 3 are read out, channel 0 is read out as shown in figure 6.3. 

 

 

 

 

 

 

 

 

 

Figure 6.3  Reading A/D Conversion Results 

6.2.3 RAM Function 
The 128-byte area is provided to temporarily store 128 bytes of data. In the initial state, data is stored at 

0x00 to 0x7F. When specified with slave address 0x70, RAM can be accessed. The data is written to RAM 
immediately after it is received. The address is automatically updated each time RAM is accessed. Access to 
address 0x7F is followed by access to address 0x00. 

 

Channel 0 Channel 1 Channel 2 Channel 3 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 73 of 83 
2016.11.15  

6.3 Library Interface Specifications 
The library written in the assembly language provides the following three types of interfaces. 

- Transmission/reception end flag  

- Stop condition detection flag 

- Communication restart processing function 

 

 

 

 

 

 

 

Figure 6.4  I2C Bus Control Structure 

 

6.3.1 I2C Communication Flags 
After completion of 1-byte data transmission/reception for the slave itself, the master is kept waiting to stop 
the communication, and then the following variables/flags are set. 

 

- Variable _g_IICA: Stores data received in reception mode. 

- Variable _g_IICS: Stores communication status, like the IICS0 register. 

- Variable _g_IIC_IF: Flag indicating that 1-byte communication is completed. (transmission/reception end 
flag) 

If the upper software checks the transmission/reception end flag to find that the flag is set, it refers to the 
communication status (variable _g_IICS) and executes the appropriate process.  

After completing the process, the upper software calls the library functions (shown in section 6.3.2 Next 
Communication Starting Functions), prepares for the next communication, and cancels the I2C bus wait state 
to start the next communication.  

 

6.3.2 Next Communication Starting Functions 
The following three functions are provided to restart the I2C bus communication. 

- _Rx_data_sub function: In the reception process, starts the next data reception. 

- _Tx_data_sub function: In the transmission process, starts transmission of the data passed to the 
argument. 

- _Tx_end_sub function: In responding to the NACK response from the master, cancels the wait state and 
withdraws from communication.  

According to the communication status, one of the above functions is called. 

 

6.3.3 Stop Condition Detection Flag 
When the library written in the assembly language detects the stop condition, 0x01 is set to the variable 

_g_stop_det. Unlike the I2C status (variable _g_IICS), it remains set until cleared by the upper program. This 
is used in such applications that the process is started upon detection of the stop condition. 

In the main process in this application note, the received data for turning on LED is sent to the program 
that processes turning on of LED, and is used as a trigger to actually process turning on of LED.  

INTP5/P33SCL 

INTP6/P32SDA 

Control library 

(r_iicss_lib.asm) 

Control function 

main function 
Flag 

Function call 

Function call (r_intiic.c) 

Flag 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 74 of 83 
2016.11.15  

 

6.4 Slave Address Specification 

6.4.1 Slave Address Table 
This library holds information of the slave addresses to use as a table. The table is referred to with the 

upper 7 bits of the slave address transmitted from the master.  

The upper 4 bits of the obtained value is the address ID (the lower 4 bits are 0). If the obtained value is 
0x00, it means that the received address is not the address of that slave, and thus that slave does not 
participate in communication. 

If the address ID type is one of 1 to F, it means that slave has been selected. In other words, 15 
independent slave addresses can be used.  

Although a single address ID can be assigned to multiple slave addresses, if the same address ID is used, 
the same process is basically applied. 

The obtained address ID is set to the upper 4 bits of the communication status (variable _g_IICS). Figure 
6.5 shows the communication status structure.  

 

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 
ID3 ID2 ID1 ID0 F_TRC F_ACKD F_STD F_SPD 

Figure 6.5  Communication Status Structure 

 

The initial ACK response values and address table are stored in r_iicss_adr.asm as constant files. Figure 
6.6 shows an example of the slave address table. In this example, 0x10 (address ID is 1), 0x20 (address ID 
is 2), 0x30 (address ID is 3), and 0x40 (address ID is 4) are set to 0x30 (address is 0x60), 0x38 (address is 
0x70), 0x40 (address is 0x80), and 0x48 (address is 0x90), respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 6.6  Slave Address Table 

 

6.4.2 ACK Response Flag 
Each address ID has a flag to control the ACK response. 0x0F is set to send the ACK response, and 0x00 

is set not to send the ACK response.  

Figure 6.7 shows the ACK response table structure. In this example, address IDs 1 to 4 are set to send the 
ACK response.  

 

 

 

Figure 6.7  ACK Response Table Structure 

ACK_TBL: 
;                           0/8  1/9  2/A  3/B  4/C  5/D  6/E  7/F 
                .DB         0x00,0x0F,0x0F,0x0F,0x0F,0x00,0x00,0x00 ; 0x00-0x07 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x08-0x0F 

SADR_TBL:                   ;0/8  1/9  2/A  3/B  4/C  5/D  6/E  7/F 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x00-0x07 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x08-0x0F 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x10-0x17 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x18-0x1F 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x20-0x27 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x28-0x2F 
                .DB         0x10,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x30-0x37 
                .DB         0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x38-0x3F 
                .DB         0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x40-0x47 
                .DB         0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x48-0x4F 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x50-0x57 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x58-0x5F 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x60-0x67 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x68-0x6F 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x70-0x77 
                .DB         0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 ; 0x78-0x7F 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 75 of 83 
2016.11.15  

6.5 Protocol for Accessing Slaves 

6.5.1 Display on LED 
Figure 6.8 shows how to access the slave for displaying data on LED. 

 

 

 

 

 

 

 

Figure 6.8  Timing of Writing LED Display Data 

 

In this example, 0x3C is written to 0xA5 and 0x01 following the start condition (ST) and slave address 
(0x60). At the end, the stop condition (SP) is issued to inform the slave of transmission completion.  

In responding to that, the slave sends ACK. 

 

6.5.2 Reading A/D Conversion Results 
Figure 6.9 shows how to access the slave for reading the A/D conversion results. 

 

 

 

 

 

 

 

 

 

Figure 6.9  Timing of Reading A/D Conversion Results 

 

In this example, by selecting them with the start condition (ST) and slave address (0x61) first, the upper 
and lower A/D conversion results of channel 0 are read out, in this order. In this figure, the upper A/D 
conversion result of channel 0 is 0x02. 

In the timing shown at the bottom, the master returns the NACK response after reading the conversion 
result (0x013C), the slave determines it as completion of communication, and withdraws from 
communication. Finally, the master issues the stop condition (SP) and releases the I2C bus to complete 
communication.  

When 4-channel A/D conversion is completed, the obtained moving average is set to the IIC buffer for 
conversion result transmission. Meanwhile, the latest conversion result can be obtained by repeatedly 
reading the A/D conversion results since the upper conversion result of channel 0 is read after the lower 
conversion result of channel 3 is read.  

 

SCL 

SDA 

Slave address (0x60) ACK

SCL 

SDA 

Display data (0xA5) Display data (0x3C) ACK ACK 

Continued below 

ST 

SP 

Continued 
from above 

SCL 

SDA 

Upper conversion data 
(0x01) 

Lower conversion data 
(0x3C)

ACK NACK SP 

SCL 

SDA 
Slave address (0x61) Upper conversion data 

(0x02) 

ACK ACK ST 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 76 of 83 
2016.11.15  

6.5.3 Reading Data from RAM 
Figure 6.10 shows how to access the slave for reading data from RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Timing of Reading Data from RAM 

 

In this example, following the start condition (ST) and slave address (0x70), register address 0x00 (= RAM 
address 0x00) is specified. 

Then, by restarting and selecting the slave (0x71) for reading, the value is read from the specified RAM 
address 0x00. In this example, the value at address 0x00 is 0x00. 

In the timing shown at the bottom, the master returns the NACK response after reading the values from 
RAM addresses 0x7E and then 0x7F, the slave determines it as completion of communication, and 
withdraws from communication. Finally, the master issues the stop condition (SP) and releases the I2C bus 
to complete communication. 

 

6.5.4 Writing Data to RAM 
Figure 6.11 shows how to access the slave for writing data to RAM. 

 

 

 

 

 

 

 

 

Figure 6.11 Timing of Writing Data to RAM 

 

In this example, following the start condition (ST) and slave address (0x70), register address 0x00 is 
specified. 

Then, 0xAA and 0x55 are transmitted as data to be written to addresses 0x00 and the next address, 
respectively. After transmitting 2-byte data and completing communication, the master issues the stop 
condition and releases the I2C bus. 

SCL 

SDA 

Slave address (0x70) Register address (0x00) ACK ACK

SCL 

SDA 

RAM data (0x7E) Lower RAM data (0x7F) NACK

Continued 
b l

ST 

SP 

Continued 
from above 

SCL 

SDA 

Slave address (0x71) RAM data (0x00) ACK ACK ST 

ACK

SCL 

SDA 

Slave address (0x70) Register address (0x00) ACK ACK

SCL 

SDA 

Data to be written 
(0xAA) 

Data to be written (0x55)ACK ACK 

Continued below

ST 

SP 

Continued 
from above 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 77 of 83 
2016.11.15  

 
 

7. Basic Control of I2C Bus through Software 

To implement the I2C bus slave function through software, it is necessary to detect the rising and falling 
edges of the SCL and SDA signals.  

For detection, INTP5 (SCL signal edge detection) and INTP6 (SDA signal edge detection) are used.  
 

7.1 Edge Detection Interrupts 
To process the detected edges in the limited time, the edge detection interrupts are given top priority over 

the other interrupts in the nested interrupt system. Even so, it takes 9 to 16 clock cycles for hardware to start 
the interrupt process. If the interrupt request is generated immediately after the lower priority interrupt is 
accepted, it takes another 9 clock cycles. Taking this into consideration, the process is performed as quickly 
as possible.  

 

7.1.1 SCL Edge Detection 
Basically, the SCL edge is used for data transmission/reception. Therefore, the edge to be detected is 

frequently switched between rising and falling to minimize the total processing time. Figure 7.1 shows the 
valid edges of the SCL and SDA signals when the address is received.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.1 SCL and SDA Edges Used According to Timing 

 
Until the start condition is detected, detection of the both edges of SDA is valid. Even after the stop 

condition is detected at the falling edge of the SDA signal, detection of all the edges is valid until the falling 
edge of the SCL signal is detected and slave address reception is started. This enables support of the case 
in which the stop condition is issued immediately after the start condition.  

When slave address reception is started, the SDA signal edge detection interrupt is disabled. When slave 
address reception is completed at the rising edge of the eight SCL clock cycle, the addresses are compared. 
If the addresses agree, the program is used to wait for the SCL signal falling edge, and ACK response is 
started, and the edge of the SCL signal to be detected is changed to the falling edge. (The reason why the 
program is used to wait for the SCL signal falling edge is accepting the interrupt twice a cycle is too wasteful 
while there is much processing to do.) 

After that, ACK response is ended at the falling edge of the SCL signal and slave address reception is 
completed. Detection of the rising edge of the SCL signal is enabled for the next.  

In the period in which the next SCL signal is high (first clock cycle), detection of all the edges is valid 
because the start or stop condition may be issued.  

 

7.1.2 SDA Edge Detection 
Normal communication operation is sequential operation during SCL edge detection. Meanwhile, edge 

detection of the SDA signal is used to terminate the sequential operation. Therefore, when to enable 
acceptance is very important. As shown in figure 7.1, acceptance is enabled only while the SCL signal of the 
specific timing is high. 

SCL 

SDA 

Slave address (0x60) ACK ST 

SCL edge 
detection 

SDA edge 
detection 

Data 

X X



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 78 of 83 
2016.11.15  

7.2 Control Processes 
To reduce the processing time, the interrupt processing part is written in the assembly language. Besides, 

in the INTP5 interrupt process, the processing address according to the contents of the next process is set to 
the variable next_proc in advance.  

This is because the process based on the SCL signal edge is sequential and thus the next process is 
limited. On the other hand, the process based on the SDA signal edge, which involves SP (stop condition) 
and ST (start condition), suspends the sequential process, like the interrupt process does. 

 
Furthermore, at the beginning of the INTP5 interrupt process, the state of the input ports for the SCL and 
SDA signals are taken in the variable g_P_image.  

To use such a process without paying any attention, the interface to the upper software is restricted. 
 

7.2.1 Sequences based on SCL Edge Detection Interrupt (1) 
Sequences are defined assuming sequence 1 is the state in which both the SCL and SDA signals are high 

before communication starts. Table 7.1 shows the sequences for address reception and non-selection. 
 

Table 7.1 Processes for Address Reception and Non-Selection 
Sequence No. State/Process 

Sequence 1 Initial state (SCL and SDA signals are high.) 
Sequence 2 Detection of stop condition (waits for start condition next.) 
Sequence 3 Detection of start condition (waits for SCL falling.) 
Sequence 4 SCL falling after start condition detection (waits for address reception.) 
Sequence 5 SCL rising edge (takes in slave address.) 
Sequence 6 8th SCL rising (slave addresses agree.) 
Sequence 6’ 8th SCL rising (slave addresses disagree.) 
Sequence 7 8th SCL falling (starts ACK response.) 
Sequence 8 9th SCL falling (completes ACK response.) 

Sequence 21 9th SCL rising (slave addresses disagree.) 
Sequence 22 9th SCL rising without ACK response (waits for ST and SP.) 

Sequences 23 and 
25

9th or 1st SCL falling (discontinues waiting for ST and SP; skips reading SCL.)

Sequence 24 9th SCL rising (waits for ST and SP.) 
Sequence 26 Counting SCL rising (waits for 9th SCL rising.) 

 

7.2.2 Sequences based on SCL Edge Detection Interrupt (2) 
Table 7.2 shows the reception process sequences. In the reception process, when 8-bit data is complete, 

the SCL bus is placed in the wait state to inform the upper process (received data is set in the variable 
_g_IICA, the communication status is set in the variable _g_IICS, and _g_IIC_IF is set to 0x01). 

At the first SCL cycle, restart/stop or start of next data reception may occur; therefore, all the sources are 
enabled beforehand. If restart/stop is detected, the reception process sequence is cancelled. If SCL falls, it 
means continuation of reception, and thus SDA edge detection is disabled and process is continued. 

Table 7.2 Reception Process Sequences 

Sequence No.  State/Process Remarks 

Sequence 8’ 9th SCL falling (informs the upper software of information 
at reception completion.)  

_Rx_data_sub is performed next. 

_Rx_data_sub Releases I2C bus from wait state. Sequence 9 is performed next. 
Sequence 9 1st SCL rising (takes in received data.) Sequence 11 is performed next. 
Sequence 6 8th SCL rising (prepares for ACK response.)   
Sequence 7 8th SCL falling (starts ACK response.) Sequence 8→8’ is performed next.

Sequence 11 Takes in data at SCL rising (waits for ST, SP, and SCL 
falling edge.) 

Sequence 6 is performed next. 

Sequence 10 1st SCL falling (discontinues waiting for ST and SP.) Sequence 11 is performed next. 
 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 79 of 83 
2016.11.15  

Having processed the received data in the variable _g_IICA, the upper process calls the function 
_Rx_data_sub to release the I2C bus from the wait state and restart the next reception. 

 

7.2.3 Sequences based on SCL Edge Detection Interrupt (3) 
Table 7.3 shows the transmission process sequences. In the transmission process, after ACK response 

upon agreement of slave addresses, the SCL bus is placed in the wait state to inform the upper process (the 
communication status is set in the variable _g_IICS and _g_IIC_IF is set to 0x01). 

Table 7.3 Transmission Process Sequences 

Sequence No. State/Process Remarks 

Sequence 14 Selection for transmission (informs the upper software of 
information upon address reception completion.) 

_Tx_data_sub is performed 
next. 

_Tx_data_sub Outputs1st bit; releases I2C bus from wait state. Sequence 15 is performed next. 
Sequence 15 1st SCL rising; clears ACKD, STD, and SPD. Sequence 16 is performed next. 
Sequence 16 SCL falling (data transmission timing; repeats 7 times.)  
Sequence 17 8th SCL falling (starts ACK reception.) Sequence 18 is performed next. 
Sequence 18 Receives ACK at 9th SCL rising.   
Sequence 19 Detects ACK at 9th SCL rising. Sequence 14 is performed next. 
Sequence 20 9th SCL falling (informs the upper software of NACK.) _Tx_end_sub is performed next. 
_Tx_end_sub Clears communication status and releases I2C bus.   

 

Having set the transmission data in the argument (A register), the upper process calls the function 
_Tx_data_sub and outputs the next data to SDA to release the I2C bus from the wait state and restart the 
next data transmission. 

For slave transmission, the slave is driving the SCA signal except for the 9th clock cycle; therefore, when 
the master is to perform any operation, it is necessary to return NACK response to the slave to stop 
transmission. When the slave receives NACK, it informs the upper software of NACK response, and releases 
the I2C bus from the wait state by using the function _Tx_end_sub called by the upper software to withdraw 
from communication (SCL edge detection is disabled). 

 

7.3 I2C Slave File Configuration 
The library of the I2C slave functions provided by this software consists of the following three files.  

- r_iicss_lib.asm:  Program body that controls I2C (recommended not to be modified) 

- r_iicss_adr.asm:  Definitions including slave addresses on the I2C bus. Modify as necessary.  

- r_intiic.c:        Equivalent part of INTIICA0 processing part in IICA0. Write the processes using the 
I2C bus. In this sample program, the functions described in 6.2 Functions as Slave 
are implemented. To use the other functions, modify the processes here.  

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 80 of 83 
2016.11.15  

8. Settings through Code Creation 

Set the following items with "API function output control" of "File creation mode" of Property set to "Output 
only initialization functions". 

(1) Clock generation circuit settings 

(a) Pin assignment settings: Fix as they are. 

(b) Clock settings 

- Operating mode settings: High-speed main mode 2.7(V)  VDD  3.6(V) 
- Main system clock (fMAIN) settings: High-speed on-chip oscillator clock (fIH)  
- High-speed on-chip oscillator clock settings: 24 (MHz) 
- Middle-speed on-chip oscillator clock settings: Do not check "operate". 

- High-speed system clock settings: Do not check "operate". 
- Subsystem clock (fSUB) settings: Do not check "operate". 
- Low-speed on-chip oscillator clock (fIL) settings: Frequency 15 (kHz) 
- RTC, FMC, interval timer, PCLBUZ operating clock settings: fIL 
- CPU and peripheral clock settings: 24000 (fIH) (kHz) 

(c) On-chip debugging settings 

- On-chip debugging operation settings: Use. 
- RRM function settings: Do not use. 
- Security ID settings: Set security ID. 
- Settings upon security ID authentication failure: Delete flash memory data. 

(d) Reset source checking 

- Reset source checking function output: Remove the check mark. 

(e) Safety functions: Select "Do not use" for all. 

(f) Data flash: Prohibit access to data flash. 

 

(2) Port settings 

- Set P0.0 to P0.3 to output. (data: 0) 
- Set P6.0 and P6.1 to output 1. 
Leave the other ports as default (Do not use). 
 

(3) Timer settings 

(a) General settings  Channel 3: Interval timer 

(b) Channel 3 

- Operating mode settings: 16 bits 
- Interval time (16 bits) settings: 50 ms 
Leave the other settings as default. 

(4) Frequency measurement circuit settings 

Leave as default (Do not use). 

(5) 12-bit interval timer settings 

Leave as default (Do not use). 

(6) 8-bit interval timer settings 

Leave as default (Do not use). 

(7) Clock output/buzzer output settings 

Leave as default (Do not use) for all. 

(8) Watchdog timer settings 

- Operation settings in HALT/STOP/SNOOZE mode: Stop. 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 81 of 83 
2016.11.15  

- Watchdog timer operation settings: Do not use. 

(9) A/D converter settings 

- A/D converter operation settings: Use 
- Comparator operation settings: Enable 
- Resolution settings: 10 bits 
- VREF(+) settings: AVDD 
- VREF(-) settings: AVSS 
- Trigger mode settings: Software trigger mode 
- Operating mode settings: Continuous scan mode 
- ANI0 – ANI3 analog input pin settings: ANI0 – ANI3 
- ANI16 – ANI18 analog input pin settings: Remove all check marks. 
- Conversion start channel settings: ANI0 – ANI3 
- Reference voltage: 2.7V  AVDD  3.6V 
- Conversion time mode: Standard 1 
- Conversion time: 9 (216/fCLK) (s) 
- Conversion result upper/lower limit settings: Interrupt request signal (INTAD) generated when ADLL   
ADCRH   ADUL 
- Interrupt settings: Check the A/D interrupt enable (priority level = 1) 

(10) Comparator settings 

Leave as default (Do not use). 

(11) Op amp. settings 

Leave as default (Do not use). 

(12) Serial array unit settings 

Leave as default (Do not use). 

(13) Data operation circuit settings 

Leave as default (Do not use). 

(14) Data transfer controller settings 

Leave as default (no check marks). 

(15) Event link controller settings 

Leave as default (no check marks). 

(16) Interrupt settings 

- INTP5 setting: Rising edge, priority level: high 

- INTP6 setting: Both edges, priority level: high 

Leave the other settings as default (no check marks). 

(17) Key interrupt function settings 

Leave as default (no check marks). 

(18) Voltage detection circuit settings 

- Voltage detection operation settings: Use. 
- Operating mode settings: Reset mode 
- Detected voltage settings: 2.75 (V) 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 82 of 83 
2016.11.15  

9. Sample Code 

The user can get the sample code from the Renesas Electronics website. 

 

10. Reference Documents 

RL78/I1D User’s Manual: Hardware Rev.2.10 (R01UH0474J) 

RL78 Family User’s Manual: Software Rev.2.00 (R01US0015J) 

(Get the latest version from the Renesas Electronics website.) 

 

Technical Updates/Technical News 

(Get the latest information from the Renesas Electronics website.) 

 



RL78/ I1D I2C Slave Control using Software (for Multiple Addresses) CC-RL 

R01AN3289EJ0100  Rev. 1.00  Page 83 of 83 
2016.11.15  

Website and Support 

Renesas Electronics Website 
http://japan.renesas.com/ 

 
Inquiries 

http://japan.renesas.com/inquiry 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All trademarks and registered trademarks are the property of their respective owners. 



 

A-1 

Revision History 

Rev. Date 
Revision Contents 

Page Point 
1.00 2016.11.15  Newly created. 
    

 



 

 

General Precautions in the Handling of MPU/MCU Products 
 
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the 
products covered by this document, refer to the relevant sections of the document as well as any technical updates that 
have been issued for the products. 
 

1.  Handling of Unused Pins 

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the 
manual. 

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an 
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 
associated shoot-through current flows internally, and malfunctions occur due to the false 
recognition of the pin state as an input signal become possible. Unused pins should be handled as 
described under Handling of Unused Pins in the manual. 

2.  Processing at Power-on 

The state of the product is undefined at the moment when power is supplied. 

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and 
pins are undefined at the moment when power is supplied. 
In a finished product where the reset signal is applied to the external reset pin, the states of pins 
are not guaranteed from the moment when power is supplied until the reset process is completed. 
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 
are not guaranteed from the moment when power is supplied until the power reaches the level at 
which resetting has been specified. 

3.  Prohibition of Access to Reserved Addresses 

Access to reserved addresses is prohibited. 

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access 
these addresses; the correct operation of LSI is not guaranteed if they are accessed. 

4.  Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 
When switching the clock signal during program execution, wait until the target clock signal has 
stabilized. 

⎯ When the clock signal is generated with an external resonator (or from an external oscillator) 
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 
Moreover, when switching to a clock signal produced with an external resonator (or by an external 
oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5.  Differences between Products 

Before changing from one product to another, i.e. to a product with a different part number, confirm 
that the change will not lead to problems. 

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may 
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect 
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity 
to noise, and amount of radiated noise. When changing to a product with a different part number, 
implement a system-evaluation test for the given product. 

 



Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.  You are fully responsible for 

the incorporation of these circuits, software, and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the 

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free.  Renesas Electronics 

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or 

technical information described in this document.  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  Renesas Electronics assumes no responsibility for any losses incurred by you or 

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".  The recommended applications for each Renesas Electronics product depends on 

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic 

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical 

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.).  You must check the quality grade of each Renesas Electronics product before using it 

in a particular application.  You may not use any Renesas Electronics product for any application for which it is not intended.  Renesas Electronics shall not be in any way liable for any damages or losses 

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage 

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics.  Renesas Electronics shall have no liability for malfunctions or damages arising out of the 

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and 

malfunctions under certain use conditions.  Further, Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to guard them against the 

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to 

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because the evaluation of microcomputer software alone is very difficult, 

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.  Please use Renesas Electronics 

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.  Renesas Electronics assumes 

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or 

regulations.  You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the 

development of weapons of mass destruction.  When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and 

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the 

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics 

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1)  "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2)  "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel:  +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany   
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0




