
Tool News

 MAEC TOOL NEWS: MAECT-M3T-NC308WA_2-030316D

Notes on Using C Compilers
M3T-NC308WA and M3T-NC30WA

Please take note of the following problems in using C compilers (with an assembler and
integrated development environment) M3T-NC308WA and M3T-NC30WA:

On using the #pragma ADDRESS declaration
On using the #pragma ADDRESS declaration or the volatile qualifier for a variable to be
assigned to another

1. Problem on Using the #pragma ADDRESS Declaration

Products and Versions Concerned
For the M32C/80 and M16C/80 series MCUs

M3T-NC308WA V.1.00 Release 1 through V.5.00 Release 1

For the M16C/60, M16C/30, M16C/20, and M16C/10 series MCUs

M3T-NC30WA V.1.00 Release 1 through V.5.00 Release 2

1.2 Description
The volatile type qualifier of a variable declared using the #pragma ADDRESS directive
may be invalidated.

1.3 Conditions
This problem occurs if the following two conditions are satisfied:
(1) A variable is defined.
(2) After defining the variable in (1), it is declared using the #pragma ADDRESS
directive.

1.4 Example

 int gi; /* Condition (1) */

 #pragma ADDRESS gi 500H /* Condition (2) */

1.5 Workaround
Declare the variable using the #pragma ADDRESS directive before defining it.

 #pragma ADDRESS gi 500H
 int gi;

1.6 Schedule of Fixing the Problem
We plan to fix this problem in our next release of the products.

Notes on Using C Compilers M3T-NC308WA and M3T-NC30WA
MAECT-M3T-NC308WA_2-030316D

2. Problem on Using the #pragma ADDRESS Declaration or the Volatile
Qualifier for a Variable to Be Assigned to Another

2.1 Product and Versions Concerned
For the M32C/80 and M16C/70 series MCUs

M3T-NC308WA V.1.00 Release 1 through V.5.00 Release 1

2.2 Description
When an assignment-destination variable (a variable that another is assigned to) is 8
bits wide and an assignment-source variable (a variable that is assigned to another)
(*) is 16 bits wide, the latter may be referenced as of 8 bits wide. Therefore, be aware
that I/O registers and others that must be read out in 16 bits wide will be done in 8
bits wide.
Note: * The variable involved must be qualified as volatile or declared using the
#pragma ADDRESS directive.

2.3 Conditions
This problem occurs if the following four conditions are satisfied:
(1) An assignment statement exists.
(2) The assignment-destination variable in (1) is 8 bits in width.
(3) The assignment-source variable in (1) is 16 bits in width.
(4) The variable in (3) is qualified as volatile or declared using the #pragma ADDRESS
directive.

2.4 Example

 #pragma ADDRESS X0R 2C0H
 char gc; /* Condition (2) */
 int X0R; /* Condition (3) */
 void func(void)
 {
 gc = X0R; /* Condition (1) */
 }

2.5 Workaround
Assign the assignment-source variable to a temporary 16-bit variable that is not
qualified as volatile; then assign the temporary variable to the assignment-destination
variable.

--
 volatile int gi;
 char gc;
 void func(void)
 {
 int tmp;
 tmp = gi; /* The source variable assigned to
 a tmp variable */
 gc = tmp; /* A tmp variable assigned to
 the destination variable */
 }
--

2.6 Schedule of Fixing the Problem
We plan to fix this problem in out next release of the product.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

