LENESAS APPLICATION NOTE

RL78 Family C Compiler Package (CC-RL) R20ANO529E0100

ev.l.
Application Guide: Programming Techniques Nov. 26, 2018
Introduction

This application note describes methods of programming for efficiency in terms of code size, speed of execution, and
ROM size.

Compiler Revision for which Correct Operation has been Confirmed
CC-RL V1.07.00 for the RL78 family

Contents
] A geTo [V T o3 1o] o FO TP PP P PP PP TPPPPPPP 1
L OVBIVIBW .ttt oo ettt e e e o4 4ottt e e e e e e e et e e e e e e e 3
2 © o) {0 1= OSSPSR 4
2.1 COMPIIEE OPLIONS ittt ettt s bbbt e e st bt e e s bt et e e s nb b e e e s anbb e e e e anneeee s 4
2.1 1 -MeMOTY_MOAEI ittt 6
P A - 1 G (0] 1 (O ST O PP PUPPR PP 7
2.1.3 cOSIBVEID e 8
2.1 4 COUNTOID et 10
N T @ Lo [1Y IS = o 11 1 PP PPPPPPPNt 11
2.1.6 mOINTNE_IBVE ...ttt sttt e e e e e aanas 12
2,07 mOINTINE_SIZE ..ttt a e e eanes 14
2.1.8 -Opipeling [V1.03 OF TABI] ..ueeeiiiiiiiiie ittt 15
220 LS T) - 1 N o | PP RPPPPPNt 16
200 0t O T @ L 0 1= o T =Y 1 = PP RPPPPPNt 17
2.1.11 -OINTEIMOTUIE.....cieeii et e e e e 18
2.1.12 -OWNOIE_PIOGIAIM L.eeiiiiiiiiieiite ettt ettt e st e e s e b e e e e b bt e e e bt e e e e ennbee e e e nnnnas 19
P2 N T © 7= = L= TP PPO 20
2.1.14 -Osame_Code [V1.02 OF TALEIT .oooiueiiiiiiiiii ettt 21
0 R T o | o]] 2 TP PPPPPPPPINt 22
P2 I G Iy o | 1= To [o] o -V SO PP TP PPPPPPRPRPN: 23
2.1.17 -SIgNEA_DIFIIA ... e e 24
2,018 mSWIECR e e naes 25
P2 K B 4 1= o L=] A o Vo [RSP TPPP 27
P2 N B o - o] G PP PTPPP 28
2.1.21 -stack_protector/-stack_protector_all [Professional Edition only] [V1.02 or later] 30
2.1.22 -control_flow_integrity [Professional Edition only] [V1.06 or later]ccccceeeveeinnnnns 32
2.1.23 -unaligned_pointer_for_ca78Kk0r [V1.06 OF later]ccccuueiiiiiiiiiiiiiieeeee e 33
R20AN0529EJ0100 Rev.1.0 Page 1 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

A N1 =Y o 4] o] 1= G @ o) 0 o PSR 34
2.3 LiNKAGE OPTIONS ...eiiiiiiiiiieiiiiee ettt ettt ettt e e et e s ek e e e e bt e e e e e st et e e e nbr e e e anrns 35
2.3.1 -0optimize=symbBOl_deleteoooiii e 36
2.3.2 -0ptimize=branchcccooiiiiiiii 37
3. Language EXTENSIONS ... e e e e 38
I A o =Ty T V2= To BT (o o £ PSPPI 38
G 700 7~ Vo o I PP 39
T N o1 || | ST PP PSP P PP PTPPPPPP 40
0 R T V== g - GO PP PP PP PTPPPPPPPI 41
3.2 HPragma DIFECLIVES ...ttt e e e e e e e e 42
3.2.1 #pragma interrupt/iNterrUupPt_BIK ..o 43
4. Using a Variables/Functions Information Filecccoooeiiiiiiiiiiii e, 44
TR OTo To 1 [0 I W=Tod T o T Lo [V Y= 1= USSP 46
5.1 Variables and the const QUAalITIErcoiiiiiiiii e 47
5.2 Local Variables and Global Variables ... 48
5.3 AlIOCALING Bit FIEIUS ...t 49
5.4 FUNCHON INTEITACES ...ttt e e e e et e e e e e e e e s s bbb e reeaeeeeas 50
5.5 Reducing the NUMbDEr Of LOOPS ... s 51
5.6 USING TaADIES ..t s 52
L A =1 - g o o = RSO PRERR 53
5.8 INIING EXPANSION ..ttt et s e et e e e n b e e b e e e aens 54
5.9 Moving Identical Expressions in More than One Conditional Branch Destination before
the Conditional BranCh ... e e e e e ee e e e e s 56
5.10 Replacing a Sequence of Complicated if Statement with a Simple Statement Having the
SaAMeE LOGICAl MEANING ..eiiiiiiiiiiiii ettt ettt e e e e e e bbb e e e e e e s e snnb b e eeeeeeeeaannnes 58
5.11 Types Of VariabIes ...t e e e e e e e e e e 59
5.12 Unifying Common case Processing in switch Statements.........cccccovviiiiiiiiie e 62
5.13 Replacing for Loops With dO-While LOOPS...ccciiiiiiiiiiiie e 64
5.14 Replacing Division by Powers of Two with Shift Operations.........ccccoooeiiiiiiiiiiiiiiiiieceeeeee, 66
5.15 Changing Bit Fields with Two or More Bits to the char TYPe.....cccooeeiiiiiiiiiiiiiceeeccee e, 67
5.16 AlIgNMENT OF @ STFUCTUIE ..ooiiiiieieiii ettt e e ettt e e e e e e e eeaaaeeeas 68
R20AN0529EJ0100 Rev.1.00 Page 2 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

1. Overview

The methods of programming which lead to efficiency in terms of code size, speed of execution, and ROM size are
classified under the following three headings.

e Options
e Language extensions
¢ Coding techniques

The results of measurement and assembly code given in this application note were obtained by using VV1.07 of the CC-
RL compiler. The value assumed for the -cpu option was -cpu=S3.

Note that the degrees of the effects depend on the details of the source code and may also change due to upgrading of
the CC-RL compiler.

R20AN0529EJ0100 Rev.1.00 Page 3 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2. Options

This chapter describes the effects on code size, ROM size, and speed of execution when options for CC-RL are

specified. The degrees of the effects depend on the details of the source code.

2.1 Compiler Options

\: Improved, x: Worsened, A: Either improved or worsened, —: No effect, (): Default

Number
Code ROM of Clock

Option Size Size Cycles Remarks

-memory_model A A A

-far_rom X X X

-Onothing X — X
Optimization will emphasize code

Osize N o A size. However, spec!fymg th|s
option may lower efficiency in
terms of the speed of execution.
Optimization will emphasize

_Ospeed A . N execytlpn pe.rform.ance. However,
specifying this option may lower
efficiency in terms of code size.

_ounroll % o N The effect of.specifying this option
depends on its parameter.

-Odelete_static_func () — —

_Oinline_level . o N The effect of_specifying this option
depends on its parameter.

_Oinline size % o N The effect of.specifying this option

- depends on its parameter.

-Opipeline [V1.03 or later] — — ()

-Otail_call () — ()

-Omerge_files \ — N

-Ointermodule N — N

-Owhole_program N — N

-Oalias \ — N

-Osame_code [V1.02 or later] N — X
At the time of linkage, inter-
module optimization is applied to
files compiled with this option

-goptimize \ \ — specified.
For optimization at the time of
linkage, refer to section 2.3,
Linkage Options.

-dbl_size=8 X X X

-signed_char X — X

-signed_bitfield X — X

-switch A A A

-merge_string — N —

-pack X \ X

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 4 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

-stack_protector/
-stack_protector_all
[Professional Edition only]
[V1.02 or later]

This option generates code for
detecting stack smashing at the
entry and end of a function. The
code for detection may lower
efficiency in terms of code size
and speed of execution.

-control_flow_integrity
[Professional Edition only]
[V1.06 or later]

This option selects the generation
of code for checking the called
functions for control flow integrity.
Since extra code and data are
generated for this purpose, this
may lower the efficiency in terms
of code size, speed of execution,
and ROM size.

-unaligned_pointer_for_ca78kO0r
[V1.06 or later]

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 5 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

211 -memory_model

This option specifies the type of the memory model when compiling.

When -memory_model=small: The default attribute of both variables and functions is near.

When -memory_model=medium: The default attribute of variables is near and that for functions is far.

The far area is more suitable for handling large areas but using it increases the size of code for function calls. Note that
when this option is omitted, either of the following is assumed according to the setting of the -cpu option.

e When -cpu=S1: -memory_model=small
e When -cpu=S2 or -cpu=S3: -memory_model=medium

C source code

int val;

void funcl ()

{
++val;

}

{

return funcl;

}

void main (void)
{

func2 () ();
}

#pragma noinline funcl

#pragma noinline func?2
void (*func2 (void)) ()

-memory_model=small

-memory_model=medium

Code size (bytes)

18

20

Number of clock cycles
(clock cycles)

30

32

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 6 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.2 -far_rom

This option sets the default near/far attribute of ROM data to far. The far area is more suitable for handling large areas
but using it increases the size of code for data accesses. The default near/far attribute when this option is omitted is
determined by the -memory_model option setting.

C source code

char* ptr;
const char* c ptr;
void func ()
{
*ptr = *c ptr;
}

With -far_rom Without -far_rom
Code size (bytes) 15 9
Number of clock 19 13
cycles (clock cycles)

Note: When this option is specified, the pointer size depends on whether the pointer points to const data and the C90
and C99 standards may be violated.

// -far rom is specified.
char* ptr; // The pointer size is 2 bytes.
// It points to the char with near attribute.

const char* c ptr; // The pointer size is 4 bytes.
// It points to the char with far attribute.

R20AN0529EJ0100 Rev.1.00 Page 7 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.3 -O<level>

This option specifies the optimization level from among default, size, speed, and nothing. When this option is omitted,
the optimization level is -Odefault.

default: Default
Performs optimization that is effective in terms of both the object size and execution speed.

size: Optimization with object size precedence
Regards reducing the ROM/RAM capacity as important and performs the maximum optimization that is
effective for general programs.

speed: Optimization with execution speed precedence
Regards improving the execution speed as important and performs the maximum optimization that is effective
for general programs.

nothing: Optimization with debugging precedence
Regards debugging as important and suppresses all types of optimization including default optimization.

The default values of the items for optimization listed below vary with the selected optimization level.

Optimization through the optimization level setting does not precisely match the optimization result obtained by
specifying each optimization item separately. For example, when the -Odefault level is specified and then each
optimization item is separately set to match the corresponding item value for the -Osize level, the optimization result is
not equivalent to that obtained when -Osize is specified from the beginning.

Optimization Item Optimization Level (level)

(item) -Odefault -Osize -Ospeed -Onothing

-Ounroll 1 1 2 1

-Odelete_static_func on on on off

-Oinline_level 3 3 2 —

-Oinline_size 0 0 100 —

-Otail_call on on on off

-Opipeline on on on off

-Osame_code off on off off
R20AN0529EJ0100 Rev.1.00 Page 8 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

C source code

long a;

void main (void

{

)

unsigned long i = 0;
unsigned long j =
for (1 = 0; 1 < 5; ++1)

< 5; ++43)

0;

{
{

-Odefault

-Osize

-Ospeed

-Onothing

Code size (bytes)

309

279

688

345

Number of clock
cycles (clock cycles)

4261

5701

2944

4061

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

RENESAS

Page 9 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

214 -Ounroll
This option specifies whether loops are to be unrolled.

Loops will be unrolled with the value specified as the parameter as the maximum rate of increase. The operation when 0
is set as the parameter is the same as that when 1 is set as the parameter. Note that if -Onothing is specified, the setting

of this option is ignored.
Unrolling loop statements accelerates execution while increasing the code size.

C source code

int val;
void main (void)
{
unsigned int i, j, k, 1;
for (i = 1; 1 < 7; ++i) {
for (J = 1; J < 6; ++3) {
for (k = 1; k < 5; ++k) {
for (1 =1; 1 < 4; ++1) {
val += (1 + J + k)
val *= (1 + J + k);
}
}
}
val += (i * 10);
}
}
-Ounroll=1 -Ounroll=2 -Ounroll=4294967295
Code size (bytes) 152 214 309
Number of clock 11154 8670 7968
cycles (clock cycles)

Note: -Ounroll=4294967295 is the maximum value of the parameter.

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018 RENESAS

Page 10 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

215 -Odelete_static_func
This option specifies whether unused static functions are to be deleted.

If -Odelete_static_func=on is specified, optimization is enabled. If -Odelete_static_func=off is specified, optimization
is disabled.

Deletion of unused static functions will decrease the code size.

C source code

int val;

static int func()

{

return 100;

}

void main (void)
{

val += func();

}

-Odelete_static_func=on | -Odelete_static_func=off
Code size (bytes) 10 14

R20AN0529EJ0100 Rev.1.00 Page 11 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.6 -Oinline_level
This option specifies whether functions are to be automatically inline-expanded.

The level of expansion varies with the value of the parameter in the following way.

When -Oinline_level=0: Suppresses all inline expansion, including those functions for which #pragma inline was
specified.

When -Qinline_level=1: Inline expansion only proceeds for functions for which #pragma inline is specified.
When -Oinline_level=2: Functions that are the targets of expansion are automatically distinguished and expanded.

When -Oinline_level=3: Functions that are the targets of expansion are automatically distinguished and expanded,
while minimizing the increase in code size.

However, if 1 to 3 is specified, a function that is specified with #pragma inline may not be expanded according to the
content of the function and the state of compilation. Note that if -Onothing is specified, the setting of this option is
ignored.

Inline expansion of functions generally accelerates execution while increasing the code size.

C source code

int val, x[1000], y[1000];

static void funcl (void)
{
++val;

}

#pragma inline func?2
void func?2 (int a)

void main (void)
{
int i;
func?2 (val) ;
func3 (val);
for (i = 0;
funcl () ;
}
func2 (val) ;
func3 (val);

1 < 10; ++1) {

R20AN0529EJ0100 Rev.1.00 Page 12 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

-Oinline_level=0 | -Oinline_level=1 | -Oinline_level=2 | -Oinline_level=3

Code size (bytes) 72 88 100 80

Number of clock 247 229 150 155
cycles (clock cycles)

Note: In the case of -Oinline_level=2, specify -Oinline_size=200 (functions will be inline-expanded until the

code size is increased by up to 200%).

#pragma inline has the same effect as an __inline declaration.

A function for which #pragma noinline is specified will not be inline-expanded.

fpragma inline in funcl

void in_funcl(voia) // Performs inline expansion
{

}

__inline void in_ func2 (void) // Performs inline expansion
{

}

#pragma noinline no func // Does not perform inline expansion
void no_func(void) B

{

}

R20AN0529EJ0100 Rev.1.00 Page 13 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.7 -Oinline_size
This option specifies the allowed increase in the code size due to the use of inline expansion of functions.

If 100 is set as the parameter, functions will be inline-expanded until the code size is increased by up to 100%.
This option is valid when -Oinline_level=2 is specified.

Inline expansion of functions generally accelerates execution while increasing the code size.

C source code

int x[10];

void funcl (int a)

void main (void)
{

int 1i;

for (i = 0;

-Oinline_size=0

Oinline_size=100

Oinline_size=200

-Oinline_level=
65535

Code size (bytes) 107

126

135

165

Number of clock 988

cycles (clock cycles)

922

742

612

Note: -Oinline_level=65535 is the maximum value of the parameter.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 14 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.8 -Opipeline [V1.03 or later]

This option specifies whether to enable or disable the optimization of pipeline processing.

If -Opipeline=on is specified, optimization is enabled. If -Opipeline=off is specified, optimization is disabled. Note
that if -Onothing is specified, the setting of this option is ignored.

If the optimization of pipeline processing is enabled, the compiler will schedule instructions for more efficient

execution and thus increase the speed of execution.

C source code

#define N 2
int a[N*N], b[N*N], c[N*N];

void main (void) {
int 1, 3, k;
for (i = 0; 1 < N; i++) {
for (jJ = 0; J < N; j++) {

c[i*N+3] = 0;
for (k = 0; k < N; k++) {
int tmp = a[i*N+k] * Db[k*N+7j];
c[i*N+3] += ((tmp >> 2) & (~(Oxffffffff << 4))) *
((tmp >> 5) & (~(Oxffffffff << 7)));
}
}
}
}
-Opipeline=on -Opipeline=off
Code size (bytes) 197 197
Number of clock cycles 279 283
(clock cycles)

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 15 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.9 -Otail_call
This option specifies whether a function call at the end of a function is to be replaced with a br instruction.

If -Otail_call=on is specified, optimization is enabled. If -Otail_call=off is specified, optimization is disabled.

If there is a function call at the end of a function and certain conditions are met, a br instruction will be generated for
that call rather than a call instruction and the ret instruction will be removed, reducing the code size and increasing the
speed of execution. However, some debugging functions cannot be used.

C source code

int a, b;

void func (void)

void main (void)

{

a += b;
func () ;
}
-Otail_call=on -Otail_call=off
Code size (bytes) 15 17
Number of clock cycles 14 20
(clock cycles)
R20AN0529EJ0100 Rev.1.00 Page 16 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.10 -Omerge_files
This option enables merging of multiple files before compilation.

When this option is specified, the compiler compiles multiple C source files and output the results to a single file. When

this option is not specified, the C source files are not merged and each of the C source files is compiled separately.

C source code [tpl.c]

long result;

void main (void)
{

result = func (3,

}

extern long func(long x,

long vy,

4, 5);

long z);

C source code [tp2.c]

#pragma inline
long func(long x,
{

return

}

(func)
long y,

long z)

(x =y + z);

With -Omerge_files

Without -Omerge_files

Code size (bytes)

196

217

Number of clock cycles
(clock cycles)

10

55

Note: The above values are for when -Ointermodule is specified. The code size includes the size of the

startup routine.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 17 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.11 -Ointermodule
This option is used to enable global optimization.

Global optimization is mainly optimization in which inter-procedural alias analysis and the propagation of constant
parameters and return values are utilized.

C source code

static _ near int func(int x, int y, int z) {
return z - X - y;

}

int func2 (void) {
return func (3, 4, 8);

}

With -Ointermodule Without -Ointermodule
Code size (bytes) 14 17
Number of clock cycles 25 28
(clock cycles)
R20AN0529EJ0100 Rev.1.00 Page 18 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.12 -Owhole_program

This option is used to enable optimization by merging all source files to be compiled on the assumption that the entire
program is to be compiled.

When this option is specified, compilation proceeds on the assumption that the conditions listed below are satisfied.
Correct operation is not guaranteed otherwise.

o Files outside the scope of compilation at this time will neither modify nor refer to the values and addresses of extern
variables defined in the target source files.

o Files outside the scope of compilation at this time will not call functions within the target source files when calls of
functions in files outside the scope of compilation by target source files are allowed.

If this option is specified, it is assumed that the -Ointermodule option is specified. If two or more C source files are
input, it is assumed that the -Omerge_files option is specified.

C source code [tpl.c]

extern const int c;
extern int func(void);
int result;

void main (void)
{
result = c;
result += func();
}

C source code [tp2.c]

#pragma inline (func)
const int ¢ = 1;

int x = 10;

int *p;

int func(void)
{
int 1i;
for (i = 0; 1 < x; ++i) {
(*p) += c;
}

return (*p);

With -Owhole_program Without -Owhole_program
Code size (bytes) 205 192

Number of clock cycles | 194 206
(clock cycles)

Note: The code size includes the size of the startup routine.

R20AN0529EJ0100 Rev.1.00 Page 19 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.13 -Oalias
This option is used to enable optimization in consideration of the types of data indicated by pointers.

Specifying this option improves code efficiency in terms of code size and speed of execution. However, the results of
conversion may differ from the expected values if the C source code does not comply with the ISO/IEC 9899 standard.

ansi or noansi can be specified as the parameter. When ansi is specified, optimization in consideration of the types of
data indicated by pointers proceeds in accord with ISO/IEC 9899. When noansi is specified, the types of data indicated
by pointers are not considered in terms of ISO/IEC 9899.

The performance of object code is generally better when ansi is specified than when noansi is specified, but the results
of execution may differ.

C source code

long a, b;
short* ps;

void main (void)

-Oalias=ansi -Oalias=noansi
Code size (bytes) 26 40
Number of clock cycles | 19 28
(clock cycles)

R20AN0529EJ0100 Rev.1.00 Page 20 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.14

-Osame_code [V1.02 or later]

This option is used to enable optimization which integrates multiple instruction sequences that are found to be the same
within single sections of the unit of compilation into functions.

If -Osame_code=on is specified, optimization is enabled. If -Osame_code=off is specified, optimization is disabled.
Note that if -Onothing is specified, the setting of this option is ignored.

Optimization by this option increases the number of function calls, thus decreasing the speed of execution but reducing
the code size.

C source code

int
int
int
int
int

{

}

{

volatile int wvalue

vl;
v2;
v3;
v4;
v5;

void func (void)

value += vl;
value += v2;
value += v3;
value += v4;
value += v5;

void main (void)

value += vl;
value += v2;
value += v3;
value += v4;
value += v5;
func () ;

- 0;

-Osame_code=0n

-Osame_code=off

Code size (bytes)

55

93

Number of clock cycles
(clock cycles)

57

39

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

RENESAS

Page 21 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.15 -dbl_size
This option is used to change the interpretation of variables of the double and long double types.

4 or 8 (only when -cpu=S3 is specified) can be specified as the parameter.

When 4 is specified as the parameter, both the double type and long double type are handled as the float type. When 8
is specified as the parameter, neither the double type nor the long double type is handled as the float type.

Note that when this option is not specified, both the double type and long double type are handled as the float type
(operation becomes the same as when 4 is specified as the parameter).

C source code

double a, b;
const double ¢ = 11.0;

void main (void)

{
/ b;
/ c;

’

a
b=>,

-dbl_size=4 -dbl_size=8
Code size (bytes) 66 121
Number of clock cycles 132 257
(clock cycles)

R20AN0529EJ0100 Rev.1.00 Page 22 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.16 -signed_char
This option specifies that a char type without a signed or unsigned specifier is handled as a signed type.

When this option is not specified, a char type without a signed or unsigned specifier is handled as an unsigned type.

C source code

int func(char c¢)
{
if (¢ > 10) {
c++;
}

return c;

}

With -signed_char Without -signed_char

Code size (bytes) 14 8
Number of clock cycles 10 4
(clock cycles)

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018 RENESAS

Page 23 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.17 -signed_bitfield

This option specifies that a bit field of a type without a signed or unsigned specifier is handled as a signed type.

When this option is not specified, a bit field of a type without a signed or unsigned specifier is handled as an unsigned

type.

C source code

typedef struct T {
int bl:3;
int b2:3;
int b3:16;

}STB;

STB stb;

int i;

unsigned int u;

void funcl (STB c)
{

(clock cycles)

i = c.bl;
= c.b2;
}
With -signed_bitfield Without -signed_bitfield
Code size (bytes) 22 19
Number of clock cycles 11 9

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 24 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.18 -switch
This option specifies the format in which the code of switch statements will be output.

When -switch=ifelse is specified, the code will be output by using the if_then method. This is effective when there are
not so many case labels.

When -switch=binary is specified, the code will be output in the binary search format. If this item is selected when
many case labels are used, branching to any case label will be at almost the same speed. This is effective if you wish to
reduce the data size when there are many case labels.

When -switch=abs_table is specified, the code that is output will include branch tables for the case labels in the switch
statements. The absolute addresses of each of the case label locations are stored in the tables. The more case labels the
statements have, the larger the ROM size will become. However, the speed of execution remains the same regardless of
the number of labels. This is effective when a larger data size is not a problem.

When -switch=rel_table is specified, the code will be output by using the case branch table in the switch statement.
The relative distances from a branch instruction to each of the case label locations are stored in a branch table. Though
the ROM size is smaller than that for -switch=abs_table, a linkage error will occur if a relative distance exceeds 64
Kbytes. This is effective if the relative distance from a table branch instruction to a case label location does not exceed
64 Kbytes but there are many case labels.

When this option is not specified, the compiler automatically selects the optimum output format for each switch
statement.

C source code

long val = 0;
void func(int wvall)
{
switch (vall) {
case 21:
val += 10;
break;
case 22:
val *= 10;
break;
case 23:
val /= 4;
break;
case 24:
val -= 12;
break;
default:
val = -1;
break;
}
}

void main ()
{
int i = 20;
while (i < 25) {
func (i) ;
++1;

}

R20AN0529EJ0100 Rev.1.00 Page 25 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

-switch

ifelse binary abs_table rel_table
Code size 120 130 121 126
(bytes)
ROM size 0 0 12 8
(bytes)
Number of 189 205 225 217
clock cycles
(clock cycles)

Note: In the above C source code example, the if _then method will be selected if -switch is not specified.

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

RENESAS

Page 26 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.19 -merge_string

If a string constant with the same value occurs more than once in the source file, this option collectively allocates them

to a single area, thus reducing the ROM size.

C source code

long val = 0;
char *a = "abcde";
char *b = "abcde";
void func (void)
{

if (strcmp(a, b)

val = 1;

}

}

#include <string.h>

With -merge_string

Without -merge_string

ROM size (bytes)

6

12

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 27 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

2.1.20 -pack
This option performs packing of a structure (sets 1 as the boundary alignment value for a structure member).
When this option is specified, members of a structure are not aligned according to its type, but code is generated with

them packed to be aligned at a 1-byte boundary. Therefore, though the ROM size decreases, specifying this option may
lower efficiency in terms of code size and speed of execution.

Correct operation is not guaranteed if a structure, union, or address of those members whose alignment condition has
been changed from two bytes to one byte by this option is passed as an argument of a standard library function.

Correct operation is not guaranteed if the address of a structure or union member whose alignment condition has been
changed from two bytes to one byte by this option is passed to a pointer whose type has two bytes as the alignment
condition and indirect reference to the pointer is performed.

C source code

struct{
signed char a;
signed long b;
struct{
signed char c;
signed long d;
s
}data, *stp;

void func ()

{

data.a = 1;

data.b = 2;

data.f.c = 5;

data.f.d = 6;

if (stp->b != stp->f.d) {

data.bt++;
}
}
With -pack Without -pack

ROM size (bytes) 12 14
Code size (bytes) 97 65
Number of clock cycles | 47 37
(clock cycles)

The same effect can also be obtained by a #pragma directive. When this option and a #pragma directive are specified at
the same time, the #pragma directive will take priority.

R20AN0529EJ0100 Rev.1.00 Page 28 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

struct sl {
char a;
long b;

} datal;

#pragma pack

struct s2 {
char a;
long b;

} data2;

#pragma unpack

struct s3 {
char a;

long b;

} data3;

//
//
//
//

//
//

//
//

When -pack is specified, the
is 1.

When -pack is not specified,
value is 2.

The
the

The
the

boundary alignment value
option setting.

boundary alignment value
option setting.

boundary alignment value

the boundary alignment

is always 1 regardless of

is always 2 regardless of

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

RENESAS

Page 29 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.21 -stack_protector/-stack_protector_all [Professional Edition only] [V1.02 or later]
This option generates code for detecting stack smashing at the entry and end of a function.

The code to detect stack smashing may lower efficiency in terms of code size and speed of execution.

C source code

void £1()
{

int i;
for (i = 0; i <=
str([i] = 1i;

}
}

{
printf ("stack is

}

void main ()

{
£10)
}

#include <stdio.h>
#include <stdlib.h>

// Sample program in which the stack is smashed

volatile char str[10];

9; i++) {

// The stack is smashed when i reaches 10.

void _ stack chk fail(void)

broken!");

-stack_protector

-stack_protector_all

Without
-stack_protector/
-stack_protector_all

Code size (bytes)

50

62

38

Number of clock cycles
(clock cycles)

1075

1080

1073

The same effect can also be obtained by a #pragma directive. When this option and a #pragma directive are specified at

the same time, the #pragma directive will take priority.

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

RENESAS

Page 30 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Example: With -stack_protector or -stack_protector_all

struct DATA
{
int a,

}i

b, ¢, d;

struct DATA funcl (void)

{
struct DATA data
return data;

#pragma no_stack protector
struct DATA func2 (void)

struct DATA data
return data;

// Generates code to detect stack smashing

2, 3};

(func?2)
// Prevents the generation of code to detect
// stack smashing

2, 3};

Example: Without -stack_protector or -stack_protector_all

struct DATA
{
int a,

}i

b, ¢, d;

struct DATA funcl (void)

struct DATA func2(void)

{
struct DATA data
return data;

// Prevents the generation of code to detect
// stack smashing

struct DATA data = {0, 1, 2, 3};
return data;

}

#pragma stack protector (func2)

// Generates code to detect stack smashing

2, 3};

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 31 of 69
RENESAS

RL78 Family C Compiler

Package (CC-RL)

Programming Techniques

2.1.22 -control_flow_integrity [Professional Edition only] [V1.06 or later]
This option is used to check the calling functions in the case of indirect function calls.

Since this involves the generation of code and data for use in checking, specifying this option may lower efficiency in

terms of code size, ROM size, and

C source code

speed of execution.

int glb;

{
abort () ;

}

{
++glb;
}

{
--glb;
}
void (*pf) (void) =
void main (void)

{

func?2 () ;
}

#include <stdlib.h>

void _ control flow chk fail(void)

funcl;

void funcl (void) // Added to the function list

void func2 (void) // Not added to the function list

pf(); // Indirect call of the function funcl

With -control_flow_integrity

Without -control_flow_integrity

Code size (bytes)

72

60

ROM size (bytes)

59

0

Number of clock cycles
(clock cycles)

91

26

Note: The code size and ROM size include the size of the startup routine.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 32 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.1.23 -unaligned_pointer_for_ca78k0r [V1.06 or later]

Indirect references by pointers are accessed in 1-byte units. The purpose of this option is to support the porting of code
written for the CA78KOR compiler.

Specifying this option increases the size of the object code and decreases the speed of execution.

C source code

char c;
int *glbp = &c;

int funcl (void)
{
return *glbp;

}

void main ()
{
c = funcl();

}

#include <stdlib.h>

With
-unaligned_pointer_for_ca78kO0r

Without
-unaligned_pointer_for_ca78kO0r

Code size (bytes)

8

5

Number of clock cycles
(clock cycles)

5

3

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 33 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.2 Assembler Option

\: Improved, x: Worsened, A: Either improved or worsened, —: No effect

Number
Code ROM of Clock
Option Size Size Cycles Remarks

-goptimize \ \ —

At the time of linkage, inter-
module optimization is applied to
files compiled with this option
specified.

For optimization at the time of
linkage, refer to 2.3, Linkage
Options.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018 RENESAS

Page 34 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.3 Linkage Options

This section describes the effects on code size, ROM size, and speed of execution when optimizing linkage options are
specified. Optimization is applied to files for which -goptimize was specified at the time of compilation or assembly.

Optimization is not applied to sections for which -section_forbid is specified.

Optimization is also not applied to ranges from the address plus the size for which -absolute_forbid is specified.

\: Improved, x: Worsened, A: Either improved or worsened, —: No effect

Number
Code ROM of Clock
Option Size Size Cycles Remarks
-optimize=symbol_delete N N —
-optimize=branch N — —

Note: When the linkage editor is started from the command line, all optimization options apply by default.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 35 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

231 -optimize=symbol_delete

Variables or functions to which nothing refers are deleted. Specify the entry symbol with -entry in the linkage editor.

With this option specified, the deletion of variables and functions with -symbol_forbid specified is not allowed.

C source code

int valuel 0;
int value2 = 0;

void funcl (void)

{

valuel++;

}

void func?2 (void)

{

value2++;

}

void main (void)

{

funcl () ;
}
With -optimize=symbol_delete Without -optimize=symbol_delete
Code size (bytes) 156 162
ROM size (bytes) 144 146

Note: The code size and ROM size include the size of the startup routine.

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018 RENESAS

Page 36 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

2.3.2 -optimize=branch

The sizes of branch instructions are optimized with the use of program allocation information.

C source code

extern void sub (void) ;
void main (void)
{
sub () ;
sub () ;
sub () ;
sub () ;
sub () ;
}
With -optimize=branch Without -optimize=branch
Code size (bytes) 168 176

Note: The code size includes the size of the startup routine.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 37 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

3. Language Extensions

This chapter describes the effects on code size, ROM size, and speed of execution by the language extensions.

3.1 Reserved Words

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Number
Code of Clock

Reserved Word Size ROM Size Cycles Remarks

__saddr \ — N

__callt N X X
Whether functions or variables
are allocated to the near area or
far area affects the code size,
ROM size, and speed of

__near A A A execuu_on.

__far Allocating frequently called
functions and frequently used
variables to the near area
improves efficiency in
addressing.

R20AN0529EJ0100 Rev.1.00 Page 38 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

3.1.1 __saddr

External variables declared with __saddr are allocated to the saddr area.

Initialized variables are allocated to the .sdata section.

Uninitialized variables are allocated to the .sbss section.

The performance of object code can be improved by allocating frequently used external variables and static variables
within functions to the saddr area. For a one-bit field especially, allocation to the saddr area can be expected to have a

large effect.

Without __saddr

With __ saddr

C source code

typedef struct {
unsigned char b0:
unsigned char bl:
unsigned char b2:

~e N

. Ne

unsigned char Db3:
unsigned char b4:

~e

~e

unsigned char b5:
unsigned char b6:

~e

R R R R R e
N

~e

unsigned char b7:
} BITF;
BITF datalO, datal;
void func (void)
{

data0.b4 = datal.bl;
}

C source code

typedef struct {
unsigned char b0:
unsigned char bl:
unsigned char b2:
unsigned char b3:
unsigned char b4:
unsigned char b5:
unsigned char bé6:
unsigned char b7:

} BITE;

___saddr BITF dataO,

void func (void)

{

}

~e N

o N

Ne Ne N

[= = = = B =
N

~e

datal;

data0.b4 = datal.bl;

Assembly-language expanded code

_func:
.STACK func = 4
movw hl, #LOWW(datal)
movl CY, [hl].1
movw hl, #LOWW(dataO)
movl [hl].4, CY

ret

Assembly-language expanded code

__func:

ret

.STACK func = 4
movl CY, datal.
movl data0.4, CY

1

Code size: 11 bytes
Number of clock cycles: 13

Code size: 7 bytes
Number of clock cycles: 9

The same effect can also be obtained by #pragma saddr. The #pragma directive takes priority over the __near or

__far specification.

#pragma saddr value
int far value;

// Allocated to the saddr area

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 39 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

3.1.2 __callt

A function declared with __callt (callt function) is called by the callt instruction. The specification for the callt
function becomes __near, and address reference always returns a near pointer.

The addresses of the functions to be called are stored in the callt table area [80H-BFH], and the functions are called
with a smaller-size code than that for a normal call instruction (call instruction).

A table of addresses for function calls is generated and this leads to increased ROM size for the code. The speed of
execution will decrease because the callt instruction requires more clock cycles for execution than the call instruction.

Without __callt

With __ callt

C source code

#pragma noinline sub
void sub(void)

{

}

void func (void)

{

}

C source code

#pragma noinline sub
__callt void sub(void)
{

}

void func (void)

{

}

Assembly-language expanded code

_func:
.STACK func = 4
call $! sub
call $! sub
call $! sub
call $! sub
br $ sub

Assembly-language expanded code

__func:
.STACK func = 4
callt [Q@ sub]
callt [@ sub]
callt [@ sub]
callt [@ sub]
br ! sub

.SECTION .callt0O,CALLTO (*)
@ sub:
.DB2 sub

Code size: 14 bytes
Number of clock cycles: 45

Code size: 11 bytes
Number of clock cycles: 53

* The ROM size is increased (+ 2 bytes) by code
for generating a table of addresses for functions.

The same effect can also be obtained by #pragma callt.

#pragma callt sub
void sub(void)

{

}

// callt function

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 40 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

3.1.3 __near/__far

The region for the allocation of a function or variable can be explicitly specified by adding the __near or __far type
qualifier when the function or variable is declared. The far area is much larger than the near area but the sizes of code
for function calls and code for data access are also larger. The code size can be decreased by allocating frequently called

functions and frequently used variables to the near area.

Code Allocated to the far Area

Code Allocated to the near Area

C source code

#pragma noinline sub
void far sub(void)
{
}

int far value;
void func (void)
{

sub () ;

value += 10;

}

C source code

#pragma noinline sub
void near sub(void)
{
}

int near value;
void func (void)
{

sub () ;

value += 10;

}

Assembly-language expanded code

_func:
.STACK _func = 4
call $! sub
mov es, #LOW(HIGHW(value))
movw ax, #0x000A
addw ax, es:!LOWW(value)
movw es:!LOWW(value), ax
ret

Assembly-language expanded code

_func:
.STACK _func = 4
call ! sub
movw ax, #0x000A
addw ax, !LOWW(_ value)
movw !LOWW(value), ax
ret

Code size: 17 bytes
Number of clock cycles: 21

Code size: 13 bytes
Number of clock cycles: 18

The location to allocate a function can also be specified by #pragma near or #pragma far. (V1.05 or later)

The #pragma directive takes priority over the __near, _ far, or __callt specification.

#pragma near funcl
void _ far funcl (void)
{

}

// Allocated to the near area

A declaration without the __near or __far type qualifier follows the default near/far attribute determined by the
memory model. The following table shows how to determine the near/far attribute.

Item How to Determine near/far Attribute

(a) -cpu

This option determines the default memory model.

(b) -memory_model This option overwrites the memory model determined in (a).

(c) -far_rom This option overwrites the determined attribute with the far attribute
only for ROM data.

(d) __near/__far These settings are not affected by (a) to (c); the qualifier

specification is valid unless (e) is also specified.

(e) #pragma near

#pragma far is always valid.

These settings are not affected by (a) to (d); the #pragma directive

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 41 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

3.2 #pragma Directives

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Number
Code of Clock

#pragma Directive Size ROM Size Cycles Remarks

Changing interrupt
#pragma interrupt s.pecif'ications' used with this
#oraama interruot brk A A A directive can improve the

prag P performance of interrupt
functions.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018 RENESAS

Page 42 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

3.21 #pragma interrupt/interrupt_brk
This directive is used to declare that a function is an interrupt function. Changing interrupt specifications changes the

performance in terms of the speed of execution and code size of interrupt functions.

Interrupt Specifications

Format | Description

Register bank

Changing the register bank eliminates the need to save
the values of general registers on the stack.

bank The values of the ES and CS registers, on the other
hand, still need to be saved on the stack even if the
register bank is changed.

Nested interrupt enable

enable

Generates El at the entries of functions to allow the
nesting of interrupts.

C source code

void func (void)
{

sub(l, 2, 3);
}

#pragma interrupt brk func

The following table shows the results for comparison when particular interrupt specifications are made and not made for

the C source code above.

None bank=RBO0 enable
Code size (bytes) 32 26 35
Number of clock 35 28 39
cycles (clock cycles)

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 43 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

4. Using a Variables/Functions Information File
A variables/functions information file is generated when the -vfinfo option of the linker is specified.

The variables/functions information file is in the text format and contains the declarations of those variables and
functions among the variables and functions defined in the C source file to which reference is frequent as saddr and
callt, respectively. Including such a file will decrease the code size.

[How to use]
First, specify the -vfinfo option of the linker to select the generation of a variables/functions information file.
Then, include the variables/functions information file at compilation through either of the following methods.

o Specify the file with the -preinclude option of the compiler.
e Use #include to include the file in each of the C source files.

C source code

int valuel;
int value2;

void funcl (void)
{

valuel += 100;
}

void func?2 (void)
{

valuel += 100;
}

void sub (void)

{

’

funcl ()

funcl () ;

funcl () ;
()
()

’

funcl
funcl

}

’

void main (void) {
sub () ;
}

R20AN0529EJ0100 Rev.1.00 Page 44 of 69
Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Output example of the variables/functions information file

/*** function
fpragma callt
fpragma callt
fpragma callt

information ***/
funcl /* count:5,far,VFINFO.ob]

main /* count:1, far,VFINFO.ob]
far, VFINFO.obj */
/* #pragma callt func2 */ /* count:0,far,unref,VFINFO.obj */

sub /* count:1,

*/

/* RENESAS OPTIMIZING LINKER GENERATED FILE XXXX.XX.XX */
/*** vyariable information ***/
#pragma saddr valuel /* count:4,size:2,near,VFINFO.obj */

/* #pragma saddr value2 */ /* count:0,size:2,near,unref, VFINFO.ob]

Note:

function).

Treating function calls as callt functions will decrease the code size but slow the speed of execution. Replacing a
function with a near function is better when the speed of execution is also to be given priority. Specifying -vfinfo(near)
selects the output of a function as a near function.

Variable value2 and function func2 will be commented out in the output file because there is no reference to
either (despite the directives, value2 does not become a saddr variable and func2 does not become a callt

Using the Variables/Functions
Information File

Not Using the
Variables/Functions

-vfinfo(near) -vfinfo Information File
Code size (bytes) 187 182 191
ROM size (bytes) 142 148 142
Number of clock cycles 63 73 63
(clock cycles)

Note: The code size and ROM size include the size of the startup routine.

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

RENESAS

Page 45 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5. Coding Techniques

This chapter describes the effects on code size, ROM size, and speed of execution through particular methods for the

coding of user programs.

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Item

Code Size | ROM Size

Number
of Clock
Cycles

Remarks

Variables and the const qualifier

Local variables and global variables

< | 2]

Allocating bit fields

Function interfaces

Reducing the number of loops

Using tables

Branches

Inline expansion

D | |2 x| <<=

Moving identical expressions in more than
one conditional branch destination before
the conditional branch

N PP papa

Replacing a sequence of complicated if
statement with a simple statement having
the same logical meaning

Types of variables

Unifying common case processing in
switch statements

Replacing for loops with do-while loops

Replacing division by powers of two with
shift operations

Changing bit fields with two or more bits
to the char type

< | 2 |2 2 < <2

< | 2| < | =

Alignment of a structure

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 46 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

5.1 Variables and the const Qualifier
Declare variables for which the values will not change with the const qualifier.

When program code includes the initialization of a global variable with a declaration, the initial value is allocated to
ROM and the global variable to RAM. The global variable is initialized when the initial value is transferred from ROM
to RAM when the program is started. When a variable with an initial value has been const-qualified, the variable will
not be rewritten and the compiler will not reserve RAM for it. This reduces the amount of RAM in use and eliminates
the need for the transfer from ROM to RAM.

Creating programs based on the rule of not using initialized variables (.data) where this is possible will facilitate the

creation of ROM images.

Not const-Qualified

const-Qualified

C source code

char al[] =
{1, 2, 3, 4, 5};

C source code

const char a[] =
{1, 2, 3, 4, 5};

ROM size: 5 bytes
RAM size: 5 bytes

ROM size: 5 bytes
RAM size: 0 bytes

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 47 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.2 Local Variables and Global Variables

Declaring variables for local use, such as temporary variables and loop counters, as local variables by declaration within
the functions where they are used will improve the speed of execution.

If a variable can be used as a local variable, declare it in that way, rather than as a global variable. Since the value of a
global variable may be changed by a call of a function or operations that affect a pointer, optimization will be less
efficient if a variable that can be declared as local is declared as global.

Before Using a Local Variable

After Using a Local Variable

C source code

int tmp;
void func(int* a,
{
tmp = *a;
*a = *b;
*b = tmp;
}

int* D)

C source code

void func (int* a,
{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;
}

int* Db)

Assembly-language expanded code

_func:
.STACK _func = 6
movw de, ax
push bc
pop hl
movw ax, [de]
'LOWW (_tmp), ax
[hl]
[de], ax
'LOWW (_tmp)
[hl], ax

movw
movw ax,
movw
movw ax,
movw
ret

Assembly-language expanded code

_func:

.STACK _func = 6

movw de, ax

push bc

pop hl

movw ax, [de]
movw bc, ax
[hl]
[de], ax
movw ax, bc
[h1l], ax

movw ax,
movw

movw
ret

Code size: 14 bytes
Number of clock cycles: 15

Code size: 10 bytes
Number of clock cycles: 15

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 48 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.3 Allocating Bit Fields

Allocate bit fields to which values are to be consecutively set to the same structure.

To set members of bit fields in different structures, access to each of the structures is required for access to the
members. Such access can be kept down to a single access to the structure itself by collectively allocating related bit

fields to the same structure.

The following shows an example in which the size is improved by allocating related bit fields to the same structure.

Structure

Before Allocating Bit Fields to the Same

After Allocating Bit Fields to the Same
Structure

C source code

struct str
{

int flagl:1;
} bl, b2, b3;

void func(void)
{
bl.flagl = 1;
b2.flagl = 1;
b3.flagl
}

Il
=
~.

C source code

struct str

{
int flagl:1;
int flag2:1;
int flag3:1;

}oal;

void func (void)
{
al.flagl = 1;
al.flag2
al.flag3 = 1;
}

Il
=

Assembly-language expanded code

_func:
.STACK func = 4
setl !LOWW(bl).0
setl !LOWW(b2).0
.0

setl !LOWW(Db3)
ret

Assembly-language expanded code

_func:
.STACK func = 4
mov a, #0x07
or a, !LOWW(_ al)
mov !LOWW(al), a
ret

Code size: 13 bytes
Number of clock cycles: 15

Code size: 9 bytes
Number of clock cycles: 12

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 49 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.4 Function Interfaces

Efficient use of the arguments of functions reduces the amount of RAM required and improves the speed of execution.

The number of arguments should be carefully selected so that all arguments can be allocated to registers. If there are too
many arguments, turn them into a structure and pass the pointer to it. If the structure itself is passed instead of a pointer
to the structure, the arguments may not be passed through registers. Passing arguments through registers simplifies
calling and processing at the entry and exit points of functions. This also saves space in the stack area.

The user’s manual for the compiler describes the specifications of function interfaces.

No Arguments in a Structure

Arguments in a Structure

C source code

struct str
{
char a;
char b;
char c;
char d;
char e;
char f;
char g;
char h;
} arg;
void func (char a, char b, char c,
char d, char e, char f,
char g, char h){}
void call func(void)
{
func (arg.a, arg.b, arg.c, arg.d,
arg.e, arg.f, arg.g, arg.h);

}

C source code

struct str

{
char a;
char b;
char c;
char d;
char e;
char f;
char g;
char h;

} arg;

void func(struct str* str arg){}

void call func(void)

{

func(&arg) ;

}

Assembly-language expanded code

_call func:
.STACK call func = 8

mov a, !LOWW(arg+0x00007)
shrw ax, 8+0x00000

push ax

mov a, !LOWW(arg+0x00006)
shrw ax, 8+0x00000

push ax

mov a, !LOWW(arg+0x00005)
mov d, a

mov a, !LOWW(arg+0x00004)
mov e, a

mov b, !LOWW(arg+0x00003)
mov ¢, !LOWW(arg+0x00002)
mov x, !LOWW(arg+0x00001)
mov a, !LOWW(_ arg)

call $! func

addw sp, #0x04

ret

Assembly-language expanded code

~call func:
.STACK call func = 4
movw ax, #LOWW(arg)
br $ func

Code size: 38 bytes
Number of clock cycles: 31

Code size: 5 bytes
Number of clock cycles: 10

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 50 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.5 Reducing the Number of Loops

Unrolling loops will considerably improve the speed of execution.

Unrolling loops is especially effective for inner loops. Since unrolling loops increases the sizes of programs, loops
should be unrolled when fast execution is to take priority over the code size.

Before Unrolling

After Unrolling

C source code
int a[1007];

void func (void)
{
int i;
for (i = 0;
afi] = 0;

}

i < 100; i++) {

C source code
int a[1007];

void func (void)
{
int i;
for (i = 0;
ali] = 0;
ali+l] =
}
}

i < 100; i += 2) {

0;

Assembly-language expanded code

_func:

.STACK func = 4
#LOWW (_a)
movw bc, #0x0064
.BBELABELE1_1: ; bb

clrw ax
[de], ax
movw ax, bc
addw ax, #O0xFFFF

movw bc, ax

movw de,

movw

incw de

incw de

bnz $.BBE@LABELE1 1
.BB@LABEL@1 2: ; return

ret

Assembly-language expanded code

_func:
.STACK _func = 6
push hl

movw ax, #LOWW(a)

movw [sp+0x00], ax
movw hl, #0x0032
.BB@LABEL@1 1: ; bb
pop de
push de
clrw bc
movw ax, bc
[de], ax
movw ax, de

movw

incw ax
incw ax
movw de, ax
movw ax, bc
[de], ax
movw ax, [sp+0x00]
addw ax, #0x0004
[sp+0x00], ax
movw ax, hl
addw ax, #O0xFFFF
movw hl, ax
bnz $.BBELABELE1 1
.BB@LABEL@1 2: ; return
pop hl
ret

movw

movw

Code size: 18 bytes
Number of clock cycles: 1106

Code size: 36 bytes
Number of clock cycles: 1059

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 51 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.6 Using Tables

Using tables instead of branching for switch statements will improve the speed of execution.

If the processing for each case label of a switch statement is almost the same, consider the use of a table.

In the example below, the character constant to be assigned to variable ch changes with the value of variable i.

switch Statement

Equivalent Table-Based Code

C source code

char func(int i)
{
char ch;
switch (i) {
case 0:
ch
case
ch
case
ch 'b'; break;
default:
ch = 0; break;

'a'; break;

'x'"; break;

oo I

}

return (ch);

}

C source code

const char chbuf[] =
{VaV, VXV, va};

char func(int i)
{
if ((unsigned int)i < 3)
return (chbuf[i]);
}

return (0);

{

Assembly-language expanded code

_func:
.STACK _func = 4
cmpw ax, #0x0000
bz $.BBRLABELE@1 4
.BB@LABEL@I_I: ; entry
addw ax, #0xXFFFF
bz $.BBRLABELE@1 5

mov a, #0x61l
ret

mov a, #0x78
ret

mov a, #0x62
ret

.BB@LABEL@1 4: ; switch break bb

.BB@LABEL@1 5: ; switch clause bb3

.BB@LABEL@1l 6: ; switch clause bb4

Assembly-language expanded code

_func:
.STACK _func = 4
cmpw ax, #0x0003
bnc $.BBE@LABELE1 2

movw bc, ax

.BB@LABEL@I_Z: ; entry ret
cmpw ax, #0x0001 .BB@LABELG@1l 2: ; bblO
bz $.BBRLABELG@1 6 clrb a
.BB@LABEL@1 3: ; switch clause bb5 ret
clrb a
ret

.BBRLABEL@1 1: ; if then bb

mov a, SMRLW(chbuf) [bc]

Code size: 59 bytes
Number of clock cycles: 82

Code size: 44 bytes
Number of clock cycles: 78

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 52 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.7

Branches

Changing the positions of cases for branching can improve the speed of execution. When comparison is performed in
order beginning from the top, such as in an else if statement, the speed of execution for the cases at the end becomes
slow if there are many preceding branches. Cases to which branching is frequent should be placed near the beginning of
the sequence.

Before Changing the Position of a Case

After Changing the Position of a Case

C source code

int func(int a)

{

if (a == 1) {
a = 2;

}

else if (a == 2) {
a = 4;

}

else if (a == 3) {
a = 8;

}

else {
a = 0;

}

return (a);

}

C source code

int func(int a)

{

if (a == 3) {
a = 8;

}

else if (a == 2) {
a = 4;

}

else if (a == 1) {
a = 2;

}

else {
a = 0;

}

return (a);

}

Assembly-language expanded code

_func:
.STACK _func = 4
cmpw ax, #0x0001

bnz $.BBELABELERI_2
.BB@LABEL@1 1: ;
entry.if break bbl7 crit edge

onew ax

incw ax

br $.BBELABELQ@L 7
.BB@LABELG@1l 2: ; if else bb

cmpw ax, #0x0002

bnz $.BB@LABELE1 4
.BB@LABEL@1 3: ;
if else bb.if break bbl7 crit edge

movw ax, #0x0004

br $.BBELABELQ@L 7

Assembly-language expanded code

_func:
.STACK _func = 4
cmpw ax, #0x0003

bnz $.BBRLABELQ1 2
.BB@LABELG1 1: ;
entry.if break bbl7 crit edge

movw ax, #0x0008

br $.BBRLABELQ1 7
.BB@LABEL@1l 2: ; if else bb

cmpw ax, #0x0002

bnz $.BBE@LABELG1 4
.BB@LABELE1 3: ;
if else bb.if break bbl7 crit edge

movw ax, #0x0004

br $.BBRLABELQ1 7
.BBRLABEL@1 4: ; if else bb9

.BB@LABEL@Ll 4: ; if else Dbb9 cmpw ax, #0x0001

cmpw ax, #0x0003 oneb a

oneb a skz

skz .BB@LABEL@1 5: ; if else bb9
.BB@LABEL@1 5: ; if else bb9 clrb a

clrb a .BBRLABEL@1 6: ; if else bb9
.BB@LABELG1l 6: ; if else bb9 mov x, #0x02

mov x, #0x08 mulu x

mulu x .BB@LABELR1 7: ; if break bbl7
.BB@LABEL@1 7: ; if break bbl7 ret

ret
Number of clock cycles: 26 Number of clock cycles: 17
(for a=3) (for a=3)

R20AN0529EJ0100 Rev.1.00

Nov. 26, 2018

Page 53 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming

Techniques

5.8 Inline Expansion

The speed of execution can be improved by applying inline expansion to functions that are frequently called. The inline
expansion of functions is specified by #pragma inline. However, inline expansion generally increases the sizes of

programs.

When other source files do not refer to an inline-expanded function, change the function to a static function. Some code
in the function will be removed and the code size may be reduced.

Before Inline Expansion

After Inline Expansion

C source code

int x[10], yI[10];

{
int temp;
temp = al[i];
ali]l = blil;
b[i] = temp;
}

void func ()
{
int i;
for (i = 0;
sub (x, v,
}
}

i < 10;
i)

static void sub(int *a,
int 1)

it++)

int *b,

{

C source code

int x[10], y[10];
#pragma inline (sub)
static void sub (int *a,
int 1)

{

int temp;

temp = alil;

alil = b[i];

bli] temp;
}

void func ()
{
int 1i;
for (i = 0;
sub(x, vy,
}
}

i < 10;
i);

it++)

int

*Db,

{

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 54 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Assembly-language expanded code

_sub@1:
.STACK _sub@l = 8
push ax
push bc
pop hl
movw ax, de
addw ax, ax
movw bc, ax
movw ax, hl
addw ax, bc
movw de, ax
movw ax, [spt0x00]
addw ax, bc
movw hl, ax
movw ax, [hl]
movw bc, ax
movw ax, [de]
movw [hl], ax
movw ax, bc
movw [de], ax
pop hl
ret
_func:
.STACK _func = 6
push hl
clrw ax
movw [sp+0x00], ax
.BBRLABELG2_1: ; bb
movw de, ax
movw bc, #LOWW(_ y)
movw ax, #LOWW(_ x)
call $! sub@l
movw ax, [sp+t0x00]
incw ax
movw [sp+0x00], ax
cmpw ax, #0x000A
bnz $.BBE@LABELE2 1
.BB@LABEL@2 2: ; return
pop hl
ret

Assembly-language expanded code

_func:
.STACK func = 6
push hl
movw de, #LOWW(_ y)
movw bc, #0x000A
movw hl, #LOWW(x)

.BBRLABELE1_1: ; bb
movw ax, [hl]
movw [sp+0x00], ax
movw ax, [de]
movw [hl], ax
movw ax, [sp+0x00]
movw [de], ax
movw ax, bc
addw ax, #O0xFFFF
movw bc, ax
incw de
incw de
incw hl
incw hl
bnz $.BBELABELE@L_1
.BBRLABEL@1 2: ; return
pop hl
ret

Code size: 26 bytes
Number of clock cycles: 411
(When -Qinline_level=1 is specified)

Code size: 31 bytes
Number of clock cycles: 183
(When -Oinline_level=1 is specified)

Use of #pragma inline does not guarantee inline expansion. Functions may not be inline-expanded depending on
whether -Oinline_level is specified, the contents of the function, or the status of compilation.

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 55 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.9

Moving Identical Expressions in More than One Conditional Branch

Destination before the Conditional Branch
When there are identical expressions in more than one conditional branch destination, move and unify them into one

section before the conditional branch.

Identical Expressions Following a Branch

Expression before the Branch

C source code
int s;

int func (int a,

{

return

}

int b, int c¢)

(a + b + ¢c);

int call func(int x)
{
if (x >= 0) {
if (x > func (0, 1, 2)) {
s++;
}
}
else {
if (x < -func(0, 1,
s—=;
}
}
return 0;

}

C source code
int s;

int func(int a,
{

return

}

int b, int c¢)

(a + b + ¢);

int call func(int x)
{
int tmp = func(0, 1, 2);
if (x >= 0) {
if (x > tmp) {
s++;
}
}
else {
if (x < -tmp) {
S—==7
}
}
return 0;

}

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 56 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Assembly-language expanded code

_call func:
.STACK call func = 6

push ax

bt a.7, $.BBQLABELE@2 5
.BB@LABEL@2 1: ; if then bb

movw de, #0x0002

onew bc

clrw ax

call $! func
movw bc, ax

movw ax, [spt0x00]
xor a, #0x80
movw [sp+0x00], ax

xchw ax, bc

xor a, #0x80

cmpw ax, bc

bnc $.BBE@LABELE2 3
.BB@LABEL@2 2: ; if then bb9

incw !LOWW(s)

br $.BBR@LABELE2 5

.BB@LABEL@2 3: ; if else bb
movw de, #0x0002
onew bc
clrw ax

call $! func

movw bc, ax

clrw ax

subw ax, bc

xor a, #0x80

movw bc, ax

movw ax, [sp+t0x00]

cmpw ax, bc

sknc
.BB@LABEL@2 4: ; if then Dbbl8

decw !LOWW(_s)
.BB@LABEL@2 5: ; if break bb22

clrw ax

pop hl

ret

Assembly-language expanded code

~call func:

.STACK call func = 6

push ax

movw de, #0x0002

onew bc

clrw ax

call $! func

movw bc, ax

movw ax, [sp+t0x00]

bt a.7, $.BBELABELEG2 5
.BB@LABEL@2 1: ; if then bb

xor a, #0x80

movw de, ax

movw ax, bc

xor a, #0x80

cmpw ax, de

bnc $.BBE@LABELGE2 3
.BBRLABEL@2 2: ; if then bbl2

incw !LOWW(_s)

br $.BB@LABELE@2 5
.BBRLABEL@2 3: ; if else bb

clrw ax

subw ax, bc

xor a, #0x80

movw bc, ax

movw ax, de

cmpw ax, bc

sknc
.BBRLABEL@2 4: ; if then bb2l

decw !LOWW(_s)
.BBRLABEL@2 5: ; if break bb25

clrw ax

pop hl

ret

Code size: 55 bytes
Number of clock cycles: 65

Code size: 44 bytes
Number of clock cycles: 50

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 57 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

5.10 Replacing a Sequence of Complicated if Statement with a Simple Statement
Having the Same Logical Meaning

When a sequence of if statements and conditional expressions is complicated, replace them with a simple expression
which has the same meaning.

Complicated Sequence Single if Statement
C source code C source code
int x; int x;
int func(int s, int t) int func(int s, int t)
{ {
s &= 1; s &= 1;
t &= 1; t &= 1;
if (!s) { if (! (s ~ t)) |
if (t) { x = 1;
x = 1; }
} return O0;
} }
else {
if ('t) |
x = 1;

return 0;

}

Assembly-language expanded code Assembly-language expanded code
_func: __func:

.STACK func = 4 .STACK func = 4

movw de, ax Xor a, b

mov a, C xch a, x

and a, #0x01 XOor a, cC

mov X, a xch a, x

mov a, e mov a, X

bt a.0, $.BBRLABEL@L 2 bt a.0, $.BBE@LABEL@1 2
.BBRLABEL@1 1: ; bblO.thread .BBRLABEL@1 1: ; if then bb

cmp0 x onew ax

bnz $.BBQLABEL@1 3 movw !LOWW(x), ax

br $.BBRLABELQ1 4 .BB@LABEL@1 2: ; if break bb
.BBQ@LABEL@1 2: ; if else bb clrw ax

cmp0 x ret

bnz $.BBRLABEL@L 4
.BBRLABEL@1 3: ; if then bb28

onew ax

movw !LOWW(x), ax

.BB@LABEL@1 4: ; if break bb30

clrw ax
ret
Code size: 23 bytes Code size: 16 bytes
Number of clock cycles: 27 Number of clock cycles: 22
R20ANO0529EJ0100 Rev.1.00 Page 58 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.11 Types of Variables

When using variables, specify the types having the minimum usable sizes for the given purposes. This is because RL78

devices excel in handling small-type variables.
Note:

When the type of a variable is converted, the range of variables or values obtained by the operation will be

changed. If you change the type, take care that this does not affect the operation of the program.

int-Type Variables

char-Type Variables

C source code

int func(int a, int b, int c)
{

int t = a + b;

return (t >> c);

}

C source code

char func(char a, char b,
{

char t = a + b;

return (t >> c);

}

char c¢)

Assembly-language expanded code

_func:
.STACK func = 6
push hl
movw hl, ax
movw ax, de
clrb a
mov a, X
[sp+0x00], a
hl
bc
movw bc, ax
[sp+0x00]
bc

mov
movw ax,
addw ax,

mov a,
xchw ax,
cmp0 b
bz $.BBRLABELQ1 2

.BB@LABEL@1 1: ; entry
sarw ax, 0x01
dec b
bnz $.BBELABELE@L 1

.BB@LABEL@1l 2: ; entry
pop hl
ret

Assembly-language expanded code

__func:
.STACK func = 4
add x, a
mov a, X
shrw ax,
cmp0 ¢
bz $.BBRLABELQRL 2
.BBQ@LABEL@1 1: ; entry
shrw ax, 0x01
dec c
bnz $.BBELABEL@1 1
.BBQ@LABEL@1l 2: ; entry
mov a, X
ret

8+0x00000

Code size: 23 bytes
Number of clock cycles: 32

Code size: 15 bytes
Number of clock cycles: 25

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 59 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Note that when a variable is used as an element of an array, the type of the variable may be converted into the int type
at the time of address calculation. Therefore, using a 16-bit type for such variables may improve the output code.

char-Type Variable

int-Type Variable

C source code

char array[100];
char index = 10;

char func(void)
{
return array[index-2];

}

C source code

char array[100];
int index = 10;

char func(void)
{
return arrayl[index-2];

}

Assembly-language expanded code

_func:
.STACK _func = 4
mov a, !LOWW(_ index)

shrw ax, 8+0x00000

movw de, ax
mov a, [de]
ret

addw ax, #LOWW(array+0xOFFFE)

Assembly-language expanded code

_func:
.STACK func = 4
movw ax,
addw ax,
movw de, ax
mov a, [de]
ret

#LOWW (_array+0xOFFFE)
!LOWW (_index)

Code size: 11 bytes
Number of clock cycles: 13

Code size: 9 bytes
Number of clock cycles: 12

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 60 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

In cases that require comparison operations, such as using the loop counters in for statements, specify the unsigned
type if it is obvious that the value of a variable will be never be less than 0. Comparison instructions of the RL78 family
are for comparing unsigned values, so this simplifies the output code.

int-Type Variable Unsigned int-Type Variable
C source code C source code
int value; int value;
void func (int num) void func (unsigned int num)
{ {
int i; unsigned int 1i;
for (i = 0; 1 < num; i++) { for (1 = 0; 1 < num; 1i++) {
value += 10; value += 10;
} }
} }
Assembly-language expanded code Assembly-language expanded code
_func: _func:
.STACK func = 4 .STACK func = 4
movw de, ax movw bc, ax
clrw bc clrw ax
.BB@LABEL@I_I: ; bbo .BB@LABEL@l_l: ; entry
movw ax, de movw de, ax
xor a, #0x80 .BBG@LABELG1 2: ; bbé
movw hl, ax cmpw ax, bc
movw ax, bc bz $.BBELABELQRL 4
xor a, #0x80 .BB@LABEL@1 3: ; bb
cmpw ax, hl movw ax, #0x000A
bnc $.BBGLABELE@1 3 addw ax, !LOWW(_ value)
.BB@LABEL@1 2: ; bb movw !LOWW(value), ax
movw ax, #0x000A movw ax, de
addw ax, !LOWW(value) incw ax
movw !LOWW(value), ax br $.BBELABELQGL 1
incw bc .BB@LABEL@1 4: ; return
br $.BBGLABEL@1 1 ret
.BB@LABEL@1 3: ; return
ret
Code size: 25 bytes Code size: 20 bytes
Number of clock cycles: 168 Number of clock cycles: 134
R20ANO0529EJ0100 Rev.1.00 Page 61 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.12 Unifying Common case Processing in switch Statements
When the branch destinations of multiple case labels have the same processing, move the case labels and unify the

processing.

Same Processing at Multiple Destinations

Unified Processing

C source code

void func (void)
{
switch (x) {
case 0:
dummyl () ;
break;
case 1:
dummyl () ;
break;
case 2:
dummyl () ;
break;
case 3:
dummy?2 () ;
break;
case 4:
dummy?2 () ;
break;
default:
break;

}

C source code

void func (void)
{
switch (x) {
case 0:
case 1:
case 2:
dummyl () ;
break;
case 3:
case 4:
dummy?2 () ;
break;
default:
break;
}
}

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 62 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Assembly-language expanded code

_func:
.STACK func = 4
movw ax, !LOWW(x)

cmpw ax, #0x0000

bz $.BB@LABEL@3 6
.BB@LABEL@3 1: ; entry

addw ax, #O0xFFFF

bz $.BB@LABEL@3 6
.BB@LABEL@3 2: ; entry

addw ax, #O0xFFFF

bz $.BB@LABEL@3 6
.BB@LABEL@3 3: ; entry

addw ax, #O0xFFFF

bz $.BBRLABELE3 7
.BB@LABEL@3 4: ; entry

cmpw ax, #0x0001

bz $.BBELABELE3 7
.BB@LABEL@3 5:

ret
.BBRLABELQ3 6: ;

br $ dummyl
.BBR@LABEL@3 7: ;

br $ dummy?2

; return
switch clause bb2

switch clause bb4

Assembly-language expanded code

.BB@LABEL@3 1: ;

.BBR@LABEL@3 2: ;
.BB@LABEL@3 3: ;

.BBR@LABEL@3 4: ;

func:

.STACK func = 4

movw ax, !LOWW(x)

cmpw ax, #0x0003

bc $.BBRLABEL@3 3

entry

addw ax, #0xFFFD

cmpw ax, #0x0002

bc $.BBRLABELQ3 4

return

ret

switch clause bb
br $ dummyl

switch clause bbl
br $ dummy?2

Code size: 33 bytes
Number of clock cycles: 23

Code size: 21 bytes
Number of clock cycles: 17

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 63 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.13

Replacing for Loops with do-while Loops

Replacing a for statement with a do-while statement if it is clear that the loop is executed at least once may reduce the
code size. Replacing another kind of conditional expression with an equality or inequality operator may also reduce the

code size.

for Loop

do-while Loop

C source code

int array[10][10];

{
int i;
int *p;
int s;
p = &array[0][0];
S = nsize * msize;
for (i = 0; 1 < s; i++)
*p++ = 0;
}
}

void func(int nsize, int msize)

C source code
int array[10][10];

void func (int nsize,
{
int i;
int *p;
int s;
p = &array[O0][0];
s = nsize * msize;
i = 0;
do {
*p++ = 0;
i++;
} while (i != s);

}

int msize)

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 64 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

Assembly-language expanded code

_func:
.STACK func = 8
push hl
push bc
pop de
movw bc, ax
movw ax, de

mulh

movw [sp+0x00], ax

clrw bc

movw de, #LOWW(array)
.BB@LABEL@I_I: ; bbl3

xor a, #0x80

movw hl, ax

movw ax, bc

xor a, #0x80

cmpw ax, hl

bnc $.BB@LABELE1 3
.BB@LABELE1_2: ; bb

clrw ax

movw [de], ax

incw de

incw de

incw bc

movw ax, [sp+t0x00]

br $.BBGLABELE1 1
.BB@LABEL@1 3: ; return

pop hl

ret

Assembly-language expanded code

_func:
.STACK func = 6
push bc
pop de
movw bc, ax
movw ax, de
mulh
movw bc, ax
movw de, #LOWW(array)
.BBRLABELE1_1: ; bb
clrw ax
movw [de], ax
movw ax, bc
addw ax, #0xFFFF
movw bc, ax

incw de

incw de

bnz $.BBRLABELQ@1 1
.BB@LABEL@1 2: ; return

ret

Code size: 34 bytes
Number of clock cycles: 1626

Code size: 23 bytes
Number of clock cycles: 1112

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

Page 65 of 69

RENESAS

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.14

Replacing Division by Powers of Two with Shift Operations

If the divisor in division is a power of two, replace the division with a shift operation.

Division by a Power of Two

Shift Operation

C source code

int s;
void func (void)
{
s =s / 2;
}

C source code
int s;
{

s =

}

s >> 1

void func(void)

’

Assembly-language expanded code

_func:
.STACK func = 4
movw ax, !LOWW(_s)
onew bc
incw bc
call !! COM sidiv
movw !LOWW(_ s), ax
ret

Assembly-language expanded code

_func:

movw ax,
sarw ax,

ret

.STACK func = 4

movw ! LOWW (

!LOWW (_s)
0x01
s), ax

Code size: 13 bytes
Number of clock cycles: 75

Code size: 9 bytes

Number of clock cycles: 9

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 66 of 69

RL78 Family C Compiler Package (CC-RL)

Programming Techniques

5.15 Changing Bit Fields with Two or More Bits to the char Type
When a bit field has two or more bits, change the bit field to the char type. Note, however, that this will increase the

amount of ROM in use.

Bit Fields

char Type

C source code

struct {
unsigned char b0:1;
unsigned char bl:2;
}odw;

unsigned char dummy;

int func(void)
{
if (dw.bl) {
dummy++;
}
return

}

(0);

C source code

struct {
unsigned char b0:1;
unsigned char bl;

} dw;

unsigned char dummy;

int func(void)
{
if (dw.bl) {
dummy++;
}
return

}

(0);

Assembly-language expanded code

_func:
.STACK _func = 4
mov a, #0x06
and a, !LOWW(_dw)

bnz $.BBGLABELE@1 2
.BB@LABEL@1 1: ; if break bb
clrw ax
ret
.BB@LABEL@1 2: ; if then bb
inc !LOWW (_ dummy)
br $.BBE@LABEL@1 1

Assembly-language expanded code

_func:
.STACK func = 4
cmpO !LOWW (_dw+0x00001)
bnz $.BBELABELE@L_2
.BB@LABELE1 1: ;
clrw ax
ret
.BB@LABELG1 2: ;
inc !LOWW (_ dummy)
br $.BBELABELE1 1

if break bb

if then bb

Code size: 13 bytes
Number of clock cycles: 11
ROM size: 1 byte

Code size: 12 bytes
Number of clock cycles: 10
ROM size: 2 bytes

R20AN0529EJ0100 Rev.1.00
Nov. 26, 2018

RENESAS

Page 67 of 69

RL78 Family C Compiler Package (CC-RL) Programming Techniques

5.16 Alignment of a Structure

When defining a structure, declare the members in consideration of the alignment value. Alignment means that the
addresses to which variables are allocated for more efficient access to the variables.

For example, the boundary alignment value for the long type is 2 bytes and the long-type variable must be allocated to
the address which is a multiple of 2. For a structure variable, alignment applies to both its members and to the structure
variable itself. The boundary alignment values for members are the same as those for variables of the same type that are
not structure members. The boundary alignment value of a structure variable is the highest value among those of its
members. If allocating the members of a structure variable without any spaces would violate the required alignments,
alignment of the addresses is obtained by including spaces. That is, padding is required. Padding is also required when
the size of a structure variable is not a multiple of the highest boundary alignment value. Frequent requirements for
padding lower the efficiency of allocation to memory.

Before Alignment After Alignment
C source code C source code
// The boundary alignment value is // The boundary alignment value is
// 2 bytes since the member with // 2 bytes since the member with
// the maximum alignment value is // the maximum alignment value is
// of the long type. // of the long type.
struct str { struct str {
char cl; // 1 byte char cl; // 1 byte
// 1 byte for padding char c2; // 1 byte
long 11; // 4 bytes char c3; // 1 byte
char c2; // 1 byte char c4; // 1 byte
char c3; // 1 byte long 11; // 4 bytes
char c4; // 1 byte } strl;
// 1 byte for padding
} strl;
Assembly-language expanded code Assembly-language expanded code
_strl: _strl:
.DS (10) .DS (8)
RAM size: 10 bytes RAM size: 8 bytes
R20AN0529EJ0100 Rev.1.00 Page 68 of 69

Nov. 26, 2018 RENESAS

RL78 Family C Compiler Package (CC-RL) Programming Techniques

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

R20AN0529EJ0100 Rev.1.00 Page 69 of 69
Nov. 26, 2018 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev.

Date

Description

Page

Summary

1.00

November 26,
2018

New release

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.

3. Nolicense, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.

"Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
“High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10.

15}

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

RENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc.

1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.

Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China

Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India

Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

	Introduction
	1. Overview
	2. Options
	2.1 Compiler Options
	2.1.1 -memory_model
	2.1.2 -far_rom
	2.1.3 -O<level>
	2.1.4 -Ounroll
	2.1.5 -Odelete_static_func
	2.1.6 -Oinline_level
	2.1.7 -Oinline_size
	2.1.8 -Opipeline [V1.03 or later]
	2.1.9 -Otail_call
	2.1.10 -Omerge_files
	2.1.11 -Ointermodule
	2.1.12 -Owhole_program
	2.1.13 -Oalias
	2.1.14 -Osame_code [V1.02 or later]
	2.1.15 -dbl_size
	2.1.16 -signed_char
	2.1.17 -signed_bitfield
	2.1.18 -switch
	2.1.19 -merge_string
	2.1.20 -pack
	2.1.21 -stack_protector/-stack_protector_all [Professional Edition only] [V1.02 or later]
	2.1.22 -control_flow_integrity [Professional Edition only] [V1.06 or later]
	2.1.23 -unaligned_pointer_for_ca78k0r [V1.06 or later]

	2.2 Assembler Option
	2.3 Linkage Options
	2.3.1 -optimize=symbol_delete
	2.3.2 -optimize=branch

	3. Language Extensions
	3.1 Reserved Words
	3.1.1 __saddr
	3.1.2 __callt
	3.1.3 __near/__far

	3.2 #pragma Directives
	3.2.1 #pragma interrupt/interrupt_brk

	4. Using a Variables/Functions Information File
	5. Coding Techniques
	5.1 Variables and the const Qualifier
	5.2 Local Variables and Global Variables
	5.3 Allocating Bit Fields
	5.4 Function Interfaces
	5.5 Reducing the Number of Loops
	5.6 Using Tables
	5.7 Branches
	5.8 Inline Expansion
	5.9 Moving Identical Expressions in More than One Conditional Branch Destination before the Conditional Branch
	5.10 Replacing a Sequence of Complicated if Statement with a Simple Statement Having the Same Logical Meaning
	5.11 Types of Variables
	5.12 Unifying Common case Processing in switch Statements
	5.13 Replacing for Loops with do-while Loops
	5.14 Replacing Division by Powers of Two with Shift Operations
	5.15 Changing Bit Fields with Two or More Bits to the char Type
	5.16 Alignment of a Structure

	Website and Support
	Revision History

