RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A008A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice RL78/I1A Descriptions in the Hardware User Rev. 1.00 Changed	's Manual	Information Category	Technical Notification		
		Lot No.				
Applicable Product	RL78/I1A R5F107xxx	All lots	Reference Document	RL78/I1A User's Manu Rev.1.00 R01UH0169EJ0100 (、		

This document describes misstatements found in the RL78/I1A User's Manual: Hardware Rev.1.00 (R01UH0169EJ0100).

Corrections

Applicable Item	Applicable Page	Contents
Internal data memory space	Page 42	Specifications extended
Table 3-6. Extended SFR (2nd SFR) List	Pages 58 to 69	Specifications added
High-speed on-chip oscillator frequency select register (HOCODIV)	-	Specifications added
16-bit timer KC output pin control register	-	Specifications added
(16) Peripheral function switch register 0 (PFSEL0)	Page 301	Incorrect descriptions revised
Figure 8-16. Timer KC operation setting example	Page 410	Incorrect descriptions revised
A/D converter mode register 0 (ADM0)	Page 463	Incorrect descriptions revised
(5)Comparator rising edge enable register 0 (CMPEGP0), comparator falling edge enable register 0 (CMPEGN0)	Page 532	Incorrect descriptions revised
Figure 14-15. Operation Setting Flow Chart 1 of Comparator	Page 541	Incorrect descriptions revised
Figure 14-16. Operation Setting Flow Chart 2 of Comparator	Page 542	Incorrect descriptions revised
15. 6. 3 SNOOZE mode function	Page 663	Specifications changed
16.6 DALI Mode	Page 732	Specifications extended
16.6.1 DALI transmission	Page 735	Specifications extended
Figure 16-46. Example of Contents of Registers for DALI Transmission	Pages 736 to 737	Specifications extended
16.6.2 DALI reception	Page 743	Specifications extended
Figure 16-52. Example of Contents of Registers for DALI Reception	Pages 744 to 745	Specifications extended
16.7 SNOOZE Mode Function(OnlyDALI/UART4 Reception)	Pages 750 to 755	Specifications extended
Figure 20-5. Format of Priority Specification Flag Registers	Page 903	Incorrect descriptions revised
21.2.2 STOP mode	Page 931	Incorrect descriptions revised
21.2.3 SNOOZE mode	Page 934	Incorrect descriptions revised
Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector	Pages 952 to 953	Incorrect descriptions revised
25.3.6 Invalid memory access detection function	Page 984	Incorrect descriptions revised
27.3 Format of On-chip Debug Option Byte	Page 998	Specifications extended
28.3.1 Data flash overview	Page 1008	Caution added
28.6 Flash Memory Programming by Self-Programming	Page 1017	Caution added
32.3.2 Supply current characteristics	Pages 1059 to 1062	Incorrect descriptions revised
32.5 Peripheral Functions Characteristics	Pages 1067 to 1080	Specifications changed
32.6.1 A/D converter characteristics	Pages 1082 to 1085	Incorrect descriptions revised
32.6.2 Temperature sensor characteristics	Page 1085	Specifications added
Supply Voltage Rise Time	-	Specifications added
32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 1089	Specifications extended
32.8 Flash Memory Programming Characteristics	Page 1089	Incorrect descriptions revised
32.9 Timing Specs for Switching Flash Memory Programming Modes	Page 1090	Incorrect descriptions revised
Chapter 33 ELECTRICAL SPECIFICATIONS (for $T_A = -40$ to +125°C product)	-	Specifications added

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

No.	Corrections and	Applicable Items		Pages in this
	Document No.	English	R01UH0169EJ0100	document for
	Document No.	Eligiisti	R010H0109EJ0100	corrections
1	Internal data memory space		Page 42	Page 3
2	Table 3-6. Extended SFR (2nd SFR) List		Pages 58 to 69	Page 4
3	High-speed on-chip oscillator frequency (HOCODIV)	select register	-	Page 5
4	16-bit timer KC output pin control register		-	Page 6
5	(16) Peripheral function switch register 0 (PFSEL0)	Page 301	Pages 7 to 8
6	Figure 8-16. Timer KC operation setting e	xample	Page 410	Page 9
7	A/D converter mode register 0 (ADM0)		Page 463	Page 10
8	(5)Comparator rising edge enable (CMPEGP0), comparator falling edge er (CMPEGN0)		Page 532	Page 11
9	Figure 14-15. Operation Setting Flov Comparator		Page 541	Pages 12 to 13
10	Figure 14-16. Operation Setting Flov Comparator	v Chart 2 of	Page 542	Pages 14 to 15
11	15. 6. 3 SNOOZE mode function		Page 663	Pages 16 to 17
12	16.6 DALI Mode		Page 732	Page 18
13	16.6.1 DALI transmission		Page 735	Page 19
14	Figure 16-46. Example of Contents of Re Transmission	gisters for DALI	Pages 736 to 737	Page 20
15	16.6.2 DALI reception		Page 743	Page 21
16	Figure 16-52. Example of Contents of Re Reception	gisters for DALI	Pages 744 to 745	Page 21
17	16.7 SNOOZE Mode Function(Or Reception)	nlyDALI/UART4	Pages 750 to 755	Pages 22 to 23
18	Figure 20-5. Format of Priority Spe Registers	cification Flag	Page 903	Page 24
19	21.2.2 STOP mode		Page 928	Page 25
20	21.2.3 SNOOZE mode		Page 934	Page 26
21	Figure 23-2. Timing of Generation of Inter Signal by Power-on-reset Circuit and Volta		Pages 952 to 953	Pages 27 to 31
22	25.3.6 Invalid memory access detection fu	unction	Page 984	Pages 32 to 33
23	27.3 Format of On-chip Debug Option Byt	e	Page 998	Pages 34 to 35
24	28.3.1 Data flash overview		Page 1008	Page 36
25	28.6 Flash Memory Programming by Self-	Programming	Page 1017	Page 37
26	32.3.2 Supply current characteristics		Pages 1059 to 1062	Page 38
27	32.5 Peripheral Functions Characteristics		Pages 1067 to 1080	Page 38
28	32.6.1 A/D converter characteristics		Pages 1082 to 1085	Page 39
29	32.6.2 Temperature sensor characteristics	6	Page 1085	Page 39
30	Supply Voltage Rise Time		-	Page 39
31	32.7 Data Memory STOP Mode Low State Retention Characteristics	Supply Voltage	Page 1089	Page 39
32	32.8 Flash Memory Programming Charac	teristics	Page 1089	Page 40
33	32.9 Timing Specs for Switching Flash Me Programming Modes	emory	Page 1090	Page 40
34	Chapter 33 ELECTRICAL SPECIFICAT (for T _A = -40 to +125°C product)	IONS	-	Page 40

Incorrect: Bold with underline: Correct: Gray hatched

<u>Revision History</u> RL78/I1<u>A User's Manual: Hardware Rev.1.00 Correction for Incorrect Description Notice</u>

Document Number	Date	Description
TN-RL*-A008A/E	Aug. 6, 2013	First edition issued
		No.1 to 34 in corrections (This notice)

Internal data memory space

Incorrect:

The internal RAM can be used as a data area and a program area where instructions are written and executed. Four general-purpose register banks consisting of eight 8-bit registers per bank are assigned to the 32-byte area of FFEE0H to FFEEFH of the internal RAM area. However, instructions cannot be executed by using the general-purpose registers. The internal RAM is used as a stack memory.

Cautions 1. It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetchinginstructions or as a stack area.

2. While using the self-programming function and data flash function, the area FFE20H to FFEFFH cannot be used as stack memory. Furthermore, the areas of FEF00H to FF309H also cannot beused with the R5F107AE and R5F107DE.

Correct:

The internal RAM can be used as a data area and a program area where instructions are fetchod (it is prohibited to use the general-purpose register area for fetching instructions). Four general-purpose register banks consisting of eight 8-bit registers per bank are assigned to the 32-byte area of FFEE0H to FFEFFH of the internal RAM area. The internal RAM is used as stack memory.

Cautions 1. It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetching instructions or as a stack area.

2. Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing, and a DMA transfer destination/transfer source to the area FFE20H to FFEDFH when performing self-programming and rewriting the data flash memory.

3. Use of the RAM areas of the following products is prohibited when performing self-programming and rewriting the data flash memory, because these areas are used for each library. R5F107AE, R5F107DE: FEF00H to FF309H

Table 3-6. Extended SFR (2nd SFR) List

TKBCNT0,1,2 and TKCCNT0 registers added in "Extended SFR(2nd SFR).

Old:

New:

The following registers are added.

F0620H	16-bit timer counter KB0	TKBCNT0	R	—	—	\checkmark	FFFFH
F0621H							
F0660H	16-bit timer counter KB1	TKBCNT1	R	-	-		FFFFH
F0661H							
F06A0H	16-bit timer counter KB2	TKBCNT2	R	-	-		FFFFH
F06A1H							
F06F0H	16-bit timer counter KC0	TKCCNT0	R	_	_		FFFFH

High-speed on-chip oscillator frequency select register (HOCODIV)

High-speed on-chip oscillator frequency select register (HOCODIV) is added.

Old:

New:

High-speed on-chip oscillator frequency select register (HOCODIV)

The frequency of the high-speed on-chip oscillator which is set by an option byte (000C2H) can be changed by using high-speed on-chip oscillator frequency select register (HOCODIV). However, the selectable frequency depends on the FRQSEL3 bit of the option byte (000C2H).

The HOCODIV register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to the value set by FRQSEL2 to FRQSEL0 of the option byte (000C2H).

Figure 5-12. Format of High-speed On-chip Oscillator Frequency Select Register (HOCODIV)

Address:	F00A8H	After reset:	the value set by	y FRQSEL2 to	o FRQSEL0 c	of the option by	yte (000C2H)	R/W
Symbol	7	6	5	4	3	2	1	0
HOCODIV	0	0	0	0	0	HOCODIV2	HOCODIV1	HOCODIV0

HOCODIV2	HOCODIV1	HOCODIV0	High-Speed On-Chip Oscillator Clock Frequency			
			FRQSEL3 Bit is 0	FRQSEL3 Bit of is 1		
0	0	0	24 MHz	32 MHz		
0	0	1	12 MHz	16 MHz		
0	1	0	6 MHz	8 MHz		
0	1	1	3 MHz	4 MHz		
1	0	0	Setting prohibited	2 MHz		
1	0	1	Setting prohibited	1 MHz		
0	ther than abo	ve	Setting p	rohibited		

Caution 1. Set the HOCODIV register within the operable voltage range of the flash operation mode set in the option byte (000C2H) before and after the frequency change.

Option Byte (00	00C2H) Value	Flash Operation Mode	Operating	Operating Voltage
CMODE1	CMODE2	T lash Operation Mode	Frequency Range	Range
1	0	LS (low-speed main) mode	1 MHz to 8 MHz	
1	1	HS (high-speed main) mode	1 MHz to 16 MHz	2.7V to 5.5V
			1 MHz to 32 MHz	

2. Set the HOCODIV register with the high-speed on-chip oscillator clock (fill) selected as the CPU/peripheral hardware clock (fcLK).

- 3. After the frequency is changed with the HOCODIV register, the frequency is switched after the following transition time has elapsed.
 - Operation for up to three clocks at the pre-change frequency
 - CPU/peripheral hardware clock wait at the post-change frequency for up to three clocks

16-bit timer KC output pin control register

16-bit timer KC output pin control register is added.

Old:

New:

16-bit timer KC output pin contorol register (TOETKC0)

It is the register that controls output enable/disable toward pins for the timer output generated from 16-bit timer KC. The output control of TKCOn is possible regardless of the setting of the timer output gate function which is coupled with 16-bit timer KB.

TOETKC0 can be read by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 8-9.	Format of 16-bit timer KC ou	tout pin contorol	register (TC	DETKC0)
i iguic 0-0.		iput pin contoror	register (re	

Address: F05C8	3H After	reset: 00H	R/W					
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>
TOETKC0	0	0	TOETKC05	TOETKC04	TOETKC03	TOETKC02	TOETKC01	TOETKC00
	TOETKC0m	Pin of timer c	output TKCO0	m output enab	le/disable			
	0	Disables pin	output of TKC	:00m.				
	1	Enables pin o	output of TKC	00m.				

Remark m = 0 to 5

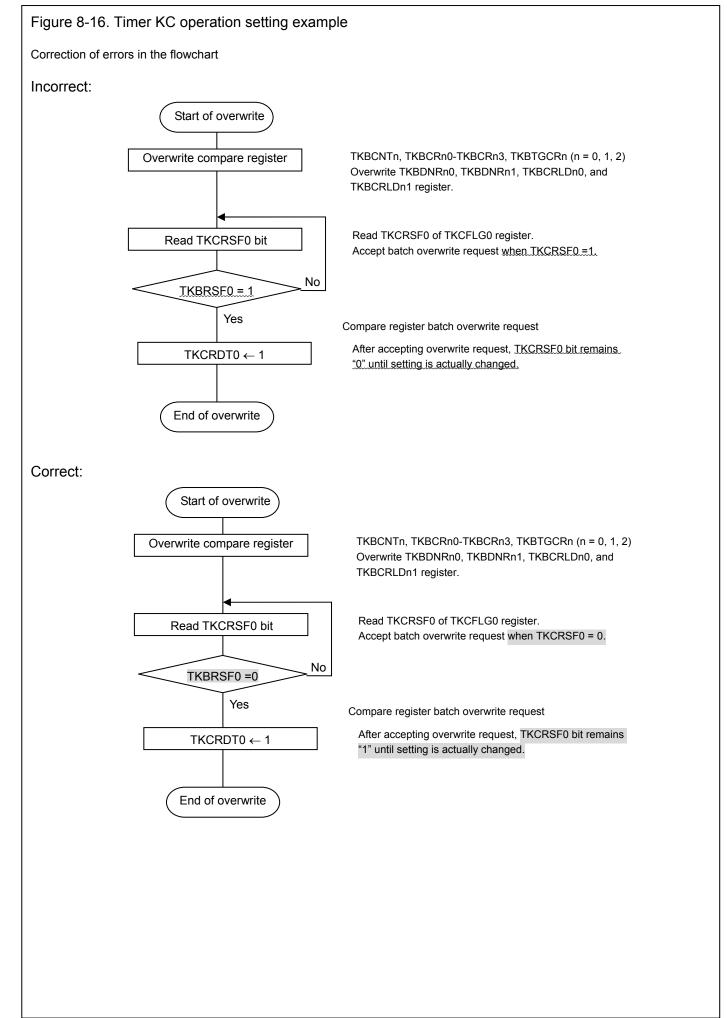
(16) Peripheral	function s	switch reg	jister 0 (Pl	FSEL0)				
Bit explanat	ion is incorre	ct and Rema	ark added					
Incorrect: (16) Periphera PFSEL0 selec	al function s ts function se	witch regis etting I/O in p	ter 0 (PFSEL beripheral fur	-0) nction and 1 : (omitted)	6-bit timers I	<b0, a<="" kb1,="" th=""><th>nd KB2.</th><th></th></b0,>	nd KB2.	
Address: F	05C6H	After reset: 00)H R/W					
Symbol	7	<6>	<5>	<4>	3	2	<1>	<0>
PFSEL0	0	CMP2STEN	CMP0STEN	PNFEN	ADTRG11	ADTRG10	TMRSTEN1	TMRSTEN0
	CMP2STEN	CMP0STEN		С	omparator int	errupt selectio	n	
	See CHAPTE	ER 14 CON	IPARATOR.					
	PNFEN			o not use ext	ernal interrupt	INTP20 noise	e filter	
	0	Use noise filt						
	1	Do not use no	oise filter					
	ADTRG11	ADTRG10	T I 1/20/11		rigger selectio	on for A/D con	version	
	0	0	Timer KB0 trig					
	0	1 0	Timer KB1 tri					
	1	1	Timer KB2 trig Setting prohib					
	'	!						
	TMRSTEN1		Ļ	Ise selection	for external in	terrupt INTP2	1	
	0	Can be used	to clear STOP				-	
	1		for timer resta					
	TMRSTEN0		Ļ	Ise selection	for external in	terrupt INTP2	0	
	0	Can be used	to clear STOP	mode (cann	ot be used for	timer restart f	unction)	

1

Can be used for timer restart function (cannot be used to clear STOP mode)

Correct:

				(omitted)				
				(,				
Address: F	05C6H	After reset: 00	H R/W					
Symbol	7	<6>	<5>	<4>	3	2	<1>	<0>
PFSEL0	0	CMP2STEN	CMP0STEN	PNFEN	ADTRG11	ADTRG10	TMRSTEN1	TMRSTE
	CMP2STEN	CMP0STEN		C	comparator int	errupt selectic	n	
	See CHAPTI	ER 14 CON	IPARATOR.					
-								
	PNFEN	Use/Do not use external interrupt INTP20 noise filter						
	0	Use noise filt	er					
	1	Do not use n	oise filter					
_								
	ADTRG11	ADTRG10		Timer	trigger selectio	on for A/D con	version	
	0	0	Timer KB0 trig	gger source				
	0	1	Timer KB1 trig	gger source				
	1	0	Timer KB2 tri	gger source				
	1	1	Setting prohib	oited				
-								
	TMRSTEN1		Fun	ction selection	on for external	interrupt INTF	P21	
	0	External interrupt function (external interrupt generation enabled, timer restart disabled)						blod)


TMRSTEN0	Function selection for external interrupt INTP20			
0	External interrupt function (external interrupt generation enabled, timer restart disabled)			
1	Timer restart function (external interrupt generation disabled, standby release disabled)			

Timer restart function (external interrupt generation disabled, standby release disabled)

Remark See Block Diagram of Comparator.

1

A/D converter mode register 0 (ADM0)

Incorrect:

A/D converter mode register 0 (ADM0)

(omitted) .

- Caution 1. Change the ADMD, FR2 to FR0, LV1, LV0, and ADCE bits while conversion is stopped or on standby (ADCS = 0).
 - 2. Do not change the ADCE and ADCS bits from 0 to 1 at the same time by using an 8-bit manipulation instruction. Be sure to set these bits in the order described in 12.7 A/D Converter Setup Flowchart.

Correct:

A/D converter mode register 0 (ADM0)

: (omitted) :

Cautions 1. Change the ADMD, FR2 to FR0, LV1, and LV0 bits while conversion is stopped (ADCS = 0, ADCE = 0).

- 2. Do not set the ADCS bit to 1 and the ADCE bit to 0 at the same time.
- 3. Do not change the ADCS and ADCE bits from 0 to 1 at the same time by using an 8-bit manipulation instruction. Be sure to set these bits in the order described in 12.7 A/D Converter Setup Flowchart.

(5)Comparator rising edge enable register 0 (CMPEGP0), comparator falling edge enable register 0 (CMPEGN0)

Incorrect:

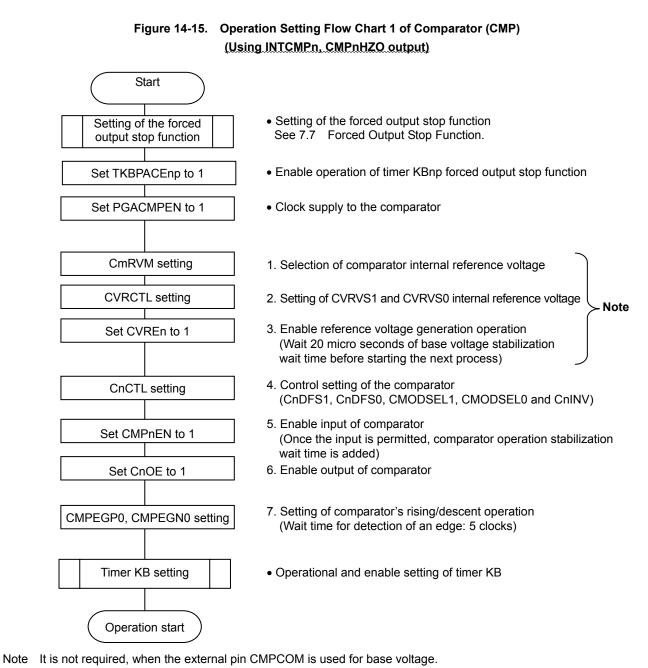
Figure 14-6. Format of Comparator Rising Edge Enable Register 0 (CMPEGP0) and Comparator Falling Edge Enable Register 0 (CMPEGN0)

CEGP7	CEGN7	INTP21 pin valid edge selection
0	0	Edge detection disabled (disables output of timer forced output stop signal (output signal =
		fixed to low level))
0	1	Falling edge (enables output of timer forced output stop signal)
1	0	Rising edge (enables output of timer forced output stop signal)
1	1	Both rising and falling edges (enables output of timer forced output stop signal)

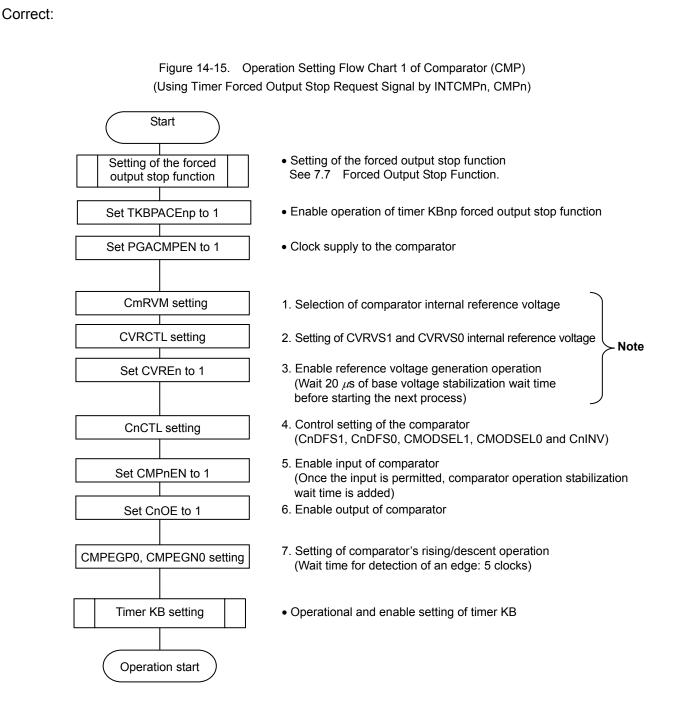
CEGP6	CEGN6	INTP20 pin valid edge selection
0	0	Edge detection disabled (disables output of timer forced output stop signal (output signal =
		fixed to low level))
0	1	Falling edge (enables output of timer forced output stop signal)
1	0	Rising edge (enables.output of timer forced.output stop.signal)
1	1	Both rising and falling edges (enables output of timer forced output stop signal)

Correct:

Figure 14-6.Format of Comparator Rising Edge Enable Register 0 (CMPEGP0) and Comparator Falling Edge Enable Register 0 (CMPEGN0)


CEGP7	CEGN7	INTP21 pin valid edge selection
0	0	Edge detection disabled (disables output of timer restart signal (output signal = fixed to low
		level))
0	1	Falling edge (enables output of timer restart signal)
1	0	Rising edge (enables output of timer restart signal)
1	1	Both rising and falling edges (enables output of timer restart signal)

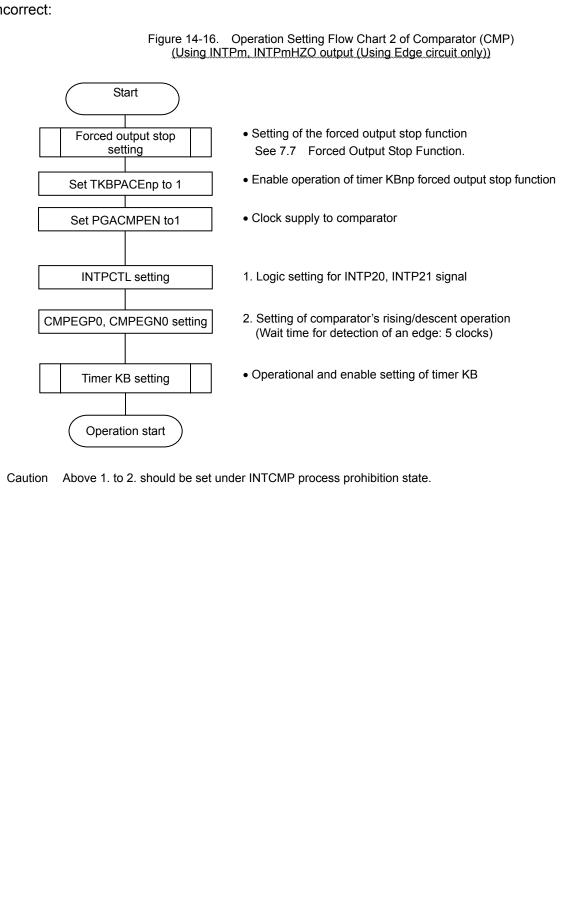
CEGP6	CEGN6	INTP20 pin valid edge selection
0	0	Edge detection disabled (disables output of timer restart signal (output signal = fixed to low
		level))
0	1	Falling edge (enables output of timer restart signal)
1	0	Rising edge (enables output of timer restart signal)
1	1	Both rising and falling edges (enables output of timer restart signal)


Figure 14-15. Operation Setting Flow Chart 1 of Comparator

Incorrect:

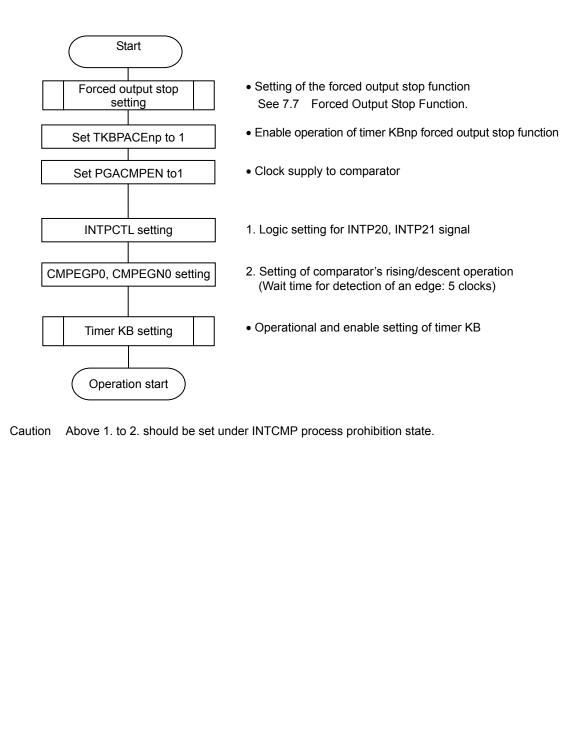
Caution Above 1. to 7. should be set under INTCMP process prohibition state.

Note It is not required, when the external pin CMPCOM is used for base voltage.


Caution Above 1. to 7. should be set under INTCMP process prohibition state.

RENESAS TECHNICAL UPDATE TN-RL*-A008A/E

Figure 14-16. Operation Setting Flow Chart 2 of Comparator


Incorrect:

Correct:

Figure 14-16. Operation Setting Flow Chart 2 of Comparator (CMP) (Using Timer Forced Output Stop Request Signal by INTPm, INTPm(Using Edge Circuit only))

15. 6. 3 SNOOZE mode function

Incorrect:

SNOOZE mode makes UART operate reception by RxD0 pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxD0 pin input. Only UART0 can be set to the SNOOZE mode. When using the SNOOZE mode function, set the SWC0 bit of serial standby control register 0 (SSC0) to 1 just before switching to the STOP mode.

Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fCLK.

2. The maximum transfer rate when using UART0 in the SNOOZE mode is 9600 bps.

Correct:

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation. UART0 channel can be set to the SNOOZE mode.

When using UARTq in the SNOOZE mode, make the following settings before entering the STOP mode. (See Figure 12-92 Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0) and Figure 12-94 Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1).)

• In the SNOOZE mode, the baud rate setting for UART reception needs to be changed to a value different from that

- in normal operation. Set the SPSm register and bits 15 to 9 of the SDRmn register with reference to Table 12-3. • Set the EOCmn and SSECmn bits. This is for enabling or stopping generation of an error interrupt (INTSRE0) when a communication error occurs.
- When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode. After the initial setting has completed, set the SSm1 bit of serial channel start register m (SSm) to 1.

Upon detecting the edge of RxDq (start bit input) after a transition was made to the STOP mode, UART reception is started.

- Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fIH) is selected for fCLK.
 - 2. The transfer rate in the SNOOZE mode is only 4800 bps.
 - 3. When SWCm = 1, UARTq can be used only when the reception operation is started in the STOPmode. When used simultaneously with another SNOOZE mode function or interrupt, if the reception operation is started in a state other than the STOP mode, such as those given below, data may not be received correctly and a framing error or parity error may be generated.
 - When after the SWCm bit has been set to 1, the reception operation is started before the STOP mode is entered
 - · When the reception operation is started while another function is in the SNOOZE mode
 - When after returning from the STOP mode to normal operation due to an interrupt or other cause, the reception operation is started before the SWCm bit is returned to 0

4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn,FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore,when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

High-speed on-chip oscillator	UART reception baud rate in SNOOZE mode				
(fін)					
	Operating clock	SDRmn	Maximum	Minimum	
	(f мск)	[15:9]	acceptable value	acceptable value	
32 MHz ± 1.0% ^(note)	f _{ськ} /2 ⁵	105	2.27%	-1.53%	
24 MHz ± 1.0% ^(note)	f _{ськ} /2 ⁵	79	1.60%	-2.18%	
16 MHz ± 1.0% ^(note)	$f_{CLK}/2^4$	105	2.27%	-1.53%	
12 MHz ± 1.0% ^(note)	$f_{CLK}/2^4$	79	1.60%	-2.19%	
8 MHz ± 1.0% ^(note)	$f_{CLK}/2^3$	105	2.27%	-1.53%	
6 MHz ± 1.0% ^(note)	$f_{CLK}/2^3$	79	1.60%	-2.19%	
4 MHz ± 1.0% ^(note)	f _{ськ} /2 ²	105	2.27%	-1.53%	
3 MHz ± 1.0% ^(note)	f _{ськ} /2 ²	79	1.60%	-2.19%	
2 MHz ± 1.0% ^(note)	f _{CLK} /2 ¹	105	2.27%	-1.54%	
1 MHz ± 1.0% ^(note)	f _{ськ} /2 ⁰	105	2.27%	-1.57%	

Table 15-3. Baud Rate Setting for UART Reception in SNOOZE Mode

Note: When the high-speed on-chip oscillator clock accuracy is at ± 1.5% or 2.0%,

the acceptable range is limited as follows:

• fin ± 1.5%: Subtract 0.5% from the maximum acceptable value of fin ± 1.0%, and add 0.5% to the minimum acceptable value of fin ± 1.0%.

• fin ± 2.0%: Subtract 1.0% from the maximum acceptable value of fin ± 1.0%, and add 1.0% to the minimum acceptable value of fin ± 1.0%.

Remarks: Maximum and minimum acceptable values in the above table are the baud rate acceptable values in UART reception. Make sure to set the baud rate for transmission within this range.

16.6 DALI Mode

Master mode of DALI communication is added.

Old:

This mode is used to perform slave transmission/reception of DALI (Digital Addressable Lighting Interface). DALI performs communication using the following protocol.

New:

This mode is used to perform data transmission/reception as master and slave of DALI (Digital Addressable Lighting Interface).

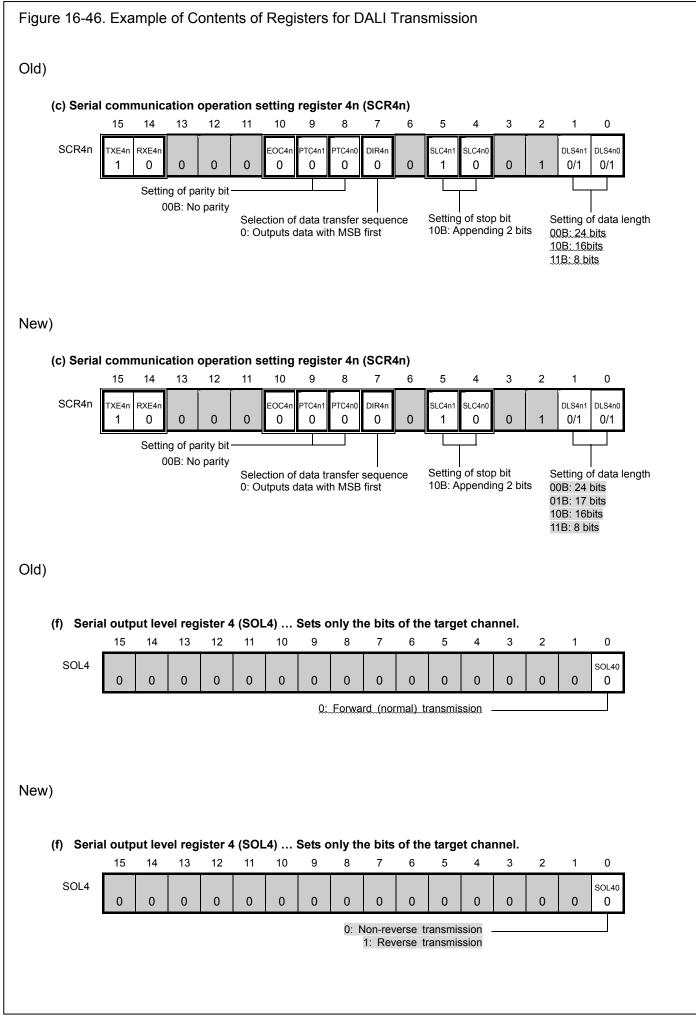
DALI performs communication using the following protocol.

16.6.1 DALI transmission

DALI transmission functions are extended.

Old)

P.735 Figure


DALI transmission			
Transfer data length	8.16. or 24 bits		
Data phase	Forward output(default: high level)		

New)

DALI transmission			
Transfer data length	8, 16, 17, or 24 bits		
Data phase Non-reverse output (default: high level), reverse output (default: low level)			

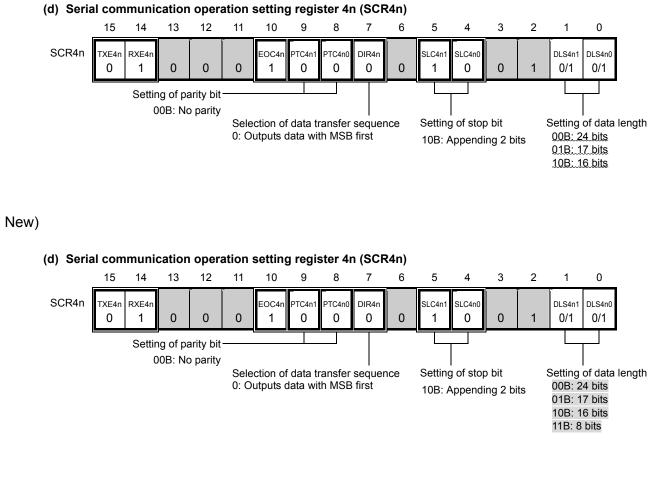
RENESAS TECHNICAL UPDATE TN-RL*-A008A/E

16.6.2 DALI reception

DALI reception functions are extended.

Old)

DALI Reception			
Transfer data length	16.17.or.24.bits		
Data phase	Forward output (default: high level)		


New)

DALI Reception				
Transfer data length	8, 16, 17, or 24 bits			
Data phase	Non-reverse output (default: high level), reverse output (default: low level)			

Figure 16-52. Example of Contents of Registers for DALI Reception

Old)

P.744 Register setting

16.7 SNOOZE Mode Function (Only DALI/UART4 Reception)

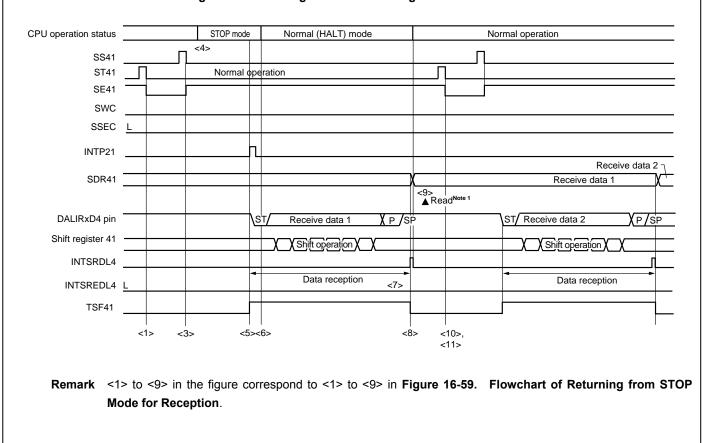
Use of SNOOZE mode

During the SNOOZE mode function of DALI mode, the manchester framing error may occur depending on the baud rate and the start bit waveform even if the data is correct. In this case, the data is received but it is impossible to distinguish the error. To avoid this problem, please use "STOP & HALT Mode Function (Only DALI/UART4 Reception)" described

Old)

16.7 SNOOZE Mode Function (Only DALI/UART4 Reception)

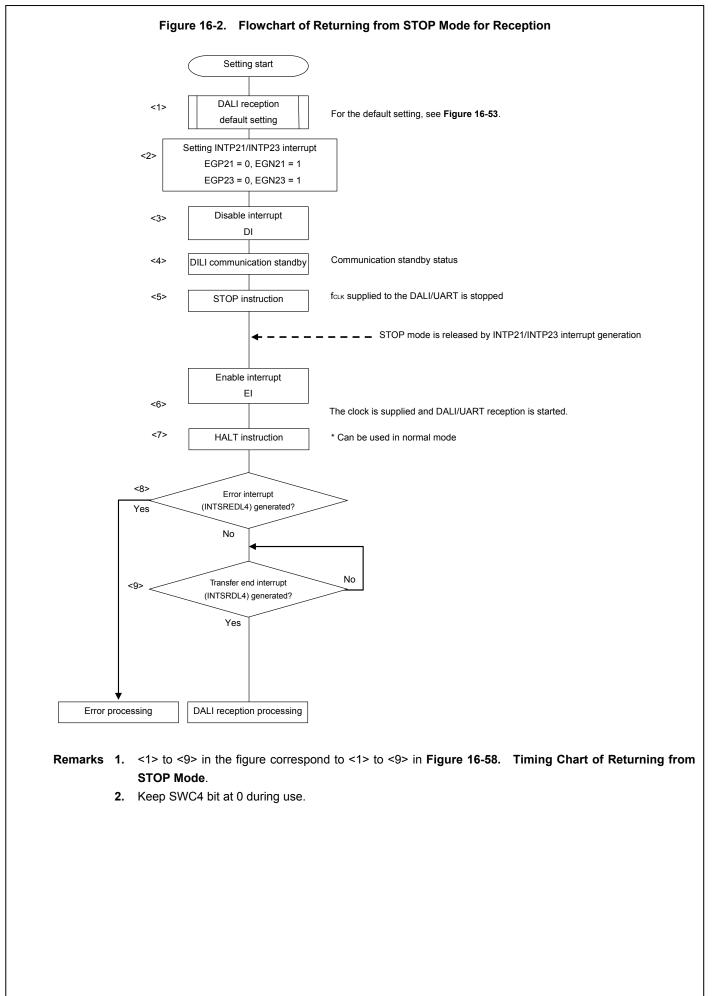
DALI reception and UART reception (channel 1) support the SNOOZE mode. When DALIRxD4 pin input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible. When using the SNOOZE mode function, set the SWC bit of serial standby control register 4 (SSC4) to 1 before switching to the STOP mode.


(omitted)

Remark <1> to <11> in the figure correspond to <1> to <11> in Figure 16-60. Flowchart of SNOOZE Mode Operation (Normal Operation/Abnormal Operation <1>)).

New)

16.7 STOP & HALT Mode Function (Only DALI/UART4 Reception) (1) Returning from STOP & HALT modes (when DALI is received)


DALI cannot be received in the SNOOZE mode but it can be receive wait at a STOP mode by using the RxD4 pin input with the interrupt function of INTP21 or INTP23. As a result, power-saving communication can be realized in the same manner as in the SNOOZE mode.

RENESAS

Figure 16-1. Timing Chart of Returning from STOP Mode

Figure 20-5. Format of Priority Specification Flag Registers

Incorrect:

Figure 20-5. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR10H, PR11L, PR11H, PR12L, PR12H) (38-pin) (2/2)

Address: FF	FEBH A	fter reset: F	FH R/W					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01H	TMPR004	PPR020 PPR120	SRDLPR04 SREDLPR04	STDLPR04	1	ITPR0	RTCPR0	ADPR0
Address: FF		fter reset: F						
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR11H	TMPR104	PPR022 PPR122	SRDLPR14 SREDLPR14		1	ITPR1	RTCPR1	ADPR1
Correct:								
Address: FF	FEBH A	fter reset: F	FH R/W					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01H	TMPR004	PPR020 PPR022	SRDLPR04 SREDLPR04	STDLPR04	1	ITPR0	RTCPR0	ADPR0
Address: FF		fter reset: F		- 4 >	2	-05	-45	-05
Symbol PR11H	<7> TMPR104	<6> PPR022	<5> SRDLPR14	<4> STDLPR14	3 1	<2> ITPR1	<1> RTCPR1	<0> ADPR1
FRIIN		PPR022 PPR120	SREDLPR14		I	IIFRI	RICFRI	ADERT

21.2.2 STOP mode Incorrect: Figure 21-5. STOP Mode Release by Interrupt Request Generation (1) When high-speed system clock (X1 oscillation) is used as CPU clock Note 2. STOP mode release time Supply of the clock is stopped: 18.96 µ s to "whichever is longer 28.95 µ s and the oscillation stabilization time. (set by OSTS)" Wait ·When vectored interrupt servicing is carried out: 10 to 11 clocks ·When vectored interrupt servicing is not carried out: 4 to 5 clocks (2) When high-speed system clock (external clock input) is used as CPU clock (3) When high-speed on-chip oscillator clock is used as CPU clock (omitted) : Note 2. STOP mode release time Supply of the clock is stopped: 19.08 to 32.99 µs Wait · When vectored interrupt servicing is carried out: 7 clocks · When vectored interrupt servicing is not carried out: 1 clock Correct: Figure 21-5. STOP Mode Release by Interrupt Request Generation (1) When high-speed on-chip oscillator clock is used as CPU clock Note 2. STOP mode release time Supply of the clock is stopped:18 μ s to "whichever is longer 65 μ s and the oscillation stabilization time (set by OSTS)" Wait •When vectored interrupt servicing is carried out: 10 to 11 clocks •When vectored interrupt servicing is not carried out: 4 to 5 clocks (2) When high-speed system clock (X1 oscillation) is used as CPU clock (3) When high-speed system clock (external clock input) is used as CPU clock (omitted) 1 Note 2. STOP mode release time Supply of the clock is stopped: 18 to 65 μ s Wait • When vectored interrupt servicing is carried out: 7 clocks • When vectored interrupt servicing is not carried out: 1 clock

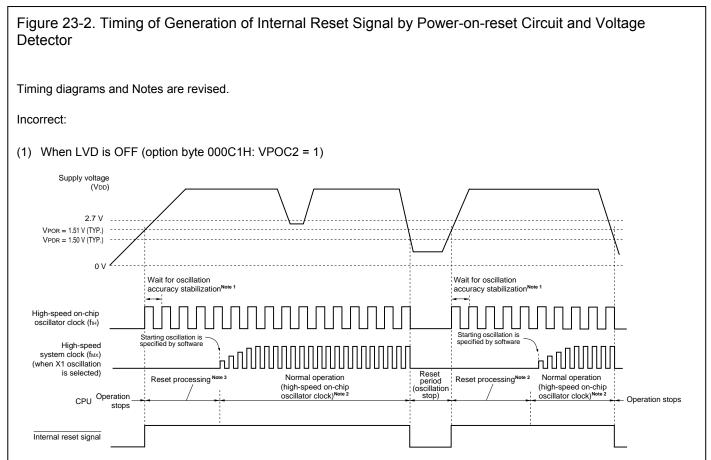
21.2.3 SNOOZE mode

Incorrect:

In SNOOZE mode transition, wait status to be only following time. From STOP to SNOOZE HS (High-speed main) mode : 18.96 to 28.95 µs LS (Low-speed main) mode : 20.24 to 28.95 µs

From SNOOZE to normal operation

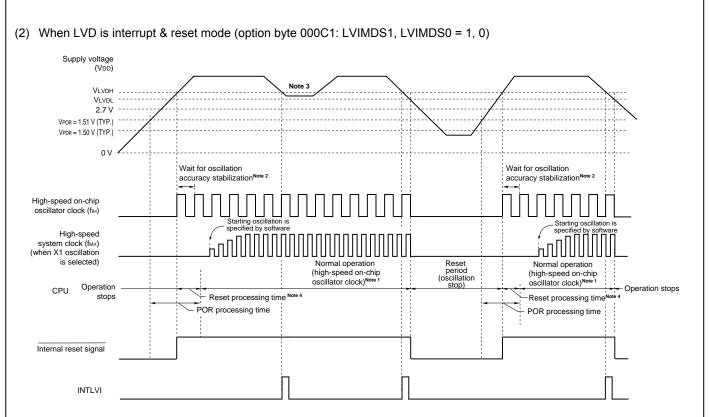
- When vectored interrupt servicing is carried out HS (High-speed main) mode : 6.79 to 12.4 µs + 7 clocks LS (Low-speed main) mode : 2.58 to 7.8 µs + 7 clocks
- When vectored interrupt servicing is not carried out: HS (High-speed main) mode : 6.79 to 12.4 µs + 1 clock LS (Low-speed main) mode : 2.58 to 7.8 µs + 1 clock


Correct:

In SNOOZE mode transition, wait status to be only following time. Transition time from STOP mode to SNOOZE mode: 18 to 65 μ s

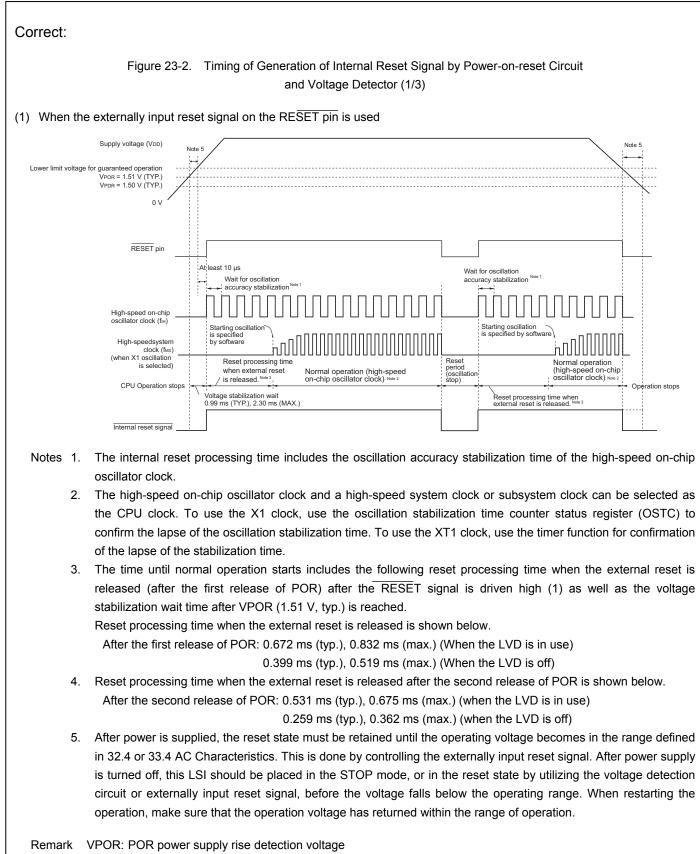
Transition time from SNOOZE mode to normal operation:

- When vectored interrupt servicing is carried out: HS (High-speed main) mode: 4.99 to 9.44 μs + 7 clocks
 LS (Low-speed main) mode: 1.10 to 5.08 μs + 7 clocks
- When vectored interrupt servicing is not carried out: HS (High-speed main) mode: 4.99 to 9.44 μs + 1 clock
 LS (Low-speed main) mode: 1.10 to 5.08 μs + 1 clock



- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed on-chip oscillator clock.
 - 2. The high-speed on-chip oscillator clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the oscillation stabilization time counter status register (OSTC) to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
 - **3.** Reset processing time: 265 to 407 μ s
- Remark
 VPOR: POR power supply rise detection voltage

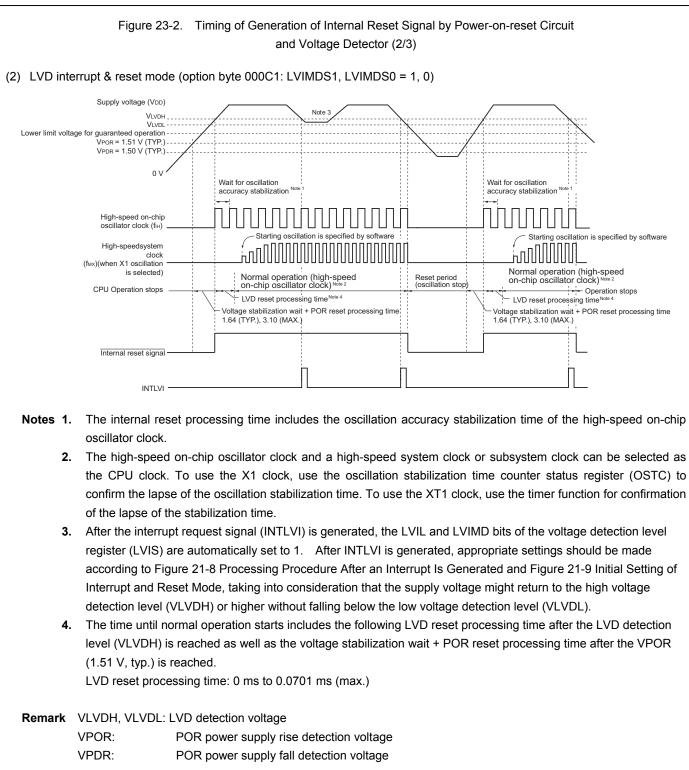
 VPDR:
 POR power supply fall detection voltage

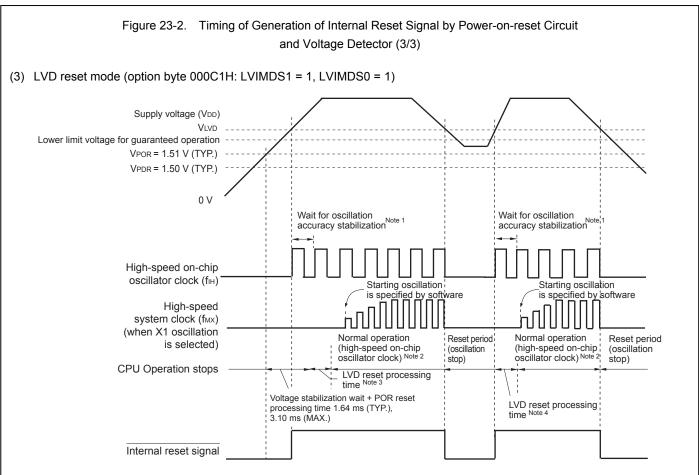


- **Notes 1.** The high-speed on-chip oscillator clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the oscillation stabilization time counter status register (OSTC) to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
 - 2. The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed on-chip oscillator clock.
 - 3. After the first interrupt request signal (INTLVI) is generated, the LVIL and LVIMD bits of the voltage detection level register (LVIS) are automatically set to 1. If the operating voltage returns to 2.7 V or higher without falling below the voltage detection level (VLVDL), after INTLVI is generated, perform the required backup processing, and then use software to specify the initial settings in order (see Figure 24-8. Initial Setting of Interrupt and Reset Mode).
 - **4.** Reset processing time: 497 to 720 μ s

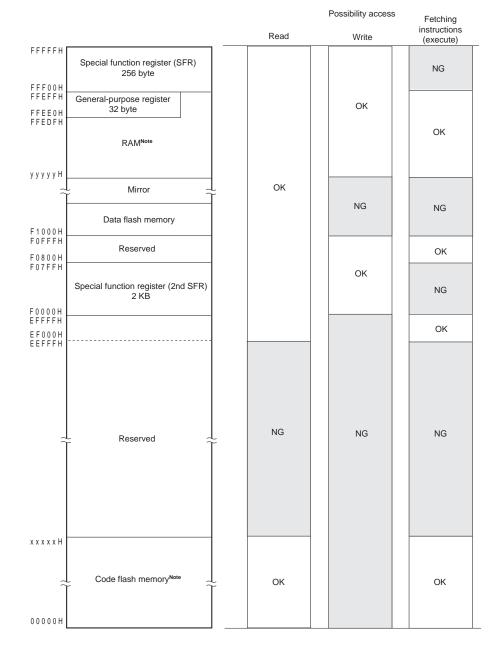
Remark VLVDH, VLVDL: LVD detection voltage

VPOR:	POR power supply rise detection voltage
VPDR:	POR power supply fall detection voltage




VPDR: POR power supply fall detection voltage

Caution For power-on reset, be sure to use the externally input reset signal on the RESET pin when the LVD is off. For details, see CHAPTER 21 VOLTAGE DETECTOR.

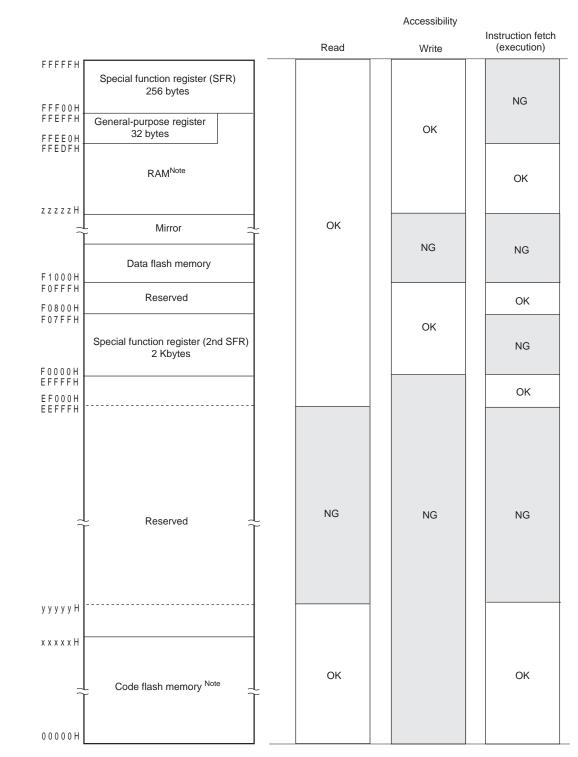

- Notes 1. The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed on-chip oscillator clock.
 - 2. The high-speed on-chip oscillator clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the oscillation stabilization time counter status register (OSTC) to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
 - The time until normal operation starts includes the following LVD reset processing time after the LVD detection level (VLVD) is reached as well as the voltage stabilization wait + POR reset processing time after the VPOR (1.51 V, typ.) is reached.

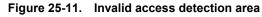
LVD reset processing time: 0 ms to 0.0701 ms (max.)

- 4. When the power supply voltage is below the lower limit for operation and the power supply voltage is then restored after an internal reset is generated only by the voltage detector (LVD), the following LVD reset processing time is required after the LVD detection level (VLVD) is reached. LVD reset processing time: 0.0511 ms (typ.), 0.0701 ms (max.)
- Remarks 1. VLVDH, VLVDL: LVD detection voltage VPOR: POR power supply rise detection voltage VPDR: POR power supply fall detection voltage
 - 2. When the LVD interrupt mode is selected (option byte 000C1H: LVIMD1 = 0, LVIMD0 = 1), the time until normal operation starts after power is turned on is the same as the time specified in Note 3 of Figure 23-2 (3).

25.3.6 Invalid memory access detection function

Incorrect:


Figure 25-11. Invalid Access Detection Area


Note Code flash memory and RAM address of each product are as follows.

Products	Code Fash Memory (00000H to xxxxxH)	RAM (yyyyyH to FFEFFH)	
R5F1076C, R5F107AC	32768 × 8 bit (00000H to 07FFFH)	2048 × 8 bit (FF700H to FFEFFH)	
R5F107AE, R5F107DE	65536 \times 8 bit (00000H to 0FFFH)	4096 \times 8 bit (FEF00H to FFEFFH)	

Correct:

Note

te The following table lists the code flash memory, RAM, and lowest detection address for each product:

Products	Code flash memory (00000H to xxxxxH)	RAM (zzzzzH to FFEFFH)	Detected lowest address for read/instruction fetch
		(execution) (yyyy	
R5F1076C, R5F107AC	32768 × 8 bit	$2048 \times 8 \text{ bit}$	10000H
	(00000H to 07FFFH)	(FF700H to FFEFFH)	
R5F107AE, R5F107DE	65536 × 8 bit	4096 × 8 bit	10000H
	(00000H to 0FFFFH)	(FEF00H to FFEFFH)	

27.3 Format of On-chip Debug Option Byte

Old:

Figure 27-3. Format of Option Byte (000C2H/010C2H)

Address: 000C2H/010C2H^{Note}

6	5	4	3	2	1	0
CMODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0
CMODE0		5	Setting of flash	operation mod	e	
		Operating Operating voltage				
			frequ	iency range	ra	ange
0	LS (low spee	d main) mode	1 t	o 8 MHz	2.7 to	o 5.5 V
1	HS (high spe	ed main) mode	e 1 to	o 32 MHz	2.7 to	o 5.5 V
an above	Setting prohit	pited				
CMODE0		S	Setting of flash	operation mod	е	
0	LS (low spee	LS (low speed main) mode				
1	HS (high spe	HS (high speed main) mode				
an above	Setting prohit	pited				
	r	1	1			
FRQSEL2	FRQSEL1	FRQSEL1 FRQSEL0 Frequency of the high-speed on-chip oscillate			oscillator	
0	0	0	0 32 MHz			
0	0	0	24 MHz			
0	0	1	16 MHz			
0	0	1	12 MHz			
0	1	0	8 MHz			
0	1	1	4 MHz			
1	0	0 1 1 MHz				
Other that	an above		Setting prohi	bited		
	6 CMODE0 CMODE0 0 1 an above CMODE0 0 1 an above FRQSEL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65CMODE01CMODE01CMODE0	6 5 4 CMODE0 1 0 CMODE0 1 0 CMODE0 LS (low speed main) mode 1 0 LS (low speed main) mode 1 1 HS (high speed main) mode 1 an above Setting prohibited 5 0 LS (low speed main) mode 5 1 HS (high speed main) mode 5 0 LS (low speed main) mode 5 1 HS (high speed main) mode 5 0 LS (low speed main) mode 6 1 HS (high speed main) mode 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0	6 5 4 3 CMODE0 1 0 FRQSEL3 CMODE0 1 0 FRQSEL3 CMODE0 Setting of flash C CMODE0 LS (low speed main) mode 1 tr 0 LS (low speed main) mode 1 tr 1 HS (high speed main) mode 1 tr an above Setting prohibited CMODE0 Setting of flash 0 LS (low speed main) mode 1 tr 1 HS (high speed main) mode 1 tr 1 HS (high speed main) mode 1 tr 1 HS (high speed main) mode 1 tr 1 HS (high speed main) mode 1 tr 1 HS (high speed main) mode 1 tr 0 0 32 MHz 1 tr	6 5 4 3 2 CMODE0 1 0 FRQSEL3 FRQSEL2 CMODE0 1 0 FRQSEL3 FRQSEL2 CMODE0 Setting of flash operation mode Operating frequency range 0 LS (low speed main) mode 1 to 8 MHz 1 HS (high speed main) mode 1 to 32 MHz an above Setting prohibited Setting of flash operation mode 0 LS (low speed main) mode 1 to 32 MHz an above Setting prohibited Setting of flash operation mode 0 LS (low speed main) mode I 1 HS (high speed main) mode I 1 HS (Second main) mo	$\begin{array}{c c c c c c c } \hline 6 & 5 & 4 & 3 & 2 & 1 \\ \hline CMODE0 & 1 & 0 & FRQSEL3 & FRQSEL2 & FRQSEL1 \\ \hline CMODE0 & & & & & & & & & & & & & & & & & & &$

Note Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H.

New:

Address: 000C2H/010C2H^{Note}

7	6	5	4	3	2	1	0
CMODE1	CMODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

CMODE1	CMODE0	Setting of flash operation mode			
			Operating	Operating Voltage	
			Frequency Range	Range	
0	0	LV (low voltage main) mode	1 to 4 MHz	1.6 to 5.5 V	
1	0	LS (low speed main) mode	1 to 8 MHz	1.8 to 5.5 V	
1	1	HS (high speed main) mode	1 to 16 MHz	2.4 to 5.5 V	
			1 to 32 MHz	2.7 to 5.5 V	
Other that	Other than above Setting prohibited				

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
1	0	0	0	32 MHz
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
0	0	1	0	6 MHz
1	0	1	1	4 MHz
0	0	1	1	3 MHz
1	1	0	0	2 MHz
1	1	0	1	1 MHz
	Other than above			Setting prohibited

Note Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H.

 The ranges of operation frequency and operation voltage vary depending on the flash operation mode. For details, see 32.4 and 33.4 AC Characteristics.

Cautions 1. Be sure to set bit 5 to "1" and bit 4 to "0"

28.3.1 Data flash overview

Caution added

Old:

An overview of the data flash memory is provided below.

(omitted) :

New:

An overview of the data flash memory is provided below.

•The user program can rewrite the data flash memory by using the flash data library. For details, refer to RL78 Family Flash Data Library User's Manual.

28.6 Flash Memory Programming by Self-Programming

Incorrect:

28.6 Flash Memory Programming by Self-Programming

The RL78/I1A supports a self-programming function that can be used to rewrite the flash memory via a user program. Because this function allows a user application to rewrite the flash memory by using the RL78/I1A self-programming library, it can be used to upgrade the program in the field.

Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.

- 2. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the EI instruction, and then execute the self-programming library.
- 3. When enabling RAM parity error resets (RPERDIS = 0), be sure to initialize the RAM area to use +10 bytes before overwriting.

Correct:

28.6 Flash Memory Programming by Self-Programming

The RL78/I1A supports a self-programming function that can be used to rewrite the flash memory via a user program. Because this function allows a user application to rewrite the flash memory by using the RL78/I1A self-programming library, it can be used to upgrade the program in the field.

Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.

- 2. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the EI instruction, and then execute the self-programming library.
- 3. The high-speed on-chip oscillator should be kept operating during self-programming. If it is kept stopping, the high-speed on-chip oscillator clock should be operated (HIOSTOP = 0). The flash self-programming library should be executed after 30 μs have elapsed.

Date: Œ * 🗟 Ê2013

32.3.2 Supply current characteristics

Incorrect:

Fixed typo in Note in pages 1059 to 1064.

Correct:

Refer to pages 12 and 17 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

32.5 Peripheral Functions Characteristics

Old:

Specifications changed and LS Mode spec extended in pages 1067 to 1081.

new:

Refer to pages 21 and 35 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS (T_A = -40 to + 105°C)" (MCYG-AB-13-0043).

32.6.1 A/D converter characteristics

Incorrect:

The table and notes are changed in pages 1082 to 1085.

Correct:

Refer to pages 36 and 40 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

32.6.2 Temperature sensor characteristics

Incorrect:

Fixed typo and internal reference voltage characteristics added in page 1085

Correct:

Refer to page 41 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

Supply Voltage Rise Time

Old:

Power supply voltage rising slope characteristics added.

New:

Refer to page 44 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

Old:

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics specifications extended.

New:

Refer to page 44 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

(c) 2013. Renesas Electronics Corporation. All rights reserved.

32.8 Flash Memory Programming Characteristics

Incorrect:

Fixed typo in 32.8 Flash Memory Programming Characteristics in page 1089.

Correct:

Refer to page 45 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

32.9 Timing Specs for Switching Flash Memory Programming Modes

Incorrect:

Fixed typo in 32.9 Timing Specs for Switching Flash Memory Programming Modes in page 1090.

Correct:

Refer to page 45 in Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to + 105°C)" (MCYG-AB-13-0043).

Chapter 33 ELECTRICAL SPECIFICATIONS (TA = -40 to +125°C)

Old:

Specifications in Chapter 33 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to $+125^{\circ}C$) extended.

New:

Refer to Technical Update Exhibit "Chapter 32 ELECTRICAL SPECIFICATIONS (: T_A = -40 to + 125°C)" (MCYG-AB-13-0044).

To our valued customers:	RL78/I1A	M C Y G - A B - 1 3 - 0 0 4 3 - 1 Aug 6, 2013
	Technical Update Exhibit Chapter 32 ELECTRICAL SPECIFICATIONS (TA = -40 to +105°C)	Isao Murakami Manager 1st Solution Business Unit General Purpose Solution Business Division Brand Strategy Department 2nd Renesas Electronics Corporation

(Rep. Takao Iwasaki)

Thank you for your continued support for Renesas Electronics products.

Please be advised that the misstatements found in the following User's Manual have been fixed.

The second and following pages in this document include "Chapter 32 ELECTRICAL SPECIFICATIONS (T_A = -40 to +105°C)" which has been updated by the Correction for incorrect description notice RL78/I1A Descriptions in the User's Manual: Hardware Rev.1.00 changed (TN-RL*-A008A/E).

1. Applicable products:

<u>RL78/I1A</u>

R5F1076CGSP, R5F107ACGSP,R5F107AEGSP,R5F107DEGSP

2. Reference documents:

Correction for incorrect description notice RL78/I1A Descriptions in the User's Manual: Hardware Rev.1.00 changed (TN-RL*-A008A/E) RL78/I1A User's Manual: Hardware Rev.1.00 (R01UH0169EJ01.00)

CHAPTER 32 ELECTRICAL SPECIFICATIONS (T_A = -40 to $+105^{\circ}$ C)

Target products: $T_A = -40$ to $+105^{\circ}C$

R5F1076CGSP#V0, R5F1076CGSP#X0, R5F107ACGSP#V0, R5F107ACGSP#X0, R5F107AEGSP#V0, R5F107AEGSP#X0, R5F107DEGSP#V0, R5F107DEGSP#X0

- Cautions 1. The RL78/I1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product.

32.1 Absolute Maximum Ratings

Absolute Maximum Ratings	(T _A = 25°C) (1/2)
--------------------------	-------------------------------

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{\rm Note\ 1}$	V
Input voltage	VI1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	-0.3 to V_DD +0.3 and -0.3 to AV_{REF(+)} +0.3 $^{Notes 2, 3}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AV_{REF(+)} + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - **3.** V_{ss} : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-40	mA
		Total of all pins	P02, P03, P40, P120	-70	mA
		–170 mA	P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Іон2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	40	mA
		Total of all pins 170 mA	P02, P03, P40, P120	70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	IOL2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

32.2 Oscillator Characteristics

32.2.1 X1, XT1 oscillator characteristics

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Resonator	Recommended Circuit	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	Vss X1 X2 Rd C1 C1 C2 TT		1.0		20.0	MHz
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator	Vss XT2 XT1 Rd C4 C3 T		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

32.2.2 On-chip oscillator characteristics

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Note 1}	fін		1		32	MHz
High-speed on-chip oscillator		T _A = -20 to 85°C	-1		+1	%
clock frequency accuracyNote 2		T _A = -40 to 105°C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** Frequency can be selected in a high-speed on-chip oscillator. Selected by bits 0 to 3 of option byte (000C2H/010C2H).
 - 2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

32.2.3 PLL characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PLL input clock	fpllin	High-speed system clock is selected (f_{MX} = 4 MHz)	3.94	4.00	4.06	MHz
frequency ^{Note}		High-speed on-chip oscillator clock is selected (f_{IH} = 4 MHz)	3.94	4.00	4.06	MHz
PLL output clock frequency ^{Note}	fpll			$f_{\text{PLLIN}} imes 16$		MHz

Note This only indicates the oscillator characteristics. See AC Characteristics for instruction execution time.

32.3 DC Characteristics

32.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон1	Per pin for P02, P03, P05, P06, P10 to P12,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note 2}	mA
high ^{Note 1}		P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-1.0	mA
		Total of P02, P03, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-12.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-4.0	mA
		P75 to P77, P147, P200 to P206 (When duty $\leq 70\%^{\text{Note 3}}$) Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-14.0	mA
	Іон2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
	Total of all pins (When duty ≤ 70% ^{Note 3})	•	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.7	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	IOL1	Per pin for P02, P03, P05, P06,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5 ^{Note 2}	mA
IOW ^{Note 1}		P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7~V \leq V_{\text{DD}} < 4.0~V$			1.5 ^{Note 2}	mA
		Total of P02, P03, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			7.5	mA
		Total of P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206 (When duty \leq 70% ^{Note 3}) Total of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			17.5	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			25.0	mA
	IOL2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			0.4 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note }3}$)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			2.8	mA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

- **2.** However, do not exceed the total current value.
- 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and I_{OL} = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0.8VDD		Vdd	V
	VIH2	P03, P10, P11	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.1		Vdd	V
			TTL input buffer $3.3 \ V \leq V_{\text{DD}} < 4.0 \ V$	2.0		Vdd	V
			TTL input buffer $2.7 \ V \leq V_{\text{DD}} < 3.3 \ V$	1.5		Vdd	V
Input voltage, low	VIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P03, P10, P11	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.7~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Caution The maximum value of VIH of pins P02, P10 to P12 is VDD, even in the N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd - 0.7			V
		P200 to P206	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.0 \ \text{mA} \end{array}$	V _{DD} - 0.5			V
	Voh2	P20 to P22, P24 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	V _{OL1}	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.7	V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:eq:VDD}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	Vol2	P20 to P22, P24 to P27	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{I}_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VDD				1	μA
	Ilih2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VSS				-1	μΑ
	Ilil2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	Vı = Vss, Ir	input port	10	20	100	kΩ

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

32.3.2 Supply current characteristics

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f _{IH} = 32 MHz ^{Note 3}	V _{DD} = 5.0 V		5.0	7.5	mA
current ^{Note}		mode	speed main) mode ^{Note 5}		V _{DD} = 3.0 V		5.0	7.5	mA
			mode	file = 24 MHz ^{Note 3}	V _{DD} = 5.0 V		3.9	5.8	mA
					V _{DD} = 3.0 V		3.9	5.8	mA
				fiH = 16 MHz ^{Note 3}	V _{DD} = 5.0 V		2.9	4.2	mA
					V _{DD} = 3.0 V		2.9	4.2	mA
			LS (low- speed main) mode ^{Note 5}	$f_{H} = 8 \text{ MHz}^{\text{Note 3}},$ TA = -40 to + 85°C	V _{DD} = 3.0 V		1.3	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	4.9	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	Resonator connection		3.3	5.0	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Square wave input		3.2	4.9	mA
				V _{DD} = 3.0 V	Resonator connection		3.3	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Square wave input		2.0	2.9	mA
				V _{DD} = 5.0 V	Resonator connection		2.0	2.9	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Square wave input		2.0	2.9	mA
			V _{DD} = 3.0 V	Resonator connection		2.0	2.9	mA	
		LS (low-	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Square wave input		1.2	1.8	mA	
			speed main) mode ^{Note 5}	TA = -40 to $+ 85^{\circ}$ C	Resonator connection		1.2	1.8	mA
			HS (high-	$f_{H} = 4 \text{ MHz}^{Note 3}$	V _{DD} = 5.0 V		5.4	8.5	mA
			speed main) mode ^{Note 5}	$f_{PLL} = 64 \text{ MHz}, f_{CLK} = 32 \text{ MHz}$ $f_{IH} = 4 \text{ MHz}^{Note 3}$	V _{DD} = 3.0 V		5.4	8.5	mA
			mode		V _{DD} = 5.0 V		3.3	5.7	mA
				fpll = 64 MHz, fclk = 16 MHz	V _{DD} = 3.0 V		3.3	5.7	mA
			Subsystem	fsue = 32.768 kHz ^{Note 4}	Square wave input		4.2	6.0	μA
			clock operation	T _A = -40°C	Resonator connection		4.4	6.2	μA
			operation	fsue = 32.768 kHz ^{Note 4}	Square wave input		4.2	6.0	μA
				T _A = +25°C	Resonator connection		4.4	6.2	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.3	7.2	μA
				T _A = +50°C	Resonator connection		4.5	7.4	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.4	8.1	μA
			T _A = +70°C	Resonator connection		4.6	8.3	μA	
			fsue = 32.768 kHz ^{Note 4}	Square wave input		5.2	11.4	μA	
				T _A = +85°C	Resonator connection		5.4	11.6	μA
				f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		6.9	20.8	μA
				T _A = +105°C	Resonator connection		7.1	21.0	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz
 LS (low-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 8 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Uni
upply	IDD2 ^{Note 2}	HALT	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.72	2.9	mA
urrent ^{Note}		mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.72	2.9	mA
			mode	file = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.57	2.3	mA
					V _{DD} = 3.0 V		0.57	2.3	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.7	mA
					V _{DD} = 3.0 V		0.50	1.7	mA
			LS (low-	f _{IH} = 8 MHz ^{Note 4} ,	V _{DD} = 3.0 V		320	910	μA
			speed main) mode ^{Note 7}	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$					
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	1.9	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.50	2.0	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	1.9	mA
				V _{DD} = 3.0 V	Resonator connection		0.50	2.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.24	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.30	1.08	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.24	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.30	1.08	m/
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		130	720	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V, TA = -40 to +85°C	Resonator connection		170	760	μA
			HS (high-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 5.0 V		1.15	4.0	m/
			speed main)	fpll = 64 MHz, fclk = 32 MHz	V _{DD} = 3.0 V		1.15	4.0	m/
			mode ^{Note 7}	fiH = 4 MHz ^{Note 4}	V _{DD} = 5.0 V		0.95	3.2	m/
				fPLL = 64 MHz, fCLK = 16 MHz	V _{DD} = 3.0 V		0.95	3.2	m/
			Subsystem clock operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.70	μA
				T _A = -40°C	Resonator connection		0.47	0.89	μP
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.33	0.70	μA
				T _A = +25°C	Resonator connection		0.52	0.89	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.41	1.90	μA
				T _A = +50°C	Resonator connection		0.60	2.09	μP
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.54	2.80	μA
				T _A = +70°C	Resonator connection		0.73	2.99	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		1.27	6.10	μA
				T _A = +85°C	Resonator connection		1.46	6.29	μP
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.5	μA
				T _A = +105°C	Resonator connection		3.23	15.7	, μΔ
	IDD3 ^{Note 6}	STOP	T _A = -40°C	1	1		0.18	0.50	μA
		mode ^{Note}	T _A = +25°C				0.23	0.50	μA
		8	$T_{A} = +50^{\circ}C$				0.27	1.70	μ
			$T_{A} = +30^{\circ}C$ $T_{A} = +70^{\circ}C$				0.27	2.60	μ
			T _A = +85°C				1.17	5.90	μr μP
		1	14 - 100 0			L	1.17	5.50	μΡ

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{O}}1 \text{ MHz}$ to 32 MHz
 - LS (low-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditio	ons	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	I _{FIL} Note 1					0.20		μA
RTC operating current	_{RTC} Notes 1, 2, 3					0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4					0.02		μA
Watchdog timer operating current	_{WDT} ^{Notes 1,} 2, 5	f⊩ = 15 kHz				0.22		μA
A/D converter	IADC ^{Notes 1,}	When conversion	Normal mode,	AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current	6	at maximum speed	Low voltage m	node, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	IADREF ^{Note 1}					75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}					75.0		μA
LVD operating current	Notes 1, 7					0.08		μA
Self- programming operating current	FSP Notes 1, 8					2.50	12.2	mA
Programmable	IPGA Note 9			AV _{REFP} = V _{DD} = 5.0 V		0.21	0.31	mA
gain amplifier operating current				AV _{REFP} = V _{DD} = 3.0 V		0.18	0.29	mA
Comparator	ICMP ^{Note 10}	When one compara	itor channel is	AV _{REFP} = V _{DD} = 5.0 V		41.4	62	μA
operating		operating		AV _{REFP} = V _{DD} = 3.0 V		37.2	59	μA
current	IVREF	When one internal	reference	AV _{REFP} = V _{DD} = 5.0 V		14.8	26	μA
		voltage circuit is op	erating	AV _{REFP} = V _{DD} = 3.0 V		8.9	20	μA
Programmable	IREF Note 11			AV _{REFP} = V _{DD} = 5.0 V		3.2	5.1	μA
gain amplifier/ comparator reference current source				AV _{REFP} = V _{DD} = 3.0 V		2.9	4.9	μA
BGO operating current	BGO ^{Note 12}					2.50	12.2	mA
SNOOZE	Isnoz Note 1	ADC operation	The mode is p	erformed Note 13		0.50	1.1	mA
operating current			The A/D conve	ersion operations are andard mode, AV _{REFP} = V _{DD} =		2.0	3.04	mA
		CSI/UART operatio	n			0.70	1.54	mA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Current flowing to the VDD.
 - 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and fill operating current). The current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing during self-programming operation.
 - **9.** Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IPGA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
 - **10.** Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP, when the comparator is operating.
 - **11.** This is the current required to flow to V_{DD} pin of the current circuit that is used as the programmable gain amplifier and the comparator.
 - 12. Current flowing only during data flash rewrite.
 - 13. Refer to 21.3.3 SNOOZE mode for shift time to the SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is TA = 25°C
- Example of calculating current value when using programmable gain amplifier and comparator.
 Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when AVREFP = VDD = 5.0 V)

$$\begin{split} & \mathsf{ICMP} \times 3 + \mathsf{IVREF} + \mathsf{IPGA} + \mathsf{IREF} \\ &= 41.4 \; [\mu\mathsf{A}] \times 3 + 14.8 \; [\mu\mathsf{A}] \times 1 + 210 \; [\mu\mathsf{A}] + 3.2 \; [\mu\mathsf{A}] \\ &= 352.2 \; [\mu\mathsf{A}] \end{split}$$

Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when AV_{REFP} = V_{DD} = 5.0 V)

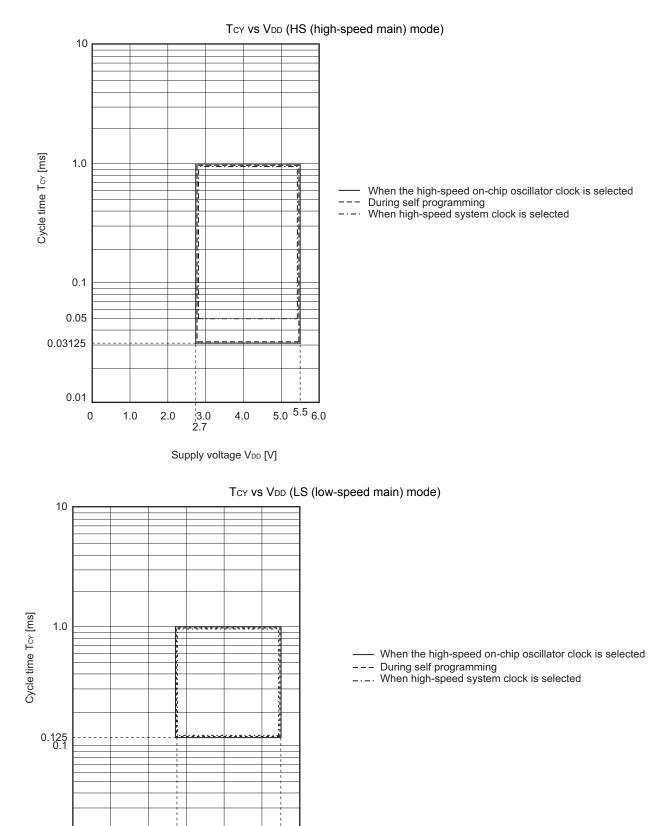
 $I_{CMP} \times 2 + I_{IREF}$ = 41.4 [μ A] × 2 + 3.2 [μ A] = 86.0 [μ A]

32.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Items	Symbol		Conc	litions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (high-	speed	main) mode	0.03125		1	μS
instruction execution time)		clock (fmain) operation	LS (low-s main) mo		T _A = -40 to +85°C	0.125		1	μS
		Subsystem c	lock (fsug) oper	ation	28.5	30.5	31.3	μs
		In the self	HS (high-	speed	main) mode	0.03125		1	μS
		programming mode	LS (low-s main) mo		T _A = -40 to +85°C	0.125		1	μS
External system clock frequency	f _{EX}					1.0		20.0	MHz
	fexs					32		35	kHz
External system clock input high-	texh, texl					24			ns
level width, low-level width	texhs, texls					13.7			μS
TI03, TI05, TI06, TI07 input high- level width, low-level width	tтıн, tтı∟					2/f _{мск} +10			ns
T003, T005, T006, TKB000,	fто	HS (high-spe	ed main)	4.0	$V \le V_{\text{DD}} \le 5.5 \text{ V}$			8	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to		mode		2.7	$V \le V_{DD} < 4.0 V$			4	MHz
TKCO05 output frequency (When duty = 50%)		LS (low-spee	,	4.0	$V \leq V_{\text{DD}} \leq 5.5 \ V$			4	MHz
		$V \le V_{DD}$ < 4.0 V			2	MHz			
Interrupt input high-level width, INTH, INTP0, INTP3, INTP4, INTP9 to INTP low-level width INTL INTP20 to INTP23		9 to INTP11,	1			μS			
RESET low-level width	t RSL					10			μS

Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

0.01

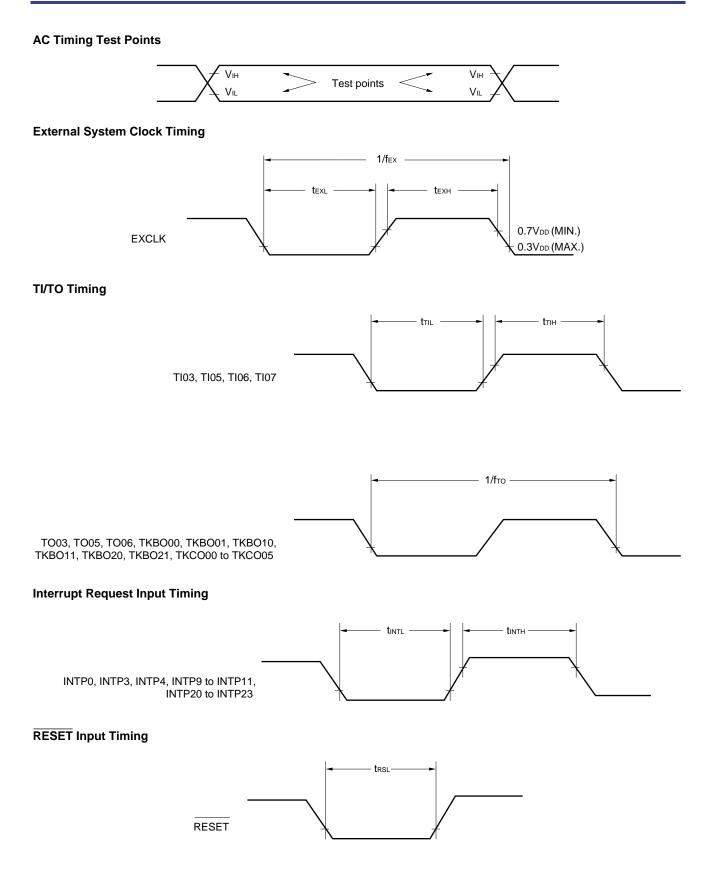
0

1.0

Minimum Instruction Execution Time during Main System Clock Operation

5.0 5.5 6.0

RENESAS


3.0 2.7

Supply voltage VDD [V]

4.0

2.0

19

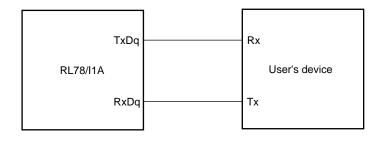
32.5 Peripheral Functions Characteristics

32.5.1 Serial array unit 0, 4 (UART0, UART1, CSI00, DALI/UART4)

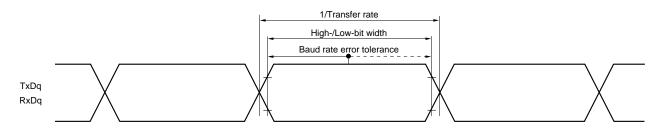
(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions		peed main) ode	LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.7 \; V {\leq} \; V_{\text{DD}}$	≤ 5.5 V		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		5.3		1.3	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
 - HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)


LS (low-speed main) mode: 8 MHz (2.7 V \leq V_{DD} \leq 5.5 V), TA = -40 to +85°C

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-s Mo	,	LS (low-sp Mo	eed main) de	
			MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	125		500		Γ
SCKp high-/low-level	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 12		tксү1/2 – 50		
width	t ĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 18		tксү1/2 – 50		
SIp setup time (to SCKp↑)	tsiĸ1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	44		110		
Note 1		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	44		110		
SIp hold time (from SCKp [↑]) Note 2	tksi1		19		19		
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}		25		25	

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SCKp and SOp output lines.
- 5. Operating condtions of LS (low-speed main) mode is T_A = -40 to +85 °C.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

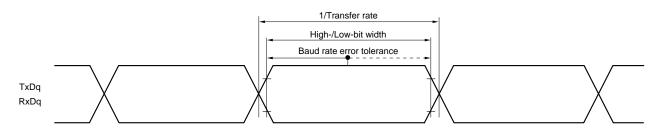
- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Unit

ns ns ns ns ns

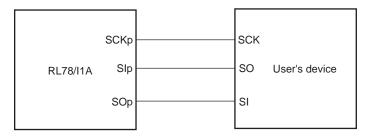
ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

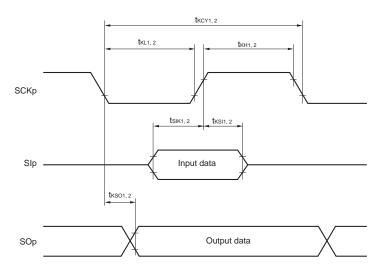

Parameter	Symbol	Condi	tions	HS (high-spee	ed main) Mode	LS (low-spee	d main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск		_		ns
Note 5			$f_{MCK} \le 20 \ MHz$	6/fмск		6/f мск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск				ns
			$f_{MCK} \le 16 \ MHz$	6/fмск		6/f мск		ns
SCKp high-/low- level width	tкн2, tкL2			t ксү2/ 2		tксү2/2		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2			1/fмск+20		1/fмск+30		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+31		1/fмск+31		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF ^{Note 4}			2/fмск+ 44		2/fмск+ 110	ns

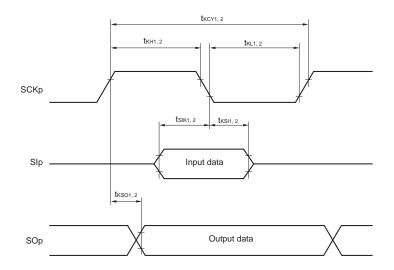
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 6. Operating condtions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

 fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))





CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00)

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
						MAX.	MIN.	MAX.	
Transfer rate		Recep-	4.0 V ≤ V	$V_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_{\text{b}} \leq 4.0 \text{ V}$		fмск/6 Note 1		fмск/6 Note 1	bps
		tion		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		5.3		1.3	Mbps
			2.7 V ≤ ^v	V_{DD} < 4.0 V,2.3 V \leq V _b \leq 2.7 V		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		5.3		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 HS (high-speed main) mode:
 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

 LS (low-speed main) mode:
 8 MHz (2.7 V \leq V_{DD} \leq 5.5 V), T_A = -40 to +85 °C.

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03)

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions		speed main) ode	· ·	beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V \end{array}$		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4		1.2 Note 4	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

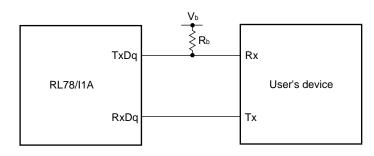
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Operating condtions of LS (low-speed main) mode is T_A = -40 to +85 °C.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.

Remarks 1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance,

- Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
- **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- $\label{eq:result} \mbox{Remarks 1.} \quad R_b[\Omega]: \mbox{ Communication line (TxDq) pull-up resistance, $V_b[V]$: Communication line voltage}$
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	н	S	LS		Unit
				(high-spe Mo	eed main) de	(low-speed Mode	,	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{\text{KCY1}} \ge 2/f_{\text{CLK}}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	200		1150		ns
			C_b = 30 pF, R_b = 1.4 k Ω					
			$2.7 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \leq V_{\text{b}} \leq 2.7 \text{ V},$	300		1150		ns
			C_b = 30 pF, R_b = 2.7 k Ω					
SCKp high-level	t ĸнı	$4.0~V \leq V_{DD} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	tксү1/2 – 50		tксү1/2 – 75		ns
width		C _b = 30 pF, R	R _b = 1.4 kΩ					
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	4.0 V, 2.3 V \leq Vb \leq 2.7 V,	tксү1/2 – 120		t ксү1/2 – 170		ns
		C _b = 30 pF, F	$R_b = 2.7 \text{ k}\Omega$					
SCKp low-level	t ĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	tксү1/2 – 7		tксү1/2 – 50		ns
width		C _b = 30 pF, R	_b = 1.4 kΩ					
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2 – 10		tксү1/2 – 50		ns
		C _b = 30 pF, R	_b = 2.7 kΩ					
SIp setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	81		479		ns
(to SCKp↑) ^{Note 1}		C _b = 30 pF, R	_b = 1.4 kΩ					
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	4.0 V, 2.3 V \leq Vb \leq 2.7 V,	177		479		ns
		C _b = 30 pF, R	_b = 2.7 kΩ					
SIp hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	10		19		ns
(from SCKp↑) Note 1		C _b = 30 pF, R	_b = 1.4 kΩ					
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	4.0 V, 2.3 V \leq Vb \leq 2.7 V,	10		19		ns
		C _b = 30 pF, F	R _b = 2.7 kΩ					
Delay time from	tkso1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,		60		100	ns
SCKp↓ to SOp output ^{Note 1}		C _b = 30 pF, F	R _b = 1.4 kΩ					
output		$2.7 \text{ V} \leq V_{DD}$ <	4.0 V, 2.3 V \leq Vb \leq 2.7 V,		130		195	ns
		C _b = 30 pF, F	R _b = 2.7 kΩ					
SIp setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	44		110		ns
(to SCKp↓) ^{Note 2}		C _b = 30 pF, R	R _b = 1.4 kΩ					
		$2.7 V \le V_{DD}$ <	4.0 V, 2.3 V \leq Vb \leq 2.7 V,	44		110		ns
		C _b = 30 pF, R	R _b = 2.7 kΩ					
SIp hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	10		19		ns
(from SCKp \downarrow) ^{Note 2}		C _b = 30 pF, F	R _b = 1.4 kΩ					
		$2.7 \text{ V} \leq V_{DD}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	10		19		ns
		C _b = 30 pF, R	_b = 2.7 kΩ					
Delay time from	tkso1	$4.0~V \leq V_{\text{DD}} \leq$	$5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$		10		25	ns
SCKp↑ to SOp output ^{Note 2}		C _b = 30 pF, R	_b = 1.4 kΩ					
SOp output		$2.7 V \le V_{DD}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		10		25	ns
		C _b = 30 pF, R	_b = 2.7 kΩ					

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

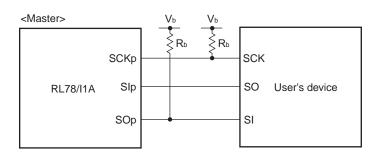
2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. Operating condtions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)

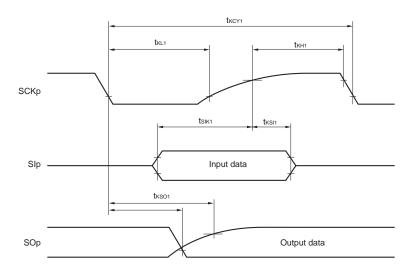
(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	LS (low-speed	main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} \end{array} \label{eq:VDD}$	300		1150		ns
			C_b = 30 pF, R_b = 1.4 k Ω					
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	500		1150		ns
			C_b = 30 pF, R_b = 2.7 k Ω					
SCKp high-level	t кн1	$4.0~V \leq V_{DD} \leq$	$5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	tксү1/2 – 75		tĸcy1/2 – 75		ns
width		C _b = 30 pF, F	R _b = 1.4 kΩ					
		$2.7 V \le V_{DD}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2 – 170		tксү1/2 – 170		ns
		C _b = 30 pF, F	R _b = 2.7 kΩ					
SCKp low-level	t KL1	$4.0 V \le V_{DD} \le$	$5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	tксү1/2 – 12		tксү1/2 – 50		ns
width		C _b = 30 pF, F	R _b = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	tксү1/2 – 18		tксү1/2 – 50		ns
		C₀ = 30 pF, F	R _b = 2.7 kΩ					
SIp setup time	tsik1	$4.0 V \le V_{DD} \le$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	81		479		ns
(to SCKp↑) ^{Note 1}		C₀ = 30 pF, F	R _b = 1.4 kΩ					
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	177		479		ns
		C₀ = 30 pF, F	R _b = 2.7 kΩ					
SIp hold time	tksi1	$4.0 V \leq V_{DD} \leq$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	19		19		ns
(from SCKp↑) _{Note 1}		C₀ = 30 pF, F						
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	19		19		ns
		C₀ = 30 pF, F	R _b = 2.7 kΩ					
Delay time from	tkso1	-	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		100		100	ns
SCKp↓ to SOp output ^{Note 1}		C _b = 30 pF, F						
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		195		195	ns
		C₀ = 30 pF, F						
SIp setup time	tsik1		$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	44		110		ns
(to SCKp↓) ^{Note 2}		C _b = 30 pF, F						
			$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	44		110		ns
		$C_{b} = 30 \text{ pF}, \text{F}$						
SIp hold time	tksi1		$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	19		19		ns
(from SCKp↓) Note 2		Cb = 30 pF, F		10		10		110
			$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	19		19		ne
		$2.7 V \le V D <$ Cb = 30 pF, F		13		1 U		ns
Delay time from	tkso1				25		05	-
SCKp↑ to	and of		$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		25		25	ns
SOp output Note 2		Cb = 30 pF, H			0.5		~-	
			$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		25		25	ns
		Cb = 30 pF, I	≺b = 2.7 kΩ					

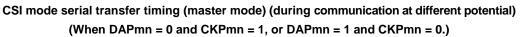

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

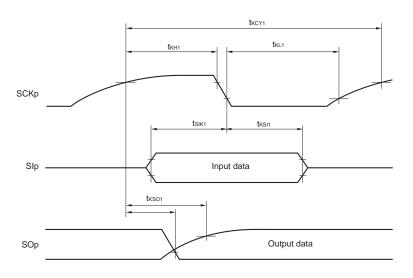
2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. Operating condtions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(7) DALI/UART4 mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Symbol	Conditions				-	Unit
		MIN.	MAX.	MIN.	MAX.	
			fмск/12		fмск/12	bps
	Maximum transfer rate theoretical value HS: $f_{CLK} = 32$ MHz, $f_{MCK} = f_{CLK}$		2.6		0.6	Mbps
	Symbol	Maximum transfer rate theoretical value	Махітит transfer rate theoretical value HS: fcLк = 32 MHz, fмск = fcLк	Моde MIN. MAX. fmck/12 fmck/12 Maximum transfer rate theoretical value 2.6 HS: fcLk = 32 MHz, fmck = fcLk 2.6	Mode Mode MIN. MAX. MIN. MAX. Maximum transfer rate theoretical value fmcк/12 Maximum transfer rate theoretical value 2.6	Mode Mode MIN. MAX. MIN. MAX. Maximum transfer rate theoretical value 5.6 0.6 HS: fclk = 32 MHz, fmck = fclk 0.6 0.6

Note Operating condtions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.

Remark fmck: Operation clock frequency of DALI/UART.

(Operation clock to be set by the serial clock select register mn (SPS4).)

32.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: $f_{CLK} \ge 1 \text{ MHz}$	0	100	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		4.7		μS
Hold time ^{Note 1}	thd:sta		4.0		4.0		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		4.7		μS
Hold time when SCLA0 = "H"	tніgн		4.0		4.0		μS
Data setup time (reception)	tsu:dat		250		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		4.0		μS
Bus-free time	t BUF		4.7		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

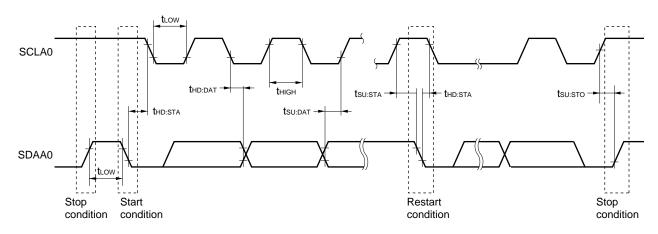
- 2. The maximum value (MAX.) of t_{HD:DAT} is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. Operating condtions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	fast mode: fc∟k≥ 3.5 MHz	0	400	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		0.6		μS
Hold time ^{Note 1}	thd:sta		0.6		0.6		μS
Hold time when SCLA0 = "L"	tLow		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн		0.6		0.6		μs
Data setup time (reception)	tsu:dat		100		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	0.9	0	0.9	μs
Setup time of stop condition	tsu:sto		0.6		0.6		μS
Bus-free time	t BUF		1.3		1.3		μS


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- 3. Operating condtions of LS (low-speed main) mode is T_A = -40 to +85 °C.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

32.6 Analog Characteristics

32.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM
ANI0 to ANI2, ANI4 to ANI7	Refer to 32.6.1 (1).	Refer to 32.6.1 (3).	Refer to 32.6.1 (3).
ANI16 to ANI19	Refer to 32.6.1 (2).		
Internal reference voltage	Refer to 32.6.1 (1).		-
Temperature sensor output			
voltage			

(1) When reference voltage (+)= AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2, ANI4 to ANI7, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI4 to ANI7	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error ^{Note} 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI4 to ANI7		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR Note 4		V
		Temperature sensor output volt (HS (high-speed main) mode)	N	/TMPS25	4	V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Refer to 32.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI19

(T_A = -40 to +105°C, 2.7 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}			1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin : ANI16 to ANI19	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = $V_{DD}^{Notes 3}$				±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \le V_{DD} \le 5.5~V$	3.5625		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI2, ANI4 to ANI7	ANI0 to ANI2, ANI4 to ANI7			VDD	V
		ANI16 to ANI19		0		VDD	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR Note 3		V
		Temperature sensor output v (HS (high-speed main) mode)	0		VTMPS25	3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 32.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2, ANI4 to ANI7, ANI16 to ANI19

(T_A = -40 to +105°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM} = 0 V^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}^{\text{ Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 32.6.2 Temperature sensor/internal reference voltage characteristics.
- When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

32.6.2 Temperature sensor/internal reference voltage characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_C$	00 < 5.5 V. Vss = 0 V. Hst	S (high-speed main) mode)
		o (ingli opood mani) modoj

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGRT	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp		5			μS

32.6.3 Programmable gain amplifier

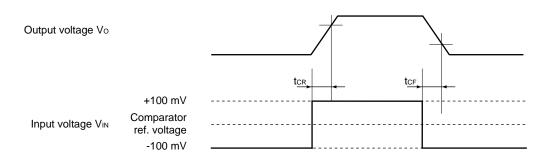
(T _A = −40 to +105°C, 2.7 V ≤ AV _{REFP} =	$V_{DD} \leq 5.5 \text{ V}, \text{ Vss} = \text{AV}_{REFM} = 0 \text{ V}$
---	---

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±5	±10	mV
Input voltage range	Vipga				0		0.9V₀₀/ gain	V
Gain error Note 1		4, 8 tim	es				±1	%
		16 time	S				±1.5	%
		32 time	S			±2	%	
Slew rate ^{Note 1} SF	SRrpga	0		4, 8 times	4			V/μs
		edge		16, 32 times	1.4			V/μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	4, 8 times	1.8			V/μs
				16, 32 times	0.5			V/μs
	SRFPGA	Falling	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4, 8 times	3.2			V/μs
		edge		16, 32 times	1.4			V/μs
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	4, 8 times	1.2			V/μs
				16, 32 times	0.5			V/μs
Operation stabilization wait time ^{Note 2}	t pga	tPGA 4, 8 times			5			μS
		16, 32 t	imes		10			μS

Notes 1. When $V_{IPGA} = 0.1V_{DD}/gain$ to $0.9V_{DD}/gain$.

2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

Remark These characteristics apply when AVREFM is selected as GND of the PGA by using the CVRVS1 bit.

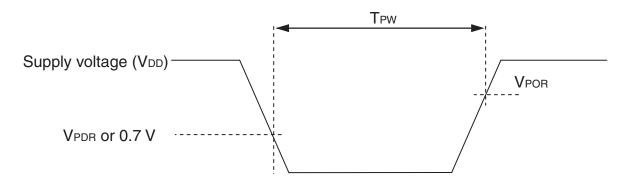


32.6.4 Comparator

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP			±5	±40	mV
Input voltage range	VICMP	CMP0P to CMP5P	0		VDD	V
		СМРСОМ	0.045		0.9Vdd	V
Internal reference voltage deviation		CmRVM register values: 7FH to 80H (m = 0 to 2)			±2	LSB
		Other than above			±1	LSB
Response time	tcr, tcf	Input amplitude = ±100 mV		70	150	ns
Operation stabilization wait time ^{Note 1}	tсмр	$3.3~V \leq V_{\text{DD}} \leq 5.5~V$	1			μS
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	3			μs
Reference voltage stabilization wait time	tvr	CVRE: 0 to 1 Note 2	10			μS

(TA = -40 to +105°C, 2.7 V \leq AVREFP = VDD \leq 5.5 V, Vss = AVREFM = 0 V)

- **Notes 1.** Time required until a state is entered where the DC and AC specifications of the comparator are satisfied after the operation of the comparator has been enabled (CMPnEN bit = 1: n = 0 to 5)
 - 2. Enable comparator output (CnOE bit = 1; n = 0 to 5) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 2) and waiting for the operation stabilization time to elapse.
- **Remark** These characteristics apply when AV_{REFP} is selected as the power supply source of the internal reference voltage by using the CVRVS0 bit, and when AV_{REFM} is selected as GND of the internal reference voltage by using the CVRVS1 bit.



32.6.5 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	V _{POR} Power supply rise time		1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

32.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interruput Mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$									
	Parameter	Symbol	Conditions						
Detection	Supply voltage level	VLVD0	Power supply rise time						
voltage			Power supply fall time						

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.97	4.06	4.14	V
voltage			Power supply fall time	3.89	3.98	4.06	V
		VLVD1	Power supply rise time	3.67	3.75	3.82	V
			Power supply fall time	3.59	3.67	3.74	V
		VLVD2	Power supply rise time	3.06	3.13	3.19	V
			Power supply fall time	2.99	3.06	3.12	V
		VLVD3	Power supply rise time	2.95	3.02	3.08	V
			Power supply fall time	2.89	2.96	3.02	V
		VLVD4	Power supply rise time	2.85	2.92	2.97	V
			Power supply fall time	2.79	2.86	2.91	V
		VLVD5	Power supply rise time	2.75	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
Minimum pu	lse width	t∟w		300			μS
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

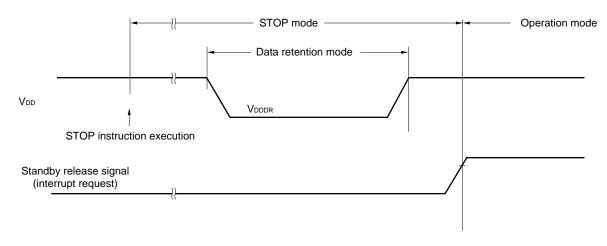
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ VPDR} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2, VPOC	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage: 2.7 V			2.75	2.81	V
mode	VLVDD1	LVIS	S1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	2.97	V
				Falling interrupt voltage	2.79	2.86	2.91	V
	VLVDD2	LVIS	S1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.08	V
				Falling interrupt voltage	2.89	2.96	3.02	V
	VLVDD3	LVIS	S1, LVIS0 = 0, 0	Rising release reset voltage	3.97	4.06	4.14	V
				Falling interrupt voltage	3.89	3.98	4.06	V

32.6.7 Supply voltage rise inclination characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms


Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VDD rises to within the operating voltage range shown in 32.4 AC Characteristics.

32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

32.8 Flash Memory Programming Characteristics

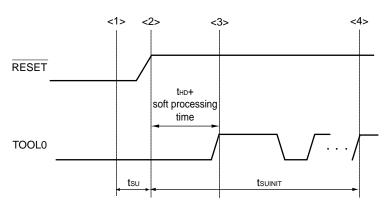
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7~V \leq V \text{DD} \leq 5.5~V$		1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years	$T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year	$T_A = 25^{\circ}C^{Note 3}$		1,000,000		
		Retained for 5 years	$T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years	T _A = 85°C ^{Note 3}	10,000			

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

32.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

32.10 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after a reset ends (except soft processing time)	tно	POR and LVD reset must end before the external reset ends.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - the: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

To our valued customers:	RL78/I1A	M C Y G - A B - 1 3 - 0 0 4 4 - 1 Aug 6, 2013
	Technical Update Exhibit Chapter 33 ELECTRICAL SPECIFICATIONS (T _A = -40 to +125°C)	Isao Murakami Manager 1st Solution Business Unit General Purpose Solution Business Division Brand Strategy Department 2nd Renesas Electronics Corporation

(Rep. Takao Iwasaki)

Thank you for your continued support for Renesas Electronics products.

Please be advised that the misstatements found in the following User's Manual have been fixed.

The second and following pages in this document include "Chapter 33 ELECTRICAL SPECIFICATIONS (T_A = -40 to +125°C)" which has been updated by the Correction for incorrect description notice RL78/I1A Descriptions in the User's Manual: Hardware Rev.1.00 changed (TN-RL*-A008A/E).

1. Applicable products:

<u>RL78/I1A</u>

R5F1076CMSP, R5F107ACMSP, R5F107AEMSP, R5F107DEMSP

2. Reference documents:

Correction for incorrect description notice RL78/I1A Descriptions in the User's Manual: Hardware Rev.1.00 changed (TN-RL*-A008A/E) RL78/I1A User's Manual: Hardware Rev.1.00 (R01UH0169EJ01.00)

CHAPTER 33 ELECTRICAL SPECIFICATIONS (T_A = -40 to +125°C)

Target products: $T_A = -40$ to $+125^{\circ}C$

R5F1076CMSP#V0, R5F1076CMSP#X0, R5F107ACMSP#V0,R5F107ACMSP#X0, R5F107AEMSP#V0, R5F107AEMSP#X0, R5F107DEMSP#V0, R5F107DEMSP#X0

- Cautions 1. The RL78/I1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product.
 - 3. When any of these products are used at 105°C or lower, refer to CHAPTER 32 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +105°C).

33.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{Note\ 1}$	V
Input voltage	VI1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vaii	ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	-0.3 to V_DD +0.3 and -0.3 to AV_{\text{REF}(+)} +0.3^{\text{Notes 2, 3}}	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF (+)}: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-40	mA
		Total of all pins –170 mA	P02, P03, P40, P120	-70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Іон2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	40	mA
		Total of all pins 170 mA	P02, P03, P40, P120	70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	lol2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +125	°C
temperature		In flash memory p	programming mode	-40 to +105	
Storage temperature	Tstg			–65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

33.2 Oscillator Characteristics

33.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Recommended Circuit	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	Vss X1 X2 Rd C1 C1 C1 C2 77		1.0		20.0	MHz
XT1 clock frequency (f _{XT}) ^{Note}	Crystal resonator	Vss XT2 XT1 Rd C4 C4 TT		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

33.2.2 On-chip oscillator characteristics

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Note 1}	fін		1		32	MHz
High-speed on-chip oscillator clock frequency accuracy ^{Note 2}		T _A = −20 to 85°C	-1		+1	%
		T _A = −40 to 105°C	-1.5		+1.5	%
		$T_A = -40$ to 125°C When 16 MHz selected	-2		+2	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

- **Notes 1.** Frequency can be selected in a high-speed on-chip oscillator. Selected by bits 0 to 3 of option byte (000C2H/010C2H).
 - 2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.
- **Remark** When using the device at an ambient temperature that exceeds $T_A = 105^{\circ}C$, the selectable oscillation frequency is 16 MHz max.X.

33.2.3 PLL characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PLL input clock	fpllin	High-speed system clock is selected (f _{MX} = 4 MHz)	3.92	4.00	4.08	MHz
frequency ^{Note}		High-speed on-chip oscillator clock is selected (fiH = 4 MHz)	3.92	4.00	4.08	MHz
PLL output clock frequency ^{Note}	fpll			$f_{\text{PLLIN}} imes 16$		MHz

Note This only indicates the oscillator characteristics. See AC Characteristics for instruction execution time.

Remark When using the device at an ambient temperature that exceeds T_A = 105°C, only 16 MHz (f_{PLL} x 1/4) can be selected as the CPU operating frequency.

33.3 DC Characteristics

33.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон1	Per pin for P02, P03, P05, P06, P10 to P12,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note 2}	mA
high ^{Note 1}		P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-1.0	mA
		Total of P02, P03, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-3.0	mA
		P75 to P77 P147 P200 to P206	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-21.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		Total of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-21.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-9.0	mA
	Іон2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.4	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	IOL1	Per pin for P02, P03, P05, P06,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5 ^{Note 2}	mA
IOW ^{Note 1}		P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7~V \leq V_{\text{DD}} < 4.0~V$			1.5 ^{Note 2}	mA
		Total of P02, P03, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20.0	mA
		(When duty ≤ 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			5.0	mA
		P75 to P77 P147 P200 to P206	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			10.0	mA
		Total of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		(When duty $\leq 70\%^{Note 3}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
	IOL2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			0.4 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			1.6	mA

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

- **2.** However, do not exceed the total current value.
- 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and I_{OL} = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET		0.8Vdd		Vdd	V
	VIH2	P03, P10, P11	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.1		Vdd	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V
			TTL input buffer $2.7 \ V \leq V_{\text{DD}} < 3.3 \ V$	1.5		Vdd	V
Input voltage, low	VIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P03, P10, P11	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.7 \ V \leq V_{\text{DD}} < 3.3 \ V$	0		0.32	V

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Caution The maximum value of VIH of pins P02, P10 to P12 is VDD, even in the N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Output voltage, high	Vон1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \end{array} \label{eq:VDD}$	$V_{\text{DD}} - 0.7$			V	
		P200 to P206	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -1.0 \ \text{mA} \end{array}$	V _{DD} - 0.5			V	
	V _{OH2}	P20 to P22, P24 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	$V_{\text{DD}} - 0.5$			V	
Output voltage, low	Vol1	-	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:VDD}$			0.7	V
		P200 to P206	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \label{eq:DD}$			0.4	V	
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V	
	Vol2	P20 to P22, P24 to P27	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{I}_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V	

 $(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Items	Symbol	Condition	IS		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іция	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VDD				1	μA
	Iцн2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	Vi = Vss				-1	μΑ
	(X*	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	VI = Vss, In input port		10	20	100	kΩ

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

33.3.2 Supply current characteristics

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f⊪ = 16 MHz ^{Note 3}	V _{DD} = 5.0 V		2.9	4.8	mA
current ^{Note}		mode	speed main) mode ^{Note 5}		V _{DD} = 3.0 V		2.9	4.8	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Square wave input		3.2	5.6	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	Resonator connection		3.3	5.7	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Square wave input		3.2	5.6	mA
				V _{DD} = 3.0 V	Resonator connection		3.3	5.7	mA
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Square wave input		2.0	3.3	mA
					Resonator connection		2.0	3.3	mA
				V _{DD} = 3.0 V	Square wave input		2.0	3.3	mA
					Resonator connection		2.0	3.3	mA
		HS (high-	$f_{\text{IH}} = 4 \text{ MHz}^{\text{Note 3}} \qquad \qquad \forall_{\text{DD}} = 5.0 \text{ V}$ $f_{\text{PLL}} = 64 \text{ MHz}, f_{\text{CLK}} = 16 \text{ MHz} \qquad \forall_{\text{DD}} = 3.0 \text{ V}$	V _{DD} = 5.0 V		3.3	6.5	mA	
		speed main) mode ^{Note 5}		V _{DD} = 3.0 V		3.3	6.5	mA	
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 4} T _A = -40°C	Square wave input		4.2	6.0	μA
			clock operation		Resonator connection		4.4	6.2	μA
				f _{SUB} = 32.768 kHz ^{Note 4} T _A = +25°C	Square wave input		4.2	6.0	μA
					Resonator connection		4.4	6.2	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.3	7.2	μA
				T _A = +50°C	Resonator connection		4.5	7.4	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.4	8.1	μA
				T _A = +70°C	Resonator connection		4.6	8.3	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		5.2	11.4	μA
				T _A = +85°C	Resonator connection		5.4	11.6	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		6.9	20.8	μA
				T _A = +105°C	Resonator connection		7.1	21.0	μA
			f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		11.1	51.2	μA	
				T _A = +125°C	Resonator connection		11.3	51.4	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 20 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fill: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

		,		= • • • • • (= ,=)						
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.		
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high- speed main) mode ^{Note 7}	f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.0		
					V _{DD} = 3.0 V		0.50	2.0		
			HS (high- speed main) mode ^{Note 7}	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.40	2.2		
				V _{DD} = 5.0 V	Resonator connection		0.50	2.3		
				f_{MX} = 20 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.40	2.2		
					Resonator connection		0.50	2.3		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.24	1.22		
		V _{DD} = 5.0 V	Resonator connection		0.30	1.28				
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.24	1.22		
				V _{DD} = 3.0 V	Resonator connection		0.30	1.28		
			HS (high-	fi⊢ = 4 MHz ^{Note 4}	V _{DD} = 5.0 V		0.95	3.7		
			speed main) mode ^{Note 7}	fpll = 64 MHz, fclk = 16 MHz	V _{DD} = 3.0 V		0.95	3.7		
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.70		
			clock operation	T _A = -40°C	Resonator connection		0.47	0.89		
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.33	0.70		
				T _A = +25°C	Resonator connection		0.52	0.89		
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	1.90		
				T _A = +50°C	Resonator connection		0.60	2.09		
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.54	2.3 1.22 1.28 1.22 1.28 3.7 3.7 0.70 0.89 0.70 0.89 2.09 2.80 2.99 6.10 6.29 15.5 15.7 45.2		
				T _A = +70°C	Resonator connection		0.73			
				fsue = 32.768 kHz ^{Note 5}	Square wave input		1.27	6.10		
				T _A = +85°C	Resonator connection		1.46	6.29		
				fsue = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.5		
				T _A = +105°C	Resonator connection		3.23	15.7		
				f _{SUB} = 32.768 kHz ^{Note 5} T _A = +125°C	Square wave input		7.20	45.2		
					Resonator connection		7.53	45.5		
	IDD3 ^{Note 6}	STOP mode ^{Note}	T _A = -40°C				0.18	0.50		
			T _A = +25°C			0.23	0.50			
			5	Ť	T +50°C				0.27	1 70

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ (2/2)

(Notes and Remarks are listed on the next page.)

T_A = +50°C

T_A = +70°C

T_A = +85°C

T_A = +105°C

T_A = +125°C

Unit

mΑ mΑ mΑ mΑ

mΑ mΑ

mΑ

mΑ

mΑ mA

mA mΑ

μA μA

μA

μA

μA

μA

μA

μA

μA

μA

μA μA

μA μA

μA

μA

μA

μA

μA

μA

μA

0.27

0.44

1.17

2.94

7.14

1.70

2.60

5.90

15.3

45.1

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 20 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditio	MIN.	TYP.	MAX.	Unit	
Low-speed on- chip oscillator operating current	I _{FIL} Note 1			0.20		μA		
RTC operating current	_{RTC} Notes 1, 2, 3				0.02		μA	
12-bit interval timer operating current	ı⊤ ^{Notes} 1, 2, 4				0.02		μA	
Watchdog timer operating current	Iwdt ^{Notes 1,} 2, 5	f⊩ = 15 kHz			0.22		μA	
A/D converter operating current	IADC ^{Notes 1, 6}	When conversion at maximum speed	at maximum					mA
A/D converter reference voltage current	ADREF ^{Note 1}					75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}					75.0		μA
LVD operating current	LVINotes 1, 7					0.08		μA
Self- programming operating current	_{FSP} ^{Notes} 1, 8					2.5	12.2	mA
Programmable	PGA Note 9			AV _{REFP} = V _{DD} = 5.0 V		0.21	0.37	mA
gain amplifier operating current				AV _{REFP} = V _{DD} = 3.0 V		0.18	0.35	mA
Comparator	ICMP ^{Note 10}	When one comparator channel is		AV _{REFP} = V _{DD} = 5.0 V		41.4	74	μA
operating		operating		AV _{REFP} = V _{DD} = 3.0 V		37.2	71	μA
current	IVREF	When one internal	reference	AV _{REFP} = V _{DD} = 5.0 V		14.8	31	μA
		voltage circuit is operating		AV _{REFP} = V _{DD} = 3.0 V		8.9	24	μA
Programmable	IREF			AV _{REFP} = V _{DD} = 5.0 V		3.2	6.1	μA
gain amplifier/ comparator reference current source				AV _{REFP} = V _{DD} = 3.0 V		2.9	5.9	μA
BGO operating current	BGO ^{Note 12}					2.50	12.2	mA
SNOOZE	ISNOZ Note 1	operation The A/D conv		The mode is performed Note 13			1.10	mA
operating current				rsion operations are rmal mode, AV _{REFP} = V _{DD} = 5.0		1.20	2.17	mA
		CSI/UART operation	on			0.70	1.27	mA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Current flowing to the VDD.
 - 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock is operating in operating mode or in HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and fiL operating current). The current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IWDT, when fcLK = fsUB when the watchdog timer is operating.
 - 6. Current flowing only to the A/D converter. The supply current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, when the A/D converter is operating in operating mode or in HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing during self-programming operation.
 - **9.** Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IPGA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
 - **10.** Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP, when the comparator is operating.
 - **11.** This is the current required to flow to V_{DD} pin of the current circuit that is used as the programmable gain amplifier and the comparator.
 - 12. Current flowing only during data flash rewrite.
 - 13. Refer to 21.3.3 SNOOZE mode for shift time to the SNOOZE mode.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$
 - 5. Example of calculating current value when using programmable gain amplifier and comparator.
 - Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when AV_{REFP} = V_{DD} = 5.0 V)

$$\begin{split} & \mathsf{ICMP} \times 3 + \mathsf{I}_{\mathsf{VREF}} + \mathsf{I}_{\mathsf{PGA}} + \mathsf{I}_{\mathsf{IREF}} \\ & = 41.4 \ [\mu \mathsf{A}] \times 3 + 14.8 \ [\mu \mathsf{A}] \times 1 + 210 \ [\mu \mathsf{A}] + 3.2 \ [\mu \mathsf{A}] \\ & = 352.2 \ [\mu \mathsf{A}] \end{split}$$

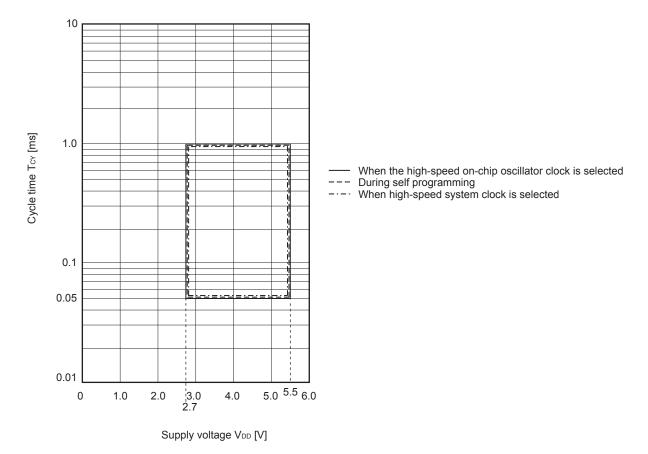
Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when AV_{REFP} = V_{DD} = 5.0 V)

$$\begin{split} & \mathsf{ICMP} \times 2 + \mathsf{IREF} \\ &= 41.4 \; [\mu \mathsf{A}] \times 2 + 3.2 \; [\mu \mathsf{A}] \\ &= 86.0 \; [\mu \mathsf{A}] \end{split}$$

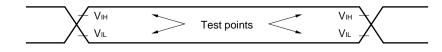
33.4 AC Characteristics

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

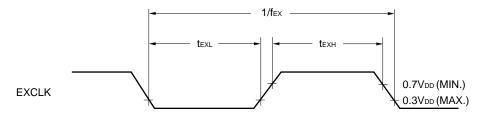
Items	Symbol		Cond	itions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain) operation	HS (high-speed main) mode			0.05		1	μS
		Subsystem clock (fsub) operation				28.5	30.5	31.3	μS
		In the self programming mode	HS (high-s main) mod		T _A = -40 to +105°C	0.05		1	μS
External system clock frequency	fex					1.0		20.0	MHz
	fexs					32		35	kHz
External system clock input high-	texн, texL				24			ns	
level width, low-level width	texns, texls					13.7			μS
TI03, TI05, TI06, TI07 input high- level width, low-level width	tтıн, tтı∟					2/fмск+10			ns
TO03, TO05, TO06, TKBO00,	fто	HS (high-speed main)		4.0 \	$V \le V_{\text{DD}} \le 5.5 \text{ V}$			5	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to TKCO05 output frequency (When duty = 50%)		mode		2.7 \	$V \leq V_{DD} < 4.0 V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3 INTP9 to INT INTP20 to IN	P11,	2.7 \	$V \le V_{DD} \le 5.5 V$	1			μS
RESET low-level width	trsl					10			μS


Remark fmck: Timer array unit operation clock frequency

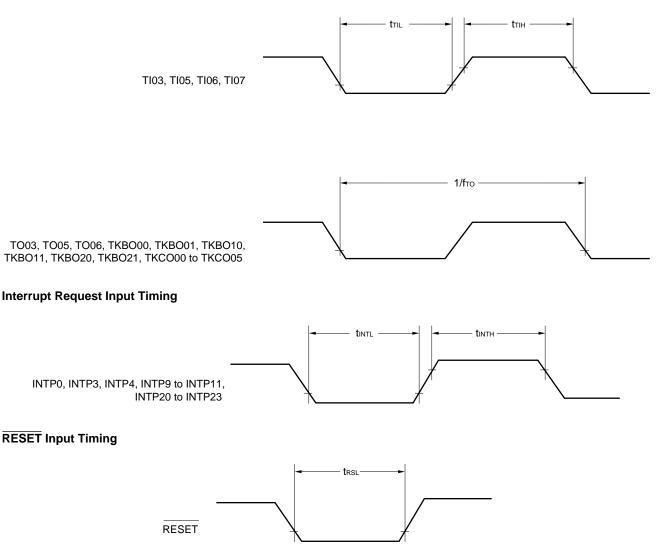
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))



Minimum Instruction Execution Time during Main System Clock Operation


TCY vs VDD (HS (high-speed main) mode)

AC Timing Test Points



External System Clock Timing

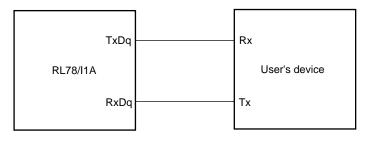
TI/TO Timing

33.5 Peripheral Functions Characteristics

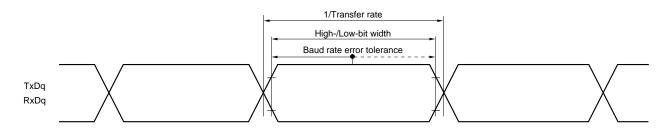
33.5.1 Serial array unit 0, 4 (UART0, UART1, CSI00, DALI/UART4)

(1) During communication at same potential (UART mode)

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions		HS (high-s Mo	Unit	
				MIN.	MAX.	
Transfer rate ^{Note 1}					fмск/6	bps
			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		3.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. The operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 20 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

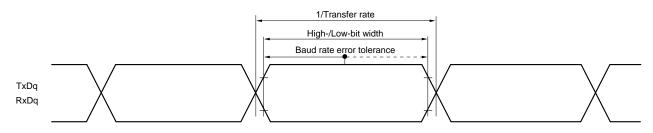
(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	(T _A = −40 to +125°C, 2.7 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V)

Parameter	Symbol	Conditions			HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time	tkCY1	tκcγ1 ≥ 4/fclκ	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	250		ns	
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	500		ns	
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2 – 20		ns	
	t KL1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		tксү1/2 – 40		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		80		ns	
		$2.7~V \le V_{\text{DD}} \le 5.5$	V	80		ns	
SIp hold time (from SCKp [↑]) ^{Note 2}	tksi1			40		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}			80	ns	

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 - g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

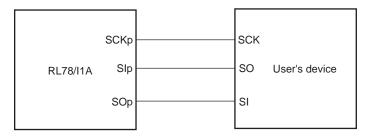
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions			HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time ^{Note 5}	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	fмск \leq 20 MHz	6/fмск		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		ns	
			fмск ≤ 16 MHz	6/fмск		ns	
SCKp high-/low-level width	tкн2, tк∟2			tксү2/ 2		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsik2			1/fмск+40		ns	
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+60		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF ^{Note 4}			2/fмск+80	ns	

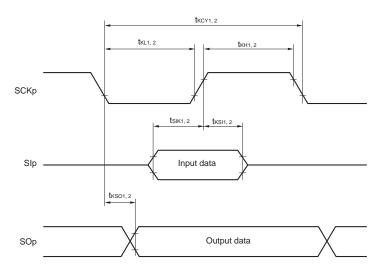

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

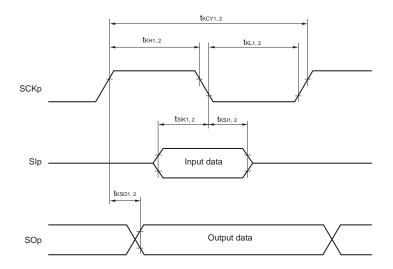
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $\overline{SCKp}\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $\overline{SCKp}\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))





CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00)

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol		Conditions		Conditions HS (high-speed main) Mode		
					MIN.	MAX.	
Transfer rate		Reception	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$			fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		3.3	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$			fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		3.3	Mbps

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
- 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03)

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions			Conditions HS (high-speed main) Mode		
					MIN.	MAX.		
Transfer rate		Transmission	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$			Note 1	bps	
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V _b = 2.7 V		2.8 ^{Note 2}	Mbps	
			$2.7 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps	
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 ^{Note 4}	Mbps	

Notes 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

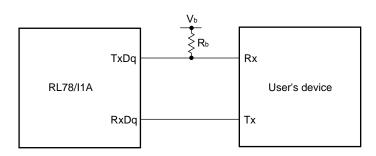
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

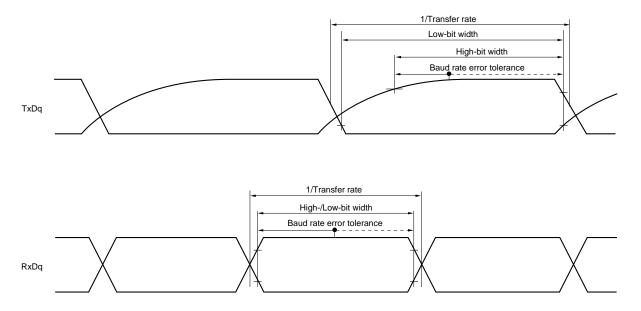
* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** $R_b[\Omega]$: Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency

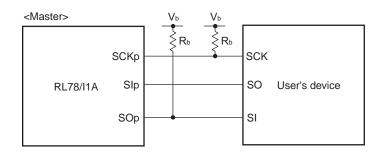
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).


m: Unit number, n: Channel number (mn = 00 to 03))

UART mode connection diagram (during communication at different potential)

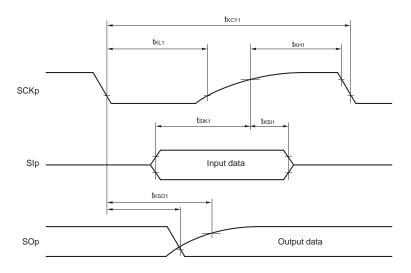
UART mode bit width (during communication at different potential) (reference)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- $\label{eq:result} \mbox{Remarks 1.} \quad R_b[\Omega]: \mbox{ Communication line (TxDq) pull-up resistance, $V_b[V]$: Communication line voltage}$
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

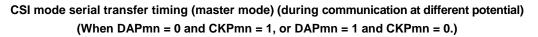

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

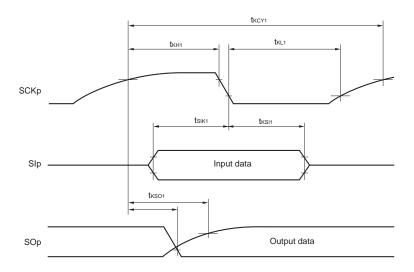
Parameter	Symbol	Conditions		HS (high-sp Moo		Unit
				MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 1.4 \; k\Omega \end{array}$	600		ns
			$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1000		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \\ C_{\text{b}} = 30 \ pF, \end{array} \end{array} \label{eq:VDD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 kΩ	tксү1/2 – 80		ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \\ C_{\text{b}} = 30 \ \text{pF}, \end{array}$	< 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	tксү1/2 – 170		ns
SCKp low-level width	tĸL1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \\ C_b = 30 \; pF, \end{array}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 kΩ	tксү1/2 – 28		ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \\ C_{\text{b}} = 30 \ \text{pF}, \end{array}$	< 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	tксү1/2 – 40		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \\ C_b = 30 \; pF, \end{array} \label{eq:VDD}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ R _b = 1.4 kΩ	160		ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \\ C_{\text{b}} = 30 \ \text{pF}, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	250		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksıı	$\begin{array}{l} 4.0 \; V \leq V_{DD} \\ C_b \; \text{=} \; 30 \; pF, \end{array} \label{eq:VDD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 k Ω	40		ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \\ C_{\text{b}} = 30 \ pF, \end{array} \end{array} \label{eq:VDD}$	< 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	40		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 kΩ		160	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ		250	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \\ C_b = 30 \; pF, \end{array}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 kΩ	80		ns
			< 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Rb = 2.7 kΩ	80		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksii	$\begin{array}{l} 4.0 \; V \leq V_{DD} \\ C_b \; \text{= } \; 30 \; pF, \end{array}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ R _b = 1.4 kΩ	40		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array} \end{array} \label{eq:VDD}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	40		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \\ C_{\text{b}} = 30 \; pF, \end{array} \end{array} \label{eq:VDD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 kΩ		80	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ		80	ns

(Note, Caution and Remark are listed on the next page.)



CSI mode connection diagram (during communication at different potential)




- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(6) DALI/UART4 mode

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate				fмск/12	bps
		Maximum transfer rate theoretical value fcLk = 20 MHz, fMCk = fcLk		1.6	Mbps

Remark fmck: Operation clock frequency of DALI/UART.

(Operation clock to be set by the serial clock select register 4 (SPS4).)

33.5.2 Serial interface IICA

(1) I^2C standard mode

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

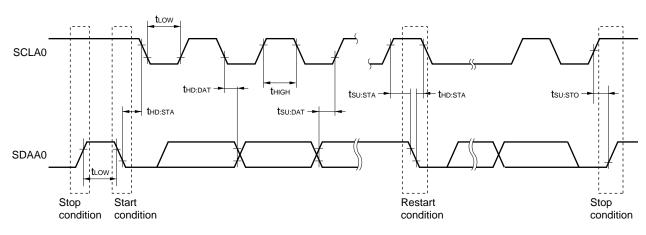
Parameter	Symbol	Conditions		h-speed Mode	Unit
			MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode: $f_{CLK} \ge 1 \text{ MHz}$	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		μS
Hold time ^{Note 1}	thd:sta		4.0		μS
Hold time when SCLA0 = "L"	t LOW		4.7		μS
Hold time when SCLA0 = "H"	tніgн		4.0		μS
Data setup time (reception)	tsu:dat		250		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		μS
Bus-free time	t BUF		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of t_{HD:DAT} is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I^2C fast mode


 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	、 U	h-speed Mode	Unit
			MIN.	MAX.	
SCLA0 clock frequency	fsc∟	fast mode: fcLK \ge 3.5 MHz	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		μS
Hold time ^{Note 1}	thd:sta		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		1.3		μS
Hold time when SCLA0 = "H"	t HIGH		0.6		μS
Data setup time (reception)	tsu:dat		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	0.9	μS
Setup time of stop condition	tsu:sto		0.6		μS
Bus-free time	t BUF		1.3		μS

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

33.6 Analog Characteristics

33.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM
ANI0 to ANI2, ANI4 to ANI7	Refer to 33.6.1 (1).	Refer to 33.6.1 (3).	Refer to 33.6.1 (3).
ANI16 to ANI19	Refer to 33.6.1 (2).		
Internal reference voltage	Refer to 33.6.1 (1).		-
Temperature sensor output			
voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI2, ANI4 to ANI7, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}$

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI4 to ANI7	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.4		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	3.8		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error ^{Note} 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI4 to ANI7		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR Note 4		V
		Temperature sensor output volt (HS (high-speed main) mode)	tage	Ň	VTMPS25 Note	4	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Refer to 33.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI16 to ANI19

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = 10^{\circ}\text{C}, $
AVREFM = 0 V)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μS
		Target ANI pin : ANI16 to ANI19	$2.7~V \leq V_{DD} < 5.5~V$	3.4		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{\text{REFP}} = V_{\text{DD.}}

Zero-scale error/Full-scale error: Add $\pm 0.2\% FSR$ to the MAX. value when AV_{\text{REFP}} = V_DD.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
	ANI4 to ANI7, ANI16 ANI19	Target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	$2.7~V \le V \text{dd} \le 5.5~V$	3.4		39	μS
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		Forget nin: Internel	$2.7~V \leq V_{DD} \leq 5.5~V$	3.8		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI2, ANI4 to ANI7		0		VDD	V
		ANI16 to ANI19		0		VDD	V
		Internal reference voltage (HS (high-speed main) mode)	C C		VBGR Note 3		V
		Temperature sensor output v (HS (high-speed main) mode)	•	VTMPS25 Note 3			V

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{DD}$	/ Vss – 0 V. Reference voltage (+) –	Vpp Reference voltage (_) - Vss)
$(1A = -40 10 + 125 0, 2.7 v \le v_{DD} \le 5.5 v$	r, vss = 0 v, reference voltage (+) =	v_{DD} , relevence voltage (-) = v_{SS}

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 33.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI0, ANI2, ANI4 to ANI7, ANI16 to ANI19

(T_A = -40 to +125°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM} Note ⁴ = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR ^{Note 3}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 33.6.2 Temperature sensor/internal reference voltage characteristics.
- 4. When reference voltage (-) = V_{SS}, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AV_{REFM}. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AV_{REFM}. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.

33.6.2 Temperature sensor/internal reference voltage characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp		5			μS

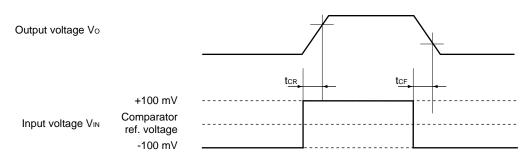
33.6.3 Programmable gain amplifier

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±5	±10	mV
Input voltage range	VIPGA				0		0.9Vdd/	V
							gain	
Gain error ^{Note 1}		4, 8 times					±1	%
l		16 time	16 times				±1.5	%
		32 time	S			±2	%	
Slew rate ^{Note 1}	SRrpga	Rising	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4, 8 times	4			V/μs
	edge	edge	edge	16, 32 times	1.4			V/μs
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	4, 8 times	1.8			V/μs
				16, 32 times	0.5			V/μs
	SRFPGA	Falling	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4, 8 times	3.2			V/μs
		edge		16, 32 times	1.4			V/μs
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	4, 8 times	1.2			V/μs
				16, 32 times	0.5			V/μs
Operation stabilization wait time ^{Note 2}	t PGA	4, 8 tim	es		5			μS
		16, 32 t	imes		10			μS

(TA = -40 to +125°C, 2.7 V \leq AVREFP = VDD \leq 5.5 V, Vss = AVREFM = 0 V)

Notes 1. When $V_{IPGA} = 0.1V_{DD}/gain$ to $0.9V_{DD}/gain$.

2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).


Remark These characteristics apply when AVREFM is selected as GND of the PGA by using the CVRVS1 bit.

33.6.4 Comparator

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP			±5	±40	mV
Input voltage range	VICMP	CMP0P to CMP5P	0		VDD	V
		СМРСОМ	0.045		0.9VDD	V
Internal reference voltage deviation		CmRVM register values: 7FH to 80H (m = 0 to 2)			±2	LSB
		Other than above			±1	LSB
Response time	tcr, tcf	Input amplitude = $\pm 100 \text{ mV}$		70	150	ns
Operation stabilization wait time ^{Note 1}	tсмр	$3.3 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	3			μS
Reference voltage stabilization wait time	tvr	CVRE: 0 to 1 Note 2	10			μS

(TA = -40 to +125°C, 2.7 V \leq AVREFP = Vdd \leq 5.5 V, Vss = AVREFM = 0 V)

- **Notes 1.** Time required until a state is entered where the DC and AC specifications of the comparator are satisfied after the operation of the comparator has been enabled (CMPnEN bit = 1: n = 0 to 5)
 - 2. Enable comparator output (CnOE bit = 1; n = 0 to 5) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 2) and waiting for the operation stabilization time to elapse.
- **Remark** These characteristics apply when AV_{REFP} is selected as the power supply source of the internal reference voltage by using the CVRVS0 bit, and when AV_{REFM} is selected as GND of the internal reference voltage by using the CVRVS1 bit.

33.6.5 POR circuit characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.62	V
	VPDR	Power supply fall time	1.44	1.50	1.61	V
Minimum pulse width ^{Note}	TPW		350			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

33.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interruput Mode

(TA = -40 to +125°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.97	4.06	4.25	V
voltage			Power supply fall time	3.89	3.98	4.15	V
		VLVD1	Power supply rise time	3.67	3.75	3.93	V
			Power supply fall time	3.59	3.67	3.83	V
		VLVD2	Power supply rise time	3.06	3.13	3.28	V
			Power supply fall time	2.99	3.06	3.20	V
		VLVD3	Power supply rise time	2.95	3.02	3.17	V
			Power supply fall time	2.89	2.96	3.09	V
		VLVD4	Power supply rise time	2.85	2.92	3.07	V
			Power supply fall time	2.79	2.86	2.99	V
		VLVD5	Power supply rise time	2.75	2.81	2.95	V
			Power supply fall time	2.70	2.75	2.88	V
Minimum pu	lse width	t∟w		300			μS
Detection de	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

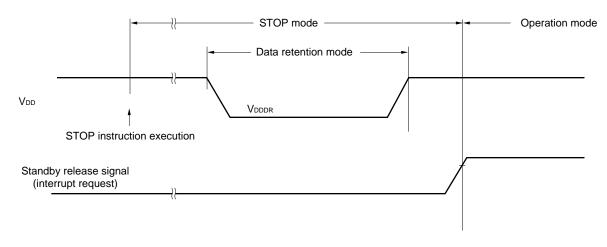
 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{ VPDR} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	Vpoc2, Vp	POC1, VPOC0 = 0, 1, 1, 1	2.70	2.75	2.88	V	
mode	VLVDD1	L١	VIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	3.07	V
				Falling interrupt voltage	2.79	2.86	2.99	V
	VLVDD2	L١	VIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.17	V
				Falling interrupt voltage	2.89	2.96	3.09	V
VLVDD3	L	VIS1, LVIS0 = 0, 0	Rising release reset voltage	3.97	4.06	4.25	V	
				Falling interrupt voltage	3.89	3.98	4.15	V

33.6.7 Supply voltage rise inclination characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms


Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VDD rises to within the operating voltage range shown in 33.4 AC Characteristics.

33.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

(T_A = -40 to +125°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.47 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

33.8 Flash Memory Programming Characteristics

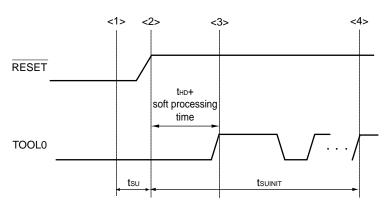
Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
CPU/peripheral hardware clock frequency	fclk	$2.7~V \leq V \text{DD} \leq 5.5~V$		1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years	$T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year	$T_A = 25^{\circ}C^{Note 3}$		1,000,000		
		Retained for 5 years	$T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years	T _A = 85°C ^{Note 3}	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

33.9 Dedicated Flash Memory Programmer Communication (UART)


$T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

33.10 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	t suinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after a reset ends (except soft processing time)	tнd	POR and LVD reset must end before the external reset ends.	1			ms

$T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - the: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

