
Tool News

RENESAS TOOL NEWS on September 1, 2009: 090901/tn1

A Note on Using the C/C++ Compiler Package for the
SuperH RISC engine MCU Family V.9

Please take note of the following problem in using the C/C++ compiler package for the SuperH
RISC engine MCU family V.9:

With using postfix or multiplicative expressions consisting of a induction variable and in-loop
invariant variables in a program loop (SHC-0080)

1. Product and Versions Concerned
 C/C++ compiler package for the SuperH RISC engine family
 V.9.00 Release 00 through V.9.03 Release 00

2. C/C++ Compiler
2.1 With using postfix or multiplicative expressions consisting of
 a induction variable and in-loop invariant variables in a program loop
 (SHC-0080)

2.1.1 Symptom
 If different elements of an array having a induction variable and
 in-loop invariant variables only as its subscripts are referenced, or
 a induction variable and an in-loop invariant variable are multiplied
 in a program loop, the result of address calculation of the array
 or the result of multiplication of the variables may become incorrect.
 Here, a induction variable is such that it is incremented or
 decremented in a program loop by a constant value each time after the
 body of the loop is executed.

2.1.2 Conditions
 This problem consists of the following two symptoms, as described in
 Section 2.1.1:
 Symptom 1:

 The result of address calculation of an array may become
 incorrect if different elements of the array having a induction
 variable and in-loop invariant variables only as its subscripts
 are referenced in a program loop.
 Symptom 2:
 The result of multiplication of a induction variable and
 an in-loop invariant variable may become incorrect if the
 multiplication is performed in a program loop.

2.1.3 Conditions of Symptom 1
 Symptom 1 may appear if the following conditions are all satisfied:
 (1) The optimize=1 option is selected.
 (2) Two or more different elements of an array of type signed char
 or unsigned char are referenced in a program loop.
 (3) Each of the subscripts for referencing two or more elements of
 the array in (2) is composed of a induction variable and an
 in-loop invariant variable only.
 This includes such a case that the example below shows, where
 another variable replaces the two variables, induction and
 in-loop invariant.
 Example:

 k=i+x;
 a[k]; // a[i+x]

 (4) The type of the induction variable in (3) is any one of the
 following:
 char, unsigned char, signed short, unsigned short,
 signed int, unsigned int, signed long, and unsigned long
 (5) The type of the in-loop invariant variable in (3) is any one of
 the following:
 signed char, unsigned char, signed short, and
 unsigned short
 (6) The increments or decrements of the induction variables involved
 in (2) and (3) above are the same.

 Related Information 1
 When Symptom 1 appears, the code generated by the compiler always
 satisfies the four conditions, (a) through (d), listed below. So,
 if the conditions of Symptom 1 are satisfied, check to see whether
 these four conditions are met. If they are, the symptom will
 reappear.
 (a) At least one reference to an element of the array in (2) is

 made to calculate the address of the array by using the
 address and offset of another element of the array.
 (b) The offset in (a) is a SUB instruction whose operands are
 the in-loop invariant variables of two elements of the array.
 (c) The SUB instruction in (b) is generated before the loop
 in Condition (2).
 (d) The result of operation by the SUB instruction in (b) takes
 a value that cannot be expressed with the type of the larger
 one of the two in-loop invariant variables involved in
 Related Information (b).

 Here, the sizes of the types are evaluated as follows:
 unsigned short > signed short > unsigned char > signed char
 And, the ranges of values inexpressible by types are as follows:
 signed char: smaller than -128 or greater than 127
 unsigned char: negative values or greater than 255
 signed short: smaller than -32,768 or greater than 32,767
 unsigned short: negative values or greater than 65,535

 Example:
 --
 signed char a[100000]; // Condition (2)
 unsigned short x = 1; // Condition (5)
 unsigned short y = 5; // Condition (5)

 f()
 {
 int i; // Condition (4)
 for (i=0;i<10;i++) { // Condition (6)
 a[i+y] = a[i+x]; // Conditions (2) and (3)
 }
 }
 --
 Result of compilation:
 --

_f:

 MOV.L L13+2,R1 ; _x

 MOV.L L13+6,R2 ; _y

 MOV.W @R1,R4 ; x

 MOV.W @R2,R1 ; y

 MOV.L L13+10,R6 ; _a

 SUB R1,R4
; Related Info (b),
(c), (d) (R4=x-y)

 EXTU.W R1,R1

 ADD R1,R6 ; R6=&a[i+y]

 EXTU.W R4,R4
; 2-byte 0-expansion
changes result of

 operation by SUB
instruction

 MOV #10,R5 ; H'0000000A

L11:

 MOV R4,R0
; R0 = (unsigned
short)(x-y)

 MOV.B @(R0,R6),R2
; Related Info (a)
(corresponding to

 a[i+x], accessed by
&a[i+y]+(x-y))

 ADD #-1,R5

 TST R5,R5

 MOV.B R2,@R6 ; a[]

 ADD #1,R6

 BF L11

 RTS

 NOP

--

2.1.4 Conditions of Symptom 2
 Symptom 2 may appear if the following conditions are all satisfied:
 (1) The optimize=1 option is selected.
 (2) In a program loop exists a multiplication of a induction
 variable and an in-loop invariant variable.
 (3) The increment or decrement of the induction variable in (2) is
 the value of another in-loop invariant variable.
 (4) The type of the induction variable in (2) is any of the
 following:

 char, unsigned char, signed short, unsigned short,
 signed int, unsigned int, signed long, and unsigned long
 (5) The type of the in-loop invariant variable in (2) and that in (3)
 are any of the following:
 signed char, unsigned char, signed short, and
 unsigned short

 Related Information 2
 When Symptom 2 appears, the code generated by the compiler always
 satisfies the two conditions, (a) and (b), listed below. So, if
 the conditions of Symptom 2 are satisfied, check to see whether
 these two conditions are met. If they are, the symptom will
 reappear.
 (a) A Multiply instruction whose operands are the in-loop
 invariant variable in Condition (2) and the one in Condition
 (3) is generated before the loop in Condition (2).
 (b) The result of operation of the Multiply instruction in (a)
 takes a value that cannot be expressed with the type of the
 larger one of the two in-loop invariant variables in
 Conditions (2) and (3). (See the explanations at the last
 of Related Information 1, in Section 2.1.3)

 Example:
 --
 C source program>
 int S = 0;
 char n = 64; // Condition (5)
 char m = 4; // Condition (5)
 void main(void)
 {
 int i; // Condition (4)
 for (i=0;i<128;i+=n){ // Condition (3)
 S += i*m; // Condition (2)
 }
 }
 // Because looping executed twice, S would be 0*m + 64*m = 256,
 // but S takes a value (char)(0*m) + (char)(64*m) = 0
 --
 Result of compilation:
 --

_main:

 MOV.L R14,@-R15

 STS.L MACL,@-R15

 MOV.L L14+2,R14 ; _m

 MOV #0,R6 ; H'00000000

 MOV.L L14+6,R2 ; _n

 MOV R6,R5

 MOV.B @R14,R7 ; m

 MOV.L L14+10,R14 ; _S

 MOV.B @R2,R1 ; n

 MULS.W R7,R1
; Related Info (a)
and (b)

 MOV #-128,R7 ; H'FFFFFF80

 STS MACL,R4

 MOV.L @R14,R2 ; S

 BRA L11

 EXTU.B R7,R7

L12:

 EXTS.B R4,R4
; Because n*m is 1-
byte signed-
expanded,

 R4=(char)(64*4)=0

 ADD R5,R2
; R5(=i*m) added to
R2(=S). Because

 R5=0, R2 remains
as before (=0)

 ADD R4,R5
; R4(=n*m) added to
R5(=i*m). Because

 R4=0, R5 remains
as before (=0).

 ADD R1,R6

L11:

 CMP/GE R7,R6

 BF L12

 MOV.L R2,@R14 ; S

 LDS.L @R15+,MACL

 RTS

 MOV.L @R15+,R14
 --

2.1.5 Workaround
 To avoid this problem, use either of the following ways:
 (1) Select option optimize=0 or optimize=debug_only instead of
 optimize=1.
 (2) Volatile-qualify either the induction variable or any one of
 the in-loop invariant variables.

3. Schedule of fixing the problem
 We plan to fix this problem in the release of the C/C++ compiler
 package for the SuperH RISC engine family V.9.03 Release 01.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

