

© 2022 Renesas Electronics Corporation

AN-1134 Drawing Characters on an Android App and Displaying it on

LED Matrix

This Application Note describes the circuit used to go from drawing a character on an Android App,

sending it to an Arduino UNO via Bluetooth, then to a GreenPAK™ via I2C which fits data to display

the character on a LED matrix. Using the GreenPAK5 frees up the necessary Arduino GPIO’s so that

Bluetooth can be used, along with leaving GPIO’s available for other purposes. Additional benefits

of GreenPAK include the I2C protocol needing just 2 wires to control, for up to 16 GreenPAK5 from

one I2C master. So if we want to connect more than one LED matrix to the Arduino UNO, using

multiple GreenPAK’s is a much more economical design. And once the GreenPAK is loaded with a

character, it can work independently even if the I2C connection is disconnected.

Project Design Approach

This project uses an android app., and the app uses a virtual LED matrix. Therefore, you can

update the character that is seen on the LED matrix from the mobile device directly.

This project consists of three stages:

1. Build the Android application

2. GreenPAK design

3. Arduino code

Figure 1. Components used in this App Note

Working principle of the LED matrix

LED dot matrices are very popular as they are very visible in a variety of ambient conditions.

In a dot matrix display, multiple LEDs are wired together in rows and columns in order to minimize

the number of pins required. For example, an 8×8 matrix of LEDs (Figure 2) has the cathodes

together in rows (R1 through R8) and anodes in columns (C1 through C8). Each LED is addressed

by its row and column number. In this example we are using what is referred to as a Common Row

Cathodes LED Matrix.

To immuminate a LED pixel in the matrix, a high signal is applied on the anode (column) and low

signal is sent to the cathode (row). When we want to show characters or symbols, we typically

need to illuminate numerous pixels. In this case, we divide the picture into sections, and we

illuminate every row in a fast loop separately.

© 2022 Renesas Electronics Corporation

Figure 2. LED matrix diagram

The human eye can detect LEDs blinking at low frequency, but at more than 20Hz, the full

character will appear and with less flicker. In this design, we will control an 8x7 LED matrix, as the

last column C8 will be omitted because of a limitation of IO pins.

Android Application

For this first stage, an application for android devices is built to send data to the Bluetooth module.

The app will have the graphical interface to the user.

The app interface has 56 buttons. Each button represents a pixel in the LED matrix, hence, each

one will be represented by a binary variable with two states (on=1, off=0).

Every LEDs' row is represented by one byte (bit for pixel). To find the byte's value, we multiply

every button state by the significant bit and then we take the sum of products.

p1..p64 are binary variables hold buttons states (on =1, off=0).

B1= (P1 X 1)+(P2 X 2)+(P3 X 4)+(P4 X 8)+(P5 X16)+(P6 X 32)+(P7 X 64)+(0)

B8= (P57 X 1)+(P58 X 2)+(P59 X 4)+(P60 X 8)+(P61 X16)+(P62 X 32)+(P63 X 64)+(0)

After this calculation, the character will be represented by 8 bytes (B1..B8) which will be sent to

the Bluetooth module.

Table 1. Control bits for LED matrix

© 2022 Renesas Electronics Corporation

MIT APP Inventor

The app can be made using the MIT App Inventor with ease and no prior programming experience

is required. The app Inventor lets you develop applications for Android phones using a web browser

with programming blocks.

To create the Android Application, a new project has to be started and the visible components need

to be removed from the designer screen. Then 58 buttons need to be created; 56 buttons will be

for the LED matrix, 1 will be for the list pickers for the Bluetooth devices (connect), and the last

button will be used to send data via Bluetooth (print). We also need a Bluetooth client. Figure 3

below is a screen capture of our Android Application’s user interface.

Figure 3. Android App GUI

To start programming, the “Block” button needs to be clicked. By dragging and dropping, we can

add components from the bar on the left side. As in Fig 4, the global variables will be added and on-

click functions for each button have to be built which will be used to change colors and/or to save

the button state (on , off).

Figure 4. Block diagram for first matrix pixel

© 2022 Renesas Electronics Corporation

For different buttons, the process can be repeated by changing the button number and the global

variable each time. Once done, the mathematical equation needs to be built which will gather every

row's bits in one byte (B1..B8 equations). The 56 button states will be formed in 8 bytes variables.

(Fig. 5 illustration).

Figure 5. Gathering bits in rows bytes

Finally, the app will send the 8 bytes using Bluetooth as a list of bytes when the print button is

clicked (Fig. 6).

Figure 6. Send row bytes via Bluetooth

GreenPAK design

The Android application sends data to the Arduino, and then from Arduino to GreenPAK via I2C

connection. Those details are explained in the “Arduino code” section later. The I2C interface in

SLG46537V is very powerful because it can read and write all its configuration bits (including

output states and ASM RAM). The I2C write command begins with a start bit, followed by a control

byte, word address byte, data byte and stop bit (illustrated in Fig 7).

Figure 7. I2C Writing Frame

In GreenPAK we start designing the I2C block. This block is enabled from the properties bar and

then the control code is chosen. Then two wires will be connected with pins 8, 9(SCL, SDA) and

from the control code list, the device address is chosen (a number from 0 to 15). In our project 0

(0b0000) is selected. This is shown in Fig 8.

© 2022 Renesas Electronics Corporation

Figure 8. I2C block connection

A controller that will show bytes in rows needs to be made. For that, a State Machine block (ASM)

has to be used. The ASM block is an 8-state asynchronous state machine. There are 24 state

transition inputs, 1 nRESET input and 8 output lines. The ASM block is defined using state

transitions and state outputs. Every state will represent one row and it will show the byte that is

received from Arduino.

Figure 9. Connect ASM block with pulse generator

The movement from the current state to the next one happens by applying a high signal on the

next state enable's pin and a low signal on the current state enable's pin.

Take State 0 for example: its box contains a state 1 arrow as the next state. This means that in

order to transition from State 0 to 1, the input of the State 1 arrow needs to be high when the ASM

is in state 0.

A counter with pipe delay will be responsible to generate the pulse. CNT4 is used to generate a

0.32ms timer that is used as the one-shot pulse width for all the states. Since the ASM’s inputs are

level triggered and not edge triggered, the CNT4’s output can’t simply be used as the trigger for all

state transitions (because it would cause almost instantaneous transitions from a state to another

instead of waiting for 0.32ms between transitions).

To address this, the Pipe Delay macro-cell is used to generate 2 complementary outputs with 50%

duty cycle. While one signal is used to transition from even to odd numbered states, the other is

© 2022 Renesas Electronics Corporation

used to transition from odd to even numbered states.

This design can be approached from the ASM properties bar or from the ASM editor as shown in

Figure 9. The ASM Editor is provided with a graphical buttons panel to set the ASM output for each

state (connection matrix output RAM). So the initial character (which is to be displayed on the LED

matrix) can be drawn before updating from mobile app.

Figure 10. ASM Editor Diagram

Figure 11. Connect ASM outputs with columns pins

In every state, the ASM output will be the row byte which we want to show, so we connect the ASM

outputs directly to the GreenPAK output pins which are in turn connected to the LED matrix

columns, (pins 14 to 20).

With every state, one row that is related to the state has to be activated and because the cathodes

are wired together in rows, the active signal for rows is low; hence, a low signal is applied on the

related row. A series of 8 DFF will give a low signal on one output (with every CLK) while giving a

high signal for the other outputs.

This low signal will move from one row to the next with every rising edge's CLK. To do that, the

output of every DFF is connected with the next DFF's Dpin. (The last one feeds back to the first DFF

to complete the loop). The initial polarity of the first DFF is low while it is high for the other DFFs.

B.O.M and Tools

The components used in this project are:

SLG46537V GreenPAK5 device https://www.dialog-semiconductor.com/products/slg46537

HC-06 Bluetooth module

Arduino UNO board https://www.sparkfun.com/products/11021

8x8 Common Row Cathodes LED Matrix https://www.adafruit.com/products/455 - 200 ohm

resistors

http://www.dialog-semiconductor.com/products/slg46537
https://tronixlabs.com.au/breakout-boards/bluetooth/hc06-bluetooth-to-uart-serial-wireless-adaptor-australia/
https://www.sparkfun.com/products/11021
https://www.adafruit.com/products/455

© 2022 Renesas Electronics Corporation

GreenPAK designer Go Configure™ Software Hub | Renesas

Arduino IDE https://www.arduino.cc/en/Main/Software

Figure 12. Activation of one row with every state

Arduino Code

In this stage, the Arduino, which is connected with the Bluetooth module, will receive the 8 bytes

using the UART interface. It will perform data fitting and will send them to the GreenPAK5 using

I2C. The HC06 module that has been used for Bluetooth communication uses the UART for

communication protocol with a 9600 baud rate. That number will be used in the code.

Arduino UNO has a serial interface connected with pins 0,1 (RX,TX) to make the UART connection

with other components. So the Bluetooth module TX will be connected with the Arduino RX (pin 0).

Bluetooth module TX > Arduino RX (pin 0).

After receiving data bytes, Arduino has to be used to send these bytes (using i2C protocol) to

GreenPAK. To make this easy, Silego’s Arduino Library has been used.

Silego’s Arduino Library is a custom library. By using it, data can easily be read from or written to a

GreenPAK device from the Arduino using I2C. There are two functions available in the Silego

library: writeI2C and readI2C. The syntax to call one of these functions in an Arduino sketch is

silego.function(parameters); In our project, the writeI2C function will be used, which has this form:

void writeI2C(byte byte_address, byte data);

Variable Function

byte_address
The GreenPAK register address

which we want to write

byte data
Data which has to be written on

the address.

Table 2. Arduino writing function variables

The byte address is found in the SLG datasheet. In our project, the byte addresses that we will use

https://www.renesas.com/eu/en/software-tool/go-configure-software-hub
https://www.arduino.cc/en/Main/Software

© 2022 Renesas Electronics Corporation

are the addresses of the RAM 8 outputs for ASM-states, as shown in table 3. However, because the

Arduino is used as I2C master, a Silego library for Arduino will have to be used in order to get static

variable names instead of HEX numbers in Arduino functions as shown in the 3rd column of table 3.

Address byte Signal Function Arduino static variables

D0 RAM 8 outputs for ASM-state0 ASM_STATE_0

D1 RAM 8 outputs for ASM-state1 ASM_STATE_1

D2 RAM 8 outputs for ASM-state2 ASM_STATE_2

D3 RAM 8 outputs for ASM-state3 ASM_STATE_3

D4 RAM 8 outputs for ASM-state4 ASM_STATE_4

D5 RAM 8 outputs for ASM-state5 ASM_STATE_5

D6 RAM 8 outputs for ASM-state6 ASM_STATE_6

D7 RAM 8 outputs for ASM-state7 ASM_STATE_7

Table 3. ASM outputs state addresses

The “SilegoLibrary.zip” folder needs to be downloaded. The folder needs to be unzipped in the

Arduino libraries directory before programming. The folder name has to have no spaces. For

detailed information you can see AN-1107 How to Use Silego’s Arduino Library with GreenPAK.

This library is compatible with SLG46531V, SLG46532V, SLG46533V. However, we can use it with

SLG46537V because SLG46531V and SLG46537V have the same I2C addresses.

I2C Arduino UNO pins: SCL--->A5 , SDA--->A4.

The final code:

https://www.renesas.com/eu/en/document/apn/1107-how-use-renesass-arduino-library-greenpak?r=1570446

© 2022 Renesas Electronics Corporation

Circuit Schematic

GreenPAK
pin

11 12 13 14 15 16 17 18 19 20

Function GND R7 R8 C1 C2 C3 C4 C5 C6 C7

GreenPAK
pin

1 2 3 4 5 6 7 8 9 10

Function VDD - R1 R2 R3 R4 R5 R6 R7 R8

Table 4. GreenPAK Output Pins Connection

Figure 13.LED Matrix Pins Diagram

Figure 14. SLG46537V Pinout

© 2022 Renesas Electronics Corporation

Figure 15. Top level Circuit Schematic

Conclusion

In this Application Note, a LED matrix driver has been created that can be controlled from

ucontroller via the I2C protocol. An android app has also been built with a virtual LED matrix to

draw characters and to display them on the LED matrix. The GreenPAK Programmable Mixed- signal

ASIC has a variety of digital and analog components that facilitate the creation of moderately

complex designs. It also has the I2C interface which allows control of GreenPAK registers from any

I2C master.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

