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Notes on Using C Compilers
M3T-NC308WA and M3T-NC30WA

Please take note of the following problems in using C compilers (with an assembler and
integrated development environment) M3T-NC308WA and M3T-NC30WA:

On using the #pragma ADDRESS declaration
On using the #pragma ADDRESS declaration or the volatile qualifier for a variable to be
assigned to another

1. Problem on Using the #pragma ADDRESS Declaration

Products and Versions Concerned
For the M32C/80 and M16C/80 series MCUs

M3T-NC308WA V.1.00 Release 1 through V.5.00 Release 1

For the M16C/60, M16C/30, M16C/20, and M16C/10 series MCUs

M3T-NC30WA V.1.00 Release 1 through V.5.00 Release 2

1.2 Description
The volatile type qualifier of a variable declared using the #pragma ADDRESS directive
may be invalidated.

1.3 Conditions
This problem occurs if the following two conditions are satisfied:
(1) A variable is defined.
(2) After defining the variable in (1), it is declared using the #pragma ADDRESS
directive.

1.4 Example

-----------------------------------------------
   int        gi;              /* Condition (1) */



   #pragma    ADDRESS gi 500H  /* Condition (2) */
-----------------------------------------------

1.5 Workaround
Declare the variable using the #pragma ADDRESS directive before defining it.

---------------------------------------------
   #pragma    ADDRESS gi      500H
   int gi;
---------------------------------------------

1.6 Schedule of Fixing the Problem
We plan to fix this problem in our next release of the products.
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2. Problem on Using the #pragma ADDRESS Declaration or the Volatile
Qualifier for a Variable to Be Assigned to Another

2.1 Product and Versions Concerned
For the M32C/80 and M16C/70 series MCUs

M3T-NC308WA V.1.00 Release 1 through V.5.00 Release 1

2.2 Description
When an assignment-destination variable (a variable that another is assigned to) is 8
bits wide and an assignment-source variable (a variable that is assigned to another)
(*) is 16 bits wide, the latter may be referenced as of 8 bits wide. Therefore, be aware
that I/O registers and others that must be read out in 16 bits wide will be done in 8
bits wide.
Note: * The variable involved must be qualified as volatile or declared using the
#pragma ADDRESS directive.

2.3 Conditions
This problem occurs if the following four conditions are satisfied:
(1) An assignment statement exists.
(2) The assignment-destination variable in (1) is 8 bits in width.
(3) The assignment-source variable in (1) is 16 bits in width.
(4) The variable in (3) is qualified as volatile or declared using the #pragma ADDRESS
directive.

2.4 Example



-------------------------------------------------
   #pragma    ADDRESS X0R 2C0H
   char       gc;            /* Condition (2) */
   int  X0R;                 /* Condition (3) */
   void func(void)
   {
      gc = X0R;              /* Condition (1) */
   }
-------------------------------------------------

2.5 Workaround
Assign the assignment-source variable to a temporary 16-bit variable that is not
qualified as volatile; then assign the temporary variable to the assignment-destination
variable.

----------------------------------------------------------
   volatile int gi;
   char       gc;
   void func(void)
   {
      int tmp;
      tmp = gi;   /* The source variable assigned to
                                         a tmp variable */
      gc = tmp;   /* A tmp variable assigned to
                                   the destination variable */
   }
----------------------------------------------------------

2.6 Schedule of Fixing the Problem
We plan to fix this problem in out next release of the product.
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