RENESAS Application Note

. . R20UT4547EJ0100
RX Family C/C++ Compiler Package (CC-RX) Rev. 1.00

.. May 31, 2019
How to Divide Boot and Flash Areas

Introduction

This document describes the processing necessary to divide a program into boot and flash areas when using
the C/C++ compiler for the RX family (CC-RX).

Versions of Tools with which Correct Operation has been Confirmed
The following tools and versions were used for the descriptions in this document.

e C/C++ compiler for the RX family (CC-RX): V3.01.00
e e?studio integrated development environment: V7.3.0
e CS+ for CC integrated development environment: V8.01.00

Contents

L. OVEBIVIBW 1.ttt ettt e o444ttt 4244444 b E e et e 4o 4444 e bbb et e e e e e e e e e e e e s 3
1.1 Dividing the BOOt @nd FIAS AFEASceeeiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeseeasesssesssessssssssssesessearsereneressrersnnnes 3
1.2 Allocating the Boot and FIash AFBASuuiiiiiiiiieiiit et 4
1.3 Procedures for Creating the Boot Area and Flash Area Projectscccoccoveiiiiiii e 4
1.4 Overview of Build Processing for the Boot and FIash Areasccccccceviiiiiiiiiiii e 5
2. Common Processing for the Boot and FIash Areasoceeiiiiiiiiiieiiii e 6
00 R O = 11 Vo [o {0 =X £ 6
P T R < (1 o o T PSP OTRRURURRN 6
0 O O P 8
2.2 Creating a common program for the boot and flash areas............cccooveeiiii e 10
2.2.1 Address definition file for the branch table (assembly language)ccocciiiiii e 10
2.3 Hex files for the boot and flaSh Araseeoiiiiiiiiiii e 10
2.4 INItIAlIZAtION PrOCEAUIEuueeiiieiiiiiiiii e s 11
1 T = To Lo | Y T PP PR 12
3.1 Creating DOOt Area PrOGIAMSeiiiiiiiee ittt e et e et e e e st et e e s s bb e e e e aabbeeeesnbbeeeeanbeeeeeabbeeeeaaes 12
3.1.1 Modifying the startup routing (FESELPIT.C) «.ueeeeiriieeeiiiie ettt e ettt e et e et e e e sbbeee e s nbbe e e e sbeeeeeaaes 12
K 02 | o To 114771 o o 0 | o 1< Y o O PUPRPRTPPRRN 12
3.1.3 Creating a file for resolving the function addresses in the branch table (extern_ftable.src) 13
T2 Y o 1=Tod 11/l g T [o oTo) =T (=T-We] o] i o] o F- 3 PR UTT O PPPRT 14
3.2.1 Output of a file for the externally defined SYMDOISooo i 14
3.2.2 Specifying the SECHON AlIOCALIONcoiiiiiiiiiiiie et e e e e et e e e abeeeeeanes 16
3.2.3 Specifying a vector for branching to the interrupt function in the flash area...........ccccccceeviicnnnnenn, 18
3.2.4 Specifying hex file output only to the boot area addreSss rangeoccvvveveeeeeeiircieree e 20
. FLASN AT ... 21
R20UT4547EJ0100 Rev.1.00 Page 1 of 35

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

4.1 Creating flash area ProgramSuuuiiiiie e e e s e e e e e s s st e e e e e e s s snnbeaereeeeeeesnnnrnerees 21
4.1.1 Modifying the startup routing (F€SEIPIT.C) ...ueeieiirriie ittt e e e seneee s 21
4.1.2 Creating a branch table program (ftable.SIC)ooiiiiiiiii e 22
4.1.3 Defining an interrupPt FUNCTIONoiiiiiiiiie ittt e e b e e s bt e e s nnn e e e s aanneee s 22
4.2 Specifying flash area OPLIONSuviiiiii e e e e e e s e e e e e s s s e e e e e e e e e e e anreraeees 23
4.2.1 Registering the externally defined symbol file with the projectcccccoeviiiiiiei e, 23
4.2.2 Specifying the SeCtion allOCALIONccoiiiiiiiiiiee e e e s s e e e e s e snnreeaees 25
4.2.3 Specifying hex file output only to the flash area address range............ccccovveeieiiiieee i 27
4.2.4 Combining the hex files for the boot and flash areas ... 28
5. DEDUGGING TOO ..ttt 30
L% M B To)"1V/3 1 (oY= o [TaTo IR (o T BI=To10 T T [1a T N 1o o PSSR 30
B. SAMPIE PrOQIaAIMSot e e e e e e e e e e ettt e e e e e e e e e e e et t e e e e eaaeesesrtaa e eaeaaes 32
6.1 Sample program for the boot area (DOOL.C)uuuuuiuiii s 32
6.2 Sample program for the flash area (flaSh.C)c..ooiiiiiii e 33
R20UT4547EJ0100 Rev.1.00 Page 2 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

1. Overview

1.1 Dividing the Boot and Flash Areas

The purpose of dividing the boot and flash areas is to ensure that only the program in the flash area can be
modified without reconfiguring the program in the boot area.

Flash area

(Application 1)

Boot area . .
) Use the flash memory self-programming function
(Fixed HEX of the microcontroller to update the application
code) area.

Figure1l Divided Areas on System

Note: In this document, the boot area is defined as an area that cannot be modified following design of the
system while the flash area is defined as an area that can be modified or replaced on the system.

To divide the boot and flash areas, create two projects, one to be used as the boot area project and the other
to be used as the flash area project. These projects must satisfy the following conditions.

e The variables and functions in the boot area are accessible from the flash area.
— The linker option -FSymbol should be used for the boot area project so that externally defined symbols
will be output in a file.
— The above externally defined symbol file should be specified as a target of building in the flash area
project.
e The functions in the flash area can be called from the boot area through a function table.
— When calling functions in the flash area, the boot area project should call the address of each branch
instruction for a function that is specified in the function table.
— Atable of branch instructions for functions to be called from the boot area project should be created in
the flash area project.

Reference is
Use the not possible.
-FSymbol option to A

output externally RAM area
defined symbols
it Branch table area
references)
el Reference is not
ash area possible.
Use physical
Use the addresses
-FSymbol option to (function calls). >‘ ROM area

output externally
defined symbols

(function calls) Boot area

_/
Figure 2 References to Variables and Functions between the Boot and Flash Areas

R20UT4547EJ0100 Rev.1.00 Page 3 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

1.2 Allocating the Boot and Flash Areas
Allocate the boot and flash areas as follows.

00000000H
00001000H RAM area
FFFO0000H | Branch table area

Flash area

>- ROM area

FFFO1000H

Boot area
FFFFFFFFH —

Figure 3 Example of Allocating the Boot and Flash Areas

1.3 Procedures for Creating the Boot Area and Flash Area Projects
Follow the procedures below to create the boot area and flash area projects.

1. Creating the boot area project
A. Create boot area programs in the source file.
B. Specify the necessary linker options.
C. Build the boot area project before the flash area project because the boot area project is required for
building the flash area project.

2. Creating the flash area project
A. Create flash area programs in the source files.
B. Specify the necessary linker options.

R20UT4547EJ0100 Rev.1.00 Page 4 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

1.4 Overview of Build Processing for the Boot and Flash Areas
Figure 4 shows an overview of build processing for the boot and flash areas.

—r

the

: --------------------------------- BOOt area ------------------------------- E
— project
Compile File for resolving the function addresses in
branch table
boot.src extern_ftable.src

Assemble
—
boot.obj E extern_ftable.obj _
Link

-

-fsymbol=

boot.abs boot.fsy function dection

Load module for ~ Symbol information on external

Compile

xternal variable and

o€ boOtEER variables and functions, .. L...ceeiiereereneas
E Flash area susshssssssssnsnnEnnnnnnn i
N S— project '

Assemble

Function table
flash.src ftable.src
\ /

v VA
flash.obj ftable.obj boot.obj
W Vv

Link

Load module forthe flash

Figure 4 Build Processing for the Boot and Flash Areas

R20UT4547EJ0100 Rev.1.00

May 31, 2019

RENESAS

Page 5 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

2. Common Processing for the Boot and Flash Areas

2.1 Creating projects

2.1.1 e?studio

1. Create projects
Create a boot area project and a flash area project by following the procedures given in section 1.3,
Procedures for Creating the Boot and Flash Areas.

Place a tick in the “boot” checkbox to configure the flash area project to allow reference to the boot area
project from the flash area project when the flash area project is built. In such cases, the boot area project is
built before the flash area project.

B8 Properties for flash O =
type filter text Project References - v
Resource

Projects may refer to other projects in the workspace.

Builders Use this page to specify what other projects are referenced by the project.
C/C++ Build
C/C++ General Project references for ‘flash:

Project References
Renesas OF
Run/Debug Settings

'i?;' Apply and Close Cancel

Figure 5 Setting the Flash Area Project to Allow Reference to the Boot Area Project

R20UT4547EJ0100 Rev.1.00 Page 6 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

2. Exclude the automatically generated files from the targets of building
Exclude the following files from the flash area project.

e intprg.c

e sbhrk.c

e sbhrk.h

e stacksct.h
e vect.h

e vectthl.c

3. Add files as targets of building

A. Add the following files to the boot area project as targets of building.
e extern_ftable.src
o ftable.inc

B. Add the following files to the flash area project as targets of building.
e boot.fsy (this file is generated after the boot area project is built)
o ftable.src
o ftable.inc
e int.c
e sub_mot.txt

Jor
q
0

0

Iy Project Explorer £3 =

v 15 boot

£, Binaries

[} Includes

(£ generate

v [src

- E:;{;t;-_ﬁam&? — r - Qgiclid?:ese files as targets of
Boot area project b [B_ftobleine, _ _ ¢
(= Debug
(= HardwareDebug
=| boot Debug.launch

-| boot HardwareDebug.launch

v IUC flash
:(," Binaries
[n}¥ Includes
v (£ generate

Lc] dbsct.c —
[£] hwsetup.c _/ \

l e intprge_ \
lh| iodefine.h
Lc) resetprg.c \

I_\E,_sbr'ﬁ:___" “ N\ \
lh| sbrk.h (\ .

I\. [stackscth J ; Exclude these_ files from the
T Gpeddtingh — = flash area project.

AR ek — — T /
LRY l.

Flash area project - L?u:c :c“b—c— —— / o .

el == == = This file is automatically

L 8 bootfsy =~ generated after the boot area

_t:cl_ms_h"_ -, project is built.

I Lh| ftable.inc
S| ftable.src | - .
Lointe_ _ _ r Add these files as targets of
|5 sub_mot.txt building.

(= Debug

(= HardwareDebug
=| flash Debug.launch
=) flash HardwareDebug.launch

Figure 6 Example of Creating Projects with the e?studio

R20UT4547EJ0100 Rev.1.00 Page 7 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

212 CS+

1. Create projects
Create the flash area project as the main project and the boot area project as a sub-project*.

Note: The build order in CS+ should be [Sub-project] -> [Main project].
The boot area program will not be modified once it is created. Therefore, when creating the second-
or a later generation flash area project, the sub-project can be deleted.

2. Exclude the automatically generated files from the targets of building
Exclude the following files from the flash area project.

e intprg.c

e shrk.c

e sbhrk.h

e stacksct.h
e vect.h

e vecttbl.c

3. Add files as targets of building

A. Add the following files to the boot area project.
e extern_ftable.src
o ftable.inc

B. Add the following files to the flash area project.
o ftable.src
e ftable.inc
e int.c
e boot.fsy

R20UT4547EJ0100 Rev.1.00 Page 8 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

Project Tree

© 2 [

A
Z

a

Flash area project

-3 flash (Project)
4 RSFS65NYAXFB (Microcontroller)
- ‘;4 Code Generator (Design Teol)

g RX Simulator (Debug Tool)

.._jﬁFlle

fi=-

L Program Analyzer (Analyze Tool)

- ﬂu Build tool generated files

‘ﬂ dbsct.c

‘ﬂ flash.c
‘ﬂ resetprg.c

U iodefine.h
: u typedefmeh

7
'_ﬂftablesrc B

ind ftable.inc

L=

1 'ﬂ vecttbl.c
‘_3_] intprg.c
ﬂ sbrk.c

|

Boot area project

&

Wbk _

l
bootfsy _ _ /

lnt*c’**\y
stacksct.h

u vect.h :
r
|

—

- —

-
-~

LA

—

~

\
\

This file is automatically
. generated after the boot area
project is built.

Add these files as targets of

~ o
 building.

S

oot (Subproje

.. ™ R5FS65NOAXFB (Microcontroller)

]

BA Code Generator (Design Tool)

. A, CC-RX (Build Tool)

=# RX Simulator (Debug Tool)
¥ Program Analyzer (Analyze Tool)

(3P File

Lﬁ i‘:ﬂ Build tool generated files
'ﬂ boot.c
"_I dbsct.c
-] intprg.c
'-"__I resetprg.c
6] sbrk.c
U vecttbl.c
! h-| iodefine.h
~.h-] sbrich
"_I stacksct.h
.| typedefine.h
: "_J vect h
('j extern_ftable.src \,
- fableine _ _ |

-

—

=S

Figure 7

* Exclude these files from the
flash area project.

N Add these files as targets of
building.

Example of Creating Projects with CS+

R20UT4547EJ0100 Rev.1.00
May 31, 2019

RENESAS

Page 9 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

2.2 Creating acommon program for the boot and flash areas

2.2.1 Address definition file for the branch table (assembly language)
e Create ftable.inc, which is the address definition file for the branch table for reference from both the boot
and flash areas.
e FLASH_TABLE: Start address of the branch table
o INTERRUPT_OFFSET: Size of the interrupt area in the branch table

Example: ftable.inc

FLASH TABLE .EQU OFFFO0000OH
INTERRUPT OFFSET .EQU 100H

2.3 Hex files for the boot and flash areas
File names used in this document are listed below (output procedures are described later).

¢ Hex file for the boot and flash areas combined: boot_flash.mot
o Hex file for the flash area: flash_fff00000_fff01000.mot
o Hex file for the boot area: boot_fff01000_ ffffffff.mot

Note: A load module file (*.abs) is separately generated for each of the boot and flash areas.

Combined hex file

(boot_flash.mot)
RAM area
Hex file for the flash area
(flash_fff00000_fff01000.mot)
Flash area
Hex file for the boot area
FFFO01000H (bOOt_fff01 OOO_ﬁ‘ﬁ‘ffffmot)
Boot area
FFFFFFFFH
Figure 8 Hex Files for the Boot and Flash Areas
R20UT4547EJ0100 Rev.1.00 Page 10 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

2.4 Initialization procedure
Figure 9 shows the initialization procedure.

ROM area RAM area

Flash area Flash area

Branch table area
BRA PowerON_Reset PC()7] For
BRA VECTO1 }
BRA VECTO2 _

BRA func For .
= functions

PowerON_Reset_PC() |

E E main()
Copy the initial values in

func() PowerON_Reset_PC().

interrupts

Jump to the startup
routine in the flash
area from the end of
PowerON_Reset_PC().

Boot area Boot area

Copy the initial values in
PowerON_Reset PC().

FFFFFFFCH

Figure 9 Initialization Procedure

R20UT4547EJ0100 Rev.1.00 Page 11 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

3. Boot Area

3.1 Creating boot area programs
The following steps are required for boot area programs.

— Modifying the startup routine
— Modifying dbsct.c
— Creating a file for resolving the function addresses in the branch table

3.1.1 Modifying the startup routine (resetprg.c)
Use #pragma inline_asm to add a branch to the startup routine (resetprg.c) as shown below.

Example: Modifying resetprg.c (1/2)

#pragma inline asm jump flash
static void jump flash(void) {

BSR OFFF00000H ; FLASH TABLE
}

Modify the main function call to the call to the main function for the boot area, and add a branch instruction to
the flash area startup routine.

Example: Modifying resetprg.c (2/2)

boot main () ;
Jump flash();

3.1.2 Modifying dbsct.c

Modify the section name to exclude it from the target of the -FSymbol option (which is used to output
externally defined symbols).

Example: Modifying dbsct.c

#pragma section C BOOTC

/*
** CTBL prevents excessive output of L1100 messages when linking.

** Even if CTBL is deleted, the operation of the program does not change.
*/

_UBYTE * const CTBL[] = {

R20UT4547EJ0100 Rev.1.00 Page 12 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

3.1.3 Creating afile for resolving the function addresses in the branch table
(extern_ftable.src)
o Define symbols for resolving the addresses for the branch table to be used to call functions in the flash
area from the C source.
¢ Register this file in the project.

Example: Creating extern_ftable.src

. INCLUDE ftable.inc
.GLB _f1
7f1 .EQU (FLASHiTABLE + INTERRUPT OFFSET + (0 * 4))
.GLB _f2
7f2 .EQU (FLASHiTABLE + INTERRUPT OFFSET + (1 * 4))
.END
R20UT4547EJ0100 Rev.1.00 Page 13 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

3.2 Specifying boot area options
Make the following option settings for the boot area.

— Output of a file for the externally defined symbols

— Specify the section allocation

— Specify a vector for branching to the interrupt function in the flash area
— Specify hex file output only to the boot area address range

3.2.1 Output of afile for the externally defined symbols

The externally defined symbols need to be output to a file so that the flash area project has access to the
variables and functions in the boot area.

Register all target sections with the -FSymbol option.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Section]—[Symbol file]
—[The specified section that outputs externally defined symbols to the file]

Properties for boot [m| X
type filter text Settings f=1n 2 r v
Resource
-~
Builders
w C/C++ Build Configuration: | HardwareDebug [Active] ~ | | Manage Configurations...

Build Variables
Environment

@ Advanced
~ (# Output
@ Advanced
@ List
(# Optimization

|
IR

DDUﬁﬁﬁmmlm
o'

Logging B Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings
Toal Chain Editor & Common The specified section that outputs externally defined symbols to the file [ENER =R
C/C++ General %3 Compiler]
Project References 83 Assembler)
Renesas QF ~ 83 Linker .
Run/Debug Settings ~ (2 Input

w (B Section
i@ Symbol file I
(22 Advanced

@ Subcommand file
@ Miscellanecus
@ User

~ 83 Library Generator
Mode
@ Standard Library
(2 Object

v (2 Optimization
(2 Advanced

(2 Miscellaneous
(53 User

w 83 Converter
@ Output
(2 Hex format
@ CRC Operation
(2 Miscellaneous
(5 User

Section alignment

£

Apply and Close Cancel

Figure 10 Example of Option Setting with the e?studio

R20UT4547EJ0100 Rev.1.00

May 31, 2019

RENESAS

Page 14 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas
Example: CS+
[CC-RX (Build Tool)]—[Link Options] tabbed page

—[Section]—[The specified section that outputs externally defined symbols to the file]

= Property .jint.c .j'ﬂable.src j’bon‘t.Fsy j’ extern_ftable src

- X
A, CC-RX Property al |2 -+
~ Section ~

Section start address B 1R 1.B 2R 2.BR.5L.51/04 PResetPRG/OFFFO0000C 1.C 2.CCSDSEC,CSBSEC.CEINIT,CSVTBL.CSVEC
v The specified section that i to the file[10]
[00] B_1
[01] B 2
102] B
[03] Cc_1
[04] Cc2
105] C
[06] D_1
1071 D_2
108] D
(03] p
» Sechon zlignment Section aigrmer (0]
> ROM to RAM mapped section ROM to RAM mapped section[3] W
The specified section that outpuls extemnally defined symbols to the file
Common Options ,(Compile Options ,(Assembleoptlcnsr}. Link Options \] Hex Qutput Options ,(Library Generate Options / -
Figure 11 Example of Option Setting with CS+
R20UT4547EJ0100 Rev.1.00 Page 15 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

3.2.2 Specifying the section allocation

Specify the section allocation in the boot area with the linker option -start. Make sure that the sections do not
overlap those in the flash area.

Example: e? studio

[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Section]—[Section Viewer]

3 operties for boot
type filter text

Resource
Builders
w Cf/C++ Build
Build Variables
Envirenment
Legging
Settings
Tool Chain Editor
C/C++ General
Project References
Renesas QF
Run/Debug Settings

O
Settings - T
A
Configuration: | HardwareDebug [Active] ~ | | Manage Cenfiguratiens...
i Tool Settings Toolchain Device & Build Steps Build Artifact Binary Parsers @ Error Parsers
% Common [Sections | 5U,51,B_1,R_1,B_2,R_2 B,R/01000,PResetPRG/OFFF01000,C_1,C_2, CBOOTC,C| | ... I
B3 Compiler
B3 Assembler] b4
v & Linker Section Viewer
v (# Input
% Advanced Address Section Mame
v (# Output 00001000 5U
@ Advanced 5]
@ List B_1
Optimization R1
B2
Symbol file R2
@ Advanced B
(# Subcommand file R :
i O FFFO1 000 PResetPRG
(23 User Mew Overlay
- O FFFOTT00 C_1
~ B3 Library Generator R Secti
= c2 emove Section
& Mode
@ Standard Library £ Move Up
& Object Move Down
v (Optimization s
@ Advanced D*
@ Miscellanecus W
@ User L
w 3 Converter PIntPRG
(# Output p
(% Hex format OxFFFFFFA0 EXCEPTVECT
(22 CRC Operation OxFFFFFFFC RESETVECT
(# Miscellaneous
(3 User
[] Override Linker Script
Browse
Import... | Export.. Re-Apply v
0K | | Cancel Cancel
Figure 12 Example of Option Setting with the e?studio

R20UT4547EJ0100 Rev.1.00

May 31, 2019

RENESAS

Page 16 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

Example: CS+
[CC-RX (Build Tool)]—[Link Options] tabbed page

—[Section]—[Section start address]

= Property .gintc ﬁ' ftable.src ﬁ boot fay ﬁ' extern_ftable.src - X
A, CC-RX Property al |2 =
~ _Sectiog
Section start address B_1.R_1.B_2.R_2.B.R.5U.51/00001000.PReset PRG/FFF01000.C_1.C_2.C_.BOOTC.CSDSEC.CY

~ The specified section thatputputs externally defined symboels to the file The specdr R R

[00] BT Section Settings X

[01] B_2 A

[02] B I Address Section Add..

[03] C_1 (00001000 B_1

[04] C R1

[05] C =

[06] n B_2 New Cveray...

o7 D_2 R_2 Bemove

[08] D B : =

(03] P o
> Section alignment Section aligry R :
» ROM to RAM mapped section ROMto RA 51

Common Options /{ Compile Options /{ AssembleOptions IJnkOptions{ Hel(ULI‘tDLI‘tUDfIOn;‘l
LO<EEED1100 c1
L

v
Section start address |
(xFFFO1000 PResetPRG
— -
o x
A

Gt c2
[ECF] C,
|ecoTC
CSDSEC Import...
CSBSEC . Export.. .
' AllMessages r’{ *Rapid Build A *Build Tool / I—l -
Output Q, Smart Browser Error List oK Cancel el
Figure 13 Example of Option Setting with CS+
R20UT4547EJ0100 Rev.1.00 Page 17 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

3.2.3 Specifying a vector for branching to the interrupt function in the flash area
Specify the address in the branch table with the linker option -VECTN.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page
—[Linker]—[Output]—[Address setting for specified area of vector table]

—3=FFF0000C (to specify 0xFFFO000C for address 3)

B8 Properties for boot O x
type filter text Settings - r v
Resource
Builders ~
w (fC++ Build Configuration: | HardwareDebug [Active] ~ | | Manage Configurations...

Build Variables
Envircnment

Logging & Tool Settings Toolchain Device & Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings
Tool Chain Editer i Common Qutputs debugging information Yes (Qutputs to the output file) ~
C/C++ General g ;ump\:‘r [] Compresses the debugging information
Project References ssembler
Renesas OF v) Linker S{workspace_loc:/${ProjName}/${Confighlame}}
Run/Debug Settings v (# Input Output file type Output absolute file i
Advanced f o
- OQutputs the external symbol-allocation information file
Advanced Suppress information-level message output
@ List Message number

@ Optimization
~ (B Section
(& Symbol file
(& Advanced
(2 Subcommand file
(2 Miscellaneous
(2 User
w 3 Library Generator
2 Mode
(2 standard Library
2 Object
~ [Optimization
@ Advanced
@ Miscellaneous
@ User
~ &) Converter
@ Output
@ Hex format
(# CRC Operation
(# Miscellaneous
(B8 User

Motify unused symbol
[IFills in padding data at the end of a section
[[] Generate divided vector table section

Address setting for unused vector area |

& & 8

Address setting for specified area of vector table

® Apply and Close Cancel

Figure 14

Example of Option Setting with the e?studio

R20UT4547EJ0100 Rev.1.00
May 31, 2019

Re Page 18 of 34
RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

Example: CS+
[CC-RX (Build Tool)]—[Link Options] tabbed page
—[Output]—[Address setting for specified vector number]

—3=FFF0000C (to specify 0xFFF0000C for address 3)

4, CC-RX Property a o -+
w QOutput ~

Output file type Load module file{-FOm=Absolute)

Qutputs debugging information Yes (Outputs to the output file)-DEBug)

Path of the cutput folder “%BuildModeMName

Qutput file name %ProjectName.abs

Outputs the external symbol-allocation information file No

Enables information-level message output MNol-NOMessage)

Suppresses the number of information-level messages

Fills in padding data at the end of @ section No

Address setting for specified vector number A ing for specified vector number{1]

3=FFFO000C

10]
Address setting for unused vector area
Outputs the jump table No
Generate function list used for detecting illegal indirect function call No
Splits vector table sections No
~ List w

Address setting for specified vector number
Specifies the address setting for specified vector number in the format of "<vector number> = {<symbel> | <address>|", one per line.
Specifies a decimal value from 0 to 255 for <vector numbers._..

' Common Options ,(Compile Options ,(AssembleOpticnsl}. Link Options ,ﬂlHa(OutputOptions ,(Library Generate Options / -

Figure 15 Example of Option Setting with CS+

R20UT4547EJ0100 Rev.1.00 Page 19 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

3.2.4 Specifying hex file output only to the boot area address range
Specify the output file name and output addresses.

Example: e? studio

[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page
—[Converter]—[Output]

—Select the [Output hex file] checkbox.

—Select [Motorola S format file] as the output file format.

—Specify the output file name and output addresses in [Division output file].

Build Variables
Environment

8 Properties for boot m} x
type filter text Settings - v -
Resource
Builders .
w C/C++ Build Configuration: |HardwareDebug [Active] ~| | Manage Configurations...

Run/Debug Settings

Legging i) Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers

Settings

Tool Chain Editor 3 Common [Output hex file
C/C++ General &5 Compiler Output file type Motorola 5 format file ™
Project References B3 Assembler
Renesas OF 3 Linker S{workspace_loc:/${ProjName}/${Confighlame}}

53 Library Generator

v B3 Converter
Output

848

Division output file

boot_fff01000_ffffffff.mot=fff01000-ffffiff

@ Hex format
(# CRC Operation
@ Miscellaneous
@ User

Figure 16 Example of Option Setting with the e?studio
Example: CS+
[CC-RX (Build Tool)]—[Hex Output Options] tabbed page
—[Output File]—Specify the output file name and output addresses in [Division output file].
A, CC-RX Property al (o [=
~ Output File
Output hex file Yes
Output folder “%BuildModeName %
Output file name “%ProjectName%.mot
v Division outpul filef1]
[0] % BuildModeName % \boot_ff01000_fiffiff mot =fF01 DOOAFTH

~ Hex Format

Hex file format Motorola 5 type file(-FOm=S5type)

Unifies record size No
Fills unused areas in the output ranges with the value Mo
Output hex file with fixed record length from aligned start address Mo
Specify byte count for data record No
Outputs the calculation result of CRC MNo
Specify end record Mot specify(No option specified)

QOutput S5 record at the end No
Division output file

Specifies the division hex file in the format of "<File name>={<Start address>-<End address>|<Section name>[... Ji{/<Load address>]". one per line. ([/<Load address>] can be specified in case of CC-RX

V3.00.00 or later and the [Hex file format] property is Intel HEX file or Motorela S-record file).

', common Options Compile Options AssembleOptions § Link nptinn' . Hex Output Options ,(I Library Generate Options

Figure 17 Example of Option Setting with CS+

R20UT4547EJ0100 Rev.1.00

May 31, 2019 RENESAS

Page 20 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

4. Flash Area

4.1 Creating flash area programs
The following steps are required for flash area programs.

— Modifying the startup routine
— Creating a branch table program
— Defining an interrupt function

4.1.1 Modifying the startup routine (resetprg.c)

Comment out the initial settings. These initial settings are only to be made in the boot area startup routine;
they are not to be made again in the flash area.

1. Comment out #pragma entry.

Example: resetprg.c (1/3)

//#pragma entry PowerON Reset PC

void PowerON Reset PC(void)

2. Comment out the inclusion of the stack size definition and the stack pointer settings.

Example: resetprg.c (2/3)

//#include "stacksct.h" // Stack Sizes (Interrupt and User)
~ Omitted ~

#if (__RX_ISA VERSION _ >= 2) || defined(_RXV2)

// set _extb(_ sectop ("EXCEPTVECT")) ;

fendif

// set intb(sectop ("CSVECT"));

3. Comment out the initial register settings.

Example: resetprg.c (3/3)

// set fpsw(FPSW init | ROUND | _DENOM) ;
~ Omitted ~
// set psw(PSW init); // Set Ubit & Ibit for PSW
R20UT4547EJ0100 Rev.1.00 Page 21 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

4.1.2 Creating a branch table program (ftable.src)
At the addresses called from the boot area, write instructions for branching to the function addresses in the
flash area.

Example: ftable.src

.INCLUDE ftable.inc

.GLB _PowerON Reset PC
.GLB _f1

.GLB _f2

.GLB _int INTPO

.SECTION JP, CODE For interrupts

.ORG FLASH_TABLE

BRA.A _PowerON Reset PC ; RESET V
. LWORD OFFFFFFFFH ; vect=1l

. LWORD OFFFFFFFFH ; vect=2

BRA.A _int INTPO ; vect=3

. LWORD OFFFFFFFFH ; vect=4

. SECTION JP2,CODE For functions
.ORG (FLASH_TABLE+INTERRUPT_OFFSET)

BRA.A _fl P
BRA.A _f2

.END

4.1.3 Defining an interrupt function
e The interrupt vector should be defined in the boot area project.
¢ Do not specify the vector address (vect) with the #pragma interrupt directive in the flash area.

Example: int.c

#include "iodefine.h"
#pragma interrupt int INTPO
volatile char f;

void int INTPO (void)

R20UT4547EJ0100 Rev.1.00 Page 22 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

4.2 Specifying flash area options
Make the following option settings for the flash area.

— Register the externally defined symbol file with the project

— Specify the section allocation

— Specify hex file output only to the flash area address range

— Combine the hex files for the boot and flash areas

4.2.1 Registering the externally defined symbol file with the project
Register the externally defined symbol file (boot.fsy) created in the boot area with the project to allow access

to the variables and functions in the boot area.

Example: e? studio

({5 Project Explorer &3 =

= boot
v == flash [HardwareDebuq]
91:;5‘ Binaries
[ml Includes
= generate
w [src
I boot.fsy I
@ flash.c
ftable.inc
ftable.src

[g] int.c

= sub_rmot.bt
= Debug
== HardwareDebug
=| flash Debug.launch

flash HardwareDebug.launch

Figure 18 Example of Option Setting with the e?studio

R20UT4547EJ0100 Rev.1.00

May 31, 2019 RENESAS

Page 23 of 34

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

Example: CS+

Project Tree 1 X

A
z

@ 2 [&

SR

flash (Project)

3:% R3F5653M%4xFB (Microcontroller)
B:,_j Code Generator (Design Tool)
4, CC-RX (Build Tool)

e, RY Simulator (Debug Tool)

"3:' Program Analyzer (Analyze Tool)

..... b= iodefine.h
----- | typedefine.h

Lo boot.fsy |

Figure 19 Example of Option Setting with CS+

R20UT4547EJ0100 Rev.1.00
May 31, 2019

RENESAS

Page 24 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

4.2.2 Specifying the section allocation
Specify the section allocation in the flash area with the linker option -start.

e Make sure that the sections do not overlap those in the boot area.
e Do not allocate anything to the branch table area.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Section]—[Section Viewer]

i >

Section Viewer

Address Section Mame
| ; 000000004 | su
Sl
B_1
F_1
B 2
R_2
B
R
0xFFFO0200 PResetPRG New Overlay
OxFFFO0300 1 Remove Section
C2
C
C6* Mowve Down
D*
W
L
PIntPRG
P
O FFFFFF20 EXCEPTVECT
O FFFFFFFC RESETVECT

Add Section

Move Up

(] Override Linker Script

Browse

Import... | | Export.. || Re-Apply

QK | | Cancel

Figure 20 Example of Option Setting with the e?studio

R20UT4547EJ0100 Rev.1.00
May 31, 2019 RENESAS

Page 25 of 34

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

Example: CS+
[CC-RX (Build Tool)]—[Link Options] tabbed page

—[Section]—[Section start address]

Section Settings

Address Section
(x00000004 B_1
R_1
B_2
R_Z
B
R
(x FFFO0200 PResetPRG
= FFFO0300 c_1

c_2

C

CsDSEC
CEBSEC
CEINIT
CSVTBL
CSVECT
D_1

D_2

D

P

PIntPRG
W 1
w_2
W

L
Ox0OFFFFFF20 EXCEFTVECT
= OFFFFFFFC RESETVECT

Modify...

MNew Oveday ...

Bemove

Impart...

Export...

Cancel Help

Figure 21 Example of Option Setting with CS+

R20UT4547EJ0100 Rev.1.00

May 31, 2019 RENESAS

Page 26 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

4.2.3 Specifying hex file output only to the flash area address range
Specify the output file name and output addresses.

Example: e? studio

[Properties] —[C/C++ Build]—[Settings]—[Tool Settings] tabbed page
—[Converter]—[Output]

—Select the [Output hex file] checkbox.

—Select [Motorola S format file] as the output file format.

—Specify the output file name and output addresses in [Division output file].

B8 Properties for flash O X
type filter text Settings - v v
Resource
Builders ~
w CfC++ Build Configuration: | HardwareDebug [Active] ~ | | Manage Configurations...

Build Variables
Environment

Run/Debug Settings

&3 Library Generator

Logging) Tool Settings Toolchain Device A Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings
Tool Chain Editor &3 Common Output hex file
C/C++ General & Compiler Output file type Matorola S format file ~
Project References B3 Assembler
Renesas QF % Linker S{workspace_loc:/5{ProjName}/5{Confighame}}

Division eutput file

€& 8

w 8 Converter
(#2 Qutput
(2 Hex format
(% CRC Operation
(& Miscellaneous
@ User

flash_fff00000_fff01000.mot=FffODD0D-fff01000

v
Y
@/' Apply and Close Cancel
Figure 22 Example of Option Setting with the e?studio
Example: CS+
[CC-RX (Build Tool)]—[Hex Output Options] tabbed page
—[Output File]—Specify the output file name and output addresses in [Division output file].
4, CC-RX Property al |2 |-+
~ Output File
Qutput hex file fes
Output folder %BuildModeName .
Output file name “ProjectMame % mot
[E3
v Division output file{1]
1] “%BuildModeName % \flash _fif00000_fif01000.mot 000004701000
v Hex Format
Hex file format Motorola S type file(-FOrm=Stype)
Unifies record size No
Fills unused areas in the output ranges with the value Mo
QOutput hex file with fixed record length from aligned start address Mo
Specify byte count for data record No
Outputs the calculation result of CRC No
Specify end record Mot specify(Mo option specfied)
Output 53 record at the end Mo v
Division output file
Specifies the division hex file in the format of "<File name>={<Start address>-<End address>/<Section name>[... [}[/<Load address>]". ene per line. ([/<Load address>] can be specified in case of CC-RX
'V3.00.00 or later and the [Hex file format] property is Intel HEX file or Motorola S-record file)
. Common Options | Compile Options 4 AssembleOptions Link Uptlonsl ; Hex Output Options I Library Generate Options -

Figure 23 Example of Option Setting with CS+

R20UT4547EJ0100 Rev.1.00
May 31, 2019

Re Page 27 of 34
RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

4.2.4 Combining the hex files for the boot and flash areas
To combine the hex files for the boot and flash areas into one file, add the linker execution step after the
build processing.

Example: e? studio

[Properties] ~[C/C++ Build]—[Settings]—[Build Steps] tabbed page—[Post-build steps]
—Add the command to execute the linker (rlink.exe -subcommand=..¥src¥sub_mot.txt) to [Command(s):].

Properties for flash O *
Settings T
Resource R
Builders
w C/C++ Build Configuration: | HardwareDebug [Active | ~| | Manage Configurations...

Build Variables
Environment

Legging “ Build Steps Build Artifact Binary Parsers @ Error Parsers 0

Settings)
Tool Chain Editor Pre-build steps
C/C++ General Command(s):
Project References | v|
Renesas OF Descrinti
Run/Debug Settings ssenphion:
| v
Post-build steps
Command(s):
| rlink.exe -subcommand=. \srchsub_mot.txt v|
Description:

| ¥ |

W
Figure 24 Example of Option Setting with the e?studio
Example: CS+
[CC-RX (Build Tool)]—[Common Options] tabbed page—[Others]
—Add the command to execute the linker ("%MicomToolPath%¥CC-RX¥V3.01.00¥bin¥rlink.exe" -
subcommand=sub_mot.txt) to [Commands executed after build processing].
A, CC-RX Property a & -+
Frequently Used Options{for Hex Output)
~ Build Method
Build simultanecusly Yes
Build in parallel Ne
Handling the scurce file includes non-existing file Re-compile/assemble the source file
Ensure compatibility of paths and linkage order N
Version Select
Notes
~ Others
Output message format % TangetFiles™.
Format of build option list % TargetFiles¥. : %Program¥ %Options%
i i Commands execited before huild orocessing(0)
v Commands executed after build processing[1]
[0} "Micom ToolPath %\CC-RXW3.01.00\bin\rink exe” subcommand=sub_mot txt
Other additionz| options
v
C d after build p g
Specifies the command to be executed after build processing.
‘when specifying a batch file. use a call instruction like "call a.bat". When described "8!python” in the first line, the contents from the second line to the last line are executed as a Python command
|'\, Common Options _,| Compile Options | AssembleOptions 4 Link Options 4 Hex Output Options Library Generate Options -
Figure 25 Example of Option Setting with CS+
R20UT4547EJ0100 Rev.1.00 Page 28 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

Specify the input hex files, their format, and the output file name in the subcommand file for input to the

linker.

Example: sub_mot.txt (e? studio)

—-input=..¥..¥boot¥HardwareDebug¥ boot fff01000 ffffffff.mot
—input=flash fff00000 ££ff01000.mot

-form=stype

-output=boot flash.mot

Example: sub_mot.txt (CS+)

—input=.¥boot¥DefaultBuild¥boot fff01000 ffffffff.mot
—input=.¥DefaultBuild¥flash f£ff00000 f£f£f01000.mot
-form=stype

-output=.¥DefaultBuild¥boot flash.mot

R20UT4547EJ0100 Rev.1.00
May 31, 2019 RENESAS

Page 29 of 34

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

5. Debugging Tool

5.1 Downloading to Debugging Tool

Two load module files (*.abs) are generated; one for each of the boot and flash areas. Download both of the
load module files to the debugging tool.

Example: e? studio
[Debug]—[Debug Configurations]—[flash HardwareDebug]—[Startup] tabbed page
—[Load image and symbols]

Add the load module file for the boot area to the project for the flash area.

Debug Configurations X

Create, manage, and run configurations

= Y
= X | B & - MName: |ﬂash HardwareDebug
type filter text B Main [%5 Debuggel’j Common | B Source

[T] C/C++ Application Initizlization Cornrands ~
[£] C/C++ Remote Application [JReset and Delay (seconds): 2

=/ EASE Script
[©] GDB Hardware Debugging ClHatt
[£7] GDB Simulator Debugging (RHA50)

Java Applet

Java Application

R Launch Group

@ Launch Group [Deprecated)
Remote Java Application

Load image and symbols

v [E7 Renesas GDB Hardware Debugging Filename Load type Offset (hex] On connect Add...
oot HardwareDebug Program Binary [f... Image and Symbols Wes
bootx [C\Users\..] Image and Symbols D | Mo 1 Edit...
Ic | Renesas Simulator Debugging (RX, RL7E) Remove
Move up
Move down
L
< >
Filter matched 16 of 18 items Reyert Apply
workspace - boot/generate/resetprg.c - € studio . *Note on e?studio
File Edit Source Refactor Mavigate Search Project _Bencsactiim—fTT indo Help N
_ == _ Set boot.x to "No" when
il | &~ & ~ E LA &R connecting the debugging
All on-connect modules tool. Download it after
connection.
All medules
* Debug £ Clear symbol table
m <terminated, exit value: 0
w [c7 flash Debug [Renesas Simul
v 12 flashx [1]
v f# Thread #1 1 (single core
= PowerON_Reset_PC() at resetprg. c91 0xf'f'f01000
= 0
w| me-elf-gdb -rc-force-v2 (7.8.2)
s Renesas GDB server (Host)
Figure 26 Example of Option Setting with the e?studio
R20UT4547EJ0100 Rev.1.00 Page 30 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

Example: CS+
[RX Simulator (Debug Tool)]—[Download File Settings] tabbed page
—[Download]—[Download files]

Add the load module file for the boot area to the project for the flash area.

22 RX Simulator Property 2 =+
~_Download
] S—
CPU Reset after download
Automatic change method of event setting position Download Files X
~ Debug Information
Execute to the specified symbol after CPL Reset

Download file list: Download file property:

Specified symbel ~ i -
Specify the debugged overlay section File boot\Default Build\boot .abs l
The upper limit size of the memaory usage [MBytes] et et

Download object Yes

Download symbol infformation Yes
Specifythe PIC/PID offset No
Generate the information forir Yes

Download files
pecifies the file to be downloaded. The download file dizlog box is opened by pressing
Rle —
Connect Settings ,{ Debug TnnlSettingsI}, Download File Settings "'f IHnnk Specify the file to be downloaded. ol
Dutput Add Remove ,_X_
t=er Cancel Help
Figure 27 Example of Option Setting with CS+
R20UT4547EJ0100 Rev.1.00 Page 31 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

6. Sample Programs

The following pages show examples of boot and flash area programs that were created through the
procedures described in earlier sections.

6.1 Sample program for the boot area (boot.c)

#include "iodefine.h"

#pragma interrupt int boot (vect=4) /* Interrupt definition in the boot area
*/

int boot a 0x12;

int boot b = 0x34;

extern int fl(int); /* Prototype declaration of a function in the flash area
*/
extern int f2(int); /* Prototype declaration of a function in the flash area
*/

void boot main(void) /* Main function in the boot area */
{
/* Main processing in the boot area */

}

void boot func(void)

{

boot a = fl(boot a); /* Call of a function in the flash area */
boot b = f2(boot b); /* Call of a function in the flash area */
}
void int boot (void) /* Interrupt processing in the boot area */

{
boot a = 1;
}

R20UT4547EJ0100 Rev.1.00 Page 32 of 34
May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX) How to Divide Boot and Flash Areas

6.2 Sample program for the flash area (flash.c)

#include "iodefine.h"
int flash a, Db;
extern int boot a, boot b; /* Functions defined in the boot area */
extern void boot func(void); /* Function defined in the boot area */
int f1(int a)
{
return (++a);
}
int f£2(int b)
{

return (--b);
}
void main (void) /* Main function in the flash area */
{
boot a++; /* Access to a variable in the boot area */
boot b++; /* Access to a variable in the boot area */
boot func(); /* Access to a variable in the boot area */
}
R20UT4547EJ0100 Rev.1.00 Page 33 of 34

May 31, 2019 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

How to Divide Boot and Flash Areas

Revision History

Description
Rev. Date Page Summary
1.00 - New release
R20UT4547EJ0100 Rev.1.00 Page 34 of 34
May 31, 2019 RENESAS

Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2019 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Dividing the Boot and Flash Areas
	1.2 Allocating the Boot and Flash Areas
	1.3 Procedures for Creating the Boot Area and Flash Area Projects
	1.4 Overview of Build Processing for the Boot and Flash Areas

	2. Common Processing for the Boot and Flash Areas
	2.1 Creating projects
	2.1.1 e2 studio
	2.1.2 CS+

	2.2 Creating a common program for the boot and flash areas
	2.2.1 Address definition file for the branch table (assembly language)

	2.3 Hex files for the boot and flash areas
	2.4 Initialization procedure

	3. Boot Area
	3.1 Creating boot area programs
	3.1.1 Modifying the startup routine (resetprg.c)
	3.1.2 Modifying dbsct.c
	3.1.3 Creating a file for resolving the function addresses in the branch table (extern_ftable.src)

	3.2 Specifying boot area options
	3.2.1 Output of a file for the externally defined symbols
	3.2.2 Specifying the section allocation
	3.2.3 Specifying a vector for branching to the interrupt function in the flash area
	3.2.4 Specifying hex file output only to the boot area address range

	4. Flash Area
	4.1 Creating flash area programs
	4.1.1 Modifying the startup routine (resetprg.c)
	4.1.2 Creating a branch table program (ftable.src)
	4.1.3 Defining an interrupt function

	4.2 Specifying flash area options
	4.2.1 Registering the externally defined symbol file with the project
	4.2.2 Specifying the section allocation
	4.2.3 Specifying hex file output only to the flash area address range
	4.2.4 Combining the hex files for the boot and flash areas

	5. Debugging Tool
	5.1 Downloading to Debugging Tool

	6. Sample Programs
	6.1 Sample program for the boot area (boot.c)
	6.2 Sample program for the flash area (flash.c)

	Revision History
	Notice

