
 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 1 of 11
Oct.01.21

[Notes]
C/C++ Compiler Package for M16C Series and R8C Family,
C Compiler Package for M32C Series,
C Compiler Package for R32C Series

Outline
When using any of the products in the title, note the following points.

1. Performing the addition/subtraction of single-precision floating-point data

2. Performing the addition/subtraction of double-precision floating-point data (1)

3. Performing the addition/subtraction of double-precision floating-point data (2)

R20TS0750EJ0100
Rev.1.00

Oct. 01, 2021

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 2 of 11
Oct.01.21

1. Performing the addition/subtraction of single-precision floating-point data

1.1 Applicable Products
 C/C++ Compiler Package for M16C Series and R8C Family V.1.00 Release 1 to V.5.40 Release 00

 C Compiler Package for M32C Series V.1.00 Release 1 to V.5.42 Release 00

 C Compiler Package for R32C Series V.1.01 Release 00 to V.1.02 Release 01

1.2 Details
The result of adding/subtracting single-precision floating-point data may become ±1.175494e-38 (the

normalized number that can be expressed in the single-precision floating-point format that has a minimum
absolute value) under certain conditions. (Note 1)

Note 1: In C Compiler Package for M32C Series, the result may become ±1.175494e-38 or ±0 under
certain conditions.

1.3 Conditions
The problem may arise if all the conditions from (1) to (3) are met.

(1) The code that performs the addition/subtraction of single-precision floating-point data is specified.

(2) The output code for (1) is the call of the runtime library function __f4add or __f4sub.

(3) When the operation in (1) is expressed as an addition (a+b or b+a), the sign, exponent, and mantissa
parts for the applicable products, versions, and options meet the following tables.

 C/C++ Compiler Package for M16C Series and R8C Family V.1.00 Release 1 to V.5.30 Release 02

Either Condition 1 or 2 is met.

Condition Sign of

a and b

Exponent part

of a

Mantissa part

of a

Exponent part

of b

Mantissa part

of b

1 Different 0x19 to 0xFD 0x7FFFFF A value one larger
than the exponent
part of a

0x000000

2 Different 0x18 to 0xFD 0x7FFFFE A value one larger
than the exponent
part of a

0x000000

 C/C++ Compiler Package for M16C Series and R8C Family V.5.40 Release 00

Sign of a and b Exponent part of a Mantissa part of a Exponent part of b Mantissa part of b

Different 0x19 to 0xFD 0x7FFFFF A value one larger
than the exponent
part of a

0x000000

 C Compiler Package for M32C Series V.1.00 Release 1 to V.5.42 Release 00

Sign of a and b Exponent part of a Mantissa part of a Exponent part of b Mantissa part of b

Different 0x19 to 0xFD 0x7FFFFF A value one larger
than the exponent
part of a

0x000000

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 3 of 11
Oct.01.21

When the option -M82 (*1) or -M90 (*2) is used, the operation result may become ±0, not ±1.175494e-38.

*1: Applicable when -M82 is specified in V.5.20 Release 1 or later.

*2: Applicable when -M90 is specified in V.5.40 Release 00 or later.

 C Compiler Package for R32C Series V.1.01 Release 00 to V.1.02 Release 01

Sign of a and b Exponent part of a Mantissa part of a Exponent part of b Mantissa part of b

Different 0x19 to 0xFD 0x7FFFFF A value one larger
than the exponent
part of a

0x000000

Applicable when the option -fuse_FPU is not used.

1.4 Example
Below is an example of an occurrence of the problem. The result of the addition/subtraction of float

becomes -1.175494e-38, which is different from the expected value.
/* tp.c */

float a = 127.999992; /* 0x42FFFFFF (3)*/

float b = -128; /* 0x43000000 (3)*/

float c;

 void f1(void) {

 c = a + b; /* (1), (2) */

}

1.5 Workaround
If you are using C/C++ Compiler Package for M16C Series and R8C Family, use V.5.42 Release 00 or

later instead.

If degrading the precision of the operation result is permitted, you can prevent the problem by taking the
following measure.

1.6 Countermeasure
You can reduce the error in the operation results by changing the values so that condition (3) is not met.

The following shows the example in which the low order 2 bits of the mantissa part are masked so that the
condition is not met.
float a = 127.999992; /* 0x42FFFFFF */

float b = -128; /* 0xC3000000 */

float c;

float maskTwoBit(float x) {

 union {

 float flt;

 unsigned long ul;

 } u;

 u.flt = x;

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 4 of 11
Oct.01.21

 if ((u.ul & 0x7FFFFEUL) == 0x7FFFFEUL) {

 u.ul &= 0xFFFFFFFCUL;

 }

 return u.flt;

}

void main(void) {

 a = maskTwoBit(a); // added

 b = maskTwoBit(b); // added

 c = a + b;

}

In the example, the operation result (c) is -0.000000000000028421709430.

1.7 Schedule for Fixing the Problem
We do not plan to fix it.

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 5 of 11
Oct.01.21

2. Performing the addition/subtraction of double-precision floating-point data (1)

2.1 Applicable Products
 C/C++ Compiler Package for M16C Series and R8C Family V.1.00 Release 00 to V.5.40 Release 00

 C Compiler Package for M32C Series V.1.00 Release 1 to V.5.40 Release 00

2.2 Details
If the result of adding/subtracting double-precision floating-point data meets certain conditions, the error in

the operation result may become greater than expected. Note if the subtraction of a close value results in
cancellation of significant digits, the error becomes a maximum of ±1.00e-13.

2.3 Conditions
The problem may arise if all the conditions from (1) to (3) are met.

(1) The code that performs the addition/subtraction of double-precision floating-point data is specified.

(2) The output code for (1) is the call of the runtime library function __f8add or __f8sub.

(3) One of the conditions from (3-1) to (3-3) is met.

(3-1) When the operation in (1) is expressed as an addition (a+b or b+a), the conditions in (3-1-1) and (3-
1-2) are met.

(3-1-1) The sign and exponent parts of a and b are the same.

(3-1-2) The following bits are 1 in the mantissa part of a or b.

● C/C++ Compiler Package for M16C Series and R8C Family

Bit 1(*) to bit 8

● C Compiler Package for M32C Series

Bit 0 to bit 7

*The bits are numbered so that the LSB is bit 0. This applies throughout this document.

(3-2) When the operation in (1) is expressed as an addition (a+b or b+a), in which the exponent part of a is
smaller than that of b and their difference is expressed as d, the conditions in (3-2-1) and (3-2-2) are
met.

(3-2-1) The value of d meets one of the following.

- In the range from 1 to 7

- In the range from 9 to 15

- In the range from 17 to 23

- In the range from 25 to 31

- In the range from 33 to 39

- In the range from 41 to 45

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 6 of 11
Oct.01.21

(3-2-2) The following bits are 1 in the mantissa part of a or b (including the implicit leading bit).

● C/C++ Compiler Package for M16C Series and R8C Family

Bit d to bit (d+7)

● C Compiler Package for M32C Series

Bit (d-1) to bit (d+7)

(3-3) When the operation in (1) is expressed as an addition (a+b or b+a), in which the exponent part of a is
smaller than that of b and their difference is expressed as d, the conditions in (3-3-1) and (3-3-2) are
met.

(3-3-1) The sign of a and b are the same.

(3-3-2) The mantissa part of a, which includes the implicit leading bit, is expressed as a1m. The
mantissa part of b, which does not include the implicit leading bit, is expressed as b0m. The calculation
result of ((a1m >> d) + b0m) or ((a1m >> d) + b0m + 1) becomes the following.

● C/C++ Compiler Package for M16C Series and R8C Family

The eight bits from bit 1 to bit 8 and bit 52 are 1.

● C Compiler Package for M32C Series

The nine bits from bit 0 to bit 8 and bit 52 are 1.

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 7 of 11
Oct.01.21

2.4 Example
Below is an example of an occurrence of the problem.

void main(void) {

 /* Condition (3-1) */

 double a = 255.99999999999997; /* 0x406FFFFFFFFFFFFF */

 double b = 128.0; /* 0x4060000000000000 */

 double c = a + b; /* (1)(2) */

 /* Although the expected value of c is 384.000…(0x4078000000000000),

* the result is 383.99999999998545(0x4077FFFFFFFFFF00). */

 /* Condition (3-2) */

 a = 127.999999999999992; /* 0x405FFFFFFFFFFFFF */

 b = -128.0; /* 0xC060000000000000 */

 c = a + b; /* (1)(2) */

/* Although the expected value of c is

* -0.000000000000014210…(0xBD10000000000000), the result is

 * -0.000000000007275957…(0xBDA0000000000000). */

 /* Condition (3-3) */

 a = 127.99999999999955; /* 0x405FFFFFFFFFFFE0 */

 b = 192.0000000000004; /* 0x406800000000000E */

 c = a + b; /* (1)(2) */

 /* Although the expected value of c is

* 319.99999999999994(0x4073FFFFFFFFFFFF), the result is

 * 319.99999999998545(0x4073FFFFFFFFFF00). */

}

2.5 Workaround
If you are using C/C++ Compiler Package for M16C Series and R8C Family, use V5.42 Release 00 or

later instead.

If you are using C Compiler Package for M32C Series, use V.5.41 Release 00 or later instead.

Note that "3. Performing the addition/subtraction of double-precision floating-point data (2)" may apply.
Read the following sections as well.

2.6 Schedule for Fixing the Problem
We do not plan to fix it.

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 8 of 11
Oct.01.21

3. Performing the addition/subtraction of double-precision floating-point data (2)

3.1 Applicable Products
 C/C++ Compiler Package for M16C Series and R8C Family V.5.42 Release 00 to V.6.00 Release 00

 C Compiler Package for M32C Series V.5.41 Release 00 to V.5.42 Release 00

 C Compiler Package for R32C Series V.1.01 Release 00 to V.1.02 Release 01

3.2 Details
The result of adding/subtracting double-precision floating-point data may become

±2.2250738585072014e-308 (the minimum value that can be expressed in the double-precision floating-
point format).

3.3 Conditions
The problem may arise if all the conditions from (1) to (3) are met.

(1) The code that performs the addition/subtraction of double-precision floating-point data is specified.

(2) The output code for (1) is the call of the runtime library function __f8add or __f8sub.

(3) When the operation in (1) is expressed as an addition (a+b or b+a), the sign, exponent, and mantissa
parts for the applicable products and versions meet the following tables.

 C/C++ Compiler Package for M16C Series and R8C Family V.5.42 Release 00 to V.6.00 Release 00

Either Condition 1 or 2 is met.

Condition Sign of

a and b

Exponent part

of a

Mantissa part of a Exponent part

of b

Mantissa part of b

1 Different 0x36 to 0x7FD 0xFFFFFFFFFFFFF A value one larger
than the exponent
part of a

0x0000000000000

2 Different 0x35 to 0x7FD 0xFFFFFFFFFFFFE A value one larger
than the exponent
part of a

0x0000000000000

 C Compiler Package for M32C Series V.5.41 Release 00 to V.5.42 Release 00

Sign of

a and b

Exponent part of a Mantissa part of a Exponent part of b Mantissa part of b

Different 0x36 to 0x7FD 0xFFFFFFFFFFFFF A value one larger
than the exponent
part of a

0x0000000000000

 C Compiler Package for R32C Series V.1.01 Release 00 to V.1.02 Release 01

Sign of

a and b

Exponent part

of a

Mantissa part of a Exponent part of b Mantissa part of b

Different 0x36 to 0x7FD 0xFFFFFFFFFFFFF A value one larger
than the exponent
part of a

0x0000000000000

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 9 of 11
Oct.01.21

3.4 Example
Below is an example of an occurrence of the problem.
/* tp.c */

double a = 127.99999999999999; /* 0x405FFFFFFFFFFFFF (3)*/

double b = -128; /* 0xC060000000000000 (3)*/

double c;

void f1(void) {

 c = a + b; /* (1), (2) */

}

In the example, the operation result (variable c) of 127.99999999999999 (variable a) + -128.0 (variable b)
should be -0.0000000000000142108547152..., but the result becomes -2.2250738585072014e-308.

3.5 Countermeasure
You can reduce the error in the operation results by changing the values so that condition (3) is not met.

The following shows the example in which the low order 2 bits of the mantissa part are masked so that the
condition is not met.
double a = 127.99999999999999;

double b = -128;

double c;

double maskTwoBit(double x) {

 union {

 double dbl;

 unsigned long long ull;

 } u;

 u.dbl = x;

 if ((u.ull & 0xFFFFFFFFFFFFEULL) == 0xFFFFFFFFFFFFEULL) {

 u.ull &= 0xFFFFFFFFFFFFFFFCULL;

 }

 return u.dbl;

}

void main(void) {

 a = maskTwoBit(a); // added

 b = maskTwoBit(b); // added

 c = a + b;

}

In the example, the operation result (c) is -0.000000000000028421709430.

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 10 of 11
Oct.01.21

3.6 Schedule for Fixing the Problem
We do not plan to fix it.

 RENESAS TOOL NEWS

R20TS0750EJ0100 Rev.1.00 Page 11 of 11
Oct.01.21

Revision History

Rev. Date
Description

Page Summary
1.00 Oct.01.21 - First edition issued

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.

TS Colophon 4.2

Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions
from the information included herein.

The past news contents have been based on information at the time of publication. Now changed or
invalid information may be included.

The URLs in the Tool News also may be subject to change or become invalid without prior notice.

https://www.renesas.com/
http://www.renesas.com/contact/

	1. Performing the addition/subtraction of single-precision floating-point data
	1.1 Applicable Products
	1.2 Details
	1.3 Conditions
	1.4 Example
	1.5 Workaround
	1.6 Countermeasure
	1.7 Schedule for Fixing the Problem

	2. Performing the addition/subtraction of double-precision floating-point data (1)
	2.1 Applicable Products
	2.2 Details
	2.3 Conditions
	2.4 Example
	2.5 Workaround
	2.6 Schedule for Fixing the Problem

	3. Performing the addition/subtraction of double-precision floating-point data (2)
	3.1 Applicable Products
	3.2 Details
	3.3 Conditions
	3.4 Example
	3.5 Countermeasure
	3.6 Schedule for Fixing the Problem

